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Maximum Damage Malware Attack in Mobile
Wireless Networks
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Abstract— Malware attacks constitute a serious security risk
that threatens to slow down the large scale proliferation of wire-
less applications. As a first step towards thwarting this security
threat, we seek to quantify the maximum damage inflicted on
the system owing to such outbreaks and identify the most vicious
attacks. We represent the propagation of malware in a battery-
constrained mobile wireless network by an epidemic model in
which the worm can dynamically control the rate at which it
kills the infected node and also the transmission range and/or the
media scanning rate. At each moment of time, the worm at each
node faces the following trade-offs: (i) using larger transmission
range and media scanning rate to accelerate its spread at the
cost of exhausting the battery and thereby reducing the overall
infection propagation rate in the long run or (ii) killing the node
to inflict a large cost on the network, however at the expense
of loosing the chance of infecting more susceptible nodes at
later times. We mathematically formulate the decision problems
and utilize Pontryagin Maximum Principle from optimal control
theory to quantify the damage that the malware can inflict on the
network by deploying optimum decision rules. Next, we establish
structural properties of the optimal strategy of the attacker over
time. Specifically, we prove that it is optimal for the attacker
to defer killing of the infective nodes in the propagation phase
until reaching a certain time and then start the slaughter with
maximum effort. We also show that in the optimal attack policy,
the battery resources are used according to a decreasing function
of time, i.e., mostly during the initial phase of the outbreak.
Finally, our numerical investigations reveal a framework for
identifying intelligent defense strategies that can limit the damage
by appropriately selecting network parameters.

I. I NTRODUCTION

A. Motivation

Malicious self-replicating codes, known as malware, pose
substantial threat to the wireless computing infrastructure.
Malware can be used to launch attacks that vary from the
less intrusive confidentiality or privacy attacks, such as traffic
analysis and eavesdropping, to the more intrusive methods that
either disrupt the nodes normal functions such as those in
relaying data and establishing end-to-end routes (e.g., sinkhole
attacks [1]), or even alter the network traffic and hence destroy
the integrity of the information, such as unauthorized access
and session hijacking attacks [2], [3]. Malware outbreaks like
those of Slammer [4] and Code Red [5] worms in wired
Internet have already inflicted expenses of billions of dollars
in repair after the viruses rapidly infected thousands of hosts
within few hours. New investments have increasingly been
directed toward wireless infrastructure thanks to the rapid
growth of consumer demands and advancements in wireless
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technologies. The economic viability of these investments
is, however, contingent on the design of effective security
countermeasures.

The first step in devising efficient countermeasures is to
anticipate malware hazards, and understand the threats they
pose, before they emerge in the hands of the attackers [6].
Recognizing the above, specific attacks such as the wormhole
[7], sinkhole [1], and Sybil [8], that utilize vulnerabilities in
the routing protocols in a wireless sensor network, and their
counter-measures, have been investigated before they were
actually launched. We pursue the complementary but closely
related goals of (i) quantifying fundamental limits on the
damages that the attackers can inflict by intelligently choosing
their actions, and (ii) identifying the optimal actions that inflict
the maximum damage on the network. Such quantification is
motivated by the fact that while attackers can pose serious
threats by exploiting the fundamental limitations of wireless
network, such as limited energy, unreliable communication,
constant changes in topology owing to mobility [9], their
capabilities may well be limited by the above as well since
they rely on the same network for propagating the malware.
Finally, the answers will depend on the network parameters
such as communication ranges of the nodes, mobility parame-
ters, and also the counter-measure parameters such as the rates
of updates of security patches, etc. This will in turn suggest
appropriate counter-measures which minimize overall network
costs that depend on the costs of the counter-measures and the
damages inflicted by the malware.

B. Decision problems of the attackers

Worms spread during data or control message transmission
from nodes that are infected (infectives) and those that are
vulnerable, but not yet infected (susceptibles). We consider a
pernicious worm that may (i) eavesdrop, (ii) analyze, (iii) alter
or destroy traffic and (iv) disrupt the infective host’s normal
functions (such as relaying data or establishing routes), and
evenkill the host, that is, render it completely dysfunctional
(dead). This killing process may be triggered by performing
a code which inflicts irretrievable hardware damage. For
instance, Chernobyl virus [10] could re-flesh the BIOS, cor-
rupting the bootstrap program required to initialize the system.
The worm can determine the time to kill, or equivalently the
rate of killing the hosts, by regulating the rate at which it
triggers such codes.

Counter-measures can be launched by installing security
patches that eitherimmunize susceptible nodes against future
attacks, by rectifying their underlying vulnerability, orheal
the infectives of the infection and render them robust against
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future attacks. For instance, for SQL-Slammer worms [11],
while StackGuard programs [12] immunize the susceptibles
by removing the buffer overflow vulnerability that the worms
exploit, specialized security patches [13] are required to re-
move the worm from (and thereby heal) the infectives. Nodes
that have been immunized or healed are denoted asrecovered.
Thus, depending on whether the worm kills the infective
before it fetches a security-patch, the state of an infective
changes to dead or recovered. States of susceptible nodes
change to infective or recovered depending on whether they
communicate with infectives before installing the security-
patches. Note that the counter-measures incur costs, since the
patches must be obtained through the bandwidth-limited wire-
less media involving energy-expensive communications, and
different patches incur different costs depending on whether
they treat susceptibles or infectives. Thus, such counter-
measures must be resorted to, selectively and judiciously.

The goal of the attacker is to infect as many nodes as
possible, and use the worms to disrupt the hosts as well as
the network functions, while being cognisant of the counter-
measures [14]. Killing an infective host sooner rather than later
maximally disrupts its functions and thereby inflicts damage
on the network right away, but also prevents it from propagat-
ing the infection in the network and eavesdropping, analyzing,
altering or destroying network traffic. Deferral of killing, on
the other hand, may allow the host to be healed of the infection
before it can be killed, or infect other hosts. It is therefore
interesting to determine the instantaneous rate of killing that
maximizes the damage inflicted by the worm. Another im-
portant decision of the worm pertains to its optimal use of
the available energy of the infective nodes. The infectives can
accelerate the rate of spread of the worm by increasing their
contact rates with susceptibles by selecting higher transmission
gains and media scanning rates. Such choice however depletes
their energy reserves which are limited as those of any other
nodes in wireless networks, which in turn limits the spread
of the infection and also their other functionalities such as
eavesdropping, traffic destruction,etc.

C. Contributions

The fundamental contributions of this paper are threefold.
First, we construct a mathematical framework which cogently
models the effect of the decisions of the attackers on the state
dynamics and their resulting trade-offs through a combination
of epidemic models and damage functions (Section II). Specif-
ically, we assume that the damage inflicted by the worm is a
cumulative function increasing in the number of infected and
dead hosts, both of which change with time. We allow the
function to be fairly general, in that it can be either linear
or non-linear, and consider that the worm seeks to maximize
the damage subject to satisfying certain constraints on the
energy consumption of its hosts by dynamically selecting its
killing rates and energy usages of its hosts while assuming
full knowledge of the network parameters and the counter-
measures. The maximum value of the damage function then
quantifies the fundamental limits on the efficacy of the worm,
particularly, since we assume that the worm has complete

knowledge of all the contributing factors, and uses optimal
dynamic strategies. The damage maximization problem turns
out to be an elegant optimal control problem which can
be solved numerically by applying Pontryagin’s Maximum
Principle [15]–[17] - an effective tool that so far has been
rarely used in the context of network security (Section III).

Second, we seek to answer the natural next question of
whether in practice the worm can indeed inflict the damage
quantified above, or the above quantifications constitute only
theoretical upper bounds. Specifically, if the optimal policies
that inflict the above maximum damage are complex to exe-
cute, then the worm may not be able to execute them since they
are limited by the capabilities of their resource constrained
hosts as well. Towards this end, we investigate structures of the
optimum policies for the worms. Our results are surprising and
have negative connotations from the counter-measures point of
view since we show that an attacker can inflict the maximum
damage by using very simple decisions. We first investigate
the case where the worm selects the killing rates dynamically
and the energy consumption strategies statically (i.e., once at
the beginning of network operation) (Section IV). We prove
that the optimal killing rate has the following simple structure:
until a certain time (which can be zero depending on the
network and counter-measure parameters), the worm does not
kill any host, and right after that, it annihilates its hosts at the
maximum possible rate until the end of the optimization period
(theorem 1). Thus, the first phase is toamassthe infectives and
then arrives theslaughtertime. The result carries a qualitative
cautionary message for countermeasures as well: an apparently
inoffensive malware with little to no disruptive behavior might
well be stacking infective hosts for the imminent carnage. In
optimal control terminology [15]–[17], we have proved that the
optimal strategy has abang-bangstructure, that is, at any given
time, the killing rate is either at its minimum or maximum
possible values, and has at most one jump which necessarily
culminates at the maximum possible value. Optimality of this
simple strategy for this nontrivial problem is in fact quite
surprising.

We next investigate the complementary problem where
the worm selects only the optimal energy consumption rate
dynamically (Section V). We prove that when the energy
consumption costs are convex the worm’s optimal energy
consumption rate is a decreasing function of time (theorem 2).
Thus, the worm seeks to infect as many hosts as possible early
on by selecting the maximum possible values of the media
scanning rates and transmission ranges, and thereafter starts
to behave more conservatively so as to satisfy the energy
consumption constraints. This inevitably slows the further
spread of the worm towards the end of the optimization period,
but then a large fraction of nodes have already been infected
due to the choice of large values of these parameters early
on. When the energy consumption costs are concave, the
structure results are even more specific: the optimal media
scanning rates and transmission ranges are not only decreasing
functions of time, but also have a bang-bang nature with
at most one jump from the maximum possible value to the
minimum possible value. Our numerical computations reveal
that when both the killing rates and energy usages are selected
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dynamically, the optimal strategies follow the above structures
as well (Section VI).

Finally, we demonstrate how an understanding of the max-
imum value of the damage function can facilitate the design
of suitable counter-measures. Our numerical computations
affirm that as expected the damage can be reduced if the
nodes fetch the security patches at the maximum possible
rate, and select the minimum possible reception gains so
as to limit the communication rates between the infective
and susceptible nodes (Section VI). But, both of the above
incur costs for the system: the former owing to the energy-
expensive communication of the patches through bandwidth-
limited wireless media, and the latter owing to the disruption of
desired data communications brought about by indiscriminate
quarantining1. We devise a framework for determining the
above parameters so as to minimize the overall network cost
which increases with the damage and the costs associated with
security patch installation and quarantining through reduction
of reception gain.

D. Related Works

Malware outbreaks in wireless networks constitute an
emerging research topic (e.g., [18]–[25], ), though, the re-
search on spread of malware has traditionally focused on wired
networks. Epidemic modeling based on the classic Kermack-
Mckendrick model [26] has extensively been used to analyze
the spread of malware in wired networks [5], [27]–[35],etc,
and more recently in wireless networks [36]. These works
show, through simulations and matching with actual data,
that when the number of nodes in a network is large, the
deterministic epidemic models can successfully represent the
dynamics of the spread of the malware.

Dynamic control of parameters of the network or the
worm have been investigated in several papers. Most of
these however do not identify the optimal policies nor pro-
vide provable performance guarantees, but instead propose
heuristic dynamic policies in different contexts, and evaluate
through simulations the efficacies and various trade-offs of the
policies they propose. For example, [37] proposes heuristics
for dynamic quarantining of nodes in wired networks that
appear suspicious through traffic analysis, and [38] introduces
heuristic strategies for dynamically adjusting the transmission
power of attacker nodes in wireless networks. We instead
obtain attack policies that provably attain the maximum pos-
sible damage and consider a general model that incorporates
healing, immunization and mortality of nodes.

Interestingly, tools from the optimal control theory such as
the effective theorem of Pontryagin maximum Principle has
rarely been used for analyzing network security - [39] and
our previous work [40] constitute notable exceptions. The first
formulates the trade-off for optimal treatment of the infective
nodes in wired networks. However, in contrast to our work,
the solution is based on numerical evaluations only and no
structural property of the optimal policy is established. Our

1Since a susceptible node may not know whether the node it is communi-
cating with is infective, or otherwise, it can not selectively reduce reception
gains.

earlier work [40] proposes reduction of reception gain of
wireless nodes as a counter-measure for slowing down the
spread of malware in wireless networks. Our current work
in contrast focuses on the attack viewpoint and considers the
transmission range of the infective nodes and the rate of killing
as dynamic parameters of the worm to inflict the maximum
damage, and therefore invokes and answers a different set of
questions using different analytical arguments. Also the model
assumed here is more general than in [39], [40] in that the
worm causes mortality and the counter-measures include both
healing and immunization.

II. SYSTEM MODEL

A. Dynamics of State Evolution

A susceptiblenode is a mobile wireless device which is not
contaminated by the worm, but is prone to infection. A node
is infective if it is contaminated by the worm. An infective
spreads the worm to a susceptible while transmitting data or
control messages to it. The worm cankill an infective host, i.e.,
render it completely dysfunctional - such nodes are denoted
dead. A functional node that is immune to the worm is referred
to as recovered. Installation of appropriate security patches,
by the respective users or the network operator, canimmunize
susceptibles to the recovered states andheal infectives to the
recovered states. Different security patches may be required
for immunization and healing as the first involves rectification
of the vulnerability that rendered the susceptibles culpable to
the attack, whereas the second involves both the removal of
the worm and the vulnerability that the worm exploits.

Let the total number of nodes in the network beN . Let the
number of susceptible, infective, recovered and dead nodes at
time t be denoted bynS(t), nI(t), nR(t) and nD(t), respec-
tively, and the corresponding fractions beS(t) = nS(t)/N,
I(t) = nI(t)/N, R(t) = nR(t)/N, and D(t) = nD(t)/N
(Table I) respectively. Then,S(t) + I(t) + R(t) + D(t) = 1.

S(t) measure of the Susceptible
I(t) measure of the Infective
R(t) measure of the Recovered
D(t) measure of the Dead

TABLE I: List of notations of measures.

We assume that at the time of the outbreak of the infection,
that is at time zero, some but not all nodes are infected:0 <
I(0) = I0 < 1. For simplicity, we assumeR(0) = D(0) = 0.
Thus,S(0) = 1− I0.

We now model the dynamics of infection propagation.
Nodes are assumed to roam in a vast 2-D region of areaA with
an average velocityv. An infective transmits a message to a
susceptible with a given probability whenever the two are in
contact, that is, the susceptible is in the transmission range of
the infective. Now, this probability is a linear function of the
rate at which the infective scans the media in search of suscep-
tibles nearby, and the proportionality constant is determined by
the message collision probabilityη1. When the communication
range of the nodes is small compared toA (which is usually
the case in multihop networks),η1 is essentially determined by
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the overall node density (N/A). Next, under mobility models
such as random waypoint or random direction model [41],
Groeneveltet al. [42] have shown that the time between
consecutive contacts of a specific pair of nodes is nearly
exponentially distributed, and the rate of this exponential
process is linearly dependent2 on the communication range
of the nodes with a proportionality constantη2 that depends
only onv andA. Specifically,η2 ∝ 1

A . Let u(t) be the product
of the infective’s transmission range and its media scanning
rate. Then, the worm is transmitted between a given infective-
susceptible pair as per an exponential random process whose
rate at any given timet is β̂u(t), where β̂ = η1η2. The
worm regulates the spread of the infection by controllingu(t)
through appropriate choice of its transmission gain and media
scanning rate.

We now model the dynamics of mortality, healing and im-
munization. The worm at an infective host kills the host after a
random time which is exponentially distributed with rateν(t)
at any given timet. Here, the worm regulates the death process
by appropriately choosing the instantaneous rate of killing
ν(t) at t; this is accomplished by invoking and executing the
code that kills the node at desired rates. The security patches
are installed at an infective (susceptible, respectively) after
exponentially distributed random times starting from when
it is infected (t = 0, respectively). The delays account for
the time required in detection of infection, and fetching the
appropriate security patch, etc. The instantaneous rates of these
exponential healing and immunization processes for any given
infective at any given timet are B (I(t)) and Q (S(t)) , re-
spectively, whereB(.), Q(.) are arbitrary functions that satisfy
the following mild assumptions:limx→0 B(x), limx→0 Q(x)
are finite, and for0 < x < 1, B(x), Q(x) are positive and
differentiable,xB(x) is a concave non-decreasing function
of x and xQ(x) is a non-decreasing function ofx. Note
that the functionsB(.) and Q(.) are likely to be constants
(e.g., B(x) = B0, Q(x) = Q0 for all x), in practice3, and
any constant function satisfies all of the above properties.
Nevertheless, we consider more general functions (such as
Q(x) = xα for α > −1 andB(x) = xα for −1 < α < 0) so
as to allow for more general scenarios.

Following the conditions assumed for the model, the number
of nodes of each type evolves according to a pure jump
Markov chain with state vector(nS(t), nI(t), nD(t)) (since
for all t, nS(t)+nI(t)+nR(t)+nD(t) = N, the state of the
Markov chain is three dimensional). Let the transition rates
between statesσ1(t) andσ2(t) be denoted byρ(σ1(t), σ2(t)).

2The result has been proved when the communication range of the nodes
is small compared to the total area of the region andv is sufficiently high.
Numerical computations reveal that the result holds even otherwise.

3This is because the users of infectives and susceptibles are likely to receive
the security patches from software stores or servers distributed in the areaA.
In the first case, the rates are clearly constants. In the latter case, the reception
rates of the patches depend on the host’s reception gains, servers’ transmission
gains, collision probabilities etc, and none of the above depend on the infective
and susceptible fractions (collision probability depends on the overall node
densityN/A).

We have:

ρ((nS(t), nI(t), nD(t)), (nS(t)− 1, nI(t) + 1, nD(t))

= β̂u(t)nS(t)nI(t),

ρ((nS(t), nI(t), nD(t)), (nS(t), nI(t)− 1, nD(t) + 1)
= ν(t)nI(t),

ρ((nS(t), nI(t), nD(t)), (nS(t), nI(t)− 1, nD(t))
= B(nI(t)/N)nI(t),

ρ((nS(t), nI(t), nD(t)), (nS(t)− 1, nI(t), nD(t))
= Q(nS(t)/N)nS(t).

for all states(nS(t), nI(t), nD(t)) such thatnS(t) + nI(t) +
nD(t) = N. Let

β = lim
N→∞

Nβ̂, q(S) = Q(S)S, b(I) = B(I)I.

Now4 according to the results of [43], asN grows, S(t),
I(t) andD(t) converge to the solution of the following system
of differential equations5:

Ṡ(t) = −βu(t)I(t)S(t)− q (S(t)) S(0) = 1− I0

(1a)

İ(t) = βuI(t)S(t)− b (I(t))− ν(t)I(t) I(0) = I0 (1b)

Ḋ(t) = ν(t)I(t) D(0) = 0. (1c)

and also satisfy the following constraints at allt:

0 ≤ S(t), I(t), D(t) (2a)

S(t) + I(t) + D(t) ≤ 1. (2b)

The convergence is in the following sense:

∀ ε > 0 ∀ t > 0, lim
N→∞

Pr{sup
τ≤t

|nS(τ)
N

− S(τ)| > ε} = 0

and likewise forI(t) andD(t).
Similar epidemic models have been validated, experiments

as well as network simulations to provide an acceptable
representation of the spread of malware in mobile wireless
networks (see e.g. [44], [45]).

Henceforth, wherever not ambiguous, for legibility, we drop
the dependence ont and make it implicit. Figure 1 illustrates
the transitions between different states of nodes.

Finally, owing to the technical assumptions we made on
B(.) and Q(.), the functionsb(.), q(.) exhibit the following
properties:b(0) = q(0) = 0, and for0 < I < 1, 0 < S < 1
b(I), q(S) > 0, b′(I) = db/ dI ≥ 0, q′(S) = dq/ dS ≥ 0,
andb′′(I) = d2b/ dI2 ≤ 0.

4Note that sincêβ = η1η2, andη1 depends only on the node density, and
η2 ∝ 1

A
, the limit β exists as long as the node densitylimN→∞N/A exists

for largeN.
5Variables with dot marks (e.g.,̇S(t)) will represent their time derivatives

(e.g., time derivative ofS(t)) and the prime signs (e.g.,q′(S)) designate their
derivatives with respect to their argument (e.g.,S).



5

b(I)

Iν

q(S)

uISβ

D

R

IS
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B. Maximum Damage Attack

We consider an attack that seeks to inflict the maximum
possible damage in a time window[0, T ] of its choice. An
attack can benefit over time from the infected hosts, by using
the worms to (i) eavesdrop and analyze traffic that is generated
or relayed by the infected hosts, or the traffic that traverses in
the hosts’ vicinity, and (ii) alter or destroy the traffic that is
generated or relayed by the infected hosts. An attacker also
benefits by inflicting a large death-toll by the end of the desired
time window. These motivate the following damage function:

J = κD(T ) +
∫ T

0

f (I(t)) dt. (3)

whereκ is an arbitrary non-negative constant, andf(.) is an
arbitrary non-decreasing, convex function such thatf(0) = 0.
Note that the assumptions onκ, f(.) are mild and natural,and
a large class of functions, e.g.,f(I) = KIα for α ≥ 1 and
K ≥ 0, f(I) = K(eI − 1) for K ≥ 0 satisfy them. Finally,
an attacker that simply seeks to maximize the final tally of
the dead without any other agenda is readily representable by
taking f ≡ 0.

ν(t) killing rate in the infectives
u(t) the transmission range times the scanning rate of the infectives

TABLE II: Control variables of the worm.

The attacker seeks to maximize the damage function by
appropriately regulating its killing rateν(t) and the product
u(t) of the transmission range and the scanning rate of the
infective nodes6 (Table II), subject to:

0 ≤ ν(t) ≤ νmax 0 ≤ umin ≤ u(t) ≤ umax (4a)
∫ T

0

h (u(t)) dt ≤ C (4b)

The bound onν(t) is imposed by limitations on the worm’s
speed of killing an infective host. The bounds onu(t) are
dictated by the physical constraints of the transmitters and
also for ensuring that the interference and hence collisions be-
tween simultaneous transmissions remain limited. The second
constraint (battery constraint) arises because enhancingu(t)

6The attacker does not control any other parameter such as the susceptible’s
reception gain, server’s transmission gains, mobility patterns, immunization
and healing rate functions, Q(.) and B(.) etc.

depletes the infective’s battery, and the worm needs to ensure
that the infective’s battery lasts and it can continue to use it and
to infect susceptibles for the time period of its operation[0, T ]
(should it choose not to kill the host earlier). For appropriate
functions,h(.) (e.g.,h(u) = K1u

r, for r ≥ 2),
∫ T

0
h(u(t)) dt

is the energy consumed by the host if it is infected att = 0
and is not killed beforet = T - this is therefore an upper
bound on the energy consumption of any infective while it
remains infected. We assume that the susceptibles use their
battery so as to last much longer thanT , and therefore the
energy consumed by a host before it is infected is relatively
insignificant. Thus, the worm choosesu(t) so that the above
upper bound is less than its energy reserve.

It is natural to assume thath(u) is non-decreasing and
non-negative. We allowh(u) to be either convex or concave
for 0 ≤ u ≤ umax. Note that whenh(u) represents power
dissipation associated withu, h(u) must beK1u

r, for r ≥ 2
and some non-negativeK1, and is therefore convex. But, if
h(u) represents a cost associated with power dissipation, then
it may be concave as well. Finally, without loss of generality,
h(umin) = 0, as if h(umin) > 0, we can equivalently consider
h(umin) = 0, and reduce the boundC appropriately. Any pair
of piecewise continuous functions(ν, u) : [0, T ] → R2 such
that the left and right hand limits exist and that satisfy the
above constraints belongs to thecontrol regiondenoted byΩ.

We next show that for any(ν, u) ∈ Ω, the state constraints
in (2) are automatically satisfied throughout(0 . . . T ]. Thus,
we ignore (2) henceforth.

Lemma 1:For any (ν, u) ∈ Ω, the state functions
(S, I,D) : [0, T ] → R3 that satisfy (1), also satisfy (2).
Moreover,S(t) ≥ (1−I0)e−K1t > 0, I(t) ≥ I0e

−K2t > 0 for
t ∈ [0, T ] and some finiteK1,K2.

The proof will reveal that K1 = βumax +
max0≤x≤1 q′(x), K2 = max0≤x≤1 b′(x).

Proof: All S, I and D, resulting from (1), and thus
any continuous functions of them, are continuous functions
of time. We first show that if there existst0 such that we have
0 < S, I throughout(0, t0), thenS(t0) ≥ S(0)e−K1t0 , where
K1 = βumax + max0≤x≤1 q′(x), and I(t0) ≥ I(0)e−K2t0 ,
whereK2 = max0≤x≤1 b′(x). The second statement will now
follow if we can prove the first and since0 < S(0) =
1 − I(0) < 1. Now, let 0 < S, I throughout (0, t0). For
0 ≤ t < t0 from (1a) we haveṠ ≥ −βuS − q(S) ≥ −K1S.
Hence,S(t) ≥ S(0)e−K1t ≥ S(0)e−K1t0 for all 0 ≤ t < t0.
SinceS is continuous,S(t0) ≥ S(0)e−K1t0 . Similarly, we can
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show thatI(t0) ≥ I(0)e−K2t0 . The result follows.
We now prove the first statement. Since0 < I0 < 1, the

initial conditions in (1) ensure that the state constraints (2)
are strictly met att = 0. The continuity ofS andI functions
ensure that there exists an interval of nonzero length starting
at t = 0 on which bothS and I are strictly positive. Thus,
from (1c) and sinceν(t) ≥ 0, Ḋ ≥ 0 in the above interval.
Thus, sinceD(0) = 0, 0 ≤ D in this interval as well. Since
d
dt (S + I + D)|t=0 = −q(S0)− b(I0) < 0 andS(0) + I(0) +
D(0) = 1, there exists an interval aftert = 0 over which the
constraint in (2b) is strictly met.

Suppose the first statement does not hold. Now, lett0 ≤ T
be the first time aftert = 0 at which, at least one of the
constraints of0 ≤ S, I and S + I + D ≤ 1 becomes active,
or 0 ≤ D becomes violated right after it. That is, att0,
we have (1)S = 0 OR (2) I = 0 OR (3) S + I + D =
1 OR (4) there exists anε > 0 such thatD < 0 on
(t0 . . . t0 + ε); AND throughout(0, t0), we have0 < S, I and
S + I + D < 1 andD ≥ 0. Thus, from the first para in this
proof, S(t0) ≥ S(0)e−K1t0 > 0, I(t0) ≥ I(0)e−K2t0 > 0.
Thus, sinceS(0) > 0, I(0) > 0, neither (1) nor (2) could have
happened. LetP1 = S(0)e−K1t0 , P2 = I(0)e−K1t0 . Also,
d
dt (S + I + D) = −q(S) − b(I) ≤ −q(P1) − b(P2) < 0
throughout [0 . . . t0]. Since S(0) + I(0) + D(0) = 1 we
have (S + I + D)|t=t0 < 1, showing that (3) is impossible.
Moreover, from (1a), and sinceI(t0) > 0, andI is continuous,
there exists anε′ such thatḊ ≥ 0 over (t0 . . . t0 + ε′). From
continuity ofD, D(t0) ≥ 0. Thus,0 ≤ D over (t0 . . . t0 + ε′),
dismissing the possibility of (4). This negates the existence of
t0. Thus, the first statement holds by contradiction.

Once the control(ν, u) is selected, the system state vector
(S, I,D) is uniquely specified at allt as a solution to (1) and
hence the value of the damage functionJ is determined as
well. Thus, the control(ν, u) is considered only as a function
of time rather than that of the system states, and since the
value of J is determined only by the selection of(ν, u), we
will henceforth denoteJ asJ(ν, u) instead.

The state and control functions pair((S, I,D), (ν, u)) is
called anadmissible pairif (i) (ν, u) is in Ω, i.e. satisfies (4),
(ii) (ν, u) is piecewise continuous such that the left and right
hand limits exist at the points of discontinuity, and (iii) (1)
hold. The function(ν, u) is then called an admissible control.
Let ((S, I, D), (ν, u)) be an admissible pair. If

J(ν, u) ≥ J(ν, u) for any admissible control(ν, u)

then((S, I, D), (ν, u)) is called anoptimal solutionand(ν, u)
is called anoptimal controlof the problem.

In order to obtain fundamental bounds on the efficacy of
the attack, we assume that the attacker computes its optimal
control assuming full knowledge of the parameters of the
system, such as the mobility pattern, the reception gain of the
susceptibles and the healing and immunization rate functions
(B(.), Q(.)). We also assume that the system selects the above
parameters apriori and does not change them with time. The
damage can only be equal or lower if the counter-measures are
adaptive or the attacker does not know the above parameters.

III. W ORM’ S OPTIMAL CONTROL

We now present a framework using which the worm can
determine itoptimal controlfunctions(ν, u) and also compute
the maximum value of the damage function.

We first establish the existence of anoptimal solution, using
the standard Flippov-Cesari theorem [17, P.131]. Here, we
consider only the case thath(.) is convex, and in later sections
state the existence results for concaveh(.). For each(S, I,D),
define the setN(S, I,D, ν, u) in R4 by:

N(S, I,D, ν, u) = {(f(I) + γ,−βuIS − q(S),
βuIS − b(I)− νI, νI) : γ ≤ 0, (ν, u) ∈ Ω} (5)

whereΩ is the control region. This vector determines trajecto-
ries which are sometimes referred to asrange orbits.Based on
the Flippov-Cesari theorem [17, P.131], there exists an optimal
pair ((S, I,D), (ν, u)) with measurable(ν, u), provided that:

• There exists an admissible pair: the controller(ν, u) ≡
(0, 0) clearly leads to an admissible pair.

• N(S, I,D, ν, u) is convex for each(S, I,D) : this
condition holds sinceΩ is convex (to be shown next)
and for any given(S, I, D), the function defining each
element in setN is linear in(ν, u). Now, Ω is convex, as
it is the intersection of sets defined by constraints in (4a)
and (4b), each of which is convex (sinceh(.) is convex).

• Ω is closed and bounded: this follows from defining
constraints (4).

• The states are absolutely bounded: this readily follows
from lemma 1.

The main challenge in computing the optimal control is
that the differential equations (1) can be solved provided
that the functions(ν, u) are known. Thus, the only approach
seems to be that of an exhaustive search on all functions
(ν, u) in Ω. This will require the evaluation of the damage
function J(ν, u) for each pair of such functions where the
corresponding(I, D) functions required in evaluatingJ(ν, u)
are obtained by solving (1) for each such pair. But,Ω consists
of an uncountably infinite number of such pairs, which rules
out an exhaustive search.Pontryagin’s Maximum Principle
however provides an elegant tool for solving this seemingly
impossible problem, which we apply next.

First, we introduce a new state variableE to transform the
constraint in (4b) to a more treatable one:

Ė(t) = −h(u), E(0) = 0, (6)

with the final constraint:

E(T ) ≥ −C. (7)

Now, note that (6) and (7) are together equivalent to (4b).
Thus, the optimal control problem posed in section II can now
be modified to augment (1) with (6) and (7), and omit (4b),
without any alterations in the set of optimal solutions and in
the maximum value of the damage function. We consider this
version henceforth.

Let ((S, I, D), (ν, u)) be an optimal solution. Consider the
Hamiltonian H, and co-stateor adjoint functions λ1(t) to
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λ4(t), and a scalarλ0 ≥ 0 defined as follows:

H := λ0f(I) + (λ2 − λ1)βuIS − λ1q(S)− λ2b(I)
+(λ3 − λ2)νI − λ4h(u). (8)

λ̇1 = −∂H

∂S
= −(λ2 − λ1)βuI + λ1q

′

λ̇2 = −∂H

∂I
= −λ0f

′ − (λ2 − λ1)βuS + λ2b
′ − (λ3 − λ2)ν

λ̇3 = −∂H

∂D
= 0

λ̇4 = −∂H

∂E
= 0.

(9)

along with the transversality conditions:

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = λ0κ (10a)

λ4(T ) ≥ 0 (10b)

λ4(T )(E(T ) + C) = 0. (10c)

Then according to Pontryagin’s Maximum Principle With
Terminal Constraints ( [15, P.111 theorem 3.14]), there exists
continuous and piecewise continuously differentiable co-state
functionsλ1, λ2, λ3 andλ4, and constantλ0 ≥ 0 that at every
point t ∈ [0 . . . T ] where(ν(.), u(.)) is continuous satisfy (9),
and the transversality conditions (10), and we have:

~λ 6≡ ~0 (11a)

(ν, u) ∈ arg max
(ν,u)∈Ω

H(~λ, (S, I, D), (ν, u)) (11b)

From (11b),(ν, u) must be selected to ensure that(λ3 −
λ2)νI = 0 is maximized, and∂H

∂u = 0. SinceI > 0 (lemma 1),

ν = max(λ3 − λ2, 0)νmax, and (12a)

u =





umin, ψ ≤ h′(umin)

h′−1(ψ), h′(umin) < ψ ≤ h′(umax)

umax, h′(umax) < ψ.

(12b)

where ψ := (λ2 − λ1)βIS/λ4. Combining (9), (12) and
(10), we obtain a system of (non-linear) differential equations
with final values specified that involve only the state and co-
state functions (and not the control(ν, u)). Functionsλ1 to
λ4 and scalarλ0 that satisfy the above differential equations
and final values, can therefore be obtained using standard
numerical procedures that solve differential equations [46].
Now, the optimal control(ν, u) can be obtained using the
above solutions in (12).

Finally, we obtain the following properties of the Hamil-
tonian, and system states, that we use later.

First, the system isautonomous, i.e., the Hamiltonian and
the control region do not have an explicit dependency on the
independent variablet.Thus, [16, P.236]

H(S(t), I(t), D(t), ν(t), λ1(t), λ2(t), λ3(t)) ≡ constant.
(13)

Second,I satisfies the following condition.
Lemma 2:(f ′(I)I−f(I)) ≥ 0 and(b(I)−b′(I)I) ≥ 0 for

all t ∈ [0 . . . T ].

Proof: By lemma 1,I and S are nonnegative. Define
ξ(I) = f ′(I)I − f(I). Sincef(0) = 0, we haveξ(0) = 0.
Also,

d

dI
ξ(I) = ξ′ = f ′′(I)I + f ′(I)− f ′(I) = f ′′(I)I.

Following lemma 1 and properties off, we observe thatξ′ ≥ 0
for all t ∈ [0 . . . T ]. Thus, sinceξ(0) = 0, ξ(I) = f ′(I) −
f(I)I ≥ 0 for all t ∈ [0 . . . T ]. Likewise for b.

IV. OPTIMAL RATE OF KILLING

In this section, we consider the case in which the trans-
mission range and media scanning rate in the infective nodes
is selected apriori by the worm and is fixed throughout the
[0 . . . T ] interval. Specifically,u(t) = u0 > 0, for all t ∈
[0 . . . T ], and u0 is chosen such that the constraint (4b) is
satisfied, i.e.,h(u0) ≤ C/T. Therefore, the state function
E and thus, the co-state functionλ4 need not be introduced.
Thus, without loss of generality,λ4 ≡ 0 in (9).

We obtain structural results for the optimal killing rateν(.)
as a function of time, that maximizes the overall damage
function in (3). Specifically, Theorem 1 shows thatν(.) is of
bang-bangform, that is, it possesses only two possible values
νmax and 0, and switches abruptly between them. It has at
most one such jump, which necessarily culminates atνmax.

Theorem 1:When u(t) = u0 for all t ∈ [0, T ], such that
u0 ∈ [umin, umax] andu0 satisfies constraint (4b), the optimal
ν(t) that maximizes the worm’s damage function in (3) is
characterized as follows:∃t1 ∈ [0 . . . T ) such thatν(t) = 0
for 0 < t < t1 andν(t) = νmax for t1 < t < T.

Proof: First, we assume, without loss of generality,
λ0 = 1. This is because ifλ0 > 0, then the Hamiltonian,
H, can be can be re-scaled by1/λ0, and by replacingλi/λ0,
i = 1 . . . 4 instead ofλ1 . . . λ4, the conditions of Pontryagin
Maximum Principle are satisfied forλ0 = 1. On the other
hand, ifλ0 = 0 then (8) constitutes alinear autonomous ODE
with the final constraint of~λ(T ) = ~0 which, from vector space
theory [46], has the unique solution of(λ1, . . . , λ4) = ~0 for all
t ∈ [0 . . . T ]. This however contradicts the necessary condition
of ~λ 6≡ ~0 of (11a).

Let the switching function,ϕ, be defined as follows:

ϕ := (λ3 − λ2)I

which is a continuous and piecewise continuously differential
function of time and referring to (10), has the following final
value:

ϕ(T ) = κI(T ) > 0. (15)

where positivity comes fromκ > 0, and I > 0 according to
lemma 1. Introduction ofϕ, along withλ0 = 1 andλ4 ≡ 0,
allow us to rewrite the Hamiltonian in (8) as follows:

H = f + (λ2 − λ1)βu0IS − λ1q − λ2b + ϕν. (16)

According to Pontryagin’s Maximum Principle, we have:

H(S, I,D, ν, λ1, λ2, λ3) ≥ H(S, I,D, ν, λ1, λ2, λ3) (17)

over all admissibleν.
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Hence, the optimalν satisfiesϕν ≥ ϕν, where ν is any
admissible controller, i.e.,ν ∈ [0 . . . νmax]. Thus, to find the
optimal controller, one needs to maximize the linear function
ϕν over the admissible setν ∈ [0 . . . νmax], which yields:

ν =

{
0, ϕ < 0

νmax, ϕ > 0,
(18)

hence, the name switching function. An immediate observation
of the above property is the following important property:

ϕν ≥ 0. (19)

Also note that according to the continuity of theϕ and its
final value (15) and following (18), we haveν = νmax over an
interval of nonzero length toward the end of(0 . . . T ) interval
which extends until timeT. Specifically, we haveν(T ) =
νmax andν at T is differentiable anḋν(T ) = 0.

Now, in order to establish the statement of the theorem, we
will show that the switching functionϕ has at most one zero-
crossing point. We show this by proving that the right side
time derivative ofϕ at its potential zero-crossing points are
necessarily (strictly) positive. Towards this end, we need to
establish three lemmas first.

Let us begin by stating a simple real analysis property which
we prove in Appendix A.

Property 1: Let f(t) be a continous and piecewise conti-
nously differentiable function oft. Assumef(t0) > L. Now
if f(t1) = L for the first time beforet0, i.e., f(t1) = L and
f(t) > L for all t ∈ (t1 . . . t0], then ḟ(t+1 ) ≥ 0.7

Lemma 3:H = constant> 0.
Proof: As we argued in section III, the system is

autonomous, and thus the Hamiltonian is a constant. Therefore,

H = H(T ) = f(I(T )) + κν(T )I(T ). (20)

Following lemma 1,I(T ) > 0; alsoν(T ) = νmax > 0, as we
argued after (18). ThusH(T ) > 0.

Lemma 4:For all t ∈ (0 . . . T ), we haveλ1 > 0, λ2 > 0
and (λ2 − λ1) > 0.

Proof:

Step-1.Following (10),λ2(T ) = (λ2(T )−λ1(T )) =
0. From the discussion following inequality (19),
ν is continuous atT. Thus, from (9) and (10),
λ̇2(T ) = (λ̇2(T ) − λ̇1(T )) = −f ′(I(T )) − κνmax,
which is strictly negative due to lemma 1 and the
discussion following inequality (19). Also, again
from (9) and (10),λ1(T ) = λ̇1(T ) = 0, and by
taking the time derivative of (9) and using (10), we
obtain λ̈1(T ) = −λ̇2(T )βu0I(T ) > 0. Therefore,
λ1(t), λ2(t) and (λ2(t)− λ1(t)) are strictly positive
over an interval of nonzero length towards the end
of the (0 . . . T ).
Step-2.Proof by contradiction. Lett∗ be the last time
at which (at least) one of these three nonnegativity
constraints is active, i.e., fort∗ < t < T, we have:

λ1(t) > 0, λ2(t) > 0, (λ2(t)− λ1(t)) > 0.

7For a general functionf(x), the notationsf(x+
0 ) andf(x−0 ) are defined

as limx↓x0 f(x) and limx↑x0 f(x), respectively.

and

λ1(t∗) = 0 OR λ2(t∗) = 0
OR λ2(t∗)− λ1(t∗) = 0.

• Case 1:λ2(t∗)−λ1(t∗) = 0 andλ1(t∗) ≥ 0 and
λ2(t∗) ≥ 0. Now:

(λ̇2(t∗+)− λ̇1(t∗+))
= −f ′ + λ2b

′ − (λ3 − λ2)ν − λ1q
′ [∵(9)]

= −f ′ + λ2b
′ − (λ3 − λ2)ν − λ1q

′

−H

I
+

f

I
− λ1q

I
− λ2b

I
+

ϕν

I
[∵(16)]

=
1
I
[f − f ′I] +

λ2

I
[b′I − b]− λ1q

′

−λ1q

I
− H

I
(21)

From lemma 2,[f − f ′I] ≤ 0 and [b′I − b] ≤
0. From the definition oft∗, λ1(t∗+) ≥ 0 and
λ2(t∗+) ≥ 0. Now following Lemmas 1 and 3
and (21) and properties ofq(S), we observe that
[ d

dt (λ2−λ1)]|t∗+ < 0. According to property 1,
this is a contradiction. Thus, case 1 could not
occur.

• Case 2:λ1(t∗) = 0, λ2(t∗) ≥ 0 and λ2(t∗) −
λ(t∗) > 0, Then:

λ̇1(t∗+) = −(λ2 − λ1)βu0I [∵(9)]

Since in this case(λ2(t∗) − λ1(t∗)) > 0, thus
λ̇1(t∗+) < 0 which is in contradiction with
property 1. Hence case 2 is also impossible.

• Case 3:λ1(t∗) > 0, λ2(t∗) − λ1(t∗) > 0 and
λ2(t∗) = 0. Thence, from (9):

λ̇2(t∗+) = −f ′ − (λ2 − λ1)βS − ϕν

I

For this case(λ2(t∗) − λ1(t∗)) > 0. These
inequalities along with (19) and lemma 1, show
λ̇2(t∗+) < 0. This is again in contradiction with
property 1.

Therefore, none of the three cases could occur,
which is a contradiction with existence oft∗. Hence,
follows the lemma.

Here, we state another general property of differentiable
functions which we prove in the appendix B.

Property 2: Assumef(t) is a continuous and piecewise
continuously differentiable function oft. Assumet1 and t2
to be its two consecutiveL-crossing points, that is,f(t1) =
f(t2) = L andf(t) 6= L for all t1 < t < t2. Now if ḟ(t+1 ) 6= 0
and ḟ(t−2 ) 6= 0, then ḟ(t+1 ) and ḟ(t−2 ) must have opposite
signs.

Let us calculate the time derivative of theϕ function



9

whereverν is continuous:

ϕ̇ = (λ̇3 − λ̇2)I + İ
ϕ

I
[∵(14)]

= (f ′ + (λ2 − λ1)βu0S − λ2b
′

+(λ3 − λ2)ν)I + İ
ϕ

I
[∵(9)]

= f ′I + (λ2 − λ1)βu0IS − λ2b
′I + ϕν + İ

ϕ

I
+(H − f − (λ2 − λ1)βu0IS + λ1q

+λ2b− ϕν) [∵(16)]

= H + λ1q + (f ′I − f) + λ2(b− b′I) + İ
ϕ

I
. (22)

Let a time at whichϕ = 0 be denoted byτ. From (22) we
obtain:

ϕ̇(τ+) = ϕ̇(τ−) = H + λ1q + (f ′I − f) + λ2(b− b′I)
(23)

Equation (23) and Lemmas 1, 3, 2, 4 show thatϕ̇(τ) > 0.
Firstly, this shows thatϕ cannot be equal to zero over an

interval of nonzero length, since that requiresϕ̇ = 0 over that
interval, which is not possible. Thus, referring to (18),ν is
bang-bang, i.e.,ν ∈ {0, νmax}.

Secondly, referring to (18) and property 2, we conclude that
ϕ has at most one zero-crossing point. Note that according
to (18), ν can have jump only at zero-crossing points ofϕ.
Now to find the direction of the jump, we note that according
to (15), continuity ofϕ and (18),ν = νmax for an interval
of nonzero length towards the end of the(0 . . . T ). Thus, the
Theorem follows.

V. DYNAMIC CONTROL OF THE SCANNING RATE/TX

RANGE

A. Convexh(u) :

In this section, we assume that the worm has selected a
killing rate ν0 ≥ 0 a priori and it is fixed throughout the
optimization period and the attacker seeks to determine the
optimumu(.).

Recall that bothb(I) andq(S) satisfyb(0) = q(0) = 0, and
b(I), q(S) are increasing functions ofI, S for I, S ∈ [0 . . . 1].
Hence, there exist constantsb̂ and q̂ such that

∀I, S ∈ [0 . . . 1], b(I) ≥ b̂I andq(S) ≥ q̂S. (24)

Now, considering the supremum of such constants, we assume
to have:

b̂ + q̂ ≥ βumax (25)

βumax is the maximum rate of the spread of the infection,
and intuitively, the above consdition describes the scenario in
which the recovery rate (healing + immunization) is larger
than the rate of the spread of the infection. We present the
structural characteristics of the optimalu in suchfast-healing
regime in theorem 2. We show that the optimal transmission
range times scanning rate of the infective nodes is a non-
increasing function of time that necessarily ends atumin

Referring to (9),λ̇4 = 0 and thus,λ4 is a constant, which,
according to (10), is nonnegative. Now assume thatλ4 > 0,

then by scaling the Hamiltonian and the co-states by1/λ4,
the equations are still satisfied withλ4 = 1. Thus if λ4 > 0,
we can takeλ4 = 1 without loss of generality. If otherwise
λ4 = 0 we can (and will) show that the optimal solution is
trivially u = umax throughout[0 . . . T ].

Let ψ be defined as follows:

ψ := (λ2 − λ1)βIS (26)

which is a continuous and differential function of time and
following from (10) has zero final value:

ψ(T ) = 0. (27)

This allows us to rewrite the Hamiltonian in (8) as follows:

H = λ0f(I)−h(u)+ψu−λ1q−λ2b+(λ3−λ2)ν0I. (28)

According to Pontryagin’s Maximum Principle in (17) the
optimal u satisfiesψu − h(u) ≥ ψu − h(u), whereu is any
admissible controller, i.e.,u ∈ [umin . . . umax]. Thus, to find
the optimal controller, one needs to maximize the function
ψu − h(u) over the admissible setu ∈ [0 . . . umax]. Since
we have d2h/ du2 = h′′(u) ≥ 0, the functionψu − h(u) is
convex inu over the admissible interval and the maximizer is
found by comparing the values of three candidates ofumin,
umax and theu ∈ (umin . . . umax) at which the derivative of
this expression becomes zero. This yields:

u =





umin, ψ ≤ h′(umin)

h′−1(ψ), h′(umin) < ψ ≤ h′(umax)

umax, h′(umax) < ψ.

(29)

Note that this shows thatu is a continuous function ofψ, and
thus according to the continuity of theψ, u is a continuous
function of time. Therefore, the co-state functions are differ-
entiable at every point. Referring to (27) and following (29),
we haveu(T ) = umin. If h′(umin) > 0 then u = umin

over an interval of nonzero length toward the end of(0 . . . T )
interval which extends until timeT. Whetherh′(umin) > 0 or
h′(umin) = 0, u at T is differentiable anḋu(T ) = 0.

Theorem 2:Any optimal u(t) that maximizes the worm’s
damage function in (3) for the case of static killing rate and
convexh(u), is constituted of the followingphases:

1) u = umax on 0 < t ≤ t0 < T for somet0 ≥ 0;
2) u strictly and continually decreases ont0 < t ≤ t1 < T

for somet1 ≥ t0;
3) u = 0 on t1 < t ≤ T.

Proof: From (29), the time derivative of the optimalu
is as follows:

u̇ =





0, ψ < h′(0)
ψ̇

h′′(h−1(ψ)) , h′(0) < ψ < h′(umax)

0, h′(umax) < ψ.

(30)

In order to establish the statement of the theorem, we will
show that the functionψ as a continuous and differentiable
function of time has always a negative time derivative.
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Let us calculate the time derivative of theψ function:

ψ̇ = (λ̇2 − λ̇1)βIS + İ
ψ

I
+ Ṡ

ψ

S
[∵ (26)]

= [−λ0f
′ − (λ2 − λ1)βuS + λ2b

′

−(λ3 − λ2)ν0 + (λ2 − λ1)βuI

−λ1q
′]βIS + (βuIS − b− ν0I)

ψ

I

+(−βuIS − q)
ψ

S
[∵ (1) & (9)]

= −λ0f
′βIS + λ2b

′βIS

−(λ3 − λ2)ν0βIS − λ1q
′βIS

+(−b− ν0I)
ψ

I
+ (−q)

ψ

S
+{−HβS + [λ0f − h + ψu− λ1q

−λ2b + (λ3 − λ2)ν0I]βS} [∵ (28)]

= −HβS + (f − f ′I)λ0βS

+λ2(b′I − b)βS − λ1q
′βIS − λ1qβS

−b
ψ

I
− ν0ψ − q

ψ

S
+ (ψu− h)βS. (31)

Using (29) in (31), forh′(0) < ψ ≤ h′(umax) and re-
arranging, we obtain:

ψ̇ = −HβS + (f − f ′I)λ0βS + λ2(b′I − b)βS − λ1q
′βIS

−λ1qβS + h′(− b

I
− q

S
+ uβS)− ν0h

′ − hβS.

(32)

We are now ready to prove Theorem 2. In lemmas 5 and 6,
we show thatH is a positive constant andλ1 ≥ 0 for all
t ∈ [0 . . . T ]. From Lemma 6,λ2 is also non-negative. These
facts along with the assumptions in (24) and (25) and lemmas 1
and 2, show thatψ̇ < 0 for h′(0) < ψ < h′(umax). Referring
to (30), this shows that forumin < u < umax, we haveu̇ < 0.
The theorem follows from this and the continuity ofu as a
function of time, discussed after (29).

Lemma 5:H = constant> 0.
Proof: Similar to the proof of lemma 3, we use the fact

that, according to (13), the Hamiltonian is a constant and thus
H = constant = H(T ). The value ofH(T ) is obtained by
referring to (10) and the discussion following (29) aboutu(T ),
as follows

H = H(T ) = f(I(T )) + κν0I(T ). (33)

Following lemma 1,I(T ) > 0; thusH(T ) > 0.
Lemma 6:For all t ∈ (0 . . . T ), we haveλ1 ≥ 0 and(λ2−

λ1) > 0.
Proof: The steps of the proof are similar to the proof of

lemma 4.
Step-1.Following (10),λ2(T ) = (λ2(T )−λ1(T )) =
0 and from (9) and (10) and the discussion follow-
ing (29),(λ̇2(T )−λ̇1(T )) = −f ′(I(T ))−κν0, which
is strictly negative. Thus, there exists anε1 > 0
such that on the interval of(T − ε1 . . . T ), we have
(λ2 − λ1) > 0. Also, again from (9) and (10),
λ1(T ) = λ̇1(T ) = 0. From (9) and (25), in(T −
ε1 . . . T ),

λ̇1 ≤ λ1q̂

Thus,

λ1(t) ≥ λ1(T )e−(T−t)q̂ ≥ 0 ∀ t ∈ (T − ε1 . . . T ).
(34)

Therefore,λ1(t) ≥ 0 and (λ2(t) − λ1(t)) > 0 over
the interval of nonzero length of(T − ε1 . . . T ).
Step-2.Proof by contradiction. Lett∗ be defined as
follows:

t∗ := inf
0≤t≤T

{t|λ1(t) ≥ 0, and (λ2(t)− λ1(t)) > 0.

on the interval(t . . . T )}
If t∗ = 0 then we are done. Supposet∗ > 0.
According to the continuity ofλ1 and λ2 we must
have:

λ2(t∗)− λ1(t∗) = 0 OR,

λ1(t∗) = 0

• Case 1:λ2(t∗)−λ1(t∗) = 0. From the continuity
of λ1, λ1(t∗) ≥ 0. We have:

[
d

dt
(λ2 − λ1)]|t∗

= −f ′ + λ2b
′ − (λ3 − λ2)ν0 − λ1q

′ [∵(9)]

= −f ′ + λ2b
′ − (λ3 − λ2)ν0 − λ1q

′

−H

I
+

f

I
− λ1q

I
− λ2b

I
+ (λ3 − λ2)ν0 − h

I
[∵(28)]

=
1
I
[f − f ′I] +

λ2

I
[b′I − b]− λ1q

′

−λ1q

I
− H

I
− h

I
(35)

From lemma 2,[f − f ′I] ≤ 0 and [b′I − b] ≤ 0.
Also in this case,λ2(t∗) = λ1(t∗) (by assump-
tion), andλ1(t∗) ≥ 0. Now following lemmas 1
and 5, and eq. (35) and properties ofq(S), we
observe that[ d

dt (λ2−λ1)]|t∗ < 0. According to
property 1, this is a contradiction. Thus, case 1
could not occur.

• Case 2:λ2(t∗) − λ1(t∗) 6= 0, and λ1(t∗) = 0,
From continuity ofλ2, λ1, λ2(t∗)− λ1(t∗) 6= 0,
and therefore,∃ε3 > 0 such thatλ2−λ1 > 0 on
(t∗ − ε3 . . . t∗). Thus, like (34), sinceλ1(t∗) =
0, λ1 ≥ 0, on (t∗ − ε3 . . . t∗) as well. This
contradicts the definition oft∗.

Therefore, none of the two cases could occur, which
is a contradiction with existence oft∗. Hence, fol-
lows the lemma.

Now returning to what was left of the proof: the case of
λ4 = 0. In this case, the optimal controller needs to maximize
ψu. By definition in (26),ψ = (λ2−λ1)βIS, which according
to lemmas 1 and 6 is always positive, and thus the optimalu
is trivially u = umax for the entire interval of[0 . . . T ].

B. Concaveh(u) :
Theorem 3:Any optimal u(t) that maximizes the worm’s

damage function in (3) for the case of static killing rate, and a
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concaveh(u), has the following characteristic:∃t1 ∈ [0 . . . T )
such thatu(t) = umax for 0 < t < t1 and u(t) = umin for
t1 < t < T.

VI. N UMERICAL COMPUTATIONS

Our numerical computations have been designed to com-
plement our analysis in the previous two sections. We use the
insights revealed by these computations in designing robust
counter-measures.

We chooseT = 10, I0 = 0.1, β = 0.6, umax = 1, νmax =
1, umin = 0, h(u) = u2 (which is a convex function) and
C = 5. We selectedC such thatu(t) = umax for all t ∈ [0, T ]
violates the constraint of (4b) Also, we assume thatQ(x) =
B(x) = γ for all x ∈ [0, 1], i.e., q(S) = γS and b(I) = γI.
The equal rates are justified if we assume that there is one type
of security patch which successfully removes the infection, if
any, and immunizes the node against future infection.

Our first observation is that for all the range of parameters
that will follow in this section, the structural results of theo-
rems 1 and 2 for the optimal solution hold, although they were
shown assuming that only one of the controllers is dynamic
(i.e., only one is allowed to vary as a function of time and the
other is chosen as a constant), whereas here, bothu(t) and
ν(t) are chosen dynamically by the attacker (i.e., bothu, ν are
allowed to vary as functions of time). In addition, theorem 2
was shown assuming a fast healing regime while we observe
the results are valid for cases that are not fast-healing as well.
Owing to space constraints, we present only one corroborating
figure, Fig. 2, which depicts the optimal controllers as well as
the the states as functions of time. Henceforth, we continue to
consider the case in which the worm dynamically selects both
u, ν. This reveals the full damage potential of the worm.

0 2 4 6 8 10
0

0.5

1

time

worm controlling u and v, state variables, for γ=0.1

 

 

S

I

D

0 2 4 6 8 10
0

0.5

1

time

worm optimal controllers, for γ=0.1

 

 

u

ν

Fig. 2: Evaluation of the optimal controllers and the according
states as functions of time. Specific parameters used are
f(I) = 3

2I2, κ = 4, γ = 0.1

Next, we investigate the effect that changingγ causes on
the optimal controllers. According to Fig. 3 and our other
computation results, we observe that increasing the recovery
rate generally
• decreases the jump time in theν.
• extends the initial period during whichu = umax and

makes the subsequent descent inu sharper.

Intuitively, these phenomena can be explained in the follow-
ing manner: In a system with large recovery rate, both the
susceptible and infective nodes are recovered rapidly. Hence,
the worm should use more of its power resources early on
and also starts killing them earlier in order to not loose many
nodes to the pool of recovered.
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Fig. 3: Jump points of optimalν versusγ for values ofκ =
0.2, 1, 4. Here,f(I) = 3

2I2, andγ = 0.1.

Finally, we consider the problem of choosing the best
parameters from the viewpoint of the system. Specifically, the
system chooses the recovery rate a priori for a worst case
scenario, which is when the attacker knows the parameters
of the system (including the recovery rate) and chooses the
optimal dynamic attack policy. As anticipated, our numerical
computations reveal that higher the recovery rate (the sum
of the immunization and healing rates which is2γ in this
case), the less is the damage due to the attack. For example,
figure 4 depicts the damage inflicted by the worm versusγ (
γ is varied between0.10 to 0.37) for 3 different examples of
damage functions:f(I) = I, f(I) = 3/2I2, f(I) = 2I3 and
f(I) = 0.5(eI−1)/(e−2). The coefficients inf(I) are chosen
such that all of the functions have the same average forI from
0 to 1. But, increasing the recovery rate is achieved through
greater usage of costly resources such as bandwidth and power,
and thereby inflicts a recovery cost on the system. We consider
the overall system cost as the sum of the damage caused by
the worm and the expense of providing the immunization and
healing rates ofγ. The system faces a trade-off in choosing
the least-costly recovery rate, which we resolve numerically. In
the examples provided in this paper (figure 4), we have plotted
the overall system cost assuming a simple linear recovery
cost induced byγ (specifically4γ), and the damage functions
described above in this paragraph. In each case, the overall cost
is minimized at a unique value ofγ: γ = 0.34, 0.25, 0.22, 0.19
in the figures respectively.

APPENDIX A

Proof of Property 1. Proof by contradiction. Suppose that
Property 1 did not hold, thus

f(t1) = L, ḟ(t+1 <)0
⇒∃δ1 ∈ (0 . . . t0) such thatf(t1 + δ1) < L.



12

0.1 0.2 0.3 0.4
0

1

2

3

4
worm damage versus γ for different functions of f(I)

γ

w
or

m
 c

os
t

 

 

for f(I)=I

for f(I)=3/2 I2

for f(I)=2I3

for f(I)=(eI−1)/2(e−2)

0.1 0.2 0.3 0.4
1

1.5

2

2.5

3

3.5

4
system cost versus γ

γ

sy
st

em
 c

os
t

 

 

for f(I)=I

for f(I)=3/2 I2

for f(I)=2I3

for f(I)=(eI−1)/2(e−2)

Fig. 4: Worm damage and system cost versusγ for different
functions off(I). Here,κ = 4.

However, by the Intermediate Value Theorem (IVT), there
must exist a timet1 + δ1 < τ < t0 such thatf(τ) = L. This
contradicts the assumption thatf(t) 6= L for all t1 < t < t0.

APPENDIX B

Proof of Property 2. We prove the property foṙf(t+1 ) >
0. The proof follows similarly ifḟ(t+1 ) < 0. We have,

f(t1) = L, ḟ(t+1 ) > 0

⇒∃δ1 ∈ (0 . . .
1
2
(t2 − t1)) such thatf(t1 + δ1) > L.

Suppose that Property 2 did not hold, andḟ(t−2 ) > 0. Then,

f(t2) = L, ḟ(t−2 ) > 0

⇒∃δ2 ∈ (0 . . .
1
2
(t2 − t1)) such thatf(t2 − δ2) < L.

But now, by the Intermediate Value Theorem (IVT), there must
exist a timet1 + δ1 < τ < t2 − δ2 such thatf(τ) = L. This
contradicts the assumption thatf(t) 6= L for all t1 < t < t2.
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