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Abstract—Studies of propagation of malware in mobile net-
work have revealed that the spread of malware can be highly
inhomogeneous across different regions. Heterogeneous rates of
contact can also be due to diverse platforms, utilization of
contact lists by the malware, clustered nature of the network,
etc. In this paper, we propose a general formal framework to
leverage such heterogeneity information into devising optimal
patching policies that attain the minimum aggregate cost due
to the spread of malware and the surcharge of patching. Using
Pontryagin’s Maximum Principle for a stratified epidemic model,
we analytically prove that in the mean-field deterministic regime
optimal patch disseminations are simple single-threshold policies
which are amenable to implementation in a distributed manner.
Through numerical calculations, we investigate the behavior of
optimal patching policies in sample topologies and demonstrate
their advantages.

I. INTRODUCTION

Worms, i.e. self-propagating malicious codes, are a decades-
old threat in the realm of Internet. Worms undermine the
network by performing various malicious activities: they can
eavesdrop and analyze the traversing data, access privileged
information, hijack sessions, disrupt network functionalities
such as routing, etc. Although Internet is the traditional arena
for malicious codes such as trojans, spyware and viruses, the
battle is expanding to new territories: the current boom in
mobile devices combined with their spectacular software and
hardware capabilities has created a tremendous opportunity
for future malware. Mobile devices communicate with each
other and with computers through a myriad of means. Not only
can they interact using Bluetooth or infrared when they are in
each other’s proximity or through an exchange of multimedia
content messages (MMS), they can have ubiquitous access
to mobile Internet and peer to peer networks via a telecom
provider. Current smartphones are equipped with operating
systems, CPUs and memory powerful enough to execute in-
creasingly more complex codes. Incidents of spread of wireless
malware such as cabir, skulls, mosquito, commwarrior, etc.
have already sounded the alarm [1]. It is in fact theoretically
predicted [2] that it is only a matter of time before major
malware outbreaks are witnessed in the wireless domain.

The spread of malware can be countered through patch-
ing [3]: the underlying vulnerability utilized by the worm can
be amended by installing security patches that immunize the
susceptible, and potentially remove the malware and thus heal
and immunize the infective nodes. However, the distribution
of these patches burdens the limited resources of the network,
and hence, if not carefully controlled, can lead to major
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havoc. In wired networks, the spread of Welchia, a counter-
worm to thwart Blaster, created substantial traffic which in
turn rapidly destabilized important sections of the Internet.
Resource constraints are even more pronounced in wireless
networks in which bandwidth is constrained and is more
sensitive to overload, and nodes are limited in their energy
reserves. Recognizing the above, works such as [4], [5] have
included the cost of patching in the aggregate damage of the
malware and have characterized the optimal dynamic patching
policies which attain desired trade-offs between the efficacy
of patching and the extra taxation of the network resources.
However, as we will explain next, these studies suffered from
a drawback: a strong simplifying assumption.

Malware spreads when an infective node contacts, i.e.
communicates with, a susceptible node, which is a node
without a copy of the malware and vulnerable to it. The
results in [4], [5] critically rely on the homogeneous mixing
assumption that all pairs of nodes have identical expected
inter-contact times. While this assumption may serve as an
approximation in cases where detailed information about the
network is not available, a series of studies demonstrate that
the spread of malware in mobile networks can be considerably
inhomogeneous [2], [6]–[9], owing primarily to the non-
uniform distribution of nodes. Wireless nodes in high density
areas, sometimes referred to as “popular content” regions or
“hot-spots”, have more frequent opportunities to contact each
other than to contact nodes in distant and less dense areas.
Heterogeneity in the contact process can arise for other reasons
too. Malware may have a lower rate of contact between devices
with differing operating systems or communication protocols
[10]–[12]. Mobile malware may also select targets from the
address books of the infective hosts [3]: the contact rate is
thus higher amongst friendship cliques in the social network of
users. Malware which spreads using (mobile or wired) Internet
can have easier access to the IP-addresses of the subnet to
which the infective host belongs compared to the rest of the
masked IP addresses [13]. The behavioral pattern of the users
can also cause heterogeneous contact rates, e.g. a safe user
may avoid unsolicited mass-messages or may install firewalls,
hence hindering the spread of malware as compared to one
with risky behavior. Moreover, cloud-computing seems to be
a natural context for heterogeneous mixing: computers inside
the same cluster have a much higher speed of communication
amongst themselves than with computers of distant clusters.

Indeed many works have proposed practical methods
to identify and characterize and incorporate such inhomo-
geneities to more accurately predict the spread of infection
[2], [7], [8], [13]–[15], etc. Relatively few, e.g., [3], [9], [11],
consider the cost of patching and seek to minimize it in the
presence of heterogeneous contact processes. The proposed
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policies in [3], [9] are heuristic and apply to specific settings.
The only paper we could find that provides provably optimal
patching policies for heterogeneous networks is [11]. They
however focus on SIS models and optimize only in the space
static policies (i.e., those that do not vary patching rates
over time) therein. Patching performance can significantly
improve if we allow the patching rates to vary dynamically
in accordance with the evolution of the contagion.

We propose a formal framework for devising dynamic
optimal patching policies which leverage heterogeneity in the
network structure to attain the minimum aggregate cost due
to the spread of malware combined with the overhead of
patching. We consider both non-replicative and replicative
patching: in the former, some of the hosts are pre-loaded
with the patch which they transmit to the rest. In the latter,
each recipient of the patch can also forward the patch to
nodes which it contacts, by a mechanism similar to the spread
of the malware itself. The framework in each case relies
on optimal control formulations which cogently capture the
effect of the patching rate controls on the state dynamics
and their resulting trade-offs. We accomplish this by using
a combination of damage functions and a stratified1 epidemic
model in which nodes are divided into different types. Nodes
of the same type homogeneously mix with a rate specific to
that type, and nodes across different types contact each other
at rates particular to each pair of types. If two types do not
interact, the corresponding inter-contact rates are set to zero.
The model can therefore capture any communication topology
between different groups of nodes. Above and beyond, it can
exploit the inhomogeneity in the network to enable a better
utilization of the resources. Such higher patching efficacy is
achieved by allowing the patching controls to depend on the
node types. This leads to multidimensional (dynamic) optimal
control formulations in the solution space of functions rather
than variables, which may significantly add to the complexity
of the optimization. However, using Pontryagin’s Maximum
Principle, we analytically prove that in the mean-field deter-
ministic regime, for both non-replicative and replicative set-
tings, the optimal patching controls are simple single-threshold
policies which are amenable to implementation in a distributed
manner. Furthermore, the thresholds may now be computed
through off-the-shelf efficient numerical techniques. To the
best of our knowledge, such structure results have not been
established in the context of (either static or dynamic) control
of heterogeneous epidemics. Through numerical calculations,
we investigate a series of interesting behaviors of optimal
patching policies for different sample topologies.

II. SYSTEM MODEL

We first describe and develop the model of the state dy-
namics of the system as a general stratified epidemic for
both non-replicative (§II-A) and replicative (§II-B) patching.
Next in §II-C, we motivate our model in each of the different

1known by other terms such as structured, clustered, multi-class, multi-type,
multi-population, compartmental epidemic models, and sometimes loosely as
heterogeneous, inhomogeneous or spatial epidemic models.

contexts which we discussed in section (§I). Subsequently
in §II-D, we characterize the aggregate cost of patching
and cast the multi-type resource-aware patching as a multi-
dimensional optimal control problem, whose solutions we
develop later in §III and §IV.

A. Dynamics of non-replicative patching

A node is infective if it has been contaminated by the
malware, susceptible if it is vulnerable to the infection but
has not been infected yet, and recovered if it is immune to
the worm. An infective spreads the malware to a susceptible
while transmitting data or control messages. The network
consists of a total of N nodes which can be stratified into M
different types.2 A node of type i contacts another of type j
at rate β̂ij .

There are Ni = αiN (αi > 0) nodes of type i in the
network, among which niS(t), niI(t) and niR(t) are respectively
in the susceptible, infective and recovered states at time t. Let
the corresponding fractions be Si(t) = niS(t)/Ni, Ii(t) =
niI(t)/Ni, and Ri(t) = niR(t)/Ni. We assume that during the
course of the epidemic, the populations of each type, Ni, are
stable and do not change with time. Thus, for all t and all i,
we have Si(t) + Ii(t) +Ri(t) = 1.

Amongst each type, a pre-determined set of nodes, referred
to as dispatchers, are loaded with the appropriate patch. The
dispatchers can transmit the patches to the susceptible and
infective nodes and immunize the susceptibles and possibly
heal the infectives to the recovered state. In non-replicative
patching, as opposed to replicative patching in §II-B, the
recipient nodes of the patch do not propagate it further.3

Dispatchers of type i can contact nodes of type j at the rate
of β̃ij which may be different from the contact rates β̂ij of
the malware (fig. 1). Indeed the network manager may utilize
a higher priority option for distribution of the patches, or the
malware may utilize legally restricted means of propagation
not practicable for dispatchers. Moreover, the patch might not
be applicable to all types, forcing relevant cross β̃ij to be zero.
The number of dispatchers of type i, which is fixed over time
in the non-replicative setting, is NiR

i
0 where 0 < Ri

0 < 1.
We assume that the dispatchers are themselves immune to the
malware and hence they are recovered from the beginning.
If the network manager can patch only parts of the network,
then Ri

0 for other parts can be assumed zero. A node does not
know which other nodes are infected; it can however identify
the dispatchers.

Let t = 0 designate the earliest moment that the infection
is detected by the network and the appropriate patches are
generated. At t = 0, a fraction of 0 ≤ Ii(0) = Ii0 ≤ 1 of
nodes of type i are infected, and Si(0) = 1− Ii0 −Ri

0. If the
infection does not initially exist amongst a type i, then Ii0 = 0.

At any given t, any one of the niS(t) susceptibles of type i
may be contacted by any of the njI(t) infectives of the type j

2equivalently, clusters, segments, populations, categories, classes, compart-
ments, strata, etc.

3This may be preferred when the patches may themselves be contaminated
and can not be reliably authenticated.
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Fig. 1. Three sample topologies of 5 hotspot regions: linear, star and
complete. For instance, nodes of hotspot 1 in the linear topology can only
communicate with nodes of hotspots 1 and 2: they contact nodes of hotspot
1 at rate β̂11 and nodes of hotspot 2 at rate β̂12.

at rate β̂ji. Susceptibles of type i are therefore transformed to
infectives (of the same type) at rate niS(t)

∑
j β̂jin

j
I(t). The

system manager controls the resources consumed in distribu-
tion of the patches by dynamically determining the distribution
rates of the dispatchers. Let the rate of transmission attempts
of dispatchers of type i at time t be ui(t). Hence, the patches
immunize the susceptibles of type i, transforming them to
recovered nodes of type i, at rate niS(t)

∑
j β̃jiuj(t)NjR

j
0 at

each t. The attainable transmission rates of dispatchers of each
type must be non-negative and bounded: 4

0 ≤ ui(t) ≤ ui,max at each t. (1)

The efficacy of the patch may be lower for treating infective
nodes than susceptible nodes. For instance, the malware may
try to prevent the reception or installation of the patch in an
infective host, or the patch may only be able to remove the
vulnerability that leaves the nodes exposed to the malware,
but fail to remove the malware itself. We capture the above
possibility by introducing a (type-dependent) coefficient 0 ≤
πi ≤ 1 as follows: πi = 0 occurs when the patch is completely
unable to heal the infectives of type i and only immunizes the
susceptibles of type i, whereas πi = 1 represents the other
extreme scenario where a patch can equally well immunize and
heal susceptibles and infectives of type i.5 If the patch heals
an infective node, its state changes to recovered, otherwise it
remains an infective. Thus, the infectives of type i recover
at rate πiniI(t)

∑M
j=1 β̃jiuj(t)NjR

j
0 at each t. Define βij :=

limN→∞Nβ̂ij and β̄ij := limN→∞Nβ̃ij . If the total number
of nodes, N , is large and αi > 0 for all i6, then according to
the mean field convergence results (e.g. in [16, p.1] or recently
in [17]), Si(t), Ii(t) converge pathwise to the solution of the
following system of differential equations:7

Ṡi = −
M∑
j=1

βjiIjSi − Si

M∑
j=1

β̄jiR
j
0uj (2a)

İi =

M∑
j=1

βjiIjSi − Ii
M∑
j=1

πiβ̄jiR
j
0uj (2b)

4In general, if the network manager cannot control a certain type, the
corresponding ui,max will be zero.

5Also, irregular success chances of healing are representable by intermedi-
ate values of π.

6so that each type comprises a non-vanishing fraction of the total population
of the nodes

7Throughout the paper, variables with dot marks (e.g., Ṡi(t)) will represent
their time derivatives (e.g., time derivative of Si(t) at t).

where the initial conditions and the the state constraints are:

S(0) = S0 := (S1
0 , . . . , S

M
0 ), I(0) = I0 := (I10 , . . . , I

M
0 ) (3)

S � 0, I � 0, S + I � 1−R0 (4)

in which, 1M×1 := (1, . . . , 1)T , and the inequality signs
represent element-wise constraints. Note that the evolution of
R(t) need not be explicitly considered since at any given time,
Ri(t) = 1−Si(t)−Ii(t). Henceforth wherever not ambiguous,
we drop the dependence on t and make it implicit.

B. Dynamics of replicative patching

In the replicative setting, a recipient of the patch can forward
it to other nodes upon subsequent contact. Thus, recovered
nodes of type i add to the pool of dispatchers of type i,
and hence the fraction of dispatchers of type i grows to
Ri(t) at time t, whereas in the non-replicative model, the
fraction of dispatchers of type i continues to be Ri

0 at all
times. Thus the system dynamics equations in (2) need to be
modified. In the non-replicative case we chose (S(t), I(t)) to
represent the system, whereas In the replicative case we retain
(S(t), I(t),R(t)) instead. As it turns out, the specific choices
make the analyses more convenient in each case. The new
system dynamics equations are hence as follows:

Ṡi = −
M∑
j=1

βjiIjSi − Si

M∑
j=1

β̄jiRjuj (5a)

İi =

M∑
j=1

βjiIjSi − Ii
M∑
j=1

πiβ̄jiRjuj (5b)

Ṙi = Si

M∑
j=1

β̄jiRjuj + Ii

M∑
j=1

πiβ̄jiRjuj (5c)

with the initial conditions and the state constraints as:

S(0) = S0 := (S1
0 , . . . , S

M
0 ),

I(0) = I0 := (I10 , . . . , I
M
0 )

R(0) = R0 := (R1
0, . . . , R

M
0 )

(6)

S � 0, I � 0, R � 0, S + I + R = 1. (7)

The following lemma shows that the state constraints in
both non-replicative and replicative models hold as long as
the control functions satisfy (1) - thus, these constraints can
be ignored henceforth.

Lem. 1. For any u(.) that satisfies (1), the state constraints
(4), (7) hold in the non-replicative and replicative cases
respectively. In both cases, for all i, t, Si(t) > 0 and Ii(t) > 0
if Ii0 > 0.

C. Motivation of the models and instantiations

In the introduction section (§I), we described the moti-
vations for the our stratified epidemic model ((2) and (5))
through different examples. Here, we provide more detail
and specify the different types in each context. Note that in
general, different types can refer to different combination of
the following cases as well.
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1) Proximity-based spread – heterogeneity through locality:
The overall roaming area of the nodes can be divided into re-
gions (e.g., hotspots, office/residential areas, central/peripheral
areas, etc.) of different densities (fig. 1). One can therefore
stratify the nodes based on their locality, that is, each type
corresponds to a region. IP eavesdropping techniques (using
softwares such as AirJack, Ethereal, FakeAP, Kismet,
etc.) allows a malware to detect new victims in the vicinity of
the host. Distant nodes have more attenuated signal strength
(i.e., lower SINR) and are therefore less likely to be detected.
Thus, malware (and also patch) propagation rates βij , β̄ij are
related to the local densities of the nodes in each region and
decay with an increase in the distance between regions i and
j: typically βii exceeds βij for i 6= j, likewise for β̄ij . The
same phenomenon was observed for malware such as cabir
and lasco that use Bluetooth and Infrared to propagate.

2) heterogeneity through software/protocol diversity: Mo-
bile nodes use different operating systems and communication
protocols, e.g., Symbian, Android, IOS, RIM, webOS,
etc. In fact, a network which relies on a homogeneous
software/protocol is vulnerable to an attack that exploits a
common weakness (e.g. a buffer flow vulnerability). Thus,
inspired by the natural observation of survivability through
heterogeneity, increasing the network’s heterogeneity is pro-
posed as a defense mechanism without sacrificing interoper-
ability [10]. Such heterogeneities lead to dissimilar rates of
propagation of malware amongst different types, where each
type represents a specific OS, platform, software, protocol,
etc. In the extreme case, the malware may not be able to
contaminate nodes of certain types. The patching should also
be wary of such inhomogeneities in order to optimally utilize
the network resources since the rate of patching might also be
dissimilar amongst different types.

3) heterogeneity through available IP space: Smartphone
trojans like skulls and mosquito spread using Internet
or P2P networks. In such cases the network can be decom-
posed into autonomous systems (ASes) that each represent
an AS [13]. A worm either uniformly randomly scans the IP
addresses or uses the IP masks of ASs to restrict its search
domain and increase its rate of finding new susceptible nodes.
In each of these cases the contact rates differ between different
AS’s depending on the actual number of assigned IPs in each
IP sub-domain and the maximum size of that IP sub-domain.

4) heterogeneity through size of the cliques: Malware
which specifically spread in social networks has been recorded
in the past few years [18]. Examples include Samy in MyS-
pace in 2005 and Koobface in MySpace and Facebook
in 2008. Specifically, Koobface spread by delivering (con-
taminated) messages to the “friends” of an infective user.
Moreover, MMS based malware such as commwarrior may
also utilize the contact list of an infective host to access new
handsets. The social network graph can be approximated by
a collection of friendship cliques. A clique is a (close to)
complete subgraph (a collection of nodes and all (most of)
the possible links between them) within a larger graph. Users
of the same clique can be regarded as the same type. Indeed,

the rate of contact within cliques and across cliques differ
depending on the relative sizes of the cliques

5) Cloud-computing: heterogeneity through cluster sizes:
In cluster (or grid, or volunteer) computing [19], the types are
simply each cluster of CPUs in the cloud. Any two computers
in the same cluster can communicate at faster rates than
those in different clusters. These contact rates depend on the
communication capacity of connecting lines as well as the
relative number of computers in each cluster.

D. The Objective Function

The network seeks to minimize the overall combined cost of
infection and the resource overhead of patching in a operation
time window of [0, T ], where T is a parameter of choice. At
any given time t, the system incurs costs at rates of f (I(t))
due to the malicious activities of the malware. For instance,
the malware may use the infected hosts to (i) eavesdrop and
analyze and/or (ii) misroute, alter or destroy the traffic that
the hosts generate or relay. The scalar function f(.) is non-
decreasing and differentiable with respect to each Ii. Also,
WLoG f(0) = 0. The most natural candidate for f(I) is∑M

i=1 fi(Ii), that is, a weighted summation of the costs of
infection of each type. The weights reflect the number of nodes
as well as the relative importance of the nodes in each type,
which in turn depend on the criticality of their contained data
and/or the nodes’ functionality.8 The network also benefits at
the rate of L (R(t)), i.e. incurs a cost at the rate of −L (R(t))
owing to the removal of incertitude about the state of the nodes
brought about by patching. Moreover, this addition allows us
to recover the results of optimal epidemic forwarding policies
in multi-type DTN networks [20], [21] as a special case of
our model.9

In addition to the cost of infection, each dispatcher incurs a
cost on the network by consuming the available bandwidth and
the energy reserves of the nodes to disseminate the patches.
We will capture this portion of the cost with a fairly general
combination of cost terms for two patching scenarios. In the
first simple scenario, the dispatchers broadcast the patch. The
overhead bandwidth/energy at time t is thus proportional to

8Such differences themselves may be a source of stratification. In general,
different types need not exclusively reflect disparate mixing rates.

9In a Delay Tolerant Network, a server may seek to broadcast a message to
as many nodes as possible before a deadline, by employing minimal resources
such as energy and bandwidth. In this case, susceptibles are the nodes that are
yet to receive the message, and the recovered are those that have received it.
Dissemination of the message may either be performed in non-replicative or
replicative manner. Infectives are absent in this problem. The system reward
increases with an increase in the number of nodes which have received the
disseminated message. Also, the sooner the message is disseminated, the
better, hence the integration of −L(R(t)) over time (the negative sign in there
because the optimization is cast as a minimization problem). [22, appendix-A]
directly relates the integral over time of the fraction of the recipient nodes
to the probability that a message is delivered to sink nodes before deadline
T . Hence the minimum delay problem is transferred to the maximization
of

∫ T
0

∑M
i=1NiRi(t) dt, which corresponds to the special case of linear

L(x) =
∑M

i=1 cixi in our setting for appropriate scaling. This observation
is used in papers such as [20], [21] to propose resource-optimal epidemic
forwarding policies in multi-type DTNs. Our model therefore captures the
systems discussed in [20], [21] as special cases by assuming I0 = 0 and
f(I) ≡ 0. This connection is also recognized in [5].



5

the weighted summation
∑M

i=1R
i
0h

i
1(ui), as each dispatcher

of type i incurs a cost at the rate of hi1(ui(t)). In the alternative
scenario, dispatchers may transmit only to the nodes that have
not yet received the patch.10 Hence, the cost of patching in this
case can in general be represented by a combination of terms
of the following structure:

∑M
i=1

∑M
j=1R

i
0β̄ij(Sj +Ij)h

i
2(ui).

The scalar functions hi1(.) and hi2(.) for each i are selected to
represent how much resource is consumed for transmission of
the patch to nodes of each type and how significant such extra
taxation of the resources is for each type. These functions are
naturally assumed to be non-decreasing and differentiable with
respect to their argument. Along the same lines of reasoning,
the corresponding terms for the cost of replicative patching can
be expressed as

∑M
i=1Rih

i
1(ui) and

∑M
i=1

∑M
j=1 β̄ijRi(Sj +

Ij)h
i
2(ui) respectively.

Thus, the aggregate cost for the non-replicative patching is:

JN =

∫ T

0

(
f(I)− L(R) +

M∑
i=1

Ri
0h

i
1(ui)

+

M∑
i=1

M∑
j=1

β̄ijR
i
0(Sj + Ij)h

i
2(ui)

)
dt

(8)

and for the replicative patching is:

JR =

∫ T

0

(
f(I)− L(R) +

M∑
i=1

Rih
i
1(ui)

+

M∑
i=1

M∑
j=1

β̄ijRi(Sj + Ij)h
i
2(ui)

)
dt

(9)

Problem Statement: The system seeks to minimize the
aggregate cost (A) in (8) for non-replicative patching and
(B) in (9) for replicative patching by appropriately regulating
u(t) at all t subject to (1) and u(·) having only a finite number
of points of discontinuity, allowing the states to evolve (A) as
per (2) for non-replicative, and (B) as per (5) for replicative
patching, and satisfy the respective initial state conditions in
(3) and (6).

III. OPTIMAL NON-REPLICATIVE PATCHING

A. Numerical framework for computing the optimal controls

The main challenge in computing the optimal state and
control functions ((S, I),u) is that the differential equations
(2) can be solved once the optimal controls u(·) are known.
Thus, the only approach seems to be that of an exhaustive
search, which is ruled out since there are an uncountably
infinite number of control functions. Pontryagins Maximum

10This can be achieved by keeping a common database of nodes that have
successfully received the patch, or a turn-taking algorithm preventing double
targeting. This choice of policy can remove some unnecessary transmissions
of the patches and hence save on the patching overhead, but it should be
immediately clear that its implementation involves some extra effort. Note
that we naturally assume that the network does not know a priori with
certainty which nodes are infective, and hence it cannot differentiate between
susceptible and infective nodes. Thus, even when π = 0, i.e. the system
manager knows that the patch cannot remove the infection and only immunizes
the susceptible, still the best it may be able to do is to forward the message
to any node which has not previously received it.

Principle (PMP), however, provides an elegant technique for
solving this seemingly intractable problem. PMP bears a close
analogy to the primal-dual non-linear optimization framework,
except that it allows optimization in the function (as opposed
to the variable) space. (8) and (2) are analogous to the
objective function and constraints of a primal optimization
formulation; adjoint functions, to be defined shortly, will play
the role of Lagrange multipliers and the Hamiltonian H is
similar to the objective function of the relaxed optimization in
the primal-dual framework:

H := f(I)− L(R) +

M∑
i=1

Ri
0h

i
1(ui)

+

M∑
i=1

M∑
j=1

β̄ijR
i
0(Sj + Ij)h

i
2(ui)

+

M∑
i=1

(
(λIi − λSi )Si

M∑
j=1

βjiIj

)

−
M∑
i=1

λSi Si

M∑
j=1

β̄jiR
j
0uj −

M∑
i=1

λIi Ii

M∑
j=1

πiβ̄jiR
j
0uj

(10)

where at each point of continuity of u(·) for all i = 1 . . .M
the adjoint functions λSi and λIi satisfy

λ̇Si = − ∂H
∂Si

=− Li(R)−
M∑
j=1

β̄jiR
j
0h

j
2(uj)

− (λIi − λSi )

M∑
j=1

βjiIj + λSi

M∑
j=1

β̄jiR
j
0uj

λ̇Ii = −∂H
∂Ii

=− Li(R)− fi(I)−
M∑
j=1

β̄jiR
j
0h

j
2(uj)

−
M∑
j=1

(
(λIj − λSj )βijSj

)
+ λIi

M∑
j=1

πiβ̄jiR
j
0uj

(11)

along with the final conditions:

λSi (T ) = 0, λIi (T ) = 0. (12)

Then according to PMP, the optimal control at any time t is
derived as:

ui ∈ arg min
ui,min≤ui≤ui,max

H.

This yields:

ui ∈ arg min

(
hi1(ui) +R0

i h
i
2(ui)

M∑
j=1

β̄ij(Sj + Ij)− φiui

)
(13)

where φi := Ri
0

M∑
j=1

β̄ijλ
S
j Sj +Ri

0πj

M∑
j=1

β̄ijλ
I
jIj (14)
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Combining (2), (11), (13), we obtain a system of (non-
linear) differential equations that involve only the state and
adjoint functions (and not the control u(·)), and the initial
values of the states (eq.(3)) and the final values of the adjoint
functions (eq.(12)) are known. Numerical methods for solving
boundary value nonlinear differential equation problems may
now be used to solve for the state and adjoint functions
corresponding to the optimal control, which will provide the
optimal controls using (13).

B. Structure of Optimal Non-Replicative Patching

We now analytically prove that the optimal controls
(u1(t), . . . , uM (t)) follow simple structures. We separately
consider the cases of concave and convex hi(·).

Theorem 1. When for all i, hi1(·) and hi2(·) are concave, then
for each i, there exists a 0 ≤ ti ≤ T , such that an optimal
ui(t) can be expressed as ui(t) = ui,max for 0 < t < ti, and
ui(t) = 0 for ti ≤ t ≤ T .

Intuitively, at the onset of the epidemic, a large fraction of
the nodes are susceptible to the malware, each of which is a
potential victim. Bandwidth and power resources hence should
be used maximally in the beginning (in all regions), rendering
as many infective and susceptible nodes robust against the
malware. Specifically, there is no gain in deferral of patching
since the efficacy of healing infectives is less than that of the
immunization of the susceptible nodes (recall that πi ≤ 1).
The fact that the process of curbing the patching in this case
is abrupt rather than gradual is however less apparent. The
drop time in each region differs and depends on the location
of the initial infection as well as the topology of the network,
communication rates, etc.

Proof: When all hi1(·) and hi2(·) are concave functions
then the minimization in (13) is achieved by comparing the
values for the following two candidates: 0, ui,max. Let

ϕi(ui) := hi1(ui) +R0
i h

i
2(ui)

M∑
j=1

β̄ij(Sj + Ij)− φiui.

Thus, the condition for an optimal ui is:

ui =

{
ui,max ϕi(ui,max) < 0

0 ϕi(ui,max) > 0
(15)

Note that for all i, φi(T ) = 0. From lemma 1 Sj(T ) > 0 for
all j. Thus, ϕi(ui,max)(T ) > 0. ϕi(ui,max)(·) is a continuous
function of time. We will next show that ϕi(ui,max)(·) is a
strictly increasing function of time as well. Therefore, either (i)
ϕi(ui,max)(t) > 0 at all t ∈ (0, T ), or (ii) ϕi(ui,max)(t) < 0
at all t ∈ (0, ti), and ϕi(ui,max)(t) > 0 at all t ∈ (ti, T )
for some ti ∈ (0, T ). The Theorem follows from (15) in both
cases.
ϕi(ui,max)(·) is differentiable whenever u(·) is continuous.

At any such t, we have:

1

Ri
0ui,max

ϕ̇(ui,max) =
1

Ri
0ui,max

d

dt

(
hi1(ui,max)

+Ri
0h

i
2(ui,max)

M∑
j=1

β̄ij(Sj + Ij)− φiui,max

)
Using the definition of the Hamiltonian in Section III-A, the
derivatives of S(·), I(·) from (2), we have:

1

Ri
0ui,max

ϕ̇(ui,max) =
hi2(ui,max)

ui,max

M∑
j=1

β̄ij(Ṡj + İj)

−
M∑
j=1

β̄ij λ̇
S
j Sj −

M∑
j=1

β̄ijλ
S
j Ṡj

−
M∑
j=1

πj β̄ij λ̇
I
jIj −

M∑
j=1

πj β̄ijλ
I
j İj

=
hi2(ui,m)

ui,m

M∑
j=1

β̄ij

(
−

M∑
k=1

Sj β̄kjR
k
0uk −

M∑
k=1

Ijπj β̄kjR
k
0uk

)

−
M∑
j=1

β̄ijSj

(
− Lj(R)−

M∑
k=1

β̄kjR
k
0h

k
2(uk)

−(λIj − λSj )

M∑
k=1

βkjIk + λSj

M∑
k=1

β̄kjR
0
kuk

)

−
M∑
j=1

β̄ijλ
S
j

(
−

M∑
k=1

βkjIkSj −
M∑
k=1

Sj β̄kjR
k
0uk

)

−
M∑
j=1

πj β̄ijIj

(
− Lj(R)− fj(I)−

M∑
k=1

β̄kjR
k
0h

k
2(uk)

−
M∑
k=1

(
λIk − λSk

)
βjkSk + λIj

M∑
k=1

πj β̄kjuk

)

−
M∑
j=1

πj β̄ijλ
I
j

(
−

M∑
k=1

βkjIkSj −
M∑
k=1

Ijπj β̄kjR
k
0uk

)

=

M∑
j=1

β̄ijSjLj(R) +

M∑
j=1

πj β̄ijIj (Lj(R) + fj(I))

+

M∑
j,k=1

β̄ij(Sj + πjIj)β̄kjR
k
0

(
hk2(uk)− ukh

k
2(ui,m)

ui,m

)

+

M∑
j,k=1

β̄ij(1 + πj)λ
I
kβjkSjIk +

M∑
j,k=1

πj β̄ijIjSkβkj(λ
I
k − λSk )

and thus, at the points of continuity of u(·), we have:

1

Ri
0ui,max

ϕ̇(ui,max) ≥
M∑

j,k=1

β̄ij(1 + πj)λ
I
kβjkSjIk

+

M∑
j,k=1

πj β̄ijIjSkβkj(λ
I
k − λSk )
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The inequality follows from the non-negativity of the states
and the following trivial property of h(.) function:

Property: For any continuous, increasing and concave
function f(·) such that f(0) = 0 we have af(b) ≥ bf(a) if
a ≥ b ≥ 0.

The right-hand-side of the last inequality is strictly positive
for any t ∈ (0, T ) because:

Lem. 2. For all i = 1, . . . ,M and all t ∈ (0, T ), we have
λIi > 0 and (λIi − λSi ) > 0.

Thus, since u(·) has finite number of points of discontinuity
and also because ϕ(ui,max) is continuous, ϕ(ui,max) is strictly
increasing in (0, T ). The theorem therefore follows once
we prove Lem. 2. Intuitively, λIi ought to be positive as
it represents the additional cost the system incurs per unit
time with increase in the fraction of the infectives. Also, an
increase in the fraction of the infectives has worse long term
implications for the system than that of the susceptibles, hence,
(λIi − λSi ) > 0. The formal proof confirms this intuition.

Proof: λIi |t=T = (λIi − λSi )|t=T = 0 and λ̇Ii |t=T =
−Li(R(T )) − fi(I(T )) −

∑M
j=1 β̄jiR

j
0h

j
2(uj(T )) < 0 and

(λ̇Ii − λ̇Si )|t=T = −fi(I(T )) < 0, for all i. Hence, ∃ε > 0
s.t. λIi > 0 and (λIi − λSi ) > 0 over (T − ε, T ). Now suppose
that (at least) one of the inequalities is first (going backward
in time from t = T ) violated at t = t∗ for i∗. At such a point
(λIi∗ − λSi∗) = 0 and (λIi − λSi ) ≥ 0 for all i 6= i∗ and λIi ≥ 0
for all i. Now,

(λ̇Ii∗ − λ̇Si∗)|t∗+ = −fi(I)−
M∑
j=1

[(λIj − λSj )βi∗jSj ]

− (1− πi)λIi∗

(
M∑
j=1

β̄jiR
j
0uj

)

First of all, −fi(I) < 0. Also, the terms −
∑M

j=1[(λIj −
λSj )βi∗jSj ] and −(1 − π)λIi∗ui∗ are non-positive, according
to the definition of t∗. Thus (λ̇Ii∗ − λ̇Si∗)|t∗+ < 0 which is in
contradiction with our supposition. Let λIi∗ = 0 for an i∗ and
hence λIi ≥ 0 and (λIi − λSi ) ≥ 0 for all i. But then:

λ̇Ii∗ |t∗+ = −Li(R)− fi(I)−
M∑
j=1

β̄jiR
j
0h

j
2(uj)

−
M∑
j=1

[(λIj − λSj )βi∗jSj ]

which is again negative according to the definition of t∗. Hence
the supposition could not be true. The claim follows.

We now consider the case that hi1(·) is convex for all i and
strictly convex for some i. For simplicity, we assume that hi2(·)
is a zero function for all i. In this case, the minimization in
(13) may also be attained at an interior point of (0, ui,max)
(besides 0 and ui,max) at which the partial derivative of the

right hand side with respect to ui is zero. Hence,

ui =


ui,max ui,max < η

η 0 < η ≤ ui,max

0 η ≤ 0.

(16)

where η is such that hi
′

1 (η) = φi and φi has been defined
in (14). In this case, the structure of optimal ui for each i is
similar to the concave case, except that the transition between
extreme values is continuous rather than abrupt:

Theorem 2. When for each i, hi1(·) is convex (and strictly
convex at some i), and hi2(·)s are zero functions, there exist for
each i, t1i and t2i , 0 ≤ t1i , t2i ≤ T , such that ui(t) = ui,max for
0 < t < t1i , and ui(t) is continuously and strictly decreasing
for t1i ≤ t ≤ t2i , and ui(t) = 0 for t2i ≤ t ≤ T .

Proof: From (16), it is clear that ui(t) is a continuous
function of time. For the interval over which 0 < η ≤ ui,max,
from the implicit equation hi

′

1 (η) = φi, we have:

u̇ih
i′′

1 (ui) = φ̇i ⇒ u̇ih
i′′

1 (ui) = −(−φ̇)

Following similar steps as for the concave case, we will
show that the right hand side is strictly negative. Also note
that hi

′′

1 (ui)is strictly positive as his are strictly convex here.
Thence the theorem follows.

−φ̇i = (λIi − λSi )

M∑
j=1

βjiIjSi − λSi uiSi

−λSi (−
M∑
j=1

βjiIjSi − uiSi)

−π(−fi(I)Ii −
M∑
j=1

(λIj − λSj )βijSjIi + λIi πuiIi)

−πλIi (

M∑
j=1

βjiIjSi − πuiIi)

= (1− π)λIi

M∑
j=1

βjiIjSi + πfi(I)Ii + π

M∑
j=1

(λIj − λSj )βijSjIi

The right hand side is positive according to lemma 2. Note that
in the proof of the lemma 2, we did not use any assumption
on the concavity/convexity of the function h(.).

IV. OPTIMAL REPLICATIVE PATCHING

As in the non-replicative setting, we first develop a nu-
merical framework for calculation of the optimal solutions
using PMP, and subsequently we establish the structure of the
optimal controls. For simplicity, we assume both hi1(·) and
hi2(·) to be linear functions. Thus,

JR =

∫ T

0

f(I) +

M∑
i=1

K1iRiui +

M∑
i=1

K2iRiui

M∑
j=1

β̄ij(Sj + Ij)
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The new Hamiltonian is:

H := f(I)− L(R) +

M∑
i

K1iuiRi

+

M∑
i=1

K2iRiui

M∑
j=1

β̄ij(Sj + Ij) +

M∑
i=1

[(λIi − λSi )Si

M∑
j=1

βjiIj ]

+

M∑
i=1

(λRi − λSi )Si

M∑
j=1

β̄jiRjuj +

M∑
i=1

(λRi − λIi )Ii

M∑
j=1

πiβ̄jiRjuj

where at each point of continuity of u(·) for all i = 1 . . .M
the adjoint functions λSi , λ

I
i , λ

R
i satisfy

λ̇Si = −∂H
∂S

, λ̇Ii = −∂H
∂I

, λ̇Ri = −∂H
∂R

(17)

with the final constraints:

λSi (T ) = λIi (T ) = λRi (T ) = 0. (18)

According to PMP, any optimal controller must satisfy:

ui ∈ arg min
[umin,umax]

H

Hence,

ui ∈ arg min

(
K1iRiui +K2iRiui

M∑
j=1

β̄ij(Sj + Ij) + φiui

)
(19)

where

φi := Ri

M∑
j=1

β̄ij(λ
R
j − λSj )Sj +Ri

M∑
j=1

πj β̄ij(λ
R
j − λIj )Ij .

Let ϕi := K1iRi +K2iRi

∑M
j=1 β̄ij(Sj + Ij) + φi. Then the

optimality condition is reduced to

ui =

{
ui,max ϕi < 0,

0 ϕi > 0.

Combining the above with (5), (17) we will again have a
system of (non-linear) differential equations that involve only
the state and adjoint functions (and not the control u(·)), and
the initial values of the states and the final values of the adjoint
functions (eq.(6) and eq.(18) respectively). Similarly to the
non-optimal case, the optimal controls may now be obtained
by solving the above system of differential equations.

The optimal controls for replicative patching exhibit similar
structure as that in the non-replicative setting:

Theorem 3. When for all i, hi1(·) and hi2(·) are linear, then
for each i, there exists a 0 ≤ ti ≤ T , such that an optimal
ui(t) can be expressed as ui(t) = umax for 0 < t < ti, and
ui(t) = 0 for ti ≤ t ≤ T .

Proof: We have:

ϕ̇i|ϕi=0 = K1iṘi +K2i

(
Ṙi

M∑
j=1

β̄ij(Sj + Ij)

+Ri

M∑
j=1

β̄ij(Ṡj + İj)

)
+ φ̇i

= Ṙi
ϕi

Ri
+K2iRi

M∑
j=1

β̄ij(Ṡj + İj) +Ri

M∑
j=1

β̄ij [(λ̇
R
j − λ̇Sj )Sj

+ (λRj − λSj )Ṡj + πj(λ̇
R
j − λ̇Ij )Ij + πj(λ

R
j − λIj )İj ]

= K2iRi

(
−

M∑
j=1

β̄ijSj

M∑
k=1

β̄kjRkuk

−
M∑
j=1

β̄ijIj

M∑
k=1

πj β̄kjRkuk

)

+Ri

M∑
j=1

β̄ij [Lj(R)Sj +

M∑
k=1

K2kβ̄kjRkukSj

+

M∑
k=1

(λIj − λSj )βkjIkSj + (λRj − λSj )

M∑
k=1

β̄kjRkSjuk

+(λRj − λSj )(−
M∑
k=1

βkjIkSj − Sj

M∑
k=1

β̄kjRkuk)

+ πj(Lj(R)Ij + fj(I)Ij +

M∑
k=1

K2kβ̄kjRkukIj

+Ij

M∑
k=1

(λIk − λSk )βjkSk + (λRj − λIj )Ij

M∑
k=1

πj β̄kjRkuk

+(λRj − λIj )(

M∑
k=1

βkjIkSj − Ij
M∑
k=1

πj β̄kjRkuk))]

= Ri

M∑
j=1

β̄ij [(1− πj)
M∑
k=1

(λIj − λRj )βkjIkSj + πjfj(I)Ij

(Sj + πIj)Lj(R) + πjIj

M∑
k=1

(λIk − λSk )βjkSk]

Now, the right hand side of the last equation is strictly positive
according in part to the following lemma.

Lem. 3. For all t ∈ [0, T ), for all i we have (λIi − λSi ) > 0
and (λIi − λRi ) > 0.

Proof: The proof is similar to that of lemma 2. (λIi −
λSi )|t=T = 0 and (λ̇Ii −λ̇Si )|t=T = −fi(I) < 0, for all i. Also,
(λIi −λRi )|t=T = 0 and (λ̇Ii −λ̇Ri )|t=T = −fi(I)−Li(R) < 0.
Hence, ∃ε > 0 s.t. (λIi − λSi ) > 0 and (λIi − λRi ) > 0 over
(T − ε′, T ).

Now suppose that (at least) one of the inequalities is first11

violated at t = t∗ for i∗. Suppose it is that (λIi∗ − λSi∗) = 0
and (λIi − λSi ) ≥ 0 for all i 6= i∗ and (λIi − λRi ) ≥ 0 for all

11going backward in time from t = T
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i. Now, let us investigate (λ̇Ii∗ − λ̇Si∗)|t∗+ :

(λ̇Ii∗ − λ̇Si∗)|t∗+ =− fi(I)−
M∑
j=1

(λIj − λSj )βi∗jSj

− (1− πi∗)(λIi∗ − λRi∗)
M∑
j=1

β̄ji∗Rjuj

First of all, −fi(I) < 0. Also, the terms −
∑M

j=1[(λIj −
λSj )βi∗jSj ] and −(1 − πi∗)(λ

I
i∗ − λRi∗)

∑M
j=1 β̄ji∗Rjuj are

non-positive, according to the definition of t∗. Hence, (λ̇Ii∗ −
λ̇Si∗)|t∗+ < 0 which is in contradiction with our supposition,
and hence (λIi − λSi ) > 0 for all i, since i∗ was arbitrary.

Now suppose that the first violated inequality is (λIi∗ −
λRi∗) = 0 and (λIi − λSi ) ≥ 0 for all i and (λIi − λRi ) ≥ 0
for all i 6= i∗. Now, let us investigate (λ̇Ii∗ − λ̇Ri∗)|t∗+ :

(λ̇Ii∗ − λ̇Ri∗)|t∗+ =− fi(I)− Li(R)−
M∑
j=1

(λIj − λSj )βi∗jSj

+
ϕiui
Ri

The first terms −fi(I) and −Li(R) are trivially negative. The
next term −(λIi −λSi )

∑M
j=1 βji∗Sj is non-positive, according

to the definition of t∗. The last term is non-positive according
to PMP, from (19). This shows that (λ̇Ii∗− λ̇Ri∗)|t∗+ < 0 which
is in contradiction with existence of t∗, and hence (λIi−λRi ) >
0 for all i, since i∗ was arbitrary. This completes the proof.

V. NUMERICAL INVESTIGATIONS

In this section, we numerically investigate the optimal
control policies for a range of malware and network
parameters.12 We consider three topologies: linear, star and
complete, as was illustrated in fig. 1. Specifically, there is
a link between two regions i, j i 6= j if and only if the
communication rate between them βij = β̄ij = βji = β̄ji 6= 0.
At time zero, we assume that only one of the regions (types)
is infected, i.e. Ii0 > 0 for only i = 1. Also, R0

i = 0.2,
βii = β = 0.223 for all i.13 The value of βij , i 6= j is
equal to XCoef · β if link ij is part of the regional topology
graph, and is zero otherwise. We examine two different
aggregate cost structures, for non-replicative patching: (cost-
A)

∫ T

0

(
KI

∑M
i=1 Ii(t) +Ku

∑M
i=1R

i
0ui(t)

)
dt, and (cost-

B):
∫ T

0

(
KI

∑M
i=1 Ii(t) +Ku

∑M
i=1R

i
0ui(t)(S(t) + I(t))

)
dt,

where in both cases we take T = 35, KI = 1, Ku = 0.5
unless stated otherwise. For replicative patching, Ri

0 in both
cost models is replaced with Ri(t).

First, with the intention of illustrating our analytical results,
in fig. 2 we have depicted an example of the optimal dynamic
patching policy along with the corresponding evolution of the

12For our calculations, we use a combination of C programming and
PROPT R©, by Tomlab Optimization Inc for MATLAB R©.

13Specific value of β is chosen to match the average inter-meeting times
from the numerical experiment reported in [23].
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Fig. 2. Illustration of optimal patching policies and the corresponding levels
of infection in each of the three regions for a simple linear topology. Note
how the infection that initially only exists in region 1 spreads in region 1 and
then to region 2, and from there to region 3.

levels of infection as a function of time. In this example, we
are looking at a simple 3-region linear topology where the
infection starts in region 1 with I10 = 0.3, and I20 , I

3
0 = 0.

XCoef is taken to be 0.1, i.e. the internal mixing rate in each
region is ten times the cross-region mixing rates. The cost
model is of type-A and patching is non-replicative. Note that
for π = 0 the levels of infection are non-decreasing, whereas
for π = 1 they may go down as well as up.

We now investigate the effect of topology on the optimal
patching policy. We study the drop-off times (the time thresh-
olds at which the patching halts) in different regions for linear
and star topologies. Fig. 3 reveals two different patterns for
π = 0 and π = 1 in a linear topology with 10 regions. For
π = 0, the middle region is patched for the longest time,
whereas for π = 1, as we go farther from the origin of the
infection (region 1), the drop-off point decreases. The reason
for this is that for π = 0, patching can only benefit the network
by recovering the susceptibles. In regions closer to the origin
of the infection, the fraction of the susceptibles decreases
quickly as a result of the spread of the infection, making
continuation of the patching comparatively less beneficial. In
the middle regions, where there are more susceptibles at risk
of contamination, patching should be continued longer. For
regions far from the origin, patching can be stopped earlier,
as even when the susceptibles are not immunized, infection
barely reaches them within the time horizon of consideration.
For π = 1, the patching is able to recover both susceptible
and infective nodes. Hence, the drop-off times depend only on
the exposure to the infection which decreases as the distance
from the origin of the infection increases. An interesting phe-
nomenon is that as XCoef is increased, the value of the drop-
off points in the π = 1 case get closer together. Intuitively,
this is because higher cross-mixing rates have a homogenizing
effect, as the levels of susceptibles and infectives in different
region rapidly become comparable. Also, fig. 3 reveals that
as XCoef increases and more infection reaches the farther
regions, they are patched for longer durations, which agrees
with the intuition.

We next investigate a star configuration where the infection
starts from a peripheral region (region 1). Fig. 4 reveals the
following interesting phenomenon: although the central region
is the only one that is connected to all the regions, for π = 0
it is patched for shorter times compared to the peripherals.
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Fig. 3. The drop-off times of different regions in a linear topology with M =
10 regions. We consider type-A cost function and non-replicative patching
with XCoef = 0.2, 0.4, 0.6.

In retrospect, this is again because only the susceptible nodes
can be patched and their number at the central region drops
quickly due to its interactions with all the peripheral regions,
rendering the patching inefficient relatively swiftly. Following
this explanation, as expected this effect is amplified with
higher number of peripheral regions. For π = 1, on the other
hand, the central node is patched for the longest time. This
is because the infective nodes there can infect the susceptible
nodes in all of the regions, and hence the patching, which can
now heal the infectives as well, does not stop until it heals
almost all of infectives in this region.
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Fig. 4. Trends in the drop-off points in the star topology. The cost is type-B
and the patching is non-replicative, and I10 = 0.6.

Next, in order to evaluate the efficacy of our dynamic
heterogeneous patching policy, we compare our inflicted ag-
gregate cost against those of three alternative patching policies.
We label our policy as Stratified Dynamic (S.D.). In the
simplest alternative policy, all regions use identical patching
intensities which do not change with time. We then select
this fixed and static level of patching so as to minimize the
aggregate cost among all possible choices. We refer to this
policy as Static (St. in short). The aggregate cost may be
reduced if the static value of the patching is allowed to be
distinct for different regions. These values (still fixed over
time) are then independently varied and the best combination
is selected. We refer to this policy as Stratified Static (S.St.
in short). The third policy we implement is a homogeneous
approximation to the heterogeneous network. Specifically, the
whole network is approximated by a single region model with
an equivalent inter-contact rate. This value is selected such that
the average pairwise contact rates are equal in both systems.
The optimal control is hence derived based on this model and
applied across all regions to calculate the aggregate cost. We

call this policy Simplified Homogeneous (H. in short).
Fig. 5 depicts the aggregate costs of all four policies for the

linear topology with M = 2, 3, 4 and 5 number of regions.
The cost is type-A and patching is replicative. Here, I10 = 0.2,
Ku = 2.5 and the rest of parameters are as before. As we can
clearly observe, our stratified policy achieves the least costs,
outperforming the rest. Also of note is that H. is doing better
than S. St., which outperforms St. Notably, as the number of
the regions increases and the network becomes more spatially
heterogeneous, the homogeneous approximation worsens. For
example for M = 5 regions, our policy outperforms the static
policies by 40% and the homogeneous approximation by 20%
for π = 0. For π = 1, the performance gap widens to 40%
and 65% respectively. This underscores the significance of
considering the heterogeneity in the controls. Specifically, as
we discussed before, optimal drop-off times should vary based
on the distance from the originating region, a factor which the
S.H. (and St.) policies ignore.
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Fig. 5. Linear Topology, trends in the cost.

We repeat the same experiment in a complete topology,
again varying the number of regions between 2, 3, 4, and 5 and
report the results in fig. 6. As before, our stratified dynamic
policy incurs less aggregate cost compared to the rest. In the
complete topology, as one could expect, we observe that the
homogeneous approximation performs close to the optimal.
The contrast in the relative performance of the homogeneous
approximation between the linear and complete cases is a
testament to the significance of the effect of topology on
optimal patching.
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Fig. 6. Complete topology, trends in the cost.

VI. CONCLUSION

We considered the problem of disseminating security
patches in a large resource-constrained heterogeneous network
in the mean-field regime. Using tools from optimal control
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theory, we analytically proved that optimal dynamic policies
for each type of node follow simple threshold-based structures,
making them amenable to distributed implementation. We
numerically demonstrated the advantage of our heterogeneous
policies over homogeneous approximations, as well as over
static policies. For future research, we would like to further
investigate the effects of heterogeneities in the structure of
networks on both defense and attack strategies.
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