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Abstract—Malware attacks constitute a serious security risk
that threatens to slow down the large scale proliferation ofwire-
less applications. As a first step towards thwarting this saegity
threat, we seek to quantify the maximum damage inflicted on
the system owing to such outbreaks and identify the most vious
attacks. We represent the propagation of malware in a battey-
constrained mobile wireless network by an epidemic model in
which the worm can dynamically control the rate at which it
kills the infected node and also the transmission range andf the
media scanning rate. At each moment of time, the worm at each
node faces the following trade-offs: (i) using larger transission

technologies. The economic viability of these investments
is, however, contingent on the design of effective security
countermeasures.

The first step in devising efficient countermeasures is to
anticipate malware hazards, and understand the threats the
pose, before they emerge in the hands of the attackers [6].
Recognizing the above, specific attacks such as the wormhole
[7], sinkhole [1], and Sybil [8], that utilize vulnerabilds in
the routing protocols in a wireless sensor network, and thei

range and media scanning rate to accelerate its spread at the Counter-measures, have been investigated before they were

cost of exhausting the battery and thereby reducing the ovel
infection propagation rate in the long run or (ii) killing th e node
to inflict a large cost on the network, however at the expense

of loosing the chance of infecting more susceptible nodes at

later times. We mathematically formulate the decision prollems
and utilize Pontryagin Maximum Principle from optimal cont rol

theory to quantify the damage that the malware can inflict on he
network by deploying optimum decision rules. Next, we estdish

structural properties of the optimal strategy of the attacker over
time. Specifically, we prove that it is optimal for the attacker
to defer killing of the infective nodes in the propagation ptase
until reaching a certain time and then start the slaughter wth

maximum effort. We also show that in the optimal attack poligy,

the battery resources are used according to a decreasing fation

of time, i.e., mostly during the initial phase of the outbre&.

Finally, our numerical investigations reveal a framework for

identifying intelligent defense strategies that can limithe damage
by appropriately selecting network parameters.

I. INTRODUCTION
A. Motivation

Malicious self-replicating codes, known as malware, po
substantial threat to the wireless computing infrastmectu

actually launched. We pursue the complementary but closely
related goals of (i) quantifying fundamental limits on the
damages that the attackers can inflict by intelligently cimog
their actions, and (ii) identifying the optimal actions th#lict

the maximum damage on the network. Such quantification is
motivated by the fact that while attackers can pose serious
threats by exploiting the fundamental limitations of wass$
network, such as limited energy, unreliable communication
constant changes in topology owing to mobility [9], their
capabilities may well be limited by the above as well since
they rely on the same network for propagating the malware.
Finally, the answers will depend on the network parameters
such as communication ranges of the nodes, mobility parame-
ters, and also the counter-measure parameters such asabe ra
of updates of security patches, etc. This will in turn sugges
appropriate counter-measures which minimize overall agtw
costs that depend on the costs of the counter-measureseand th
damages inflicted by the malware.

¥ Decision problems of the attackers

Malware can be used to launch attacks that vary from theWWorms spread during data or control message transmission

less intrusive confidentiality or privacy attacks, suchraffit

from nodes that are infectedn{ectives) and those that are

analysis and eavesdropping, to the more intrusive mettiads tvulnerable, but not yet infectedisceptibles). We consider a
either disrupt the nodes normal functions such as those Rfirnicious worm that may (i) eavesdrop, (i) analyze, @iter

relaying data and establishing end-to-end routes (ertkkhsle

or destroy traffic and (iv) disrupt the infective host's nalm

attacks [1]), or even alter the network traffic and hencerdgst functions (such as relaying data or establishing routes), a
the integrity of the information, such as unauthorized asceevenkill the host, that is, render it completely dysfunctional

and session hijacking attacks [2], [3]. Malware outbreakes |

(dead). This killing process may be triggered by performing

those of Slammer [4] and Code Red [5] worms in wire@ code which inflicts irretrievable hardware damage. For

Internet have already inflicted expenses of billions of aisl|

instance, Chernobyl virus [10] could re-flesh the BIOS, cor-

in repair after the viruses rapidly infected thousands aftéio rupting the bootstrap program required to initialize thsteyn.
within few hours. New investments have increasingly beei€ worm can determine the time to Kkill, or equivalently the
directed toward wireless infrastructure thanks to the drapiate of killing the hosts, by regulating the rate at which it
growth of consumer demands and advancements in wirelédggers such codes.

Counter-measures can be launched by installing security
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Attacks, by rectifying their underlying vulnerability, deal
the infectives of the infection and render them robust agjain



future attacks. For instance, for SQL-Slammer worms [11§nowledge of all the contributing factors, and uses optimal
while StackGuard programs [12] immunize the susceptibldgnamic strategies. The damage maximization problem turns
by removing the buffer overflow vulnerability that the worm®ut to be an elegant optimal control problem which can
exploit, specialized security patches [13] are requiredeto be solved numerically by applying Pontryagin’s Maximum
move the worm from (and thereby heal) the infectives. Nod&sinciple [15]-[17] - an effective tool that so far has been
that have been immunized or healed are denotedcasered. rarely used in the context of network security (Section. lll)
Thus, depending on whether the worm kills the infective Second, we seek to answer the natural next question of
before it fetches a security-patch, the state of an infectiwhether in practice the worm can indeed inflict the damage
changes to dead or recovered. States of susceptible nogleantified above, or the above quantifications constitutg on
change to infective or recovered depending on whether thiaeoretical upper bounds. Specifically, if the optimal piels
communicate with infectives before installing the segurit that inflict the above maximum damage are complex to exe-
patches. Note that the counter-measures incur costs, giacecute, then the worm may not be able to execute them since they
patches must be obtained through the bandwidth-limited-wirare limited by the capabilities of their resource consedin
less media involving energy-expensive communicationd, ahosts as well. Towards this end, we investigate structuréseo
different patches incur different costs depending on wérethoptimum policies for the worms. Our results are surprising a
they treat susceptibles or infectives. Thus, such countbiave negative connotations from the counter-measures @oin
measures must be resorted to, selectively and judiciously. view since we show that an attacker can inflict the maximum

The goal of the attacker is to infect as many nodes damage by using very simple decisions. We first investigate
possible, and use the worms to disrupt the hosts as wellthe case where the worm selects the killing rates dynargicall
the network functions, while being cognisant of the counteand the energy consumption strategies statically (i.ece Gt
measures [14]. Killing an infective host sooner rather tlager the beginning of network operation) (Section 1V). We prove
maximally disrupts its functions and thereby inflicts damaghat the optimal killing rate has the following simple stiwre:
on the network right away, but also prevents it from propagaintil a certain time (which can be zero depending on the
ing the infection in the network and eavesdropping, anatyzi network and counter-measure parameters), the worm does not
altering or destroying network traffic. Deferral of killingn kill any host, and right after that, it annihilates its hoatghe
the other hand, may allow the host to be healed of the infiectimaximum possible rate until the end of the optimization qeri
before it can be killed, or infect other hosts. It is therefor(theorem 1). Thus, the first phase isaibass the infectives and
interesting to determine the instantaneous rate of kiltimgt  then arrives thelaughter time. The result carries a qualitative
maximizes the damage inflicted by the worm. Another imgautionary message for countermeasures as well: an apigaren
portant decision of the worm pertains to its optimal use dafoffensive malware with little to no disruptive behavioight
the available energy of the infective nodes. The infectsas well be stacking infective hosts for the imminent carnage. |
accelerate the rate of spread of the worm by increasing thejstimal control terminology [15]-[17], we have proved thize
contact rates with susceptibles by selecting higher trégssam  optimal strategy haslsang-bang structure, that is, at any given
gains and media scanning rates. Such choice however depltitee, the killing rate is either at its minimum or maximum
their energy reserves which are limited as those of any othmrssible values, and has at most one jump which necessarily
nodes in wireless networks, which in turn limits the spreagliminates at the maximum possible value. Optimality o$ thi
of the infection and also their other functionalities such asimple strategy for this nontrivial problem is in fact quite
eavesdropping, traffic destructiogtc. surprising.

We next investigate the complementary problem where
the worm selects only the optimal energy consumption rate
dynamically (Section V). We prove that when the energy

The fundamental contributions of this paper are threefoldonsumption costs are convex the worm’s optimal energy
First, we construct a mathematical framework which cogenttonsumption rate is a decreasing function of time (theorgm 2
models the effect of the decisions of the attackers on the st@hus, the worm seeks to infect as many hosts as possible early
dynamics and their resulting trade-offs through a comimmat on by selecting the maximum possible values of the media
of epidemic models and damage functions (Section I1). $pecécanning rates and transmission ranges, and thereaftées sta
ically, we assume that the damage inflicted by the worm ista behave more conservatively so as to satisfy the energy
cumulative function increasing in the number of infected arconsumption constraints. This inevitably slows the furthe
dead hosts, both of which change with time. We allow thepread of the worm towards the end of the optimization period
function to be fairly general, in that it can be either lineabut then a large fraction of nodes have already been infected
or non-linear, and consider that the worm seeks to maximidae to the choice of large values of these parameters early
the damage subject to satisfying certain constraints on the. When the energy consumption costs are concave, the
energy consumption of its hosts by dynamically selectisg istructure results are even more specific: the optimal media
killing rates and energy usages of its hosts while assumiaganning rates and transmission ranges are not only deweas
full knowledge of the network parameters and the countdrnctions of time, but also have a bang-bang nature with
measures. The maximum value of the damage function th@nhmost one jump from the maximum possible value to the
guantifies the fundamental limits on the efficacy of the wornminimum possible value. Our numerical computations reveal
particularly, since we assume that the worm has compldtat when both the killing rates and energy usages are edlect

C. Contributions



dynamically, the optimal strategies follow the above dinies earlier work [40] proposes reduction of reception gain of

as well (Section VI). wireless nodes as a counter-measure for slowing down the
Finally, we demonstrate how an understanding of the maspread of malware in wireless networks. Our current work

imum value of the damage function can facilitate the design contrast focuses on the attack viewpoint and considers th

of suitable counter-measures. Our numerical computationansmission range of the infective nodes and the rate lofidgil

affirm that as expected the damage can be reduced if e dynamic parameters of the worm to inflict the maximum

nodes fetch the security patches at the maximum possidi@mage, and therefore invokes and answers a different set of

rate, and select the minimum possible reception gains goestions using different analytical arguments. Also thoeleh

as to limit the communication rates between the infectissumed here is more general than in [39], [40] in that the

and susceptible nodes (Section VI). But, both of the abowerm causes mortality and the counter-measures include bot

incur costs for the system: the former owing to the energhealing and immunization.

expensive communication of the patches through bandwidth-

limited wireless media, and the latter owing to the disroptf Il. SYSTEM MODEL

desired data communications brought about by indisc:ritainaA D ics of State Evoluti

quarantining. We devise a framework for determining the - ynamics of State Lvoiution

above parameters so as to minimize the overall network cost* susceptiblenode is a mobile wireless device which is not

which increases with the damage and the costs associated wRntaminated by the worm, but is prone to infection. A node

security patch installation and quarantining through otiom IS infective if it is contaminated by the worm. An infective
of reception gain. spreads the worm to a susceptible while transmitting data or

control messages to it. The worm daH an infective host, i.e.,
render it completely dysfunctional - such nodes are denoted
D. Related Works dead A functional node that is immune to the worm is referred
Malware outbreaks in wireless networks constitute ao asrecovered Installation of appropriate security patches,
emerging research topic (e.g., [18]-[25], ), though, the rey the respective users or the network operator,ioanunize
search on spread of malware has traditionally focused cedwirsusceptibles to the recovered states heal infectives to the
networks. Epidemic modeling based on the classic Kermaakcovered states. Different security patches may be redjuir
Mckendrick model [26] has extensively been used to analyftsr immunization and healing as the first involves rectifimat
the spread of malware in wired networks [5], [27]-[38¢, of the vulnerability that rendered the susceptibles cubpai
and more recently in wireless networks [36]. These workhe attack, whereas the second involves both the removal of
show, through simulations and matching with actual datthe worm and the vulnerability that the worm exploits.
that when the number of nodes in a network is large, theLet the total number of nodes in the network Ne Let the
deterministic epidemic models can successfully represdent number of susceptible, infective, recovered and dead natles
dynamics of the spread of the malware. time ¢ be denoted by:s(t), nr(t), nr(t) andnp(t), respec-
Dynamic control of parameters of the network or thévely, and the corresponding fractions S&t) = ng(t)/N,
worm have been investigated in several papers. Most bft) = n;(t)/N, R(t) = ngr(t)/N, and D(t) = np(t)/N
these however do not identify the optimal policies nor prqTable 1) respectively. Then§(¢) + I(t) + R(t) + D(t) = 1.
vide provable performance guarantees, but instead propose

heuristic dynamic policies in different contexts, and et S5(t) | measure of the Susceptible
through simulations the efficacies and various trade-dffe® I(t) | measure of the Infective

.. . R(t) | measure of the Recovered
policies they propose. For example, [37] proposes hecsisti D(t) | measure of the Dead

for dynamic quarantining of nodes in wired networks that
appear suspicious through traffic analysis, and [38] intoed
heuristic strategies for dynamically adjusting the traission

power of attacker nodes in wireless networks. We insteggk assume that at the time of the outbreak of the infection,
obtain attack policies that provably attain the maximum-poghat is at time zero, some but not all nodes are infecied:
sible damage and consider a general model that incorporaltg% = Iy < 1. For simplicity, we assumé(0) = D(0) = 0.
healing, immunization and mortality of nodes. Thus, 5(0) = 1 — Io.

Interestingly, tools from the optimal control theory su& a \we now model the dynamics of infection propagation.
the effective theorem of Pontryagin maximum Principle haggdes are assumed to roam in a vast 2-D region of dreith
rarely been used for analyzing network security - [39] angh average velocity. An infective transmits a message to a
our previous work [40] constitute notable exceptions. Thet fi susceptible with a given probability whenever the two are in
formulates the trade-off for optimal treatment of the itfee  contact, that is, the susceptible is in the transmission range of
nodes in wired networks. However, in contrast to our worlge infective. Now, this probability is a linear function thfe
the solution is based on numerical evaluations only and pge at which the infective scans the media in search of pusce
structural property of the optimal policy is establishedirO tjpjes nearby, and the proportionality constant is deteetiby

e ) . ~ the message collision probability. When the communication

Since a susceptible node may not know whether the node itnisremi-

cating with is infective, or otherwise, it can not selediveeduce reception range of _the nodes is small comparequwhlch 1S ulsua”y
gains. the case in multihop networks); is essentially determined by

TABLE I: List of notations of measures.



the overall node densityN/A). Next, under mobility models We have:

such as random waypoint or random direction model [41],

Groeneveltet al. [42] have shown that the time between P((ns(t),nr(t),np(t)), (ns(t) —1,ni(t) +1,np(t))
consecutive contacts of a specific pair of nodes is nearly :BU(t)ns(t)nz(t),
exponentially distributed, and the rate of this exponential

process is linearly dependénbn the communication range

of the nodes with a proportionality constampt that depends p(ns(t), ni(t), np (1), (ns(t),nr(t) = 1,np(t) +1)

only onv andA. Specifically, « 4. Letu(t) be the product = v(t)n(t),
of the infective’s transmission range and its media scannin
rate. Then, the worm is transmitted between a given infeetiv p((ns(t), nr(t), np 1)), (ns(t),ni(t) — 1,np(t))

susceptible pair as per an exponential random process whose

rate at any given time is Su(t), where 5 = nn2. The

worm regulates the spread of the infection by controllirig)

through appropriate choice of its transmission gain andimed  p((ns(t),n1(t),np(t)), (ns(t) — 1,n1(t),np(t))

scanning rate. = Q(ns(t)/N)ns(t).
We now model the dynamics of mortality, healing and im:

munization. The worm at an infective host kills the hostedte " (il)l it?\t]eslfzts(t)’ ni(t),np(t)) such thatns(t) +ni(t) +

random time which is exponentially distributed with ratg) Db = A

at any given time. Here, the worm regulates the death process 5 — 11y Nj,  ¢(S) = Q(S)S,  b(I) = B(I)I.

by appropriately choosing the instantaneous rate of Killin N—oo

v(t) att; this is accomplished by invoking and executing the Now? according to the results of [43], a8 grows, S(¢),

code that kills the node at desired rates. The security Patcty ;) anq p(¢) converge to the solution of the following system
are installed at an infective (susceptible, respectively¢r ¢ jitterential equatiors

exponentially distributed random times starting from when

it is _infected 6 = _0, respe_ctively)_. The_ delays accou_nt for S(t) = —Bu)I(t)S(t) — q(S(t)) S(0)=1- I
the time required in detection of infection, and fetching th (1a)
appropriate security patch, etc. The instantaneous rathese Lo _
exponential healing and immunization processes for angrgiv .I(t) = Pul)S(t) = b () —v(®I(t)  1(0) =T (1b)
infective at any given time are B (I(t)) and Q (S(t)), re- D) =v(®)I(?) D(0) =0. (1c)
spectively, where3(.), Q(.) are arbitrary functions that satisfy
the following mild assumptionstim,.—.q B(x), lim,_o Q(x)
are finite, and for0 < = < 1, B(z),Q(x) are positive and 0< S(t),1(t),D(t) (2a)
differentiable,x2B(x) is a concave non-decreasing function

of z and zQ(z) is a non-decreasing function of. Note S+ 1)+ D) < 1. (2b)
that the functionsB(.) and Q(.) are likely to be constants The convergence is in the following sense:
(e.9., B(xz) = By, Q(x) = Qo for all z), in practicé, and

any constant function satisfies all of the above properties, , S0ViE>0,
Nevertheless, we consider more general functions (such as

Q(z) =z fora > —1 and B(z) = z® for —1 < a < 0) so
as to allow for more general scenarios.

= B(nj(t)/N)nI(t)v

and also satisfy the following constraints at all

: ns() _
J\}Enoo Pr{sTlgz| N S(t)|>¢€}=0

and likewise forI(¢) and D(t).
Similar epidemic models have been validated, experiments
Following the conditions assumed for the model, the numbgg well as network simulations to provide an acceptable
of nodes of each type evolves according to a pure jum@presentation of the spread of malware in mobile wireless

Markov chain with state vectofns(t),nr(t),np(t)) (since networks (see e.g. [44], [45]).
for all ¢, ng(t) + ni(t) +nr(t) + np(t) = N, the state of the  Henceforth, wherever not ambiguous, for legibility, weiro
Markov chain is three dimensional). Let the transition satghe dependence onand make it implicit. Figure 1 illustrates
between states, (1) andoz(t) be denoted by(a1(t), 02(t)).  the transitions between different states of nodes.
Finally, owing to the technical assumptions we made on
B(.) and Q(.), the functionsb(.), ¢(.) exhibit the following
properties:b(0) = ¢(0) =0, and for0 < I < 1,0 < S < 1
2The result has been proved when the communication rangeeafidles  b(I), ¢(S) > 0, b'(I) = db/dI > 0, ¢'(S) = dq/dS > 0,
is small compared to the total area of the region and sufficiently high. g b”(I) _ d2b/ dI2 <o
Numerical computations reveal that the result holds eveeratise. -
3This is because the users of infectives and susceptibldikelseto receive L )
the security patches from software stores or servers ldligé in the areal. “4Note that sinced = n1m2, andny depends only on the node density, and
In the first case, the rates are clearly constants. In ther ledise, the reception 12 %, the limit 3 exists as long as the node dendityi . o, IN/A exists
rates of the patches depend on the host’s reception gaimersaransmission for large N. )
gains, collision probabilities etc, and none of the aboveedd on the infective Svariables with dot marks (e.gS(t)) will represent their time derivatives
and susceptible fractions (collision probability depemdsthe overall node (e.g., time derivative of(¢)) and the prime signs (e.gz,(S)) designate their
density N/A). derivatives with respect to their argument (e ),
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Fig. 1: Transitions

B. Maximum Damage Attack depletes the infective’s battery, and the worm needs torensu
We consider an attack that seeks to inflict the maximuffat the infective’s battery lasts and it can continue toitaed

possible damage in a time windof§, 7] of its choice. An 0 infect_susceptibles forthe time period qf its operafia) .

attack can benefit over time from the infected hosts, by usifgf1ould it choose not to kill the host earlier). For apprafi

the worms to (i) eavesdrop and analyze traffic that is geedrafunctions,i(.) (e.g.,h(u) = Kyu", for r > 2), [ h(u(t)) dt

or relayed by the infected hosts, or the traffic that traveise IS the energy consumed by the host if it is infected at 0

the hosts’ vicinity, and (i) alter or destroy the traffic tia @nd is not killed before = T' - this is therefore an upper

generated or relayed by the infected hosts. An attacker af@und on the energy consumption of any infective while it

benefits by inflicting a large death-toll by the end of the dibi remains infected. We assume that the susceptibles use their

time window. These motivate the following damage functiofattery so as to last much longer th#h and therefore the
energy consumed by a host before it is infected is relatively

T
J = kD(T) +/ FI(t) dt. A3) insignificant. Thus, the worm chooses$t) so that the above
0 upper bound is less than its energy reserve.
wherer is an arbitrary non-negative constant, afd) is an It is natural to assume that(u) is non-decreasing and

arbitrary non-decreasing, convex function such th@) = 0. hon-negative. We allows(u) to be either convex or concave
Note that the assumptions an f(.) are mild and natural,and for 0 < u < umax. Note that whemi(u) represents power

a large class of functions, e.gf(I) = KI* for a > 1 and dissipation associated witla, i(u) must beK;u", forr > 2

K >0, f(I) = K(e! —1) for K > 0 satisfy them. Finally, and some non-negativk,, and is therefore convex. But, if
an attacker that simply seeks to maximize the final tally df(x) represents a cost associated with power dissipation, then
the dead without any other agenda is readily representgbleibmay be concave as well. Finally, without loss of geneyalit

taking f = 0. h(tmin) = 0, @s if h(umin) > 0, we can equivalently consider
h(umin) = 0, and reduce the bourd appropriately. Any pair
v(t) [ Killing rate in the infectives of piecewise continuous functior(®, u) : [0,7] — R? such
u(t) | the transmission range times the scanning rafe of the iésc|  th5t the |eft and right hand limits exist and that satisfy the
TABLE |I: Control variables of the worm. above constraints belongs to tbentrol region denoted by.

We next show that for anyv, u) € Q, the state constraints

o . In (2) are automatically satisfied throughaq(t. .. 7T]. Thus,
The attacker seeks to maximize the damage function Ry, ignore (2) henceforth.

appropriately regulating its killing rate(t) and the product Lemma 1: For any (v,u) € €, the state functions

u(t) of the transmission range and the scanning rate of tt('|§ I,D) .'[0 7] — R37that satisf’y (1), also satisfy (2)

infective node’ (Table 1), subject to: Mé)réover,S(t)7 . (1_10)67K1t 0.0 Z,Ioe*Kﬁ s
t € [0, 7] and some finiteX;, Ko.

0 <v(t) < Vimax 0 < umin < ut) <umax  (4d) The proof will reveal that K; = Sumax +
T maxp<z<i q'(:v), K2 = Maxp<z<1 b/(.%')
/0 h(u(t)) dt <C (4b) Proof: All S, and D, resulting from (1), and thus any

continuous functions of them, are continuous functions of
The bound onv(t) is imposed by limitations on the worm'stime. We first show that if there exists such that we have
speed of killing an infective host. The bounds af¥) are ( < g T throughout(0, ), thenS(ty) > S(0)e~ X1t where
dictated by the physical constraints of the transmitterd anc, — gy, + maxo<z<1 ¢/ (x), and I(ty) > I(0)e~K2to,
also for ensuring that the interference and hence colsl® \yhere K, = maxo<,<1 b'(z). The second statement will now
tween simultaneous transmissions remain limited. Thergcqo|iow if we can prove the first and sinceé < S(0) =
constraint pattery constraint) arises because enhancirig) 1 _ I(0) < 1. Now, let 0 < S, throughout(0, ). For

0 <t <ty from (1a) we haveS > —guS — ¢(S) > —KS.
6The attacker does not control any other parameter such asiiceptible’s St <to ( ) 2 —p Q( ) - !

—Kit —Kit
reception gain, server’s transmission gains, mobilitytgyas, immunization H?nce’S(t) = .S(O)e vz S(O)e 1t for _a”_ 0 <t <to.
and healing rate functions, Q(.) and B(.) etc. SincesS is continuousS(tg) > S(0)e~K1to, Similarly, we can



show thatl(tg) > I1(0)e~%2%0. The result follows. I1l. WORM’'S OPTIMAL CONTROL
We now prove the first statement. Singe< Iy < 1, the
initial conditions in (1) ensure that the state constra{@is d
are strictly met at = 0. The continuity ofS and I functions
ensure that there exists an interval of nonzero lengthirsgart
at ¢ = 0 on which bothS and I are strictly positive. Thus,
from (1c) and since/(t) > 0, D > 0 in the above interval.
Thus, sinceD(0) = 0, 0 < D in this interval as well. Since
%(S—f— I+ D)|t:0 = —q(So) — b(Io) <0 andS(O) + I(O) +
D(0) = 1, there exists an interval aftér= 0 over which the ==
constraint in (2b) is strictly met. N(S,I,D,v,u) = {(f(L) + v, —BulS — q(S), )
Suppose the first statement does not hold. Nowtget T )
be thpepfirst time aftet = 0 at which, at least one of the BulS = b(I) —vLvl) : 7 <0, (1, u) €
constraints of0 < S,7 and S +1 + D < 1 becomes where(} is the control region. This vector determines trajecto-
active, or0 < D becomes violated right after it. Thatries which are sometimes referred torasge orbits. Based on
is, at top, we have (1)S = 0 OR (2) I = 0 OR (3) the Flippov-Cesari theorem [17, P.131], there exists aimapt
S+I+D = 1O0R (4) there exists an> 0 such thatD < 0on pair ((S, I, D), (v,u)) with measurablév, u), provided that:
(fo . -to +€); AND throughout(0, 7o), we haved < 5,7 and | There exists an admissible pair: the controlleru) =
S+ I+ D < 1andD > 0. Thus, from the first para in this (0,0) clearly leads to an admissible pair.

proof, S(to) > S(0)e” 10 > 0, I(to) > I(0)e~ =% > 0. N(S,I,D,v,u) is convex for each(S,I,D) : this

Thus, since5(0) > 0, I(0) > 0, neither (1) nor (2) could have  ¢,ndition holds since is convex (to be shown next)
happened. LetP, = S(0)e~Hito Py, = [(0)e HK1to. Also,

b and for any given(S, I, D), the function defining each
(S + 1+ D) = —q(S) —b(I) < —q(P) —b(P2) <0

\ element in setV is linear in(v, u). Now, Q2 is convex, as
throughout[0. . . #]. Since 5(0) + I(0) + D(0) = 1 we it is the intersection of sets defined by constraints in (4a)
have (S + I + D)=y, < 1, showing that (3) is impossible. and (4b), each of which is convex (sinké) is convex).
Moreover, from (1a), and sinck(y) > 0, and! is continuous, ) is closed and bounded: this follows from defining
there exists ar’ such thatD > 0 over (¢y ...ty + €). From constraints (4).
continuity of D, D(to) > 0. Thus,0 < D over (to ... to +€'), « The states are absolutely bounded: this readily follows
dismissing the possibility of (4). This negates the existeof from lemma 1.
to. Thus, the first statement holds by contradiction.

We now present a framework using which the worm can
etermine itoptimal control functions(v, «) and also compute
the maximum value of the damage function.

We first establish the existence of @ptimal solution, using
the standard Flippov-Cesari theorem [17, P.131]. Here, we
consider only the case that.) is convex, and in later sections
state the existence results for concayg. For each(S, I, D),

The main challenge in computing the optimal control is

Once the controlv, u) is selected, the system state vectothat the differential equations (1) can be solved provided

(S,1, D) is uniquely specified at all as a solution to (1) and that the function, u) are known._ Thus, the only approagh
hence the value of the damage functidnis determined as seems to be t_hat .Of an _exhaustlve sea.\rch on all functions
well. Thus, the contro{v, u) is considered only as a function(y’ u) in 2. This will require the evaluation of the damage

of time rather than that of the system states, and since tngctmn J(v,u) for each pair of such functions where the

value of J is determined only by the selection @, u), we correspo_ndanI,D) funcnons required in evz_zlluatmg(u,_u)

: . are obtained by solving (1) for each such pair. Buionsists
will henceforth denote/ as J(v, u) instead. e : :

The stat q trol functi ST D . of an uncountably infinite number of such pairs, which rules

" j sade 'an'bl cont rqf unctions paﬂfﬂ, L) ): (t.V’fl.‘)) 'Z out an exhaustive searcRontryagin's Maximum Principle
called anadmisSibie pair | ('.) (v, u) isin €, i.e. satisfies ( ) however provides an elegant tool for solving this seemingly
(i) (v,u) is piecewise continuous such that the left and rig

hand limits exist at the points of discontinuity, and (iii}l)( ! p.OSSIbIe problem, which we apply rlext.
. . > First, we introduce a new state varialfieto transform the
hold. The function(v, ») is then called an admissible ContrOLconstraint in (4b) to a more treatable one:
Let ((S,I,D),(v,u)) be an admissible pair. If '
J(v,u) > J(v,u) for any admissible contrdly, ) E(t) = —h(u), E(0)=0, ©6)

ith the final constraint;
then((S, I, D), (1, u)) is called aroptimal solution and (v, u) + " C e constraim

is called anoptimal control of the problem. E(T) > —C. (7)

In order to obtain fundamental bounds on the efficacy of
the attack, we assume that the attacker computes its optimaNow, note that (6) and (7) are together equivalent to (4b).
control assuming full knowledge of the parameters of thEhus, the optimal control problem posed in section Il can now
system, such as the mobility pattern, the reception gaihef tbe modified to augment (1) with (6) and (7), and omit (4b),
susceptibles and the healing and immunization rate funstiowithout any alterations in the set of optimal solutions and i
(B(.), Q(.)). We also assume that the system selects the abdlre maximum value of the damage function. We consider this
parameters apriori and does not change them with time. T¥grsion henceforth.
damage can only be equal or lower if the counter-measures arket ((S, I, D), (v,u)) be an optimal solution. Consider the
adaptive or the attacker does not know the above parametéfamiltonian H, and co-state or adjoint functions A\;(¢) to



A4(t), and a scalap, > 0 defined as follows: Proof: By lemma 1_,] and S are nonnegative. Define
H = 2o (1) + (s — A)BuS — \g(S) — Aab(I) i(lg): /(DI — f(I). Since f(0) = 0, we have£(0) = 0.
+(/\3 — )\Q)VI — )\4h(u) (8) d
SH () =€ = (DI + /(D) = f(1) = (D).

).\1 = —% = —(/\2 - )\I)BUI+ )\lq/
. O Following lemma 1 and properties ¢f we observe tha’ > 0
Ao = 3 = =Xof = (A2 = A)puS + b’ — (A3 — Xg)v  forallt € [0...T]. Thus, since(0) = 0, £(I) = f'(I) —
. oH f(DI >0forallte[0...T]. Likewise forb. [ |
)\3 = _8_D = 0
5, - OH 0 IV. OPTIMAL RATE OF KILLING
YT 9E T 9 In this section, we consider the case in which the trans-
©) mission range and media scanning rate in the infective nodes
along with the transversality conditions: is selected apriori by the worm and is fixed throughout
the [0...T] interval. Specifically,u(t) = uo > 0, for all
M) =0, 2(T) =0, As(T) = dox (10a) ;¢ [0...T], anduy is chosen such that the constraint (4b)
A(T) =0 (10b) is satisfied, i.e.h(ug) < C/T. Therefore, the state function
M(TY(E(T) +C) =0. (10c) E and thus, the co-state function need not be introduced.

. . . .y _Thus, without loss of generality, = 0 in (9).
Then ‘according to Pontryagin's Maximum Principle With - \ye ptain structural results for the optimal killing raté)
Terminal Constraints ( [15, P.111 theorem 3.14]), therstexi oo 4 function of time, that maximizes the overall damage
contipuous and piecewise continuously differentiablestade ¢, tion in (3). Specifically, Theorem 1 shows that) is of
functionss, Az, As and A4, and constand, > 0 that at every bang-bang form, that is, it possesses only two possible values

pointt € [0...T] where(v(.),u(.)) is continuous satisfy (9), Vmax @nd 0, and switches abruptly between them. It has at
and the transversality conditions (10), and we have:

most one such jump, which necessarily culminates,at;.

X£0 (11a) Theorem 1: Whenu(t) = ug for all ¢ € [0,7], such that
- o € [Umin, Umax] @Ndug Satisfies constraint (4b), the optimal
(v,u) € arg (ﬁ§§52H(A’ (8,1, D), (v, ) (11b) v(t) that maximizes the worm's damage function in (3) is

characterized as followsit; € [0...T) such thatv(t) = 0
for 0 <t <t; andv(t) = vmax for t1 <t <T.
Proof: First, we assume, without loss of generality,
Mo = 1. This is because i\ > 0, then the Hamiltonian,
v =max(A3 — A2, 0)Vmax, and (12a) H, can be can be re-scaled by\o, and by replacing\; /Ao,
, i =1...4 instead of); ... A4, the conditions of Pontryagin
Ymin, ¥ < B (Umin) Maximum Principle are satisfied fox, = 1. On the other
u= < h1Y), I (umin) <V < h (Umax) (12b) hand, if\o = 0 then (8) constitutes knear autonomous ODE
i 1 () < 0. with the final constrainF ok(T) :_6which,from vector space
’ e theory [46], has the unique solution Of;, ..., \;) = 0 for all
where ¢y := (A2 — A1)BIS/A4. Combining (9), (12) and ¢ € [0...T7]. This however contradicts the necessary condition
(10), we obtain a system of (non-linear) differential equrag  of X # 0 of (11a).
with final values specified that involve only the state and co- Let the switching functiony, be defined as follows:
state functions (and not the contr@l, u)). Functions); to
A4 and scalar\, that satisfy the above differential equations @ = (A3 = A2)I

and final values, can therefore be obtained using standgi- is a continuous and piecewise continuously difféegnt
numerical procedures that solve differential equatiors].[4 fntion of time and referring to (10), has the following fina
Now, the optimal control(v,u) can be obtained using the, 5 e

above solutions in (12).
Finally, we obtain the following properties of the Hamilto-
nian, and system states, that we use later. where positivity comes from: > 0, andI > 0 according to
First, the system istonomous, i.e., the Hamiltonian and lemma 1. Introduction ofp, along with Ay = 1 and X\, = 0,

the control region do not have an explicit dependency on thglow us to rewrite the Hamiltonian in (8) as follows:
independent variableThus, [16, P.236]

H(S(t),I(t), D(t),v(t), A1 (t), Aa(t), A3(t)) = constant.
(13) According to Pontryagin’s Maximum Principle, we have:
Second,] satisfies the following condition.

>
Lemma 2: (f/(I)] — f(I)) > 0 and(b(I)— b'(1)1) > 0 for 1T DswsAn A2 de) 2 HS, T, Dow Aoy des As) - (A7)
allte[0...7]. over all admissible.

From (11b), (v, u) must be selected to ensure tHag —
A2)vI = 0is maximized, an(%—ff = 0. Sincel > 0 (lemma 1),

o(T) =&I(T) > 0. (15)

H = f + ()\2 - )\1)611,0[5 - )\1q — Aob+ pv. (16)



Hence, the optimal satisfiespr > v, wherev is any

admissible controller, i.ey € [0...vmax|. Thus, to find the
optimal controller, one needs to maximize the linear florcti
v over the admissible set € [0. .. vmax], Which yields:

0, <0
v= (18)
Vmax, @ >0,

hence, the name switching function. An immediate obserwati
of the above property is the following important property:

wv > 0. (19)

Also note that according to the continuity of theand its
final value (15) and following (18), we have= v,,,, over an
interval of nonzero length toward the end(of. .. T") interval
which extends until timel". Specifically, we have/(T) =
Vmax @ndv at T is differentiable and/(T) = 0.

Now, in order to establish the statement of the theorem, we
will show that the switching functiop has at most one zero-
crossing point. We show this by proving that the right side
time derivative of at its potential zero-crossing points are
necessarily (strictly) positive. Towards this end, we néad
establish three lemmas first.

Let us begin by stating a simple real analysis property which
we prove in Appendix A.

Property 1. Let f(¢) be a continous and piecewise conti-
nously differentiable function of. Assumef(ty) > L. Now
if f(t1) = L for the first time beford,, i.e., f(¢t1) = L and
f(t)>Lforallt e (t...t), then f(t) >0.7

Lemma 3: H = constant> 0.

Proof: As we argued in section lll, the system asi-
tonomous, and thus the Hamiltonian is a constant. Therefore,

H = H(T) = f(I(T)) + kv(T)I(T). (20)

Following lemma 1,/(T) > 0; alsov(T') = vmax > 0, as we
argued after (18). Thu#l(T) > 0. [ |
Lemma 4: For allt € (0...7T), we haver; > 0, A2 > 0
and (/\2 — )\1) > 0.
Proof:
Step-1.Following (10),A2(T") = (A (T) =M (T)) =
0. From the discussion following inequality (19),
v is continuous atT. Thus, from (9) and (10),
Ro(T) = (Aa(T) = M(T)) = —F/(I(T)) — Atmas,
which is strictly negative due to lemma 1 and the
discussion following inequality (19). Also, again
from (9) and (10),\(T) = A (T) = 0, and by
taking the time derivative of (9) and using (10), we
obtain A\ (T') = —Ao(T)Buol(T) > 0. Therefore,
A1(t), A2(t) and (A2(t) — A1(t)) are strictly positive

and

AM(t)=0 OR X (t*) =0
OR Xo(t*) — A (t") = 0.
o Case 1Xo(t*)— A1 (t*) = 0 and A, (¢*) > 0 and
A2(t*) > 0. Now:
Aa(t*F) = A (1))
=—f 4+ Xt — (3= X)v—X g [(9)]

- —f/ + /\Qb/ — (/\3 — )\2)1/ — )\1(]/

—— - — —— 4+ = [.(16)]

1 A
= U/ = £+ T =0 =g
A H
Hh e

From lemma 2[f — f'I] < 0and[V'] —b] <
0. From the definition oft*, A\, (¢**) > 0 and
Ao (t*T) > 0. Now following Lemmas 1 and 3
and (21) and properties gf .S), we observe that
[ (A2 = A1)]|i-+ < 0. According to property 1,
this is a contradiction. Thus, case 1 could not
occur.

o Case 2\ (t*) = 0, Aao(t*) > 0 and Ao (t*) —
A(t*) > 0, Then:

M) == = M)Bul  [-(9)]

Since in this casé.(t*) — A1 (t*)) > 0, thus
A1 (t*t) < 0 which is in contradiction with
property 1. Hence case 2 is also impossible.

o Case 3:\(t*) > 0, X2(t*) — M (t*) > 0 and
A2(t*) = 0. Thence, from (9):

. 1%
Aa(th) = —f' = (e = M)BS -

For this case(A\2(t*) — A1(t*)) > 0. These
inequalities along with (19) and lemma 1, show
Ao (t*T) < 0. This is again in contradiction with
property 1.

Therefore, none of the three cases could occur,

which is a contradiction with existence tf. Hence,

follows the lemma.

over an interval of nonzero length towards the end Here, we state another general property of differentiable

of the (0...T).
Step-2.Proof by contradiction. Let* be the last time

functions which we prove in the appendix B.
Property 2: Assume f(¢) is a continuous and piecewise

at which (at least) one of these three nonnegativigontinuously differentiable function of. Assumet; andt,

constraints is active, i.e., faf <t < T, we have:

to be its two consecutivé-crossing points, that isf(t1) =

f(t2) = Landf(t) # Lforallt; <t < ty. Nowif f(t]) #0

A1 (t) > 0, )\Q(t) > 0, ()\Q(t) — Al(t)) > 0.

“For a general functiorf (x), the notationsf(:car) and f(z ) are defined
aslimg |, f(x) andlim, 1., f(z), respectively.

and f(t;) # 0, then f(t7) and f(t;) must have opposite
signs.
Let us calculate the time derivative of the function



whereverv is continuous: then by scaling the Hamiltonian and the co-stateslpy,,
N . o the equations are still satisfied wifty = 1. Thus if Ay > 0,
=0 — )+ IT [-(14)] we can take\, = 1 without loss of generality. If otherwise
= (f" + (A2 — \1)BuoS — b’ A4 = 0 we can (and will) show that the optimal solution is
. trivially © = umax throughout{0...T.
Hw =) +1% [9) g Lo

Let ¢» be defined as follows:
_ gl _ _ / f
_fI+()\2 Al)ﬁuOIS )\QbI'i‘QDV'i‘II dJ:: ()\2_/\1)513 (26)
+(H — f — (/\2 — )\1)611,018 + /\1(]

which is a continuous and differential function of time and
+A2b —v)  [/(16)]

following from (10) has zero final value:

PP
=H+ Mg+ (f'T—f)+Xb-b)+I1-. (22)
I Y(T) =0. (27)
Let a time at whichy = 0 be denoted by. From (22) we
obtain: This allows us to rewrite the Hamiltonian in (8) as follows:
Q(rH) =@(r7) =H+ Mg+ (f'T = f)+ Xa(b—b'D) H = X f(I) = h(u) +¢u— Xig— Aab+ (A3 — A2)vol. (28)

(23)
] . According to Pontryagin’'s Maximum Principle in (17) the
Equation (23) and Lemmas 1, 3, 2, 4 show ti&t) > 0. optimal u satisfiesyu — h(u) > u — h(u), wherew is any
Firstly, this shows thatp cannot be equal to zero over anygmissible controller, i.ey € [Umin - - - Umax)- Thus, to find
interval of nonzero length, since that requites- 0 over that the optimal controller, one needs to maximize the function
interval, which is not possible. Thus, referring to (18)is ,,, h(u) over the admissible set € [0...uma]. Since
bang-bang, i.e € {0, Vmax}- we have d?h/ du® = h"(u) > 0, the functionyu — h(u) is

Secondly, referring to (18) and property 2, we conclude thagnyex inu over the admissible interval and the maximizer is
¢ has at most one zero-crossing point. Note that accordipg,ng by comparing the values of three candidates.gf,,

to (18), » can have jump only at zero-crossing pointsyof Umax aNd theu € (Umin . . . Umax) at Which the derivative of
Now to find the direction of the jump, we note that according,g expression becomes zero. This yields:

to (15), continuity ofy and (18),r = vmax for an interval

of nonzero length towards the end of ttie. .. T). Thus, the Umin, ¥ < W (Umin)
Theorem follows. . w = h/—l(w)7 B (tmin) < ¥ < B (tmax) (29)
Umax hl(umax) < 1/1

V. DYNAMIC CONTROL OF THE SCANNING RATHTX

Note that this shows that is a continuous function o, and
RANGE

thus according to the continuity of the, « is a continuous
A. Convex h(u) : function of time. Therefore, the co-state functions ardedif
In this section, we assume that the worm has selectectrtiable at every point. Referring to (27) and following }29
killing rate vy > 0 a priori and it is fixed throughout thewe haveu(T) = umin. If A'(umin) > 0 thenu = wupyiy
optimization period and the attacker seeks to determine tbe¢er an interval of nonzero length toward the end®f. . T")

optimumuy(.). interval which extends until tim&. Whetherh' (uyi,) > 0 or
Recall that bottb(I) andq(S) satisfyb(0) = ¢(0) = 0, and /' (umin) = 0, u atT" is differentiable andi(7") = 0.

b(I),q(S) are increasing functions df, S for 7,5 € [0...1]. Theorem 2: Any optimal u(¢) that maximizes the worm’s

Hence, there exist constaritand § such that damage function in (3) for the case of static killing rate and

convexh(u), is constituted of the followinghases:

1) u=umax ON0 <t <ty < T for somety > 0;
Now, considering the supremum of such constants, we assumg) w strictly and continually decreases en<t <t; < T

VI,Se[0...1], b(I)>bI andq(S) > ¢S. (24)

to have: X for somet; > to;
b+ ¢ > Pumax (25) A u=0o0nt; <t<T.
Bmax is the maximum rate of the spread of the infection, Proof:. From (29), the time derivative of the optimalis
and intuitively, the above consdition describes the sderiar S follows:
which the recovery rate (healing + immynization) is larger 0, ¥ < B(0)
than the rate of the spread of the infection. We present the . J ) )
structural characteristics of the optimain suchfast-healing U= ey P(0) < < b (umax)  (30)
regime in theorem 2. We show that the optimal transmission 0, B (Umax) < -
range times scanning rate of the infective nodes is a non-
increasing function of time that necessarily ends.at, In order to establish the statement of the theorem, we will

Referring to (9),\4 = 0 and thus\, is a constant, which, show that the function) as a continuous and differentiable
according to (10), is nonnegative. Now assume that>- 0, function of time has always a negative time derivative.



Let us calculate the time derivative of thiefunction:

vogY

¥ = (Ao — \)BIS + .r'7 + SS [ (26)]
= [ Xof — (ha — \)BuS + Ao/
—(A3 = A2)vo + (A2 — Ay)ful
—Md'|BIS + (BulS — b — VOI)%
HopuIS - [ () & (@)
= —Xof'BIS + \ob'BIS
—(A3 = M) oBIS — \iq'BIS

Heb—wh) Yt ()Y
+{—HBS + [Mof — h+Yu— \ig
—Xab+ (A3 — X2)1pI]BS} [ (28)]
=—HBS+(f = f'1)\pBS
P (0] — b)BS — Mg BIS — A\igBS
¥

0% v = 4% + (u— h)BS. 31

Using (29) in (31), forh’(0) < ¥ < h'(umax) and re-
arranging, we obtain:

= —HBS + (f — f'T)XoBS + Aa(V'T — b)3S — \i¢'BIS

b
~MaBS + 1(—7 ~ % +uBS) — voh! — hBS.
(32)

We are now ready to prove Theorem 2. In lemmas 5 and 6,
we show thatH is a positive constant and; > 0 for all
t€1]0...7]. From Lemma 6, is also non-negative. These
facts along with the assumptions in (24) and (25) and lemmas 1
and 2, show that) < 0 for 7/(0) < 1) < ' (umax). Referring

to (30), this shows that fot,,;, < © < upax, We haved < 0.

The theorem follows from this and the continuity ofas a
function of time, discussed after (29). [ ]

Lemma 5: H = constant> 0.

Proof: Similar to the proof of lemma 3, we use the fact
that, according to (13), the Hamiltonian is a constant andg th
H = constant = H(T). The value of H(T) is obtained by
referring to (10) and the discussion following (29) aboa(f’),
as follows

H=H(T)= f(I(T)) + ol (T). (33)
Following lemma 1,/(T") > 0; thus H(T) > 0. |

Lemma 6: Forallt € (0...7), we haver; > 0 and (A2 —

)\1) >0
Proof: The steps of the proof are similar to the proof of
lemma 4.

10

Thus,

M) > M(Te T Di>0 Vie(T—e...T).

(34)
Therefore, A1 (t) > 0 and (A2(t) — A1(t)) > 0 over
the interval of nonzero length @i’ — ¢, ... 7).
Step-2.Proof by contradiction. Let* be defined as
follows:

t* = 0<Htlf {t|A1(t) > 0, and (A2(t) — A1 (t)) > 0.

on the interval(t...T)}

If t* = 0 then we are done. Suppogé > 0.
According to the continuity of\; and Ao we must
have:

Ao (t7) — ( *)=0 OR,

M) =
o Case 12:(t*)—A1(¢*) = 0. From the continuity
of A1, A1 (t*) > 0. We have:

d

[ (A2 = A0)lle-

=—f"+ X — (A3 = X)vo — Aid [(9)]
—fl + )\le ()\3 — )\2)1/0 — )\1(]/

_ +7_T_T+()\3_/\2)V0_; [.-(28)]
%[f 1+ [bI b = Aig
Mg H h
1T I
(35)

From lemma 2[f — f'I] <0 and[b'T — b] < 0.
Also in this case (t*) = A1 (t*) (by assump-
tion), and)\; (¢*) > 0. Now following Iemmas 1
and 5, and eq (35) and propertiesgf5), w
observe thaf-% (A — A1)]|i+ < 0. According to
property 1, thls is a contradiction. Thus, case 1
could not occur.

o Case 2:Xa(t*) — A1 (t*) # 0, and Ay (t*) = 0,
From continuity ofAa, A1, A2(t*) — A1 (¢*) # 0,
and thereforejes > 0 such that\, — A1 > 0 on
(t*—es...t*). Thus, like (34), since\ (t*) = 0,

A1 >0, 0n(t* —e3...t*) as well. This contra-
dicts the definition oft*.
Therefore, none of the two cases could occur, which
is a contradiction with existence @f. Hence, fol-
lows the lemma.

Step-1.Following (10),\o(T) = (Ao(T)— Ay (T)) = Now returning to what was left of the proof: the case of
0 and from (9) and (10) and the discussion follow?4 = 0-In this case, the optimal controller needs to maximize

ing (29), (Ao (T)— A (T)) = —f'(I(T"))— ko, which Yu. By definition in (26),1) = (A2 —A1)BLS, which according
is strictly negative. Thus, there exists ap > 0 to lemmas 1 and 6 is always positive, and thus the optimal

such that on the interval dff" — ¢; ... T), we have is trivially u = umax for the entire interval of0... 7.

(A2 — A1) > 0. Also, again from (9) and (10),

M(T) = M(T) = 0. From (9) and (25), in B Concave h(u) :
(T—¢€...T), . Theorem 3: Any optimal u(¢) that maximizes the worm’s
A< Mg damage function in (3) for the case of static killing rateg an
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concaveh(u), has the following characteristiéz; € [0...7T) « extends the initial period during which = uy., and
such thatu(t) = umax for 0 < t < t; andu(t) = umin for makes the subsequent descent.isharper.
t1<t<T.

Intuitively, these phenomena can be explained in the follow
VI. NUMERICAL COMPUTATIONS ing manner: In a system with large recovery rate, both the

Our numerical computations have been designed to co Isceptible and infective nodes_are recovered rapidlycelen
worm should use more of its power resources early on

plement our analysis in the previous two sections. We use L al tarts Killing th lier i der t tl
insights revealed by these computations in designing topGE'C &S0 starts Kiing them eartierin orderfo not 1oose ynan
nodes to the pool of recovered.

counter-measures.

We choosel’ = 10, Iy = 0.1, 8 = 0.6, umax = 1, Vmax =
1, Umin = 0, h(u) = u? (which is a convex function) and
C = 5. We selected” such thatu(t) = umax for all ¢ € [0, T

jump points of v versus y for different values of k

any, and immunizes the node against future infection.
Our first observation is that for all the range of parameters

violates the constraint of (4b) Also, we assume tfdr) = 1
B(z) =~ for all 2 € [0,1], i.e., ¢(S) = vS andb(I) = ~I. % D
The equal rates are justified if we assume that there is ore typ 8 E\\ +Zi
of security patch which successfully removes the infegtibn 7,\

6

jump points of v
15

that will follow in this section, the structural results dfeo- 4 \
rems 1 and 2 for the optimal solution hold, although they were 3t x\

shown assuming that only one of the controllers is dynamic 2 ~

A o
(i.e., only one is allowed to vary as a function of time and the 1f RN
other is chosen as a constant), whereas here, f©@thand g -
X ! 1 015 02 025 03 035 04 045
v(t) are chosen dynamically by the attacker (i.e., bath are v

allowed to vary as functions of time). In addition, theorem 2

was shown assuming a fast healing regime while we obsef§- 3: Jump points of optimal versusy for values ofx =

the results are valid for cases that are not fast-healingefis w0-2, 1, 4. Here, f(I) = 31%, andy = 0.1.

Owing to space constraints, we present only one corrolmyati

figure, Fig. 2, which depicts the optimal controllers as vesl|

the the states as functions of time. Henceforth, we contioue

consider the case in which the worm dynamically selects bothFinally, we consider the problem of choosing the best

u, v. This reveals the full damage potential of the worm. Parameters from the viewpoint of the system. Specificaly, t
system chooses the recovery rate a priori for a worst case

worm controlling u and v, state variables, fory=0.1 scenario, which is when the attacker knows the parameters
‘ ‘ ‘ ‘ of the system (including the recovery rate) and chooses the
s optimal dynamic attack policy. As anticipated, our numalic
computations reveal that higher the recovery rate (the sum
of the immunization and healing rates which 3s in this
N case), the less is the damage due to the attack. For example,
* ime ° figure 4 depicts the damage inflicted by the worm vergys
. Worm optimal cantrollers, for y=0.1 ~y is varied between.10 to 0.37) for 3 different examples of
| damage functionsf(I) = I, f(I) = 3/2I2, f(I) = 2I* and
f(I) = 0.5(ef—1)/(e—2). The coefficients irf () are chosen
such that all of the functions have the same averagé foom
0 to 1. But, increasing the recovery rate is achieved through
greater usage of costly resources such as bandwidth ana,powe
and thereby inflicts a recovery cost on the system. We conside
the overall system cost as the sum of the damage caused by
the worm and the expense of providing the immunization and
ﬁreealing rates ofy. The system faces a trade-off in choosing
the least-costly recovery rate, which we resolve numeyidal
) ) _ the examples provided in this paper (figure 4), we have plotte
Next, we investigate the effect that changimgrauses on the overall system cost assuming a simple linear recovery
the optimal controllers. According to Fig. 3 and our othegyst induced by, (specifically4), and the damage functions
computation results, we observe that increasing the r&gov@escribed above in this paragraph. In each case, the ovesall
rate generally is minimized at a unique value of v = 0.34,0.25,0.22,0.19
« decreases the jump time in the in the figures respectively.

—A-D

0.5f

s

0.5r

time

Fig. 2: Evaluation of the optimal controllers and the acauyd
states as functions of time. Specific parameters used
f()=2I? k=4,v=0.1

2



worm damage versus y for different functions of f(l)

——for f(I)=I
—8—for f(1)=3/2 I?
——for f(1)=21°

worm cost

2 for f(l)=(e'-1)/2(e-2)

system cost versus y

—+—for f(I)=I
35 ,
—e—for f()=3/2 |
3p ——for f()=21®

2 for f(l)=(e'-1)/2(e~2)

system cost
N
o

0.4

Fig. 4: Worm damage and system cost versuer different
functions of f(I). Here,x = 4.

APPENDIXA [4]

Proof of Property 1. Proof by contradiction. Suppose that
Property 1 did not hold, thus

f) =1L, ftf <0
=341 € (0...1%p) such thatf(t; + 1) < L.

(5]

(6]
However, by the Intermediate Value Theorem (IVT), therem
must exist a time; + d; < 7 < to such thatf(7) = L. This
contradicts the assumption thatt) # L for all 1 < t < ¢o.

(8]
APPENDIXB

Proof of Property 2. We prove the property fof (t1) >
0. The proof follows similarly if f(+) < 0. We have,

ft) =L, fitf)>0
~36,€(0... %(m — 1)) such thatf(t1 +51) > L.

El

[10]
[11]
Suppose that Property 2 did not hold, afd; ) > 0. Then,
flt2) =L, f(t3)>0
=30, € (0.5 (12 — 1)) such thatf (1, — 5,) < L.

[12]

But now, by the Intermediate Value Theorem (IVT), there mu%[g]

A
exist a timet; + 61 < 7 < to — d2 such thatf(r) = L. This ]

contradicts the assumption thatt) # L for all t; <t < to.  [15]
[16]
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