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Dispatch then Stop: Optimal Dissemination of
Security Patches in Mobile Wireless Networks

M.H. R Khouzani,Saswati Sarkar, Eitan Altman

Abstract—The security threat posed by malware in mobile
wireless networks can be countered through immunization using
security patches. The distribution of patches however consumes
bandwidth which is specially scarce in wireless networks, and
must therefore be judiciously controlled in order to attain desired
trade-offs between security risks and resource consumption. The
desired tradeoffs can be attained by activating at any given
time only fractions of dispatchers and selecting their packet
transmission rates. We formulate the above trade-offs as optimal
control problems that seek to minimize the aggregate network
costs that depend on security risks and resource consumed by
the countermeasures. We prove that the optimal control strategies
have simple structures. When the resource consumption costrate
is concave, the control strategies are bang-bang with at most
one jump from the maximum to the minimum value. When the
resource consumption cost rate is convex, the above transition is
strict but continuous.

I. I NTRODUCTION

a) Motivation: Self-propagating malicious codes, re-
ferred to as worms, have represented a persistent threat against
networks. Worms can eavesdrop, analyze the data traversing
the network, access privileged information, hijack sessions,
disrupt network functionalities such as routing,etc.In addition,
a worm cankill a node, that is, it can render an infective node
dysfunctional by inflicting irretrievable damage. The threat of
malware is but more dire in mobile wireless networks in which
the network resources are inherently more constrained, andthe
initial intrusion is easier, as the media is shared.

Worms spread through message transmission frominfected
to susceptiblenodes. This spread of contagion through contact
can be countered by immunization and healing. Specifically,
the underlying vulnerability utilized by the worm, can be
amended by installing security patches [1] that immunize
the susceptible, and heal and immunize the infective nodes.
However, the distribution of the patches burdens the limited
resources in the network, and hence if not carefully controlled,
can become a menace itself.

We considernon-replicative and replicative settings for
dissemination of the security patches in a mobile wireless
network. In the non-replicative model, a number of mobile
(or stationary) nodes, referred to as dispatchers, are pre-loaded
with the security patch, and deliver the patch to other nodes
upon contact. The susceptible and infective receptors subse-
quently become immune to the contagion, and are referred
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to as recovered. In the replicative model, the receptors, in
addition, become dispatchers themselves - thus the dispatchers
replicate. In each model, the tradeoff between resource con-
sumption and security can be controlled by activating only a
desired fraction of dispatchers and also regulating the rate at
which they transmit packets.

b) Contributions: First, we model the dynamics of the
spread of the worm in mobile wireless networks in presence
of arbitrary dynamic dispatcher activation and transmission
rate control policies, and quantify the costs associated with
the corresponding security risks and resource consumptions
(§II). This formulates the dynamic activation of the dispatchers
and setting their communication rates as an optimal control
problem that seeks to minimize the above overall cost.

Second, in both non-replicative and replicative models, we
prove that optimal policies have simple structures: for a con-
cave resource consumption cost rate, activate all dispatchers
and choose the maximum possible transmission rate for them
until a certain time; subsequently all dispatchers must be
de-activated until the end of the network operation period
(§§III,IV). We have therefore shown that the optimal control
is bang-bangwith at most one jump that terminates at the
minimum possible value. The optimal control has a similar
structure for a strictly convex resource consumption cost rate,
except that its transition from the maximum to minimum
values is (strict but) continuous rather than abrupt.

c) Related Works: [1] and [2] consider both replicative
and non-replicative dispatch in wired networks. The analytical
tools and the results presented there do not however apply in
our context since (i) the patching rate is assumed constant
in [1], [2], whereas we consider dynamic patching policies
and (ii) [1], [2] consider the final (maximum, resp.) number
of the infective nodes as the performance metric whereas we
investigate more general cost functions based on the level of
infection as well as the overall bandwidth consumed by the
dispatchers.

Very few research works have in fact tried to adopt the
malware propagation models to investigate an optimal dynamic
countermeasure response based on a quantified cost function
in wired or wireless networks; [4]–[6] constitute some notable
exceptions. [4] investigates a different counter-measure: that
of reduction of reception gain of wireless nodes for slowing
down the spread of malware in wireless networks. Our work
differs from [5], [6] in that we consider (i) both replicative
and non-replicative patching, (ii) more general network state
evolution dynamics in that the counter-measure involves both
immunization and healing, moreover the worm may cause
mortality, and (iii) cost functions which are only assumed to
be either concave or convex and therefore more general than
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quadratic functions in [5], [6]. Also unlike [5] we do not use
any linearization of the system which can be very poor in the
context of epidemic behaviour. Investigation of optimal solu-
tions in our context thus require different analytical arguments.

II. SYSTEM MODEL

A. non-replicative dispatch

A susceptiblenode is a mobile wireless device which is
not contaminated by the worm, yet is vulnerable to infection.
A node is infective if it is contaminated by the worm. An
infective spreads the worm to a susceptible while transmitting
data or control messages to it. The worm cankill an infective
host, i.e., render it completely dysfunctional - such nodesare
denoteddead. A functional node that is immune to the worm
is referred to asrecovered. A fraction R0 of mobile nodes,
referred to asdispatchers, are pre-loaded with security patches.
The dispatchers are immune to infection themselves and are
therefore always in the recovered state. The dispatchers can
transmit the patches to the susceptible and infective nodesand
immunizethe susceptibles and possiblyheal the infectives to
the recovered state.

Let the total number of nodes in the network beN . Let the
fraction of susceptible, infective, recovered and dead nodes at
time t be denoted byS(t), I(t), R(t) andD(t), respectively.
Then, S(t) + I(t) + R(t) + D(t) = 1. One can therefore
represent the system using any three of the above states: we
choose(S, I,D). At the start of the recovery process, that is
at time zero, some but not all nodes are infected:0 < I(0) =
I0 < 1, and WLoG only the dispatchers are in the recovered
state:R(0) = R0, 0 < R0 < 1, I0 + R0 < 1, and WLoG no
node is dead:D(0) = 0. Thus,S(0) = 1− I0 −R0.

All functional nodes are assumed to roam in a vast 2-D
region of areaA with an average velocityv. An infective
transmits a message to a susceptible with a given probability
whenever the two are incontact, that is, the infective detects
the presence of the susceptible in its transmission range. Under
mobility models such as the random waypoint or random
direction model [7], Groeneveltet al. [8] have shown that
the time between consecutive contacts of a specific pair of
nodes is nearlyexponentiallydistributed whose rate can be
represented aŝβ/A, whereβ̂ is a constant proportional to the
communication range and average relative speed of the nodes.
The worm at an infective node kills the host (by invoking
specific codes) after an exponential random time with rateδ,
a parameter of the worm.

A dispatcher comes into contact with another node also after
exponentially distributed random time with possibly different
parameterβ̃/A. Let the fraction of activated dispatchers at
time t be ε(t), and each scans the media at rateu(t) (i.e.,
u(t) is the rate of transmission of scanning packets). Upon
a contact between an activated dispatcher and another node,
the security patch is transmitted from the dispatcher to the
receiver node. If the receptor is a susceptible node, it installs
the security patch, is subsequently immunized, and its state
changes to recovered. If however the receptor is an infective,
the patch may fail to heal it, or, the worm may prevent its
installation. We capture the above possibility, by introducing
a coefficient0 ≤ π ≤ 1.

Let ϑ(t) := u(t)ε(t), and letβ0 := β̂× limN→∞
N
A
, β1 :=

β̃× limN→∞
N
A
, wherelimN→∞

N
A

is the node density. Now
according to the results of [9], asN grows,S(t), I(t) andD(t)
converge to the solution of the following system of differential
equations1:

Ṡ(t) = −β0I(t)S(t) − β1ϑ(t)R0S(t) (1a)

İ(t) = β0I(t)S(t)− πβ1ϑ(t)R0I(t)− δI(t) (1b)

Ḋ(t) = δI(t) (1c)

with initial constraints:

I(0) = I0, S(0) = 1− I0 −R0, D(0) = 0 (2)

and also satisfy the following constraints at allt:

0 ≤ S(t), I(t), D(t), S(t) + I(t) +D(t) ≤ 1. (3)

The network may suffer over time from the infected hosts,
used by the worm to (i) eavesdrop and analyze and/or (ii) alter
or destroy the traffic that is generated or relayed by the infected
hosts. An attacker also inflicts cost by killing nodes. At each
time t, the network incurs a cost at the rate off (I(t)) due to
the presence of the infectives, andg (D(t)) owing to the loss
of nodes through mortality, wheref(.) is a non-decreasing,
twice-differentiable, convex function ofI such thatf(0) = 0
andf(I) > 0 for I > 0, g(.) is a non-decreasing differentiable
function ofD such thatg(0) = 0.

Recall that there areNR0 dispatchers in all,ε(t) fraction of
them are activated at timet, and these scan the media at rate
u(t). Thus the total rate of bandwidth consumed in scanning
the media at timet is directly proportional toε(t)u(t)R0 =
ϑ(t)R0. The network incurs a cost at rateh(R0ϑ(t)) due to
the above bandwidth consumption, whereh(x) is a twice-
differentiable and increasing function inx such thath(0) =
0 and h(x) > 0 when x > 0. Note that the assumptions
on f(.), g(.), h(.) are mild and natural and a large class of
functions satisfy them.

The aggregate network cost therefore is:2

J =

∫ T

0

f (I(t)) + g (D(t)) + h (R0ϑ(t)) dt. (4)

The system seeks to minimize the aggregate costJ(ϑ) by
appropriately regulating the immunization rate functionϑ(t)
subject to:0 ≤ ϑ(t) ≤ ϑmax for all t ∈ [0, T ]. The bounds on
ϑ(t) arise since0 ≤ ε(t) ≤ 1 and 0 ≤ u(t) ≤ umax due to
physical constraints of the dispatcher devices. With appropriate
scaling by choice ofβ1, we can assumeϑmax = 1. Thus,

0 ≤ ϑ(t) ≤ 1 for all t ∈ [0, T ]. (5)

Definition 1: An immunization rate functionϑ(.) is called
an admissible controlif (i) ϑ(.) satisfies (5), and (ii)ϑ(.)
is piecewise continuous such that the left and right hand
limits exist at the points of discontinuity. A pair of state
and control functions((S(.), I(.), D(.)), ϑ(.)) is called an

1Throughout the paper, variables with dot marks (e.g.,Ṡ(t)) represent their
time derivatives (e.g., time derivative ofS(t)) and the prime signs (e.g.,f ′(I))
designate their derivatives with respect to their argument(e.g.,I).

2The cost function can also have terms depending on the final concentration
of the infective and the dead nodes.
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admissible pairif (i) ϑ(.) is anadmissible controland (ii) the
pair satisfies (1), (2).

lem. 1: Any admissible pair of state and control functions
((S(t), I(t), D(t)), ϑ(t)) , satisfies the state constraints in (3)
in [0, T ] interval. Moreover, all constraints exceptD(t) ≥ 0
are satisfied in thestrict form in [0, T ].

Outline of the proof: First, letδ > 0. The initial conditions
in (2) ensure that all constraints in (3) are strictly met att = 0.
except thatD(0) = 0. From (2) and the continuity of the state
functions,S(t), I(t) > 0, in an interval of positive length
starting fromt = 0. Suppose this interval ends att1 < T.
But then, eitherS(t1) = 0 or I(t1) = 0, since Ṡ + İ ≤ 0
over this interval. Thus, from (1a),̇S(t) ≥ −(β0 + β1)S(t),
and hence,S(t) ≥ S(0)e−(β0+β1)t, and similarly, I(t) ≥
I(0)e−(β1+δ)t, in (0, t1). However, the continuity ofS, I
imply thatS(t1), I(t1) > 0. Thus,t1 ≮ T , and henceS, I are
positive throughout. From (1),d

dt
(S(t) + I(t) +D(t)) < 0 at

all t ∈ (0, T ] sinceS(t), I(t) > 0. Also,S(0)+I(0)+D(0) <
1. Thus,S(t)+I(t)+D(t) < 1 at all t ∈ (0, T ]. Finally, since
δ > 0 andI(t) > 0 at all t, D(t) > 0 at all t > 0, from (1c).
The lemma follows. Whenδ = 0, the only difference is that
D(t) = 0 for all t ∈ [0, T ].

Since the state constraints in(3) are never active, we can
pose an optimal control problem without any state constraints,
which is, minimization of the cost in (4) through appropriate
choice of admissible pair((S, I,D), ϑ).
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Fig. 1: The top figure represents the optimal control and the bottom
figure the corresponding system states as functions of time for non-
replicative dispatch whereh(.) is concave. Here,f(I) = 10I2,
g(D) = 20D2, T = 100, β0 = β1 = 0.2, δ = 0.005,
I0 = R0 = 0.1, h(ϑ) = 10R0ϑ. Also, Left: π = 0, Right: π = 1.

B. replicative dispatch

The dynamics of state evolution in replicative dispatch
differs from the non-replicative case in only that once a node
receives a security patch, it can retransmit it upon contactwith
other nodes. Thus, all recovered nodes become dispatchers in
the replicative model, and hence the fraction of dispatchers
grows toR(t) at time t starting from the initial value ofR0,
whereas the fraction of dispatchers continue to beR0 at all
times in the non-replicative model. Here, for convenience of

analysis, we represent the system using

Ṡ(t) = −β0I(t)S(t)− β1ϑ(t)R(t)S(t) (6a)

İ(t) = β0I(t)S(t)− πβ1ϑ(t)R(t)I(t) − δI(t) (6b)

Ṙ(t) = β1ϑ(t)R(t)S(t) + πβ1ϑ(t)R(t)I(t) (6c)

with initial constraints:

I(0) = I0, R(0) = R0, S(0) = 1− I0 −R0, (7)

and as before0 < I0, R0, I0 +R0 < 1. Also,

0 ≤ S(t), I(t), R(t), S(t) + I(t) +R(t) ≤ 1. (8)

Note that (6) differs from (1) in only that the equations for
Ṡ(t) and İ(t) haveR(t) instead ofR0.

The resource consumption cost incurred at timet due to
the bandwidth consumed in media scanning by the dispatchers
is h (R(t)ϑ(t)) (instead ofh (R0ϑ(t)) in the non-replicative
case). Thus, the aggregate network cost is:

J(ϑ) =

∫ T

0

[f (I(t)) + g (D(t)) + h (R(t)ϑ(t))] dt, (9)

whereD(t) = 1− (S(t) + I(t) +R(t)) . Here,f(.), g(.), h(.)
satisfy the same assumptions as before.

lem. 1 can be readily extended to the replicative case. Thus,
the state constraints (8) are ignored henceforth and the optimal
control problem can be posed similar to last paragraph of
§II-A.

Remarks:Epidemic models (1), (6) demonstrate that in
both non-replicative and replicative models, the state dynamics
are non-linear differential equations and the state functionI(t)
may be not monotonic.

Epidemic models similar to (1), (6) have been validated
through experiments as well as network simulations to provide
an acceptable representation of the spread of malware in
mobile wireless networks (see e.g. [10], [11]).

Note that sinceR(t) ≥ R0 at all t, we can always
(dynamically) choose the value ofϑrep in replicative setting
so thatRϑrep is equal toR0ϑnon-rep and hencethe aggregate
cost under replicative dispatch is no higher than that un-
der non-replicative dispatch.However, comparably, replicative
dispatch is more vulnerable to contamination of the patches
themselves as the number of dispatchers may grow exponen-
tially. Note that since only the initial dispatchers transmit the
patches in non-replicative setting, the system can counterthis
threat relatively easily by securing only these dispatchers.

In order to obtain fundamental bounds on the efficacy of
the defense, we assume that the system computes the optimal
immunization rate assuming full knowledge of the attack
parameters, e.g., the killing rateδ, the spread ratesβ0, β1 and
healing efficacy of the patchπ. We also assume that the values
of these parameters do not change with time.

III. O PTIMAL NON-REPLICATIVE DISPATCH

We consider the optimal control problem posed by system
dynamics of (1) and cost functional (4). First note that classical
control techniques do not provide the optimal immunization
rate in closed form since the state dynamics (1) is non-linear,
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Fig. 2: The optimal control and the the corresponding system states
as functions of time for non-replicative dispatch with strictly convex
h(.). The parameters are the same as in Fig. 1, except thath(ϑ) =
10(R0ϑ)

2. Also, Left: π = 0, Right: π = 1.

and the aggregate cost function (4) is not necessarily linear or
quadratic.

Let ((S, I,D), ϑ) be an optimal solution. Consider the
Hamiltonian H , and co-stateor adjoint functions λ1(t) to
λ3(t) defined as follows:

H = f(I) + g(D) + h(R0ϑ) + (λ2 − λ1)β0IS

−β1R0ϑλ1S − πβ1R0ϑλ2I + (λ3 − λ2)δI.
(10)

λ̇1 = −
∂H

∂S
= −(λ2 − λ1)β0I + β1R0ϑλ1

λ̇2 = −
∂H

∂I
= −f ′(I) − (λ2 − λ1)β0S

+ πβ1R0ϑλ2 − (λ3 − λ2)δ

λ̇3 = −
∂H

∂D
= −g′(D).

(11)

along with thetransversalityconditions:

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0. (12)

Then according to Pontryagin’s Maximum Principle ( [12,
P. 109, Theorem 3.14]), there exist continuous and piece-
wise continuously differentiable state and co-state functions
S, I,D, λ1, λ2, λ3, that (i) satisfy (2), (12), and (ii) at every
t ∈ [0 . . . T ] whereϑ is continuous, satisfy (1), (11). Also,

ϑ ∈ arg min
0≤ϑ≤1

H(~λ, (S, I,D), ϑ). (13)

Relation (13) between the optimum controlϑ and the
Hamiltonian (10) allows us to expressϑ as a function of the
state(S, I,D) and co-state(λ1, λ2, λ3) functions in (1) and
(11), resulting in a system of differential equations involving
only the state and co-state functions, and not the control
function. Using the initial and final values on the state and
co-state functions, (2) and (12) respectively, this systemcan
be solved numerically to obtain the optimum state and co-state
functions, which can now be used to compute (i)ϑ via (13),
(10) and (ii)J(ϑ) via (4).

A. Structure of optimal non-replicative dispatch

We now show that the optimal immunization rate function
ϑ(.) follows simple structures:

Theorem 1:An optimal immunization rate functionϑ(.)
has the following structure:

1) Whenh(.) is concave,ϑ(t) = 1 for 0 < t < t1 and
ϑ(t) = 0 for t1 < t < T.

2) Whenh(.) is strictly convex,∃ t0, t1, 0 ≤ t0 ≤ t1 ≤ T :

a) ϑ(t) = 1 on 0 < t ≤ t0;
b) ϑ(t) strictly and continually decreases on(t0, t1);
c) ϑ(t) = 0 on t1 ≤ t ≤ T.

Figures 1, 2 illustrate the optimum controls for linear and
strictly convexh(.) respectively.

Proof: Letϕ := β1R0(λ1S+πλ2I) which is a continuous
function of time, and by (12),ϕ(T ) = 0. Also, as we prove
in §III-B,

lem. 2: ϕ(t) is a strictly decreasing function oft for t ∈
[0, T ).

Now we can rewrite the Hamiltonian in (10) as:

H = f(I)+g(D)+(λ2−λ1)β0IS+(λ3−λ2)δI+h(R0ϑ)−ϕϑ.
(14)

From (13), for each admissible controlϑ, and for allt ∈ [0, T ],

h (R0ϑ(t)) − ϕ(t)ϑ(t) ≤ h (R0ϑ(t)) − ϕ(t)ϑ(t) (15)

=⇒ ϑ(t) ∈ arg min
x∈[0,1]

h (R0x)− ϕ(t)x. (16)

Also, sinceϑ = 0 is an admissible control, using (15),

h(R0ϑ)− ϕϑ ≤ h(0) = 0 at all t. (17)

We now separately consider the cases thath(.) is concave
and strictly convex.

1) h(.) concave:Whenh′′ ≤ 0, at each timet, h(R0x)−
ϕ(t)x is a concave function ofx, and thus a minimum in (16)
is either atx = 0 or x = 1. Then,

ϑ(t) =

{

0, ϕ(t) < h(R0)

1, ϕ(t) > h(R0).
(18)

According toϕ(T ) = 0 and the continuity ofϕ and since
h(R0) > 0, we haveϕ(t) < h(R0) over a subinterval that
extends toT. If this sub-interval starts fromt = 0, the theorem
follows from (18) witht1 = 0. Else, from the continuity ofϕ,
and the Intermediate Value Theorem,ϕ(t) = h(R0) for some
t ∈ [0, T ). But, there can be at most one sucht, say t1, by
lem. 2. lem. 2 also implies thatϕ(t) > h(R0) for t ∈ [0, t1),
andϕ(t) < h(R0) for t ∈ (t1, T ]. The theorem follows from
(18).

2) h(.) strictly convex: :Whenh(.) is strictly convex (i.e.,
h′′ > 0), (16) implies that, if ∂

∂x
(h (R0x) − ϕ(t)x)|x=y = 0

at ay ∈ [0, 1], thenϑ(t) = y, elseϑ(t) ∈ {0, 1}. Then,

ϑ =











0, ϕ ≤ R0h
′(0)

1
R0
h′−1(ϕ/R0), R0h

′(0) < ϕ ≤ R0h
′(R0)

1, R0h
′(R0) < ϕ.

(19)

Note thatϕ(T ) = 0 ≤ R0h
′(0), sinceR0 > 0 andh′(x) ≥ 0

for all x. Also, sinceh(.) is strictly convex,h′(.) is a strictly
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increasing function - hence, sinceR0 > 0, h′(0) < h′(R0).
Thus, following lem. 2, there existt0, t1, 0 ≤ t0 ≤ t1 ≤ T ,
such thatϕ > R0h

′(R0) on 0 < t ≤ t0, R0h
′(0) < ϕ ≤

R0h
′(R0) on t0 < t < t1, andϕ ≤ R0h

′(0) on t1 ≤ t ≤ T.
The theorem now follows from (19).

B. Proof of lem. 2

The state and co-state functions, and hence theϕ function,
are differentiable at eacht ∈ [0, T ) at which theϑ function
is continuous. Sinceϑ is piecewise continuous andϕ is
continuous, the lemma follows if we can show thatϕ̇ < 0
at each sucht. Sinceβ1, R0 > 0, at each sucht ∈ [0, T ),

ϕ̇

β1R0
=

1

β1R0

d

dt
ϕ = λ̇1S + λ1Ṡ + πλ̇2I + πλ2İ

= −(λ2 − λ1)β0IS − (1− π)λ1β0IS − πf ′(I)I − πλ3δI

The right hand side is negative at eacht ∈ [0, T ) from lem. 1,
since0 ≤ π ≤ 1, β0, β1 > 0, δ ≥ 0, f ′(x) ≥ 0 at eachx, and
because:

lem. 3: For all 0 ≤ t < T, we haveλ3 ≥ 0, λ1 > 0, and
(λ2 − λ1) > 0.

Proof: First, λ3(T ) = 0 and at anyt ∈ [0, T ] at which
ϑ is continuous,λ̇3(t) = −g′(D(t)) ≤ 0. Thus, sinceϑ is
piecewise continuous,λ3(t) ≥ 0 for all 0 ≤ t ≤ T. We prove
the other two inequalities using the following real analysis
properties (which we state without proof due to lack of space).

Property 1: Let ψ(t) be a continuous and piecewise differ-
entiable function oft. Let ψ(t1) = L andψ(t) > L for all
t ∈ (t1 . . . t0]. Then3 ψ̇(t+1 ) ≥ 0.

Property 2: For any convex and differentiable function,
υ(x), which is 0 at x = 0, υ′(x)x − υ(x) ≥ 0 for all x ≥ 0.

The system isautonomous, i.e., the Hamiltonian and the
constraints on the control (5) do not have an explicit depen-
dency on the independent variablet. Thus, [13, P.236]

H(S, I,D, ϑ, λ1, λ2, λ3) ≡ constant. (20)

Thus, from (12),H = H(T ) = f(I(T )) + g(D(T )) +
h(R0ϑ(T )). Also, Ḋ = δI ≥ 0, andg(.) is a non-decreasing
function, thusg(D(T )) ≥ g(D(t)) for all t ∈ [0 . . . T ]. Hence:

H − g(D(t)) ≥ f(I(T )) + h(R0ϑ(T )) > 0. (21)

The positivity follows since (i) according to lem. 1,I(T ) > 0
and hencef(I(T )) > 0 and (ii) h(R0ϑ(T )) ≥ 0.

We proceed in the following two steps:
Step-1. (λ2(T ) − λ1(T )) = 0 and λ̇2(T ) = (λ̇2(T ) −
λ̇1(T )) = −f ′(I(T )) < 0. Also, λ1(T ) = λ̇1(T ) = 0
and λ̈1(T ) = −λ̇2(T )β0I(T ) > 0. Therefore,λ1(t) and
(λ2(t) − λ1(t)) are positive in an open interval of nonzero
length ending atT.
Step-2. Proof by contradiction. Lett∗ ≥ 0 be the last time
beforeT at which (at least) one of the other two inequality
constraints is active, i.e.,

for t∗ < t < T : λ1(t) > 0, (λ2(t)− λ1(t)) > 0

and,λ1(t
∗) = 0 OR λ2(t

∗)− λ1(t
∗) = 0

3For a general functionψ(x), the notationsψ(x+
0
) andψ(x−

0
) are defined

as lim
x↓x0

ψ(x) and lim
x↑x0

ψ(x), respectively.

First, letλ2(t∗)− λ1(t
∗) = 0. Now, from (11) and (14),

(λ̇2(t
∗+)− λ̇1(t

∗+))

= −f ′(I) + πβ1R0ϑλ2 − (λ3 − λ2)δ − β1R0ϑλ1

−
H

I
+
f(I)

I
+
g(D)

I
+

1

I
(h(R0ϑ)− ϕϑ) + (λ3 − λ2)δ

=
1

I
[f(I)− f ′(I)I]−

H − g(D)

I

−(1− π)β1R0ϑλ1 +
1

I
(h(R0ϑ)− ϕϑ)

(22)

From the supposition ont∗ and continuity ofλ1(t), λ1(t∗+) ≥
0. Now, f(I) − f ′(I)I ≤ 0 because of Property 2, since
f(x) is convex, f(0) = 0 and I > 0 at all t by
lem. 1. Thus, from (5),(17),(21) and (22), we observe that
[ d
dt
(λ2 − λ1)]|t∗+ < 0. This contradicts Property 1. Hence,

(λ2(t
∗+) − λ1(t

∗+)) > 0. Now let λ1(t∗) = 0. Then from
(11), λ̇1|t∗+ = −(λ2−λ1)β0I. Since(λ2(t∗+)−λ1(t∗+)) > 0,
and from lem. 1,λ̇1(t∗+) < 0. This contradicts Property 1,
and hence negates the existence oft∗. The lemma follows.

IV. OPTIMAL REPLICATIVE DISPATCH

We seek to find an admissibleϑ(t) to minimize the cost
function in (9) for the state dynamics (6) and initial state values
(7). We again apply Pontryagin’s Maximum Principle. Define
the Hamiltonian as:

H = f(I) + g(D) + h(Rϑ) + (λ2 − λ1)β0IS

−(λ1 − λ3)β1ϑRS − (λ2 − λ3)πβ1ϑRI − λ2δI.
(23)

whereD = 1− (S + I +R), and the co-state functions as:

λ̇1 = −
∂H

∂S
= −(λ2 − λ1)β0I + (λ1 − λ3)β1ϑR+ g′(D)

λ̇2 = −
∂H

∂I
= −f ′(I)− (λ2 − λ1)β0S + (λ2 − λ3)πβ1ϑR

+ λ2δ + g′(D)

λ̇3 = −
∂H

∂R
= (λ1 − λ3)β1ϑS + (λ2 − λ3)πβ1ϑI

− ϑh′(Rϑ) + g′(D)
(24)

and the transversality conditions as:

λ1(T ) = λ2(T ) = λ3(T ) = 0. (25)

Then according to Pontryagin’s Maximum Principle ( [12,
P. 109, Theorem 3.14]), there exist continuous and piece-
wise continuously differentiable state and co-state functions
S, I, R, λ1, λ2, λ3, that (i) satisfy (7), (25), and (ii) at every
t ∈ [0 . . . T ] whereϑ is continuous, satisfy (6), (24). Also,

ϑ ∈ arg min
0≤ϑ≤1

H(~λ, (S, I, R), ϑ). (26)

A. Structure of optimal replicative dispatch

In this section, we show thatthe optimum control has the
same structure as under non-replicative dispatch. Specifically,
Theorem 1 holds.Note that the transition from1 to 0 in
the bang-bang optimal control should invariably occur earlier
for replicative dispatch ( for concaveh(.)) This is because
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in replicative dispatch the number of dispatchers increases
exponentially fast. Thus, more infectives and susceptibles are
healed and immunized respectively in shorter duration allow-
ing for smaller initial period of maximum rate immunization.
Also, the exponential growth in the number of dispatchers may
result in a huge cost due toϑ, if it is not shut down to zero
earlier.

In the rest of the subsection, we outline the proof of
Theorem 1 for replicative dispatch.

Proof: Defineϕ := (λ1 − λ3)β1RS + (λ2 − λ3)πβ1RI,
which is a continuous function of time, and from (25),ϕ(T ) =
0. The Hamiltonian in (23) can be rewritten as follows:

H = f(I)+g(D)+(λ2−λ1)β0IS−λ2δI+h(Rϑ)−ϕϑ. (27)

From (26), for each admissible controlϑ, and∀t ∈ [0, T ],
h (R(t)ϑ(t)) − ϕ(t)ϑ(t) ≤ h (R(t)ϑ(t))− ϕ(t)ϑ(t), thus

ϑ(t) ∈ arg min
x∈[0,1]

h (R(t)x) − ϕ(t)x. (28)

Also, sinceϑ = 0 is an admissible control,[h(Rϑ)−ϕϑ] ≤
0 at all t.

As in the non-replicative dispatch, we consider the cases that
h(.) is concave and strictly convex separately. In both, we will
use the expression foṙϕ at eacht at whichϑ is continuous,
which we next obtain:

ϕ̇ = (λ̇1 − λ̇3)β1RS + (λ̇2 − λ̇3)πβ1RI + (λ1 − λ3)β1ṘS

+(λ2 − λ3)πβ1ṘI + (λ1 − λ3)β1RṠ + (λ2 − λ3)πβ1Rİ

replacing from (6), (24) and simplifiying yields:

= −β0β1(1− π)RIS(λ1 − λ3)− β0β1RIS(λ2 − λ1)

−πβ1f
′(I)RI + πβ1RIδλ3 + Ṙh′(Rϑ).

(29)

We will also use the following key properties of the co-
state functions, whose proof is similar to that of lem. 3, and
is omitted for brevity.

lem. 4: For all 0 ≤ t < T, we have(λ2 − λ1) > 0, (λ1 −
λ3) > 0 andλ3 ≤ 0.

1) h(.) concave: Whenh(.) is concave (i.e.,h′′ ≤ 0), a
minima in (28) is either atx = 0 or x = 1 at each timet, and
this minima is unique unlessh(R)− ϕ = 0. Then,

ϑ =

{

0, ϕ− h(R) < 0

1, ϕ− h(R) > 0
(30)

For the case ofh′′ < 0, wheneverh(R)− ϕ = 0, ϑ ∈ {0, 1}.
Let ψ(t) = ϕ(t)−h (R(t)). Becauseϕ(T ) = 0 and from (30)
and sinceh (R(T )) > 0, ψ < 0 over a subinterval that extends
to T. We next show that for allt ∈ [0, T ), ψ(t) strictly
decreases with increase int. The rest of the proof is identical
to that for concaveh(.) in §III-A1 (with ψ instead ofϕ and
0 instead ofh(R0) in the arguments).

Sinceϑ is piecewise continuous andϕ, h,R are continuous,
it suffices to show thaṫψ is negative at anyt ∈ [0, T ) at which
ϑ is continuous. Referring to (29), at any sucht:

ψ̇ = ϕ̇− h′(R)Ṙ

= −β0β1(1− π)RIS(λ1 − λ3)− β0β1RIS(λ2 − λ1)

−πβ1f
′(I)RI + πβ1RIδλ3 − Ṙ(h′(R)− h′(Rϑ)) (31)

We only need to show that the right hand side is negative
at eacht ∈ [0, T ). Note thatṘ(h′(R) − h′(Rϑ)) ≡ 0. This
follows readily forh′′ ≡ 0 as thenh′(R) − h′(Rϑ) ≡ 0 for
any value ofϑ. Whenh′′ < 0, as we argued in (30) and after,
ϑ ∈ {0, 1}; now for ϑ = 1, h′(R) − h′(Rϑ) = 0 and for
ϑ = 0, Ṙ = 0. The negativity follows from generalization
of 1 for the replicative case and lem. 4.

2) h(.) strictly convex: Whenh(.) is strictly convex (i.e.,
h′′ > 0), (28) implies that, if ∂

∂x
(h (R(t)x) − ϕ(t)x)|x=y = 0

at ay ∈ [0, 1], thenϑ(t) = y, elseϑ(t) ∈ {0, 1}. Thus,

ϑ =











0, ϕ
R
≤ h′(0)

1
R
h′−1(ϕ

R
), h′(0) < ϕ

R
≤ h′(R)

1, h′(R) < ϕ
R
.

(32)

Note thatϕ(T )/R(T ) = 0 ≤ h′(0), from the fact that
ϕ(T ) = 0, lem. 4 and sinceh′(x) ≥ 0 for all x. The rest
of the proof is identical to that for strictly convexh(.) in
§III-A2 provided we can show thatψ = (ϕ/R) is a strictly
decreasing function of time. Sinceϑ is piecewise continuous,
andψ is continuous, it suffices to show thatψ̇ is negative at
any t ∈ [0, T ) at whichϑ is continuous. At at any sucht,

ψ̇ =
ϕ̇− Ṙ ϕ

R

R
=

{negative term}+ Ṙ[h′(Rϑ)− ϕ
R
]

R
The last equality follows from (29), and the negative term is
−β0β1(1− π)RIS(λ1 − λ3)− β0β1RIS(λ2 − λ1)
− πβ1f

′(I)RI + πβ1RIδλ3. The negativity of this term is
established by generalized lem. 1 for propagative case and
lem. 4. Now, from (32),Ṙ[h′(Rϑ) − ϕ

R
] ≤ 0. Hence,ψ̇ < 0.
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response for multiple networks,”Control Engineering Practice, vol. 17,
no. 5, pp. 525–533, 2009.

[6] X. Yan and Y. Zou, “Optimal Internet Worm Treatment Strategy Based
on the Two-Factor Model,”ETRI JOURNAL, vol. 30, no. 1, p. 81, 2008.

[7] C. Bettstetter, “Mobility modeling in wireless networks: categorization,
smooth movement, and border effects,”Mobile Computing and Commu-
nications Review, vol. 5, no. 3, pp. 55–66, 2001.

[8] R. Groenevelt, P. Nain, and G. Koole, “The message delay in mobile ad
hoc networks,”Performance Evaluation, vol. 62, no. 1-4, pp. 210–228,
2005.

[9] T. Kurtz, “Solutions of ordinary differential equations as limits of pure
jump Markov processes,”Journal of Applied Probability, pp. 49–58,
1970.

[10] P. De, Y. Liu, and S. Das, “An epidemic theoretic framework for
evaluating broadcast protocols in wireless sensor networks,” in 4th IEEE
International Conference on Mobile Ad-hoc and Sensor Systems.

[11] S. Tanachaiwiwat and A. Helmy, “VACCINE: War of the worms in
wired and wireless networks,” inIEEE INFOCOM, 2006, pp. 05–859.

[12] D. Grass, J. Caulkins, G. Feichtinger, G. Tragler, and D. Behrens,
Optimal control of nonlinear processes: with applicationsin drugs,
corruption, and terror. Springer Verlag, 2008.

[13] D. Kirk, Optimal Control Theory: An Introduction. Prentice Hall, 1970.


