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Understanding what is Useful Information

Agent 1

Agent 5

Agent 3Agent 2

Agent 4

Consider consensus problem:

- Traditionally assume perfect observation 
of neighbor’s state (either through sensing 
or explicit communication)

- What information is needed to insure 
coordination (e.g. achieving consensus)?

- What is information?  What is the 
minimum amount of information needed 
to achieve goal?

- Information theory: we use the rate 
distortion methodology

Goal: xi(t) → average for 
each agent i

→ Identifying minimum communication requirements leads to better 
understanding of coordination
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Main Problem
• Plant dynamics: 

Xt+1 = AXt + ∑k BkUk,t
with S encoders (sensors) and K 
controllers

• Sensor: Ys,t = CsXt.  

• Action: Uk,t depends on information 
sent from different encoders.

• Find rate region and encoder and 
controller policies that insure, for 
example, stability.

• Consensus: 2E + V encoders

Plant

Controller 2 

Encoder 2Encoder 1

Y1,t = C1Xt Y2,t = C2Xt

R11

R21
R12 R22

Controller 1

U2,t U1,t 
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Main Problem Refined

• Let S = the number of sensors 
and K = the number of controllers.

• Xt+1= (A + ∑k Bk (∑
s

ls,k Ks,kCs)) Xt

• Assume ∃ stabilizing controllers 
{Ks,k } (under Rs,k=∞)

R

Plant

Controller 2 

Encoder 2Encoder 1

Y1,t = C1Xt Y2,t = C2Xt

R11

R21
R12 R22

Controller 1

U2,t U1,t 

• Find rate region    such that system is asymptotically stable 
under “certainty equivalent” controllers.  (Separation between 
estimation and control. Not source and channel.)
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Information Theoretic Techniques
Plant

Controller 2 

Encoder 2Encoder 1

Y1 = C1 X Y2 = C2 X

R11

R21R12 R22

Controller 1

• Converse: 
- Directed data processing inequality
- In interest of time we will only talk about achievable schemes

• Direct:
- High rate quantization and successive refinement
- Lossy source coding with side-information at the receiver
- Slepian-Wolf coding
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Outline

• S=1, K=1

• S is general, K=1 

• S=1, K is general

• S and K are general

• S=K is general and nested connectivity
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Achievability: No Control
Xt+1 = A Xt with full observation: Yt = Xt Goal: state estimation

Main idea: compute innovation at encoder. Encoder knows 
decoder's state estimate: 

Xt – Xt|t-1 = A Xt-1 - A Xt-1 = A et-1

Proposition: For bounded initial set Λ0 a sufficient condition for 
asymptotic observability is R > ∑λ(A) max {0, log |λ(A)| }.

Rate of convergence:  || et ||2 ≤ κ 2-αt

where α = mini (Ri - log |λi(A)|) 

WLOG use uniform quantizer

Xt

Ut

Plant

Controller Decoder

Encoder
Xt

∧

σt

∧∧

June 4, 2009 Sekhar Tatikonda 7



Quantizer
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A quantizer is a four-tuple (c, R, L, Φ):
• Centroid: c ∈ Rd

• Rate vector: R = (R1, . . ., Rd)’ ∈ Rd,+

• Dynamic range: L = (L1, . . ., Ld)' ∈ Rd, +

• Coordinate transformation: Φ

R = ∑i Ri
Boxes?  View as high-rate 
(low distortion) lossy source 
coding.

c

Λ

L12-2L22-3



Achievability: With Control
Xt+1 = AXt + BUt with full observation Yt = Xt

Idea: source-coding with side-information at the decoder.  

Before we quantized the innovation.  Now we should bin Xt:
Xt = (A Xt-1 + B Ut-1) +  A et-1

Term in parenthesis known to Rx.

Rate condition sufficient for 
asymptotic observability and 
stabilizability:    
R > ∑ max {0, log | λ(A) | }.

Non-nested information patterns!

∧

Ut
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June 4, 2009 Sekhar Tatikonda 9



Quantizer Example – Binning
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Output

Yt = CXt

(A, C) observable

∃ matrices β, γ:
γ [Yt-d+1, …, Yt] = ( A Xt-1+ β [Ut-d +1,…, Ut-1] ) + Aet-1

Term in parenthesis known to Rx.  Hence bin:  
γ [Yt-d+1, …, Yt]

One can also treat process disturbances

Ut

Plant

Controller Decoder

Encoder
Yt

Xt
∧

σt
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Outline

• S=1, K=1

• S is general, K=1

• S=1, K is general

• S and K are general

• S=K is general and nested connectivity
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Multiple Sensors
Plant

Controller

Encoder 2Encoder 1

Y1 = C1 X Y2 = C2 X

R1 R2

R1

R2

R

S sensors and one controller:
Xt+1 = A Xt + BUt,  Ys,t = CsXt,  s=1,...,S

The system is jointly observable but each individual (A,Cs) 
may not be observable.

What rates are needed? 
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Rate Region: Example
•Example: 

A = diag[λ1, λ2, λ3]. 

• Let C1= 1 0 0   C2 =  0 1 0
0 1 0            0 0 1

•Encoder 1 sees modes: λ1, λ2
and encoder 2 sees modes: λ2, λ3

•Then: R1 + R2 > log | λ1 | + log | λ2 | + log | λ3 |
R1 > log | λ1 | 

and  R2 > log | λ3 |

R1

R2

R

log | λ1 |

log | λ3 |

June 4, 2009 Sekhar Tatikonda 14



Rate Region: General Case

For each m let Os be the observable 
subspace (quotient space corresponding 
to A-invariant unobservable subspace)

Λs = { λ(A) :  those eigenvalues of A 
corresponding to the subspace Os }.

Let    = {(R1,...,RS) : ∑s:  λ∈ Λs
Rs,λ > max{0, log | λ |}, ∀ λ(A) } where Rs,λ is 

the rate assigned by sensor s to mode λ.  (Slepian-Wolf conditions.)

Proposition:  A necessary and sufficient condition on the rate vector  for 
asymptotic observability and stabilizability is (R1,...,RS) ∈

R1

R2

R

log | λ1 |

log | λ3 |

R

R
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General Multiple Sensor Set-up

Plant

Encoder 1

Encoder 2

Encoder S

Encoder 3

Controller

Decoder
Network
of noiseless 
bit-pipes
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Outline

• Review S=1, K=1

• S is general, K=1

• S=1, K is general

• S and K are general

• S=K is general and nested connectivity
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S=1, K is General

Xt+1 = (A + ∑k Bk Kk C) Xt

Assume stablizing controllers {Kk}
(under R=∞)

• Lower bound on rate is ∑k Rk > ∑ max{0, log |λ|}.  Is this 
achievable?  What about each Rk > ∑ max{0, log |λ|}?

• Find rate region    such that system is asymptotically stable.

• For convenience assume A is diagonal and the {Ck} matrices 
project onto standard coordinates.

R

Plant

Controller 2 

Encoder

Y =CX

R1 R2

Controller 1
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S=1, K is General -- part 2

Potential problem: controller 1
does not know action 2.  Will
binning story work?

• Idea let controller i:  x(i)t+1|t = Ax(i)t + ∑k Bk Kk C x(i)t

• Hence e(i)t+1 = F [ Ae(i)t + ∑k Bk K
k

C  (x(k)t – x(i)t) ]

• Where F = diag( { 2-Rλ } )

• FA stable.  What about the other term?

Plant

Controller 2 

Encoder

Y=CX

R1 R2

Controller 1

^ ^^

^ ^
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S=1, K is General -- part 3

• e(i)t+1 = F [ Ae(i)t + ∑k Bk K
k

C (e(i)
t
– e(k

t
)) ]

• Can show relative error: x(k)t – x(i)i = e(i)t – e(k)t

• If FA stable then absolute error e(i)t → 0

• Proposition: Rk > ∑λ max {0, log |  λ |}  ∀ k is sufficient for 
stabilizability under the controllers {Kk}.

Plant

Controller 2 

Encoder

Y=CX

R1 R2

Controller 1

^ ^
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Outline

• Review S=1, K=1

• S is general, K=1

• S=1, K is general

• S and K are general

• S=K is general and nested connectivity
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S and K are General
Plant

Controller 2 

Encoder 2Encoder 1

Y1 = C1 X Y2 = C2 X

R11

R21R12 R22

Controller 1
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• Combine Slepian-Wolf coding with binning (source-coding with 
side-information) technique.  Now many controllers.  Each controller 
should update its estimate as before.

• As before each encoder needs to send information about its 
observable modes.

Proposition:  If {Rs,k} satisfy the Slepian-Wolf conditions for each k 
then the system is stabilizable under the controllers {Ks,k}.



Outline

• Review S=1, K=1

• S is general, K=1

• S=1, K is general

• S and K are general

• S=K is general and nested connectivity
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Who sees what?

3

4

1
6

5
2

Plant

Controller 2 

Encoder 2Encoder 1

Y1 = C1 X Y2 = C2 X

R11 R22

Controller 1

• Can we do better than full rate on each link?  Hard question in
general.  Don’t need full state estimate at each controller.

• Here xt+1 = (A + ∑k Bk Kk Ck) xt under perfect channels.

• Examine connectivity graph of controllers:  specifically i j if 

Cj (zI – A)-1 Bi ≠ 0.  The action of i is observed by j.   
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Nested Connectivity – Example

21

Plant

Controller 2 

Encoder 2Encoder 1

Y1 = C1 X Y2 = C2 X

R11 R22

Controller 1

• Assume: C1 (zI – A)-1 B2 = 0.    The actions of controller 2 are 
not observed by controller 1.   A + B1 K1 C1 + B2 K2 C2 is stable.

• Controller 1: e(1)t+1 = F1 [ A e(1)t + B2 K2 C2 (e(1)t – e(2)t) ]
Hence C1e(1)t+1 = C1 F1 A e(1)t 0      

• Controller 2: e(2)t+1 = F2 [ A e(2)t + B1 K1 C1 (e(2)
t
– e(1)t) ]  

Hence  e(2)t+1 =  F2 [ A  + B1 K1 C1] e(2)t 0 
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Nested Connectivity – General Case

3

4

1
6

5
2

Plant

Controller 2 

Encoder 2Encoder 1

Y1 = C1 X Y2 = C2 X

R11 R22

Controller 1

• Assume that connectivity graph is a DAG (no directed cycles.)
• e(i)t+1 = Fi [ A e(i)t + ∑k Bk Kk Ck (e(i)t – e(k)t) ]

• For  Ci e(i)t 0 we will need:
Fi( A + ∑k in pa(i) Bk Kk Ck)   to be stable over the modes of Ci.

• Could be that some of the rates are zero.
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Open Challenge

Plant

Controller K 

Encoder SEncoder 1

Controller 1

Noisy Network of Channels

…

…
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Thank You

http://www.pantheon.yale.edu/~sct29
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For More Information:
“Markov Control Problems Under Communication Constraints," Borkar, Mitter, and Tatikonda. CIS, 
January 2001.

“Optimal Sequential Vector Quantization of Markov Sources," Borkar, Mitter, and Tatikonda. SICON, 
January 2001.

“Control Under Communication Constraints," Tatikonda and Mitter. IEEE-TAC,  July 2004.

“Control Over Noisy Channels," Tatikonda and Mitter IEEE-TAC, July 2004.

“Stochastic Linear Control Over a Communication Channel," Tatikonda, Sahai, and Mitter. IEEE-TAC, 
September 2004.

“Control Over Networks," Tatikonda. 2002 CDC 

“The Sequential Rate Distortion Function and Joint Source-Channel Coding with Feedback," 
Tatikonda. 2003 Allerton Conference

“Some Scaling Properties of Large Distributed Control Systems," Tatikonda. 2003 CDC
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S=K=1, Lower Bounds on the Rate

Let the state estimation error be et = Xt – Xt

At time t we can only distinguish between 
2tR initial positions hence the need for these 
definitions:

Asymptotic observablility: if there exists an 
encoder and decoder such that the following 
holds for any control sequence:  | et ||2 → 0.

Asymptotic stabilizability: if there exists an 
encoder, decoder, and controller such that:  || Xt ||2 → 0.

Proposition: A necessary condition for asymptotic observability
and asymptotic stabilizability is:  R ≥ ∑λ(A) max {0, log | λ(A) | }.

∧

Ut

Plant

Controller Decoder

Encoder
Yt

Xt
∧

σt
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Lower Bounds on the Rate – Part 2

Asymptotic observability can be viewed as a high rate rate-distortion 
problem with Rt(D) ≈ ∑λ(A) max {0, log | λ(A) | } – 1/t log volS(D).

Standard DPI:  C ≥ R(D).  Here we have feedback via control (and 
potential explicit feedback).  
The directed DPI:            I(XT XT) ≤ I(AT BT).  

Proposition: A necessary condition for asymptotic observability and 
asymptotic stabilizability is C ≥ ∑λ(A) max { 0, log | λ(A) | }

Ut

Plant

Controller Decoder

Encoder
Yt

Xt
∧
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Bt

Channel
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