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Abstract—Malware attacks constitute a serious security risk technologies. The economic viability of these investments
that threatens to slow down the large scale proliferation of wire- s, however, contingent on the design of effective security
less applications. As a first step towards thwarting this security countermeasures

threat, we seek to quantify the maximum damage inflicted on . . - - .
the system owing to such outbreaks_and identify the_ most vicious Th_e: first step in devising efficient countermeasures is to
attacks. We represent the propagation of malware in a battery- anticipate malware hazards, and understand the threats they
constrained mobile wireless network by an epidemic model in pose, before they emerge in the hands of the attackers [6].
which the worm can dynamically control the rate at which it Recognizing the above, specific attacks such as the wormhole
kills the infected node and also the transmission range and/or the [7] sinkhole [1] and Sybll [8] that utilize vulnerabilities in
media scanning rate. At each moment of time, the worm at each thé routin rot’ocols in a wiréless sensor network, and their
node faces the following trade-offs: (i) using larger transmission gp " . J
range and media scanning rate to accelerate its spread at the cOunter-measures, have been investigated before they were
cost of exhausting the battery and thereby reducing the overall actually launched. We pursue the complementary but closely
infection propagation rate in the long run or (i) killing the node  related goals of (i) quantifying fundamental limits on the
E; Ilg];hgitng ltellﬁrgecr?g;::eonofthiifgcetti\;lvgrl?r‘\c:]rgngseée%ttilt)rl]: ﬁégggsgtdamages that the attackers can inflict by intelligently choosing
later times. We mathematically formulate the decision problems their aCt'.onS' and (ii) identifying the optimal actions th‘f"t 'n_ﬂ'Ct.
and utilize Pontryagin Maximum Principle from optimal control ~ the maximum damage on the network. Such quantification is
theory to quantify the damage that the malware can inflict on the motivated by the fact that while attackers can pose serious
network by deploying optimum decision rules. Next, we establish threats by exploiting the fundamental limitations of wireless
structural properties of the optimal strategy of the attacker over o york ‘such as limited energy, unreliable communication
time. Specifically, we prove that it is optimal for the attacker constani chanaes in tooolo c;win to mobility [9] their’
to qefer k||_||ng of the_lnfgctlve nodes in the propagation phz_;\se m 9 p. .gy 9 y v
until reaching a certain time and then start the slaughter with ~capabilities may well be limited by the above as well since
maximum effort. We also show that in the optimal attack policy, they rely on the same network for propagating the malware.
the battery resources are used according to a decreasing function Finally, the answers will depend on the network parameters
of time, i.e., mostly during the initial phase of the outbreak. o, - 35 communication ranges of the nodes, mobility parame-
Finally, our numerical investigations reveal a framework for ters, and also the counter-measure parameters such as the rates
identifying intelligent defense strategies that can limit the damage J : p ) =l
by appropriately selecting network parameters. of updates of security patches, etc. This will in turn suggest
appropriate counter-measures which minimize overall network
costs that depend on the costs of the counter-measures and the

. INTRODUCTION damages inflicted by the malware.

A. Motivation

Maliciqus self-replicating t_:odes, known as m_alware, PO$L Decision problems of the attackers
substantial threat to the wireless computing infrastructure.
Malware can be used to launch attacks that vary from theWWorms spread during data or control message transmission
less intrusive confidentiality or privacy attacks, such as traffftom nodes that are infectednfective$ and those that are
analysis and eavesdropping, to the more intrusive methods tWdinerable, but not yet infectedi{sceptibles We consider a
either disrupt the nodes normal functions such as those Rfirnicious worm that may (i) eavesdrop, (ii) analyze, (iii) alter
relaying data and establishing end-to-end routes (e.g., sinkh@ledestroy traffic and (iv) disrupt the infective host's normal
attacks [1]), or even alter the network traffic and hence destrBjictions (such as relaying data or establishing routes), and
the integrity of the information, such as unauthorized acce8¥enkill the host, that is, render it completely dysfunctional
and session hijacking attacks [2], [3]. Malware outbreaks liddead. This killing process may be triggered by performing
those of Slammer [4] and Code Red [5] worms in wire@ code which inflicts irretrievable hardware damage. For
Internet have already inflicted expenses of billions of dollatgstance, Chernobyl virus [10] could re-flesh the BIOS, cor-
in repair after the viruses rapidly infected thousands of hodtPting the bootstrap program required to initialize the system.
within few hours. New investments have increasingly beeke worm can determine the time to kill, or equivalently the
directed toward wireless infrastructure thanks to the rapf@te of killing the hosts, by regulating the rate at which it

growth of consumer demands and advancements in wirelédggers such codes.
Counter-measures can be launched by installing security
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future attacks. For instance, for SQL-Slammer worms [11fnowledge of all the contributing factors, and uses optimal
while StackGuard programs [12] immunize the susceptibldgnamic strategies. The damage maximization problem turns
by removing the buffer overflow vulnerability that the worm®ut to be an elegant optimal control problem which can
exploit, specialized security patches [13] are required to ree solved numerically by applying Pontryagin’s Maximum
move the worm from (and thereby heal) the infectives. Nod&sinciple [15]-[17] - an effective tool that so far has been
that have been immunized or healed are denoted@wered rarely used in the context of network security (Section Il1).
Thus, depending on whether the worm Kkills the infective Second, we seek to answer the natural next question of
before it fetches a security-patch, the state of an infectivehether in practice the worm can indeed inflict the damage
changes to dead or recovered. States of susceptible nogleantified above, or the above quantifications constitute only
change to infective or recovered depending on whether thiagoretical upper bounds. Specifically, if the optimal policies
communicate with infectives before installing the securitythat inflict the above maximum damage are complex to exe-
patches. Note that the counter-measures incur costs, sincecie, then the worm may not be able to execute them since they
patches must be obtained through the bandwidth-limited wirare limited by the capabilities of their resource constrained
less media involving energy-expensive communications, ahdsts as well. Towards this end, we investigate structures of the
different patches incur different costs depending on whethgptimum policies for the worms. Our results are surprising and
they treat susceptibles or infectives. Thus, such countéiave negative connotations from the counter-measures point of
measures must be resorted to, selectively and judiciously. view since we show that an attacker can inflict the maximum

The goal of the attacker is to infect as many nodes damage by using very simple decisions. We first investigate
possible, and use the worms to disrupt the hosts as wellthe case where the worm selects the killing rates dynamically
the network functions, while being cognisant of the counteand the energy consumption strategies statically (i.e., once at
measures [14]. Killing an infective host sooner rather than latdre beginning of network operation) (Section 1V). We prove
maximally disrupts its functions and thereby inflicts damag®at the optimal killing rate has the following simple structure:
on the network right away, but also prevents it from propagatntil a certain time (which can be zero depending on the
ing the infection in the network and eavesdropping, analyzingetwork and counter-measure parameters), the worm does not
altering or destroying network traffic. Deferral of killing, onkill any host, and right after that, it annihilates its hosts at the
the other hand, may allow the host to be healed of the infectioraximum possible rate until the end of the optimization period
before it can be killed, or infect other hosts. It is therefor@heorem 1). Thus, the first phase issmasghe infectives and
interesting to determine the instantaneous rate of killing théten arrives theslaughtertime. The result carries a qualitative
maximizes the damage inflicted by the worm. Another imgautionary message for countermeasures as well: an apparently
portant decision of the worm pertains to its optimal use a@fioffensive malware with little to no disruptive behavior might
the available energy of the infective nodes. The infectives carell be stacking infective hosts for the imminent carnage. In
accelerate the rate of spread of the worm by increasing thejstimal control terminology [15]-[17], we have proved that the
contact rates with susceptibles by selecting higher transmissaptimal strategy haslsang-bangstructure, that is, at any given
gains and media scanning rates. Such choice however depltites, the killing rate is either at its minimum or maximum
their energy reserves which are limited as those of any othmrssible values, and has at most one jump which necessarily
nodes in wireless networks, which in turn limits the spreagllminates at the maximum possible value. Optimality of this
of the infection and also their other functionalities such a@mple strategy for this nontrivial problem is in fact quite
eavesdropping, traffic destructioetc. surprising.

We next investigate the complementary problem where
the worm selects only the optimal energy consumption rate
dynamically (Section V). We prove that when the energy

The fundamental contributions of this paper are threefoldonsumption costs are convex the worm’s optimal energy
First, we construct a mathematical framework which cogentbonsumption rate is a decreasing function of time (theorem 2).
models the effect of the decisions of the attackers on the sta@iteus, the worm seeks to infect as many hosts as possible early
dynamics and their resulting trade-offs through a combinati@m by selecting the maximum possible values of the media
of epidemic models and damage functions (Section Il). Spec#feanning rates and transmission ranges, and thereafter starts
ically, we assume that the damage inflicted by the worm ista behave more conservatively so as to satisfy the energy
cumulative function increasing in the number of infected amtbnsumption constraints. This inevitably slows the further
dead hosts, both of which change with time. We allow thepread of the worm towards the end of the optimization period,
function to be fairly general, in that it can be either lineabut then a large fraction of nodes have already been infected
or non-linear, and consider that the worm seeks to maximidee to the choice of large values of these parameters early
the damage subject to satisfying certain constraints on the. When the energy consumption costs are concave, the
energy consumption of its hosts by dynamically selecting isgructure results are even more specific: the optimal media
killing rates and energy usages of its hosts while assumiaganning rates and transmission ranges are not only decreasing
full knowledge of the network parameters and the countdunctions of time, but also have a bang-bang nature with
measures. The maximum value of the damage function th@nmost one jump from the maximum possible value to the
guantifies the fundamental limits on the efficacy of the worrminimum possible value. Our numerical computations reveal
particularly, since we assume that the worm has compldteat when both the killing rates and energy usages are selected

C. Contributions



dynamically, the optimal strategies follow the above structuresirlier work [40] proposes reduction of reception gain of

as well (Section VI). wireless nodes as a counter-measure for slowing down the
Finally, we demonstrate how an understanding of the maspread of malware in wireless networks. Our current work

imum value of the damage function can facilitate the design contrast focuses on the attack viewpoint and considers the

of suitable counter-measures. Our numerical computatiotnansmission range of the infective nodes and the rate of killing

affirm that as expected the damage can be reduced if e dynamic parameters of the worm to inflict the maximum

nodes fetch the security patches at the maximum possibi@mage, and therefore invokes and answers a different set of

rate, and select the minimum possible reception gains goestions using different analytical arguments. Also the model

as to limit the communication rates between the infectivessumed here is more general than in [39], [40] in that the

and susceptible nodes (Section VI). But, both of the abowerm causes mortality and the counter-measures include both

incur costs for the system: the former owing to the energhealing and immunization.

expensive communication of the patches through bandwidth-

limited wireless media, and the latter owing to the disruption of Il. SYSTEM MODEL

desired data communications brought about by indiscriminate ) )

quarantining. We devise a framework for determining the®- Dynamics of State Evolution

above parameters so as to minimize the overall network cos® susceptiblenode is a mobile wireless device which is not

which increases with the damage and the costs associated wishtaminated by the worm, but is prone to infection. A node

security patch installation and quarantining through reducti¢ infective if it is contaminated by the worm. An infective

of reception gain. spreads the worm to a susceptible while transmitting data or
control messages to it. The worm déilt an infective host, i.e.,
D. Related Works render it completely dysfunctional - such nodes are denoted

) _ ) dead A functional node that is immune to the worm is referred
Malware outbreaks in wireless networks constitute 8y aqrecovered Installation of appropriate security patches,
emerging research topic (e.g., [18]_,[,25]' ), though, the "By the respective users or the network operator,icanunize
search on spread of malware has traditionally focused on wirgds centiples to the recovered states el infectives to the
networks. Epidemic modeling based on the classic Kermageoyered states. Different security patches may be required
Mckendrick model [26] has extensively been used t0 analygg jmunization and healing as the first involves rectification
the spread of malware in wired networks [5], [27]-{3BIf  of the vulnerability that rendered the susceptibles culpable to

and more recently in wireless networks [36]. These WOrkRe attack whereas the second involves both the removal of

show, through simulations and matching with actual datg,s \vorm and the vulnerability that the worm exploits.

that when the number of nodes in a network is large, the ot the total number of nodes in the network Ne Let the
deterministic epidemic models can successfully represent {6\per of susceptible, infective, recovered and dead nodes at
dynamics of the spread of the malware. time ¢ be denoted bys(t), ns(t), nr(t) andnp(t), respec-
Dynamic control'of pgrametgrs of the network or th'ﬁvely, and the corresponding fractions 1&t) = ns(t)/N,
worm have been investigated in several papers. Most 4) = ni(t)/N, R(t) = ng(t)/N, and D(t) = np(t)/N

these however do not identify the optimal policies nor proropie 1y respectively. Thens(t LI + R(D) 4+ D(#) = 1
vide provable performance guarantees, but instead prop%ge ) P y 5 (¢) ®) B+ D(t) '

heuristic dynamic policies in different contexts, and evaluate 5(7) | measure of the Susceptible
through simulations the efficacies and various trade-offs of the I(t) | measure of the Infective
policies they propose. For example, [37] proposes heuristics R(t) | measure of the Recovered

for dynamic quarantining of nodes in wired networks that D(#) | measure of the Dead

appear suspicious through traffic analysis, and [38] introduces TABLE I: List of notations of measures.

heuristic strategies for dynamically adjusting the transmission

power of attacker nodes in wireless networks. We instegge assume that at the time of the outbreak of the infection,
obtain attack policies that provably attain the maximum pogat is at time zero, some but not all nodes are infedted:
sible damage and consider a general model that incorporaltg% = I, < 1. For simplicity, we assumé(0) = D(0) = 0.
healing, immunization and mortality of nodes. Thus, S(0) = 1 — I,.

Interestingly, tools from the optimal control theory such as \we now model the dynamics of infection propagation.
the effective theorem of Pontryagin maximum Principle ha§gdes are assumed to roam in a vast 2-D region of Areith
rarely been used for analyzing network security - [39] angh average velocity. An infective transmits a message to a
our previous work [40] constitute notable exceptions. The ﬁr§hsceptible with a given probability whenever the two are in
formulates the trade-off for optimal treatment of the infectivgontact that is, the susceptible is in the transmission range of
nodes in wired networks. However, in contrast to our worlghe infective. Now, this probability is a linear function of the
the solution is based on numerical evaluations only and Pge at which the infective scans the media in search of suscep-
structural property of the optimal policy is established. Oyjpjes nearby, and the proportionality constant is determined by
e , L the message collision probability. When the communication
Since a susceptible node may not know whether the node it is communl—nge of the nodes is small comparedAdwhich is usually

cating with is infective, or otherwise, it can not selectively reduce receptidft . . k - ;
gains. the case in multihop networks), is essentially determined by



the overall node densityN/A4). Next, under mobility models We have:

such as random waypoint or random direction model [41],

Groeneveltet al. [42] have shown that the time between P((ns(t),ni(t),np(t)), (ns(t) —1,ns(t) +1,np(t))

consecutive contacts of a specific pair of nodes is nearly ZQU(t)ns(t)nz(t),

exponentially distributed, and the rate of this exponential

process is linearly dependénbn the communication range

of the nodes with a proportionality constant that depends ~ #((?s(8). (), np(t)). (ns (1), n1(t) = Lnp(t) +1)

only onv and A. Specifically,n, o . Letu(t) be the product =v(t)ns(t),

of the infective’s transmission range and its media scanning

rate. Thgn, the. worm is transmitted petween a given infective- p((ns(t),nr(t), npt), (ns(t),ni(t) — 1,np(t))

susceptible pair as per an exponential random process whose _ B NN y

rate at any given time is Su(t), where 3 = mn,. The = B(ns(t)/N)ns (1),

worm regulates the spread of the infection by controllirig)

through appropriate choice of its transmission gain and media  p((ng(t),ns(t),np(t)), (ns(t) — 1,ns(t), np(t))

scanning rate. = Q(ns(t)/N)ns(t).
We now model the dynamics of mortality, healing and im:

munization. The worm at an infective host kills the host after 3" 2l States(ns (1), nr(t),np (1)) such thats (t) +nr(t) +

random time which is exponentially distributed with ratg) np(t) = N. Let

at any given time. Here, the worm regulates the death process 35— 11y N3, ¢(S) = Q(S)S,  b(I) = B(I)I.

by appropriately choosing the instantaneous rate of killing N—oo

v(t) att; this is accomplished by invoking and executing the Now* according to the results of [43], a8 grows, S(t),

code that kills the node at desired rates. The security patc §) andD(t) converge to the solution of the following system
are installed at an infective (susceptible, respectively) aftg differential equatiorts

exponentially distributed random times starting from when

it is infected ¢ = 0, respectively). The delays account for S(t) = —Bu(t)I(t)S(t) — q(S(t)) S(0)=1— I
the time required in detection of infection, and fetching the (1a)
appropriate security patch, etc. The instantaneous rates of thesg ,, o
exponential healing and immunization processes for any given.le(t) = ful(®)S(t) —b(I(1) —v(I()  1(0)=1Io (1b)
infective at any given time are B (I(t)) and Q (S(t)), re- D) =v()I(t) D(0) =0. (1c)
spectively, where3(.), Q(.) are arbitrary functions that satisfy
the following mild assumptionstim,_,q B(z), lim,_.o Q(z)
are finite, and for0 < = < 1, B(x),Q(z) are positive and 0< S(t),1(t),D(t) (2a)
differentiable, 2 B(x) is a concave non-decreasing function

of z and zQ(z) is a non-decreasing function af. Note S@) +1(t) + D) < 1. (2b)
that the functionsB(.) and Q(.) are likely to be constants The convergence is in the following sense:
(e.9., B(z) = By, Q(x) = Qo for all z), in practicé, and

any constant function satisfies all of the above propertiesv e>0Vi>0,
Nevertheless, we consider more general functions (such as

Q(z) =z for a > —1 and B(z) = z* for —1 < o < 0) so
as to allow for more general scenarios.

and also satisfy the following constraints at all

: ns(7) _
]\}gréo Pr{s:g\ N S(T)|>€e}=0

and likewise forI(t) and D(t).

Similar epidemic models have been validated, experiments

Following the conditions assumed for the model, the numbgg well as network simulations to provide an acceptable
of nodes of each type evolves according to a pure jumgpresentation of the spread of malware in mobile wireless
Markov chain with state vectofns(t),ns(t),np(t)) (since networks (see e.g. [44], [45]).
for all ¢, ng(t) +n;(t) + nr(t) +np(t) = N, the state of the  Henceforth, wherever not ambiguous, for legibility, we drop
Markov chain is three dimensional). Let the transition ratqge dependence anand make it implicit. Figure 1 illustrates
between states, (t) andoz(t) be denoted by(o1(t), 02(t)).  the transitions between different states of nodes.

Finally, owing to the technical assumptions we made on
B(.) and Q(.), the functionsb(.), ¢(.) exhibit the following
properties:b(0) = ¢(0) =0, and for0 < I < 1,0 < S < 1

2The result has been proved when the communication range of the no#ég), ¢(S) > 0, b'(I) = db/dI > 0, ¢'(S) = dq/dS > 0,
is small compared to the total area of the region and sufficiently high. 519 b”(I) _ dzb/ dr2 <.
Numerical computations reveal that the result holds even otherwise. -

3This is because the users of infectives and susceptibles are likely to receive N
the security patches from software stores or servers distributed in thelarea *Note that since3 = 7172, andn; depends only on the node density, and
In the first case, the rates are clearly constants. In the latter case, the receptiorx &, the limit 3 exists as long as the node dendity, y _, o, /A exists
rates of the patches depend on the host’s reception gains, servers’ transmidéiolarge V. .
gains, collision probabilities etc, and none of the above depend on the infectiv€Variables with dot marks (e.gS(t)) will represent their time derivatives
and susceptible fractions (collision probability depends on the overall no¢eg., time derivative of (¢)) and the prime signs (e.gz,(S)) designate their
density N/A). derivatives with respect to their argument (e.§),
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Fig. 1: Transitions

B. Maximum Damage Attack depletes the infective’s battery, and the worm needs to ensure

We consider an attack that seeks to inflict the maximuthat the infective’s battery lasts and it can continue to use it and
possible damage in a time windof#, 7] of its choice. An to infect.susceptibles for the time period qf its operafiey) _
attack can benefit over time from the infected hosts, by usifg/1ould it choose not to kill the host earlier). Eor appropriate
the worms to (i) eavesdrop and analyze traffic that is generafSCtions,a(.) (€.9.,h(u) = Kyu", for r > 2), f; h(u(t)) di
or relayed by the infected hosts, or the traffic that traversesifhth€ energy consumed by the host if it is infected &t 0
the hosts’ vicinity, and (ii) alter or destroy the traffic that i§nd is not killed before = T' - this is therefore an upper
generated or relayed by the infected hosts. An attacker afi@nd on the energy consumption of any infective while it
benefits by inflicting a large death-toll by the end of the desirég@Mains infected. We assume that the susceptibles use their

time window. These motivate the following damage functioffattery so as to last much longer thdh and therefore the
energy consumed by a host before it is infected is relatively

insignificant. Thus, the worm chooses$t) so that the above
upper bound is less than its energy reserve.
It is natural to assume thdi(u) is non-decreasing and

J = kD(T) + /O FU@) dt. 3)

wherex is an arbitrary non-negative constant, afid) is an X .
arbitrary non-decreasing, convex function such th) = 0. non-negative. We allow:(u) to be either convex or concave

Note that the assumptions an f(.) are mild and natural,and for 0 < u < wpay. Note that when(u) repreTsents power
a large class of functions, e.gf(/) = KI* for « > 1 and dissipation associated with, h(u) must beK;u", for r > 2
K >0, f(I) = K(e! —1) for K > 0 satisfy them_. Finally and some non-negativE,, and is therefore convex. But, if

an attacker that simply seeks to maximize the final tally &(u) represents a cost assoc_iated wi'Fh power dissipation, _then
the dead without any other agenda is readily representable'b{@y be concave as well. Finally, without loss of generality,

taking f = 0. h(umin) = 0, as if h(umin) > 0, we can equivalently consider
h(umin) = 0, and reduce the bour@ appropriately. Any pair
v(¥) | Killing rate in the infectives of piecewise continuous function®, ) : [0,7] — R? such
u(t) | the transmission range times the scanning rate of the infeciivesthat the left and right hand limits exist and that satisfy the
TABLE II: Control variables of the worm. above constraints belongs to tbentrol regiondenoted by.

We next show that for anyv, u) € Q, the state constraints

The attacker seeks to maximize the damage function i (2) are automatically satisfied througha... 7. Thus,

appropriately regulating its killing rate(¢) and the product we ignore (2) henceforth.

u(t) of the transmission range and the scanning rate of the-€mma 1:For -any (g’ u) € €, the state functions
infective node$ (Table 11), subject to: (5,1,D) : [0,7] — R” that satisfy (1), also satisfy (2).
Moreover,S(t) > (1—Ip)e 51t > 0,1(t) > Ipe K2t > 0 for

t € [0,T] and some finitek;, K».

0 < v(t) < Vimax 0 < umin <u(t) <umax (4@8)  The proof will reveal that K1 =  Bumax +
T maXOngl ql(l‘), KQ = maXOSISI b/(l')
/0 h(u(t)) dt < C (4b) Proof: All S,I and D, resulting from (1), and thus

o o any continuous functions of them, are continuous functions
The bound onv(t) is imposed by limitations on the worm’s o¢ time \We first show that if there exists such that we have
speed of killing an infective host. The bounds af¥) are ( _ S, I throughout(0, #,), thenS(ty) > S(0)e~K*o, where
dictated by the physical constraints of the transmitters aq@l = Bumax + maxo<y<1 ¢ (2), and}(to) > 1(0)e—Kzto,
also for ensuring that the interference and hence collisions Q\ﬁiereKz — maxo<p<1 b'(z). The second statement will now
tween simultaneous transmissions remain limited. The secqgflow it we can prove the first and sinceé < S(0) =

constraint pattery constraint) arises because enhancirtg) | _ I(0) < 1. Now, let 0 < S,I throughout(0,t,). For

. 0 <t <ty from (1a) we haveS > —j3uS — ¢(S) > —K, S.
The attacker does not control any other parameter such as the susceptiblg’s S > ~Kit > g ~Kito f o<
reception gain, servers transmission gains, mobility patterns, immunizatibieC€,5(t) = S(0)e > S(0)e orall 0 <t <tp.

and healing rate functions, Q(.) and B(.) etc. Sinces is continuousS(tg) > S(0)e~K1to, Similarly, we can



show thatl(ty) > 1(0)e~%z0. The result follows. [Il. WORM’'S OPTIMAL CONTROL

We now prove the first statement. Sine< o < 1, the We now present a framework using which the worm can

initial conditions in (1) ensure that the state constraints (%gtermine ioptimal controlfunctions(v, «) and also compute
are strictly met at = 0. The continuity ofS and I functions . L
the maximum value of the damage function.

ensure that there exists an interval of nonzero length startque first establish the existence of aptimal solution using

att = 0 on which bothS and I are strictly positive. Thus, X )
from (Lc) and since/(t) > 0, D > 0 in the above interval. the gtandard Fllppov—Cesarl.theorem [17, .P.131]. Here, we
consider only the case thaf.) is convex, and in later sections

Thus, sinceD(0) = 0, 0 < D in this interval as well. Since .
4(S4 T+ D)|o = —q(So) — b(Iy) < 0 and S(0) + 1(0) + state the existence results for concaye. For each(S, I, D),

D(0) = 1, there exists an interval after= 0 over which the ZE= e
constraint in (2b) is strictly met. N(S,I,D,v,u) = {(f(I) +~,—BulS — ¢(S), )
Suppose the first statement does not hold. Nowjet T

IS —b(l)—vi,vl): v < Q
be the first time aftet = 0 at which, at least one of the PulS —b(l) —vLvl): v <0, (v, u) € Y
constraints of0 < 5,7 andS + I + D < 1 becomes active, where(} is the control region. This vector determines trajecto-
or 0 < D becomes violated right after it. That is, &, ries which are sometimes referred torasge orbits.Based on
we have (1)S = 0OR (2)I = 0O0OR (3) S+ 1+ D = the Flippov-Cesari theorem [17, P.131], there exists an optimal
1 OR (4) there exists ar > 0 such thatD < 0 on pair((S,1I,D),(v,u)) with measurablév, v), provided that:
(fo .- - to +¢); AND throughout(0, o), we have0 < .S,J and | There exists an admissible pair: the controlleru) =
S+I1+ D < 1andD > 0. Thus, from the first para in this (0,0) clearly leads to an admissible pair.

proof, S(to) > S(0)e™ 10 > 0, I(to) > I(0)e "= > 0. N(S,I,D,v,u) is convex for each(S,I,D) : this

Thus, since5(0) > 0, 1(0) > 0, neither (1) nor (2) could have  ¢,nition holds since? is convex (to be shown next)
happened. LetP, = S(0)e~ito, P, = [(0)e~K1to, Also,

b and for any given(S, I, D), the function defining each
G(S+I1+ D) = —q(S) —bI) < —q(P1) —b(P2) <0

\ element in sefV is linear in(v, u). Now, 2 is convex, as
throughout [0... . £]. Since S(0) + I(0) + D(0) = 1 we it is the intersection of sets defined by constraints in (4a)
have (S + I 4+ D)|¢=+, < 1, showing that (3) is impossible.

' . X and (4b), each of which is convex (sink€) is convex).
Moreover, from (1a), and sindkt,) > 0, and is continuous, | ¢ is closed and bounded: this follows from defining
there exists ar’ such thatD > 0 over (¢y...to + €). From

-~ = , constraints (4).
continuity of D, D(to) > 0. Thus,0 < D over (to ...ty +¢), . The states are absolutely bounded: this readily follows
dismissing the possibility of (4). This negates the existence of from lemma 1.

to. Thus, the first statement holds by contradiction. : . ) ) .
The main challenge in computing the optimal control is

Once the controlv, u) is selected, the system state vectothat the differential equations (1) can be solved provided

(S,1, D) is uniquely specified at all as a solution to (1) and that the functiongv, u) are known._ Thus, the only approaqh
o : seems to be that of an exhaustive search on all functions
hence the value of the damage functidnis determined as . L . .
. : —— (v,u) in Q. This will require the evaluation of the damage
well. Thus, the contro(v, u) is considered only as a function

of time rather than that of the system states, and since {chtmn J(v,u) for each pair of such functions where the

value of J is determined only by the selection 6f,u), we correqundmg{], D) funcuons required in evgluatmg(u, _“)
: . are obtained by solving (1) for each such pair. Buigonsists
will henceforth denote/ as J(v,u) instead. e . .
The stat d irol functi ST D . of an uncountably infinite number of such pairs, which rules
€ state and control functions pa@( Y )’(f/’ 9)) IS out an exhaustive searclPontryagin’s Maximum Principle
called anadmissible pairif (i) (v,u) is in , i.e. satisfies (4),

(i) (v,u) is piecewise continuous such that the left and rigi nggghgrg\r/;dbﬁsr: nwﬂi%a\?v;tggg; rnzgivmg this seemingly

hand limits eX'st at the'pomts of d|scont|nU|ty, gnd (i) (1) First, we introduce a new state varialileto transform the
hold. The function(v, u) is then called an admissible control. I .
constraint in (4b) to a more treatable one:

Let ((S,I,D),(v,u)) be an admissible pair. If
J(v,u) > J(v,u) for any admissible contraly, u) B(t) = =h(u), - B(0) =0, ©)

with the final constraint:
then((S, I, D), (v,u)) is called anoptimal solutionand (v, u)

is called anoptimal controlof the problem. E(T) > —C. 7)

In order to obtain fundamental bounds on the efficacy of
the attack, we assume that the attacker computes its optimaNow, note that (6) and (7) are together equivalent to (4b).
control assuming full knowledge of the parameters of thBhus, the optimal control problem posed in section Il can now
system, such as the mobility pattern, the reception gain of the modified to augment (1) with (6) and (7), and omit (4b),
susceptibles and the healing and immunization rate functionghout any alterations in the set of optimal solutions and in
(B(.), Q(.)). We also assume that the system selects the abdlre maximum value of the damage function. We consider this
parameters apriori and does not change them with time. Tversion henceforth.
damage can only be equal or lower if the counter-measures aréet ((S, I, D), (v,u)) be an optimal solution. Consider the
adaptive or the attacker does not know the above parametétamiltonian H, and co-stateor adjoint functions A;(t) to



A4(t), and a scalap, > 0 defined as follows: Proof: By lemma .1,I and S are nonnegative. Define
H = 2o f(I) + (\a — A)BuLS — Mg(S) — Aob(1) i(éé: f/(I)I — f(I). Since f(0) = 0, we have{(0) = 0.
+()\3 - )\2)1/.[ - )\4h(u) (8) d
OH 2SO =& = (DI + /(1) = f1(1) = f1(I)I

).\1 = 7% = 7()\2 — )\1)5U1+ )\1(]/
_ OH Following lemma 1 and properties ¢f we observe thag’ > 0
dy == = —Xof — (A2 — A)BuS + Mo’ — (A3 — Ag)v forall t € [0...T]. Thus, sinces(0) = 0, £(I) = f/'(I) —
. O fI)I>0forall¢te[0...T]. Likewise forb. |
5 OH 0 IV. OPTIMAL RATE OF KILLING
oo 9 In this section, we consider the case in which the trans-
mission range and media scanning rate in the infective nodes
(9) o d medi . i the infecti d
along with the transversality conditions: is selected apriori by the worm and is fixed throughout the
[0...T] interval. Specifically,u(t) = uo > 0, for all t €
MT) =0, X(T) =0, As(T) = Lo (10a) [0...T], andug is chosen such that the constraint (4b) is
M(T) =0 (10b)  satisfied, i.e.,h(ug) < C/T. Therefore, the state function
M(T)YE(T) +C) =0. (10c) E and thus, the co-state function need not be introduced.

. . . .y _Thus, without loss of generalitj, = 0 in (9).
Then according to Pontryagin's Maximum Principle With \ye optain structural results for the optimal killing raté)

Terminal Constraints ( [15, P.111 theorem 3.14]), there exiSlS 5 fynction of time, that maximizes the overall damage
contmuous and piecewise continuously differentiable CO-Sta{fction in (3). Specifically, Theorem 1 shows that) is of
functionsAs, A2, A3 and A4, and constanh > 0 that at every yanq pancform, that is, it possesses only two possible values
pointz € [0...T] where(v(.),u(.)) is continuous satisfy (9), , " 4nq 0, and switches abruptly between them. It has at
and the transversality conditions (10), and we have: most one such jump, which necessarily culminates,at..
X£0 (11a) Th([aorem 1:V\/]hendu(t) = ufo for all ¢ € [O(, 1;]) s#ch that |
< Uy € [Umin, Umax] aNdug satisfies constraint (4b), the optima
(v,u) € arg (Zr’r;?écQH()\,(SJvD)v(bﬂ)) (11b) v(t) that maximizes the worm's damage function in (3) is
characterized as followsit; € [0...T) such thatv(t) = 0
for 0 <t <t andv(t) = vpax for t; <t < T.
Proof: First, we assume, without loss of generality,
Ao = 1. This is because if\ > 0, then the Hamiltonian,
v =max(\3 — A2, 0)Vmayx, and (12a) H, can be can be re-scaled by\o, and by replacing\; /Ao,
" ¥ < B (ummin) i1 =1...4 instead of)\; ...\, the conditions of Pontryagin
i = i Maximum Principle are satisfied fok, = 1. On the other
w=¢h W), B (umin) < <A (Unax) (12b) hand, ifA\o = 0 then (8) constitutes knear autonomous ODE
_— 1 () < 0. with the final constraint of(7") = 0 which, from vector space
’ e theory [46], has the unique solution X, ..., \s) = 0 for all
where ¢ := (A2 — A;)BIS/A4. Combining (9), (12) and ¢ € [0...T7]. This however contradicts the necessary condition
(10), we obtain a system of (non-linear) differential equations X # 0 of (11a).
with final values specified that involve only the state and co- Let the switching functiony, be defined as follows:
state functions (and not the contr@l, «)). Functions)\; to
A4 and scalar\g that satisfy the above differential equations @ = (As = A)I

and final values, can therefore be obtained using standgfflic, is a continuous and piecewise continuously differential

numerical prqcedures that solve differentia! equatipns [4§]inction of time and referring to (10), has the following final
Now, the optimal control(v,u) can be obtained using the, e

above solutions in (12).

Finally, we obtain the following properties of the Hamil-
tonian, and system states, that we use later. where positivity comes from > 0, and I > 0 according to
First, the system isutonomougi.e., the Hamiltonian and lemma 1. Introduction ofp, along with Ay = 1 and A\, = 0,
the control region do not have an explicit dependency on thglow us to rewrite the Hamiltonian in (8) as follows:

independent variable Thus, [16, P.236]

H(S(t),I(t),D(t),v(t), A\1(t), A2(t), A3(t)) = constant.
(13) According to Pontryagin’s Maximum Principle, we have:

From (11b),(v,u) must be selected to ensure that —
A2)vl = 0is maximized, anc?% = 0. Sincel > 0 (lemma 1),

o(T) =krI(T) > 0. (15)

H=f+ (X —M\)BuolS — Mg —dab+ov.  (16)

Second,] satisfies the following condition.
>
Lemma 2: (f'(I)I— f(I)) > 0 and(b(I)—b'(I)I) > 0 for H(S,I,D,v, A1, X2,A3) > H(S,I,D,v, )\:},/\_27)\3) (17)
allte[0...7]. over all admissiblev.



Hence, the optimal satisfiespr > v, wherep is any
admissible controller, i.ex € [0...vmax]. Thus, to find the
optimal controller, one needs to maximize the linear function
v over the admissible set€ [0.. . vmax], Which yields:

|

hence, the name switching function. An immediate observation
of the above property is the following important property:

(19)

0, p <0

- (18)
2 )

VI’II&X )

pv > 0.

Also note that according to the continuity of the and its
final value (15) and following (18), we have= v,,,, over an
interval of nonzero length toward the end(6f. .. T") interval
which extends until timel". Specifically, we have/(T) =
Vmax @ndv at T is differentiable and/(T) = 0.

Now, in order to establish the statement of the theorem, we
will show that the switching functiorp has at most one zero-
crossing point. We show this by proving that the right side
time derivative ofy at its potential zero-crossing points are
necessarily (strictly) positive. Towards this end, we need to
establish three lemmas first.

Let us begin by stating a simple real analysis property which
we prove in Appendix A.

Property 1: Let f(t) be a continous and piecewise conti-
nously differentiable function of. Assumef(ty,) > L. Now
if f(t1) = L for the first time beford,, i.e., f(¢t1) = L and
f(t)> Lforallte(t...t), thenf(t) >0.7

Lemma 3: H = constant> 0.

Proof: As we argued in section Ill, the system is
autonomousand thus the Hamiltonian is a constant. Therefore,

H = H(T) = f(I(T)) + kv(T)I(T). (20)

Following lemma 1,/(T) > 0; alsov(T") = vmax > 0, as we
argued after (18). Thu&l (T") > 0. [ ]
Lemma 4:For allt € (0...7T), we haveA; > 0, Ay > 0
and (/\2 — )\1) > 0.
Proof:
Step-1.Following (10),A2(T) = (\2(T) =M (T)) =
0. From the discussion following inequality (19),
v is continuous at7. Thus, from (9) and (10),
A2 (T) = (Aa(T) = M(T)) = =f'(I(T)) = KV,
which is strictly negative due to lemma 1 and the
discussion following inequality (19). Also, again
from (9) and (10),\((T) = A (T) = 0, and by
taking the time derivative of (9) and using (10), we
obtain A\ (T) = —A\o(T)BuoI(T) > 0. Therefore,
A1(t), A2(t) and (A2(t) — A1(t)) are strictly positive
over an interval of nonzero length towards the end
of the (0...7).
Step-2.Proof by contradiction. Let* be the last time

and

M(E)=0 OR Ao(t*) =0
OR A(t*) — M (t") = 0.

o Case 1X(t*) — A1 (t*) = 0 and A (¢*) > 0 and
A2(t*) > 0. Now:

(Aa(t™F) = Au ("))

=—f"+Xb — (A3 —=X)v—X g’ [(9)]
- —f/ + /\gb/ — (/\3 — )\2)1/ — )\1(],
H f Mg Xb ov
Tt ot oo
1 A
Sl e 2wy
)\1(] H
Mg 7 21
7 7 (21)

From lemma 2,f — f'I] < 0 and [’ — b] <

0. From the definition oft*, A\;(¢t**) > 0 and

Ao (t*T) > 0. Now following Lemmas 1 and 3
and (21) and properties @f.S), we observe that
[%(AQ — A1)]|¢+ < 0. According to property 1,
this is a contradiction. Thus, case 1 could not
occur.

Case 2:M\(t*) = 0, A2(t*) > 0 and Ao (t*) —
A(t*) > 0, Then:

M) = =(Aa = M)Buol  [(9)]
Since in this casgX2(t*) — A1 (t*)) > 0, thus
Ai(t*F) < 0 which is in contradiction with
property 1. Hence case 2 is also impossible.
Case 3:\(t*) > 0, A2(t*) — A (t*) > 0 and
A2(t*) = 0. Thence, from (9):

88 - £

At ) =—f = (A=) 7

For this case(A\z(t*) — A1(t*)) > 0. These
inequalities along with (19) and lemma 1, show
Ao (t*F) < 0. This is again in contradiction with
property 1.
Therefore, none of the three cases could occur,
which is a contradiction with existence 6f. Hence,
follows the lemma.

[ |
Here, we state another general property of differentiable

functions which we prove in the appendix B.

Property 2: Assume f(t) is a continuous and piecewise

at which (at least) one of these three nonnegativigontinuously differentiable function of. Assumet; and ¢,

to

I

constraints is active, i.e., far <t < T, we have:
/\1 (t) > 0, )\Q(t) > 0, ()\g(t) — )\1 (t)) > 0.

“For a general functiorf(z), the notation#(zaL) and f(z, ) are defined
aslimg |, f(x) andlimg1,, f(x), respectively.

be its two consecutivé,-crossing points, that isf(t;)

ts) = Landf(t) # Lforallt; <t <ty Nowif f(t]) #0
and f(t;) # 0, then f(t]) and f(t;) must have opposite
signs.

Let us calculate the time derivative of the function



whereverv is continuous: then by scaling the Hamiltonian and the co-stateslpy,,
R . o the equations are still satisfied witty = 1. Thus if Ay > 0,
$=s = A)l + If [-(14)] we can take\; = 1 without loss of generality. If otherwise
= (f"+ (M2 — M\1)BugS — A/ A4 = 0 we can (and will) show that the optimal solution is
. trivially © = umay throughout[0. .. 7.
+0s = A+ 12 (9] y ghout(0..... 7]

Let ¢ be defined as follows:
= T - IS — oW1 jpd
f + ()\2 )\1)6’[10 S )\Qb + pv + 7 1}[} — ()\2 _ )\1),6]5 (26)

+(H — f — (/\2 — )\1)5’&0]5 + /\1q
+A2b — pv)

:H+)\1q+(f/17f)+)\2(b7b’1)+1'§. (22)

[(16)] which is a continuous and differential function of time and
following from (10) has zero final value:

) ) P(T) = 0. 27)
Let a time at whichp = 0 be denoted by. From (22) we
obtain: This allows us to rewrite the Hamiltonian in (8) as follows:

P(rT) = o(17) = H+ g+ (f'T = f) +Xa(b = ') H = X\ f(I) — h(u) +thu— A1qg — Aab+ (A3 — Xa)rol. (28)

(23)
. . According to Pontryagin’s Maximum Principle in (17) the
Equation (23) and Lemmas 1, 3, 2, 4 show tké&t) > 0. . e = S - :
Firstly, this shows thatp cannot be equal to zero over groPtimal u satisfiesyu —h(u) > Yu — h(u), wherew is any

interval of nonzero length, since that requitgs= 0 over that admissible controller, i.€x, € [umin - . tmax]. Thus, to find
: L gth, < quilte- . the optimal controller, one needs to maximize the function
interval, which is not possible. Thus, referring to (18)js

b b . 0 Yu — h(u) over the admissible set € [0...unax|. Since
agg— ar:j?’ "e%’/ €{ ’tymi’é}' g w2 ude thle have d*h/ du® = 1" (u) > 0, the functionyu — h(u) s
econdly, referring to (18) and property 2, we conclude g&nvex inu over the admissible interval and the maximizer is

© has at most one _zero-crossing point. No'_te that_ accordiﬂ)c{Ind by comparing the values of three candidates,of,
to (18), v can have jump only at zero-crossing pointsof Umax aNd theu € (umin - . . Umax) at which the derivative of
Now to find the direction of the jump, we note that accordin%r?;xexpression beccr)nrlr?es zerrrl?)x This yields:

to (15), continuity ofy and (18),r = vmax for an interval

of nonzero length towards the end of tte... 7). Thus, the Unnins ¥ < B (Umin)
Theorem follows.
= w= S HTW), K (uin) < %< B () (29)
umaX7 h/(umax) < w'

V. DYNAMIC CONTROL OF THE SCANNING RATETX . ] ) )
RANGE Note that this shows that is a continuous function af, and

thus according to the continuity of thé, « is a continuous
A. Convexh(u) : function of time. Therefore, the co-state functions are differ-
In this section, we assume that the worm has selecteckiable at every point. Referring to (27) and following (29),
killing rate v, > 0 a priori and it is fixed throughout thewe havew(T) = wmin. If 7/ (tmin) > 0 then u = wupyi,
optimization period and the attacker seeks to determine thger an interval of nonzero length toward the end®f..T)

optimumu(.). _ interval which extends until tim&. Whetherh/ (umi,) > 0 or
Recall that bothb(1) andg(S5) satisfyb(0) = ¢(0) = 0, and 1/ (u,y,) = 0, u at T'is differentiable andi(7T)) = 0.
b(I),q(S) are increasing functions df, 5 for I, S € [0...1].  Theorem 2:Any optimal u(t) that maximizes the worm’s
Hence, there exist constaritsand g such that damage function in (3) for the case of static killing rate and
VI,Se[0...1, b(I)> bl andg(S) > 4S. (24) convexh(u), is constituted of the followinghases

o 1) u = 1umax ON0 <t <ty < T for somety > 0;
Now, considering the supremum of such constants, we assume) ., strictly and continually decreases an< t < t; < T
to have: . for somet; > to;

b+ G > Bumax (25 3 u=o0ont;<t<T.

Bumax 1S the maximum rate of the spread of the infection, Proof: From (29), the time derivative of the optimal

and intuitively, the above consdition describes the scenario'h®s follows:

which the recovery rate (healing + immunization) is larger 0, ¥ < 1'(0)

than the rate of the spread of the infection. We present the ) h )

structural characteristics of the optimaiin suchfast-healing U= oty P(0) <¥ < (umax)  (30)
regime in theorem 2. We show that the optimal transmission 0, B (tmax) < 1.

range times scanning rate of the infective nodes is a non-

increasing function of time that necessarily ends.at, In order to establish the statement of the theorem, we will

Referring to (9),A\, = 0 and thus,\, is a constant, which, show that the function) as a continuous and differentiable
according to (10), is nonnegative. Now assume that> 0, function of time has always a negative time derivative.



Let us calculate the time derivative of thlefunction:

¢ ()\2 —)\1)6[5+[w +S;p, [ (26)]
= [—/\of — (/\2 — Al)ﬂuS =+ )\gb/
—(/\3 — )\Q)V() + ()\2 - Al)ﬁul
—-\¢'|B1S + (BulS — b — VOI)%
HopuIS — g% [ (1) & (@)

= —Xof'BIS 4+ V' BIS
—()\3 — )\2)1/0,6’]5 — Alq'ﬁls
Heb—wD) Y + (0%
I S

+{—=HBS + [Mof — h+vYu— \gq
—X2b + (A3 — A2)1pI]3S} [ (28)]

= —HBS+ (f — f'1)BS

+)\2(b’I —b)8S — Mq' BIS — AigBS

Y v~ g%+ (u— )5S, (31)

Using (29) in (31), forh’(0) < ¥ < h'(umax) and re-
arranging, we obtain:

Y =—HBS+ (f — f'I)XoBS + Xa(V'T —b)BS — M\ ¢' SIS

b
~MaBS +1(—7 — % +uBS) — voh! — hBS.
(32)

We are now ready to prove Theorem 2. In lemmas 5 and 6,
we show thatH is a positive constant and; > 0 for all

t €10...7]. From Lemma 6\, is also non-negative. These
facts along with the assumptions in (24) and (25) and lemmas 1
and 2, show that) < 0 for #/(0) < b < h'(umax). Referring

to (30), this shows that fot,,;, < © < Upax, We haved < 0.

The theorem follows from this and the continuity ofas a
function of time, discussed after (29). [ ]

Lemma 5: H = constant> 0.

Proof: Similar to the proof of lemma 3, we use the fact
that, according to (13), the Hamiltonian is a constant and thus
H = constant = H(T). The value of H(T') is obtained by
referring to (10) and the discussion following (29) aba(i’),
as follows

H=H(T)= f(I(T)) + kol (T). (33)

Following lemma 1,I(T") > 0; thus H(T') > 0. [
Lemma 6:For allt € (0...7T), we haver; > 0 and (\s —
)\1) > 0.
Proof: The steps of the proof are similar to the proof of
lemma 4.

Step-1.Following (10),A2(T) = (M (T)—X (T)) =

10

Thus,

M) > MTe T Di>0 Vie(T—e...T).
(34)

Therefore,A; () > 0 and (A2(t) — A1(¢)) > 0 over

the interval of nonzero length dfl" — ¢, ... T)).

Step-2.Proof by contradiction. Let* be defined as

follows:

t*:= inf {t|/\1( ) >0, and (A\2(t) —

0<t<

)\1(7,‘)) > 0.
on the interval(t...T)}

If t* = 0 then we are done. Supposé > 0.
According to the continuity of\; and A\, we must
have:

Mo(t) = M (t*) =0 OR,
(t

M) =0
o Case 1)y (t*)— A1 (t*) = 0. From the continuity
of A1, A1 (t*) > 0. We have:
d
Ay — A
[dt( 2 — A1)l
=—f" Xt — (A3 —X)vp — Mg [0(9)]
=—f X — (A3 — X)vp — Mid’
H f )\1q /\2b h ..
—Tt7T T 7 +()\3—/\2)V0—I [-(28)]
[f = f'1] + [b'T —b] — A’
Mg H b
I I 1
(35)

From lemma 2[f — f'I] <0 and[b'] —b] < 0.
Also in this case)\s(t*) = A1 (t*) (by assump-
tion), and\; (¢*) > 0. Now following lemmas 1
and 5, and eq. (35) and properties@f), we
observe thaf-% (A — A1)]|i- < 0. According to
property 1, this is a contradiction. Thus, case 1
could not occur.

o Case 2:Xo(t*) — A1 (t*) # 0, and A\ (¢t*) = 0,
From continuity of\a, A1, Ao (t*) — A\ (¢%) # 0,
and thereforedes > 0 such that\s — \; > 0 on
(t* —es...t"). Thus, like (34), since\;(t*) =
0, Ay > 0, on (t* — e5...t*) as well. This
contradicts the definition of*.

Therefore, none of the two cases could occur, which
is a contradiction with existence ef. Hence, fol-
lows the lemma.

Now returning to what was left of the proof: the case of

0 and from (9) and (10) and the discussion follow2a = 0-1In this case, the optimal controller needs to maximize

ing (29),(A A S ,Wh|ch yu. By definition in (26),y) =
929 (hall) (1)) S I(T))—rivo to lemmas 1 and 6 is always positive, and thus the optimal

T), we have is trivially u = unax for the entire interval of0... 7).

is strictly negative. Thus, there exists ap >
such that on the interval ofl’ —¢; ...
(A2 — A1) > 0. Also, again from (9) and (10),
M(T) = A(T) = 0. From (9) and (25), in(T —
€1 ... T),

A< Mg

(A2—A1)BIS, which according

B. Concaveh(u) :

Theorem 3:Any optimal «(¢) that maximizes the worm’s
damage function in (3) for the case of static killing rate, and a
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concaveh(u), has the following characteristigiz; € [0...7) Intuitively, these phenomena can be explained in the follow-
such thatu(t) = umax for 0 < t < t; andu(t) = umin for ing manner: In a system with large recovery rate, both the
th <t <T. susceptible and infective nodes are recovered rapidly. Hence,
the worm should use more of its power resources early on

VI. NUMERICAL COMPUTATIONS and also starts killing them earlier in order to not loose many

Our numerical computations have been designed to conwdes to the pool of recovered.
plement our analysis in the previous two sections. We use the
insights revealed by these computations in designing robust
counter-measures.

We choosel’ = 10, Iy = 0.1, 8 = 0.6, umax = 1, Vmax =
1, umin = 0, h(u) = u? (which is a convex function) and
C = 5. We selected” such thatu(t) = umax for all t € [0, T 7’\
violates the constraint of (4b) Also, we assume tfdt) =
B(z) =~ for all z € [0,1], i.e., q(S) = ~vS andb(I) = ~I.

The equal rates are justified if we assume that there is one type
of security patch which successfully removes the infection, if
any, and immunizes the node against future infection.

Our first observation is that for all the range of parameters i
that will follow in this section, the structural results of theo- 81 o5 o0z o025 03 03 04 045
rems 1 and 2 for the optimal solution hold, although they were !

;hown assuming that only one of the coqtroller; IS dynarrﬁg_ 3: Jump points of optimal versus~y for values ofx =
(i.e., only one is allowed to vary as a function of time and thg2 1,4. Here, f(I) = 212, and~y = 0.1

other is chosen as a constant), whereas here, bgthand ~7 77 ' 20 T

v(t) are chosen dynamically by the attacker (i.e., bath are
allowed to vary as functions of time). In addition, theorem
was shown assuming a fast healing regime while we obse
the results are valid for cases that are not fast-healing as waff>tem R
Owing to space constraints, we present only one corroborati hario, which is when the attacker knows the parameters

figure, Fig. 2, which depicts the optimal controllers as well a3 tt_he ststem _(mctI;JdlL\g tT.e re:overt)_/ _rat?) dand choose§ tr:e
the the states as functions of time. Henceforth, we continueg"Ma&! dynamic attack paficy. As anficipated, our humerica

consider the case in which the worm dynamically selects bOcERmputatlons reveal that higher the recovery rate (the sum

u, v. This reveals the full damage potential of the worm. Of the immunization and healing rates which 3y in this
’ case), the less is the damage due to the attack. For example,

worm contraling u and v, stte variabies, fory=0.1 figure 4 depicts the damage inflicted by the worm versys
- ‘ ‘ ‘ ‘ ~ is varied betwee®).10 to 0.37) for 3 different examples of
o damage functionsf (1) = I, f(I) = 3/2I?, f(I) = 2I* and
f(I) = 0.5(ef —1)/(e—2). The coefficients irf (I) are chosen
such that all of the functions have the same averagé foym
NV 0 to 1. But, increasing the recovery rate is achieved through
time greater usage of costly resources such as bandwidth and power,
or gpmal contollers, forv'01 and thereby inflicts a recovery cost on the system. We consider
‘ the overall system cost as the sum of the damage caused by
the worm and the expense of providing the immunization and
healing rates ofy. The system faces a trade-off in choosing
the least-costly recovery rate, which we resolve numerically. In
the examples provided in this paper (figure 4), we have plotted
the overall system cost assuming a simple linear recovery
X st induced byy (specifically4), and the damage functions
?0 cribed above in this paragraph. In each case, the overall cost
IS minimized at a unique value gf v = 0.34,0.25,0.22,0.19
in the figures respectively.

jump points of v versus y for different values of k
10, T T T T T T

jump points of v
w1

2 Finally, we consider the problem of choosing the best
R,%rameters from the viewpoint of the system. Specifically, the
stem chooses the recovery rate a priori for a worst case

—4—D | |

0.5f

0.5r

Fig. 2: Evaluation of the optimal controllers and the accordi
states as functions of time. Specific parameters used
fI)=31?, k=4,v=0.1

Next, we investigate the effect that changifigcauses on
the optimal controllers. According to Fig. 3 and our other APPENDIXA
computation results, we observe that increasing the recoveryroof of Property 1. Proof by contradiction. Suppose that
rate generally Property 1 did not hold, thus
« decreases the jump time in the _ ft
« extends the initial period during which = u.,., and flh) =1L, [t <)o
makes the subsequent descentisharper. =301 € (0...10) such thatf (i, +01) < L.



worm damage versus y for different functions of f(l)

——for f(I)=I
.3 —=—for f(1)=3/2 I
ol
8 2 ——for f(1)=2®
z %
S \B —2—for f(l)=(e'-1)/2(e-2)
1 e
0
0.1 0.2 0.3 0.4
y
system cost versus y
4
—+—for f(1)=I
a5 0=
—&—for f(1)=3/2 I
g 3p ——for f(1)=21®
£ —£—for f(1)=(e'-1)/2(e~2)
m
&
1
0.1 0.2 0.3 0.4

Fig. 4: Worm damage and system cost versu®er different
functions of f(I). Here,x = 4.

However, by the Intermediate Value Theorem (IVT), thergr]
must exist a time; + 6; < 7 < to such thatf(7) = L. This
contradicts the assumption thaft) # L for all ¢ < t < ¢.

Proof of Property 2. We prove the property fof (t]) >

8l
APPENDIXB

El

0. The proof follows similarly if f(t]) < 0. We have,

Suppose that Property 2 did not hold, aﬁ(d;) > 0. Then,

=36 € (O..é(tg —t1)) such thatf(¢ty + 1) > L.

1
=36, € (O..E(tg —t1)) such thatf (t; — d2) < L.

ft)) =1L, ftF)>0 [10]

(11]

(12]

flt) =L, f(t5)>0

(23]

But now, by the Intermediate Value Theorem (IVT), there mu&t!

exist a timet; + 61 < 7 < ty — 09 such thatf(7) = L. This

(18]

contradicts the assumption that) # L for all 1 < t < ts.
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