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Abstract— A system with ann-dimensional state vector and aontroller ~ system states fetch different utilities for the controller and the actor,
and anactoris considered. The controller has complete information about  and usually when one entity has a high utility the other has a low
the system state, and reveals a certain "minimum” amount of information i, \We devise a framework that enables the controller to decide
to the actor. The actor takes certain actions based on the information the g S .
controller reveals, and the actions fetch certain utilities for each entity. e information it would reveal, or equivalently conceal, so as to
Both the controller and actor seek to maximize their individual utilities by ~ maximize its own utility, and the actor to determine its actions based

respectively selecting the information to reveal and the actions to adopt. on the information the controller reveals so as to again maximize its
This decision problem forms the basis of several technical and social utility.

systems, and can be formulated as a signaling game. It is shown that the

Perfect Bayesian Equilibrium of this game has several counter-intuitive

properties and can be obtained as a saddle point of a different two person B. Motivation

zero sum game. The computation time for saddle points using standard

linear programs however turns out to be super-exponential inn, which We first establish that this information concealing problem forms
leads to computational intractability even for moderate n. Algorithms  he pasis of several communication systems.

for computing saddle point policies using a computation time that is 1) Information concealing problems in wireless networks:
exponential in n are presented. Finally, simple linear time computable ap )

policies that approximate the saddle-point policies within guaranteeable a) Cognitive radio networksConsider a transmitter with access
approximation ratios are obtained. to n channels, whose qualities constitute the state of the system.

Keywords: approximation algorithms, computational tractability, in-  The transmitter needs to select one channel for transmission, and the
I?Jm?ts'?gnn;?nngzagmg’s leader follower games, perfect Bayesian equilib- .o nomission quality of the selected channel determines the rate of
successful transmission. Hence, the transmitter probes the channels
in order to assess their qualities before it transmits any packet. A
|. INTRODUCTION malicious entity, say a jammer, seeks to reduce the rate of successful
transmission. The jammer is usually assumed to accomplish its goal
by generating signals that interfere with the transmitter's communica-
Exchange of information among different entities forms the basjgn; however the jammer may be able to deteriorate the transmission
of most technological advances in the information era and alggte much more by preventing the transmitter from learning the states
of social interactions. Several seminal advances in communicatigfthe channels. This may cause the transmitter to make a wrong
systems have lead to schemes that maximize the rate of exchagg§ice, that is, select a channel with a poor transmission quality, and
of information. An aspect that has received somewhat less attentigireby obtain a poor data rate for a while. Note that the jammer can
and is as important, is that of designing a framework for decidingevent the transmitter from learning the states of some channels,
What information Sh0u|d be revealed and What Sh0u|d be Conceamsibly by generating Signals that interfere with the Corresponding
during exchange of information among different entities so as Brobe packets or responses to these probes, and generating such
maximize their utilities. The main challenge towards developing SU@ignaIs may consume less energy as compared to those that jam
a framework is that oftentimes such decisions depend on the objectiqg actual transmission since the probe packets are transmitted
for exchange of information, and hence can only be determined g{er shorter durations. We therefore consider the case where the
a case by case basis. The contribution of this paper is to devejgfhmer blocks the probe packets and not the actual transmission.
a rigorous mathematical framework for deciding what informatiopyrthermore, we assume that the jammer knows the quality of the
an entity should reveal when the objectives satisfy certain brogdannels and can block the probes in at mosthannels since the
characterizations that capture the essence of several communicagiiking process consumes energy. Hence, the states of at most
and social systems. k channels can be concealed from the transmitter. The transmitter
We consider a system with two entities. The state of the systemsisiects the channel after it learns about the states of the channels the
a random vector of dimension. At any given time the first entity jammer does not conceal. Note that the transmitter may either select
(controller) has complete information about the state of the system.channel whose state has been revealed or one whose state has been
and must reveal a certain “minimum” amount of information abolﬁoncea|ed; the latter may happen since the fact that the jammer has
the system state to the second entity. It can however choose gaficealed the state of a channel may indicate that the transmission
nature of the information it reveals subject to satisfying the aboygality of the corresponding channel is good. The rate of successful
constraint. The second entitpdtor) takes certain actions based onransmission attained by the transmitter determines the utility of the
the information the controller reveals, and the actions are associageghsmitter and the jammer. The information concealing problem we
with certain utilities for both the controller and the actor Whichjescribed will enable the jammer (Contro”er) to opt|ma||y determine
also depend on the state of the system. The same actions andyffh channels it would conceal, and the transmitter (actor) to select
the channel.
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A. Overview



specify the probability with which the requested information is b) Security systemsConsider a corrupt employee who sells
present in the data base (as the search in response to such prelimisacyets about the company’s security system to a burglar. The building
gueries may not be comprehensive and also the information mayibavhich the company is located hagjates, and the employee knows
dated). The responses reach the node through a gateway thatthasefficacy of the security system at each gate (e.g., he may know
a malicious entity which blocks some of the responses in orddre number of guards at each gate which may be a random variable
to undermine the information location service. The client needs twing to the company’s security plan), and based on the price the
determine which database it would request the information froburglar has offered or in order to conceal his collusion in the event
based on the responses to its query, and again it may choose or@ @&n enquiry, the employee informs the burglar about the security
received a response from or one it did not receive a response from (slgstem of onlyn — k of these gates. He also decides to select the
latter may happen if the responses it receives reveal low probabilitiegites whose information he reveals so as to minimize the probability
The utility of the client and the malicious entity depends on thihat the break in is successful since if there is a successful break-
probability that the client obtains the information it is interested inn a comprehensive enquiry is likely to be launched. Based on the
The information concealing problem we described will enable theformation he obtains from the employee, the burglar selects one
malicious entity (controller) to optimally determine which responsegate through which he tries to enter; he selects this gate so as to
it would suppress and the client (actor) to select the database it womidximize his probability of success.
request the information from. In both these examples, the information concealing problem we
b) Buyer-Seller authentication in e-commerdonsider an e- described will enable the controller (first gamb.ler or .emp!oye.e) and
commerce system where a buyer and a seller are bargaining. T a@ctor (second gambler or burgler) to attain their objectives by
authentication process between them proceeds in two stages. T&iNg appropriate selections.
buyer hasn pieces of information using which he can authenticate
himself to the seller. He reveals limited information abdutof ¢ contribution and Challenges
these pieces using which the seller can complete the first stage of ) o . . o
the authentication successfully if the buyer is who he claims to Our flrst contrlbut!on is to provide a framework fgr investigating
be (e.g., using some proof verification methods). Next, the senlégormatlon concealing problems. We formulate this problem as a
identifies himself to the buyer, and subsequently asks about compfei@aling game ([5], Chapter 8.2) between two players and consider
information for one of the: pieces which may or may not be amond)erfect Bayes!an equilibrium (PBE) ([5], Chapter _8'2) as the SOIUt'Or_]
those that the buyer initially selects. The buyer provides the requesf@(ﬁ'cept (_Set_:tlon Hl)_' The subsequent challe_nge Is to co_mpL_Jte d_esw-
information and the authentication is successful if again he is who ﬁBle equmbr_lum poI_|C|es o_f the p_Iayer_s as |r_1_ ggneral In S|gnallng
claims to be. This two-stage authentication process allows each enﬂ%ﬁ“_?s _multlplg . policy pa_lrs attaln_ _tr_us equilibrium and different
to identify himself once he has some (albeit incomplete) informatio‘?ﬂu'“b”um policies fetch different utilities for the same player. Also,

about the other participant. Now, the complete information the buy8fneral purpose algorithms for computing a PBE policy-pair are not

reveals about any one piece in the authenticating process may allfigwn for arbitrary signaling games. We show that in the information

the seller to acquire more information about the buyer than th%qncealing game all PBE policy-pairs fetch the same expected utility

required for mere authentication, e.g., information about his previo[%r each player -_thus all such poIic_y-pairs are functionally equivalent,

transactions with other merchants, etc. This will for example aIIO\”ibnd hen_ce ChP'C‘? am_ong them is not critical. We also _shovy that
him to bargain more effectively with the buyer once the authenticatigrbE POlicy-pairs in this game can be computed by solving linear

is successful. Now, the different pieces of information the buyarograms with finite .number of varlgbles and constraints. We prove
possesses about himself reveals different amount of information apflf @P0ve by showing that there is a one-to-one correspondence
him, and the buyer must select thepieces in the first stage soP€Ween the set of PBE in the above game and the set of saddle
as to minimize the additional information he finally reveals to thBOINts In a two-per_son Zero-sum game (S(_ectlon IV-A), which we

seller. The seller must subsequently select the piece in the sec{)?lf(?r t_o_as an equ_lvalent game. This equwalence_ holds_ althOL_'gh
stage to acquire maximum possible information about the buyer. original game is not a zero-sum game, and is an interesting
information concealing problem we described will enable the buyEfSult in itself as such equivalences are not commonly encountered

(controller) and the seller (actor) to attain their respective objectivB§™Ween signaling games and two-person zero-sum games. Using this
by optimally selecting the pieces in question equivalence, we further demonstrate that several intuitively appealing

policies of the controller and the actor do not in general constitute
PBE. For example, in cognitive radio networks, a naive policy for
a) Gambling: Consider a gambling game in which two gam-the jammer that conceals the states of the channels that have the
blers have a common collection &f cards each of which can havebest transmission qualities does not constitute a PBE. This happens
one ofm colors. They randomly select a number for each card aftcause the actor can learn about the system not only from the
write the chosen number on one side of the corresponding cainformation the controller reveals, but also from the choices of the
Subsequently, the second gambler drawsards randomly from the controller.
collection without observing the numbers on them. The first gamblerWe next investigate the computational tractability of the infor-
then observes the colors and the numbers of the cards drawn amation concealing games. Our results in this area constitute our
tells the second the numbers and the coloré off these cards, and second contribution since general results that can address the com-
only the colors of the rest of the cards. The second gambler negulgational aspects in this case are not known in the game theory
to select one of these cards (either a card whose number it knowsr approximation algorithm literature. Note that the saddle-points of
or one whose number it does not know), and the first pays him #re equivalent games can be computed by solving standard linear
amount that equals the number on the selected card (if this numpesgrams (Chapter 111.2.4, [6]), which would therefore provide a
is negative then the second pays the first). The first gambler (tRBE of the original game as well. But, the number of variables
controller) needs to select thecards so as to minimize the amountand constraints in the standard linear program formulations for the
it pays, and the second needs to select a card so as to maximizeettpgivalent games are Super-exponentiahil(ﬂ(e“")), wheren is
amount it receives. the dimension of the state-space of the system. Thus, the standard

3) Information concealing problems in social context:



linear programs become computationally intractable even for smalyain, the formal questions that are answered and also the techniques
values ofn. Exploiting specific characteristics of the game undeused to obtain the answers substantially differ in the two cases.
consideration, we next obtain linear programs which compute theFinally, standard results in classical and computational game theory
saddle points of the equivalent game and the optimal policies fa@b not apply in the information concealing game we consider. First,
the two players while using exponential number of variables anghssical game theory provides us with the PBE solution concept
constraints (Section IV-B). This significant reduction in computatiofor signaling games [5], but does not guarantee uniqueness of this
time enables the computation of the optimal policies for modetate equilibrium. In our case, for any given pair of policies of the players,
We next obtain linear time((n)) computable policies with provable their utilities are functions of their informations, which in turn depend
performance guarantees for the two players (Section V). Specificaliy; the system states, and the system can be in one of several possible
these policies attain utilities that differ from the utilities of the saddlgtates. Next, general purpose algorithms are not known for computing
points by (a) constant factors in several important special cases, @HBE policy-pair, either exactly or approximately with a provable-
(b) by factors that depend only on the amount of information thapproximation guarantee, except when the PBE is the same as the
the controller reveals to the actor, and do not depenchdn the well-known Nash equilibrium [3] which happens in our case only
most general case. We also show that there exists examples whgtién the number of system states lis We show that all PBE
these performance guarantees are tight, which in turn allows usp@licy-pairs are functionally equivalent, and a PBE policy-pair can be

complete characterize the performance of these policies. obtained (exactly and not approximately) by solving linear programs
with finite (but super-exponential in) number of variables and con-
Il. RELATED LITERATURE straints. The above results follow from a one-to-one correspondence

that we have established between the PBE in the game we consider

To the best of our knowledge, the information concealing gamgd the saddle-point strategies in an equivalent two-person zero-sum
has not been investigated before. Information concealing gameggme. To the best of our knowledge, such equivalence is not com-
however a special case of the well-known signaling games ([%honly encountered in game-theory. Now, this equivalence does not
Chapter 8.2), and arises when the utilities of the two players fpwever guarantee polynomial-time (polynomialsij computation
signaling games satisfy certain structure. The investigation of thi$ equilibrium policies since the number of deterministic policies in
special case has been motivated by its relevance in modelingha equivalent game is super-exponentialririn our case, which
diverse range of applications in technical and social context, and a}g@uits in super-exponential number of variables and constraints of
because a framework for computing the solutions and investigatifks above linear programs. Note that computational game theory
their characteristics is not known for signaling games in general. focuses on determining exact solutions (e.g., for saddle-points of two-

A game that is close to the information concealing games apg@rson zero-sum games Chapter I11.2.4, [6])) whenever such solutions
has been investigated before is that introduced by noble-laureateyf@ computationally tractable, or approximations otherwise (e.g., for
Aumannet. aI[2] They consider a scenario where nature randommash equ”ibrium of bi-matrix games [4], [7])’ using computation
selects a game from a family of two-player matrix games, and informighes that are polynomial in the number of deterministic policies
player1, but not player2, about the selected game. The same gamgt the players. Thus, since the number of deterministic policies is
will now be played again and again. At each time unit 1,2, ...,  super-exponential im in our case, standard algorithms will have
the players choose their moves (actions) which collectively determiggmputation times that are again super-exponentiahk.inTo the
their payoffs, and both players observe each others actions. Playgfedt of our knowledge, standard algorithms for fast computation of
is confronted with the dilemma of whether to play optimally in thexxact solutions or approximations when the number of policies of the
game chosen by nature; if he does that (and if player 2 knows whigfayers is itself intractable (e.g., super-exponential) are not available
policy is used by player 1), then player 2 will eventually be able t the literature. Thus, one of our important contributions has been
guess which is the game being played, so that player 1 looses faisdevelop computationally efficient (that is with computation time
advantage of being informed. If, on the contrary, he uses a policy thaht is polynomial inr) (i) exact solutions in special cases, and (i)
does not utilize his knowledge of the game, then again he does B@broximations with provable approximation guarantees in general
gain from being informed. Unlike in the game we consider, in thigsases using specialized arguments that exploit the above equivalence
game the informed player does not directly control what informatiognd the special characteristics of the game under consideration.
to reveal or to conceal to the other player. Also, here the information
chosen by nature does not change with time, whereas we assume that
the nature’s choice changes with time and the evolution is temporally
independent. Thus, here, unlike in the game we consider, at any given

time a player can exploit the knowledge he has acquired from pasiye formuylate the information concealing problem as a signaling
interactions; in our case the game effectively starts fresh at eggline ang consider the Perfect Bayesian Equilibrium or the PBE
instant (our solutions therefore do not consider any temporal relatigg ion concept (Section I11-A). We next elucidate the terminologies
at all). Thus, the formal questions that are answered and also the solution concept using the motivating examples presented in
techniques used to obtain the answers substantially differ in the e previous section (Section I1I-B). We finally demonstrate that the
cases. _ o _ , PBE for this game exhibits several counter-intuitive properties which
Information concealing has been extensively investigated in contextiicate that the computation of such equilibrium may not be straight-

of multi-media [10]. An example is the research on watermarking,yard (Section I11-C). In Section VI, we generalize the framework
where one tries to hide a signature in some picture or audio recordidga|ax several assumptions made in this Section.

in order to be able to identify it later. Informally speaking, these
scenarios consist of only one player who seeks to conceal as much o . ' _ _
information as possible. We consider a scenario with two players su,cﬁNaSh equilibrium policies can be computed (i) exactly using a computation

. . . -time that is exponential in the number of deterministic policies of the players
that both players act sequentially and the first conceals informati apter 3.4 [9]) (ii) approximately with provable approximation guarantees

with the goal of degrading the performance of the second R¥ing a computation time that is polynomial in the number of deterministic
decreasing the second’s capabilities to make good action choigasicies of the players [4], [7].

Ill. A M ATHEMATICAL FRAMEWORK



A. Terminologies and Solution Concepts

We start by modeling the information concealing game as a
stochastic leader-follower game between two players: the controller
and the actor. We describe the game in both the normal form as well
as in the strategic form.

System state: The state of the system is andimensional
vector X whose entries take values it = {0,..., K — 1}.

Let V' = {1,...,n}. The state space i&€". The random
variables corresponding to the components of the state vector
may be dependent and can be described by a joint probability
distribution 3.

Information of the Controller:  The controller knows the
system stateX, and thereby has full information.

Actions of the Controller: The controller conceals the values
of at mostk components of the system state from the actor;
it decides which components it would conceal based on its
information. Thus, the controller’s action is a subset /ot
with cardinality & or lower. Let A.(Z) denote the set of
all sub-vectors ofZ with n — k or more components, and
Ac = Uzexn Ac(Z). We show in Section VI, the formulations
and most of the results in this paper hold when we allow the
controller to conceal exact values of all components in the
entire system-state, and reveal arbitrary functions of the system
state to the actor instead (e.g., the average of the states of the
components, ranges containing the states of some components,
etc.).

Information of the actor: The actor knows the states of those
components of the system state which the controller does not
conceal. Specifically, it is the action taken by the controller
and the system state i5 then the actor’s informatioff consists

of the sub-vector of with components io\\ c. Therefore, from

its information ¢, the actor knows the controller’s action, i.e.,
the subset of componenigy) the controller conceals.

Actions of the actor: The actor selects one of the components
of the system state. Thus, its action is an integer/\. Again,

we show in Section VI that the formulations and most of the
results in this paper hold when we generalize the actions of the
actor, that is, when the actor selects a sub-vector of the system
state (instead of one component only).

Payoff function: If a component of the system state has value

1, then the expected utility associated with that component is
r(é) such thatr(0) < r(1) < ... < r(K — 1). If the system
state is¥, and the actor selects componénthen its payoff is
r(xy).

Common Knowledge: The parameters:, k, K,r(i) for each

i € K and 8 are common knowledge. These parameters are
determined based on goals and constraints of specific systems
(e.g.,k may be determined based on resource constraints of the
jammer in the cognitive radio network and the price the burglar *
has offered in the security system) - investigation of how these
parameters are determined is beyond the scope of the current
paper.

Strategies:

— Pure policies: A controller's (actor’s, respectively) pure
policy is a function fromK™ to A. (A. to NV, respectively).
LetU? (VP, respectively) be the set of pure policies for th
controller (actor, respectively). .

— Mixed policies: A mixed policy of a player is a probability
measure over its pure policies. L&t (V, respectively) be
the set of mixed policies for controller (actor, respectively). *
Note that each pure policy of a player can be viewed
as a (degenerate) mixed policy for the same player. A

and

« Utility:

policy w in U (v in V) can also be represented as the
probability distribution{u(Z)} (v(¥), respectively) used by
the controller (actor, respectively) for selecting its actions
when its information isZ (y, respectively). Specifically,
u(Z)y (v(¥):, respectively) is the probability with which
the controller (actor, respectively) reveals the sub-vector
7 € A.(Z) (selects the componerite N, respectively)
when its information ist (7, respectively).

Let Eg’” be the expectation operator for the action and in-
formations of the two players when the players use policies
u € U,v € V and g is the probability distribution of the system
state.

The utility of each player is its expected payoff
conditioned on its information, and is therefore a function of
its information.

— Utility of the actor: When the actor’s information ig, the
controller and the actor use (behavioral or mixed) policies
andwv respectively, and the joint probability distribution of
the system state i8, the actor's utility J** (%) is given
by

TG = By r(Xe)Ya =g, (@)

whereY, is the random information of the actok; is the
random state of théth component of the system statg,
is the (potentially random) action of the actor.

— Utility of the controller: The controller’s utility is the
negative of the expected payoff of the actor conditioned on
the controller’s information. Specifically, when the system
state is¥, and the controller and the actor use (behavioral or
mixed) policiesu andwv respectively, the controller’s utility
JU(Z) is given by

JEU(@) = —E""[r(zp)| X = ), )

where X is the random system state;p is the Bth

component ofZ, B is the (potentially random) action of

the actor. This expectation depends®only throughu, v.
Thus, for any given policy-pair of the players, the utility of
each player is a function of its information, rather than a single
number. Also, note that the utility functions are quite general,
except for the special relation we assume between the utilities
of the two players, that is, that the controller's utility is the
negative of the expected payoff of the actor conditioned on the
controller's information; the payoff function of the actor can
be arbitrary. This relation between the utility functions of the
players has been motivated by our requirement that the players
utilities oppose each other and if one player’s utility is high,
the other’s utility must be low. This relation will be key in
computing the solutions of this game.
Controller's and Actor’s goals: The controller and the actor
seek to maximize their respective utilitieB" (), J&*° (¢)
for all values of their respective informationsy.

We now define the Perfect Bayesian Equilibrium (PBE) solution
concept ([5], Chapter 8.2).
Definition 3.1: Let u* andv™ be mixed policies of the controller

actor respectively. Thefu™, v™) is a Perfect Bayesian Equilib-

éium if the following conditions hold:

for eachz € K™ such that3(Z) > 0, u™(Z) is a best response
of the controller against™ of the actor, i.e.u*(Z) maximizes
J&V" (&) among allu € U, and

for eachy € A. which occurs with positive probability under
B,u*, v*(¥) is a best response of the actor againstof the
controller, i.e.,v* (&) maximizesJ2*"* (i) among allv € V.



B. Elucidating examples random numbers drawn may be negative; we enumerate themigsing

We now elucidate the above terminologies using the examplesqﬂsmve integers, and each such enumeration constitutes the state of
Section I-B a card. Thus, each card h&Spossible states, andi) is the number

In cognitive radio networks the system state constitutes the stateé‘a?oc'ated with théth state. The system state consists the random

the channels, angd(:) is the expected rate of successful transmissigfi/MPers on the cards drawn by the second gambler (actor), and is

of the transmitter (actor) when it transmits in a channel that is in staﬁ@?wn onlyl ttoh thetfltrst. Tfhe actel?n of tI;e fl;stthgambler d(cont;gllﬁr)
i. The jammer’s (controller's) action is to conceal the states sonie Ot';e\t/eath € ?a est_o f%omtﬁ (n - )do Th ese cards, Wt::: )
(< k) channels and the transmitter’s action is to select a channel nstiutes the informatiop for the second. 1ne second gamblers

transmission. An example class of policies of the jammer, denotgation_ Is to selt_act one card among_those that it selected initially,
as Greedy for Controlleror GC, is to conceal the channels with and his payoff is the number on this card. Let the gamblers use

best states, that is, those withbest expected rates of successfupelicies u, v respectively. Then, (ay:"*(Z) is the negative of the
expectation of the random number on the card the second finally

transmission.u®C denotes an arbitrary policy in this class. An . N
example class of policies of the transmitter, denote@est Among (potentially randomly) selects for examination when the system state
' is Z, and (b)J2*" (%) is the expectation of the number on the card

Revealed for Actolor BRA, is to select the channel that has thdS * d finall lects f inati hen it obsemesd
highest state among the revealed channels. The pure policiesﬂ]ﬁ second Tinally Selects for examination, when it obsegves

these classes are those that break the ties in some determiniSfont distribution .Of the system state (is . -
order. Let the jammer and transmitter use policies respectively. he query resolution network and the security systems are similar

Then, (a)J:"" (Z) is the negative of the expected rate of successfb(f th_e cognitive radio network. In the former, the system staFe
transmission of the transmitter when the channel staté. ignd constitutes the states of the databases, each database carkbe in

(b) J2"*(§) is the expected rate of successful transmission of tl,zéates, and(z) is the probability that the information sought is in a

transmitter when the jammer revegl$o the transmitter, and the joint thatat;atse th?tth's mtstate In t?ﬁ l?]tti:’btr;e :ysterrg st?te cansuttutes h
distribution of the channel state [$ Consider theUniform among e states of the gates (e.g., the number of guards at each gate), eac

Concealed for Actoor UCA policy of the transmitter that selec’[sgate can be inK' states, each state represents a level of efficacy of

a channel for transmission uniformly among those whose states g}g secur'|ty system at the gat_e and) is the probablll_ty_that the
GC UCA / — 1 urglar will successfully break in through a gate that is in state
concealed. Thew} (%) = —¢ maxscn,|s|=k 2_;cg Tir and

ad —_— , : _
JEuCCUCA g LS ican B VA (Xal9). If the transmitter  C. Counter-intuitive properties of the Perfect Bayesian Equilibrium

uses a policy in the class BRA, any policy in the class GC is the we now demonstrate that the PBE exhibits several counter-intuitive
jammer’s best response, and if the state processes of the channelpajgerties which suggests that it may not always consist of simple
identically distributed, UCA is the transmitter’s best response agaifylicies that can be represented in closed form. This in turn motivates
the GC policy of the jammer that breaks ties uniformly and randomiye design of efficient frameworks for computing it, which is the focus
among the channels. of the next two sections.

In the authentication example for e-commerce, the seller (actor)Consider the “Greedy for Controller” (GC) class of policies for
may have different bargaining powers associated with different infafe controller (Section 111-B). The policies in this class conceal the
mations it can learn about the buyer (controller), and the buyer magmponents withk highest states. Intuitively, it seems that some
not know the seller’s bargaining power associated with any piece ev8C policy minimizes the efficacy of the actor and therefore there
though he knows the details about the piece. This is because differgilays exists some GC policy and some policjor the actor such
sellers may have access to different data bases and therefore may the pair is a point-wise nash equilibrium. The following lemma
be able to extract different amount of additional information aboghows that this intuition is unfounded, even when the state processes
the buyer from the same content. The buyer may however know t different components are mutually independent and identically
expected bargaining power of the seller associated with each piegstributed (i.e., even when all channels are i.i.d. in cognitive radio
of information. This scenario can be modelled by assuming that eagétworks).
different piece of information of the buyer can be in onefofstates Lemma 3.1:There may not exist any policy in the class GC,
and the knowledge of the state of a piece of information implies thénd v € V such that(u,v) is a PBE, even in systems where the
knowledge of the expected and not the exact value of the bargainitgte processes for different components are mutually independent
power associated with that piece. Now;) is the expected bargaining and identically distributed.
power associated with a piece when it is in stat&€he system state  Next, consider a simple class of policies “ Statistically Best for
consists the states of thepieces of informations the buyer has abouf\ctor” (SBA) for the actor under which when its informationgsit
himself. The action of the buyer is to reveal limited informatiorselects a componentfor which Es[r(X;)|Y = 7] is the maximum.
about some{ — k) pieces of information in the first stage of theAgain, different policies in this class use different tie-break rules.
authentication: the seller can only determigiethe states of these Note that the above conditional expectation is computed using®nly
pieces of information from the limited information the buyer revealand not the controller’s policy. For example, when the state processes
(since although he knows what databases he can search he doesatl components are mutually independeht,= 2, componenti
know the details about any of these pieces). Let the buyer and ibén statej with probability p;;, 7(0) = 0, a policy in SBA selects
seller use policies, v respectively. The seller’s action is to select on@ component that is in stateif the state of a component that is in
piece for which it requests details. Then, ()" (Z) is the negative statel has been revealed, and selects a concealed comporient
of the expected bargaining power of the seller when the system statgich p;; is the maximum. We will use>BA to denote an arbitrary
is Z, and (b)J2"“* (7) is the expected bargaining power of the sellepolicy in this class. It may seem that at least in simple special cases,
when it observeg in the first stage, and the joint distribution of thei.e., whenk = 2, there always exists som&®” such that ¢, v>54)
system state ig. is a PBE for some policy: of the controller. The following lemma

In the gambling game3 can be obtained from the distribution thatshows that such intuition is unfounded.
is simultaneously used to draw the random numbers, f&nig the Lemma 3.2:There may not exist a policy pait € U, v €
cardinality of the support set of this original distribution. Note that th8BA such that(«, vSBA) is a PBE, even in systems where the state

SBA



processes for different components are mutually independent ayane if it selects its policy so as to maximize its utility while

K =2. assuming full knowledge of the controller’s policy. AlsB,, referred

We prove lemmas 3.1 and 3.2, in appendices A and B respectivatyas the max-min utility of the actor, is the maximum possible utility
after obtaining some additional properties of the PBE. of the actor in the two-person zero-sum game if the controller selects

its policy so as to minimize the actor’s utility while assuming full
IV. A COMPUTATIONAL FRAMEWORK FOR THEPERFECT knowledge of the actor’s policy.
BAYESIAN EQUILIBRIUM For anyu™ € U andv*® € V we have

The signaling game formulated in the previous section is cIearIy, inf Rg’”* <R, < Rs < sup Rg*’”. (6)

not a two-person zero-sum game as the arguments of the controller's uel ev

and actor’s utility functions have different dimensions, and hence the_ . . ) o

sum of these functions is not well-defined. Nevertheless, owing to theP€finition 4.3: If for somew™ € ¢ andv™ € V, infuey Ry" =

relations between the players’ utilities ((1) and (2)) we demonstratBP.cy 25 ' then all inequalities in (6) hold with equality and

that there exists an equivalent zero-sum game with finitely many pu¢e . respectively) is called the saddle point policy of the controller

policies for each player such that a policy pair v) of the controller (actor, respectively).

and actor is a PBE in the original game if and only if it is a saddle If «*,v" are saddle point policies of the controller and actor

point in the equivalent game (Section IV-A). This equivalence impliggspectively,infucy Ry = R; " = sup,ey R ™, and hence

that all PBE policy-pairs are functionally equivalent in the originaRg v =Rp = Rg. Thus, Rg " is denoted as the value of the

game, and one such equilibrium can be determined by solvingtveo-person zero-sum game. Also, if both the controller and the actor

pair of linear programs. The number of variables and constraints s¥lects the saddle-point policies, the actor’s utility in the two-person

this linear program is however super-exponentiakjrand hence the zero-sum game equals its max-min and min-max utilities.

linear program turns out to be computationally intractable even for Two-person zero-sum games, with finitely many pure policies for

moderaten. Nevertheless, using this equivalence, we next developeach player, are known to have a saddle point within the mixed

framework for computing the PBE using a computation time whicpolicies (Chapter 111.2.4, [6]). The following theorem proves that a

is exponential inn (Section IV-B). pair of policies constitutes a saddle point for the two-person zero-sum
game if and only if it is a PBE of the original game.

A. An equivalent two-person zero-sum game Theorem 4.1:A mixed policy pair(v*, v*) is a PBE in the original

_ ) . . ) ame if and only if the corresponding mixed policy p&ir*, v*) is
Definition 4.1: Consngler a game with two pla_lyers. the controllerg1 saddle point pair in the two-person zero-sum game.
and the actor. The action of each player now is to select one of its_, . : -
his theorem holds because of the relation between the utilities

pure policies in the signaling ga”?e. described |r_1 the preV|01_J_s SeCtl%rla'the controller and actor we consider, that is, since the controller's
When the two players select policiesv respectively, the utility of

- . S utility is the negative of the expected payoff of the actor conditioned
the actor under the joint probability distributiof for the system Y 9 - °Xp pay ; :
states is given b on the controller’s information ((1) and (2)). Such equivalence is

9 y not true for arbitrary signaling games, or even for arbitrary “partial
Rg’“ = Eg"”[T(XB)] = Z g(f)Egv”[r(wB)p? =i]. (3) zero-sum games” [1] of which our game is a special case. Partial
Fekn zero sum games are those that have a basic zero-sum feature: the
where B is the action of the actor under policiesv and random sum of utilities for the two players that correspond to a fixed action-
system stateX. The actor seeks to maximize its utility and thdeair and system state, _is zero,_but are not zero-sum games since the
controller seeks to minimize the actor's utility. The game is clearly jayers have different information. Aumaret. al. [1] showed that

two-person zero-sum game with finitely many pure policies for ead'ch games may lead to equivalent games that are not zero-sum.
player. Hence, although the transformation that we use is quite standard,

For notational simplicity, we use the same notations (e.g., U, the fact that it leads to a zero-sum game is new and specific to our

U,V, etc.) to denote the individual mixed policies and the sets foPlem. _ o
mixed policies in both games. Clearly, Proof: Assume that(u*,v*) is a PBE. We show that it is a

saddle point pair. From definition 4.3 and since there always exists

RyY = - Z B(2)J" (Z) Y u,v, B, (4) a saddle point pair in the two-person zero-sum game, the above is
Tekn indeed the case if ()u* minimizes Ry and (i) v* maximizes
andRy" = Z Pr? () J2 () Y u, v, 8. (5) RZ*’”. YVe shovi/ tbat (i) holds. Assume it does not. Then for some
geA. u, Ry" < Ry " . Hence, from (4), there exists somee K"

Thus, although the utilities of the controller and actor in the originaiuch that/**" (Z) > J* »*" (&) and (&) > 0. This contradicts the
game are functions of their informations, utility of the actor in th@ssumption thafu*, v*) is a PBE. Thus, (i) holds. Using (5), it can
above two-person zero sum game is a number, which turns out todgesimilarly shown that (i) holds as well. Thug;*, v*) is a saddle
(a) the negative of the expectation of the utility of the controller ipoint pair.
the original game over all system states (which are the controllersConversely, assume thét*,v*) is a saddle point pair. We show
information) (from equation (4)), and also (b) the expectation of th@at (i) in Definition 3.1 holds. Assume it does not. Then for some
utility of the actor in the original game over all possible informatiorz andw, J** (%) > JurvT (Z) and 3(¥) > 0. Define the policyw

vectors of the actor (from equation (5)). for the controller as the one that coincides witlif the system state
Definition 4.2: The upper and lower valuesis, 15 of the above is # and that coincides otherwise withi*. Then Ry < Rj " .
two-person zero-sum game are This contradicts the assumption that*,v*) is a saddle point pair.
= . ) . Thus, (i) holds. It can be similarly shown that (ii) holds as well. Thus
— f U, — f u,u‘ ] . y
Ro el 22{3 Rs" s fgg el Ry (u*,v") is a PBE. [

Thus, Fﬁ, referred to as the min-max utility of the actor, is the Theorem 4.1 constitutes the basis for proving the counter-intuitive
minimum possible utility of the actor in the two-person zero-sumroperties of the PBE described in Section IlI-C. For example, for



proving lemma 3.1, we show that wheti > 3, no GC policy may zero-sum game can be computed using a linear program whose
constitute a saddle point for the controller. This is because if tmmber of variables equal the number of its pure policies and the
actor knows that the controller is using a GC policy, it also knowsumber of constraints equal the number of pure policies of the other
that any component whose state has been concealed is in a gpédger (Chapter 111.2.4, [6]). This may sound quite encouraging at first
which is at least as good as that of a component whose state bm&e solving linear programs is polynomial in the number of decision
been revealed, and thus, its best action is to select a channel whas#ables and constraints. Nevertheless, the computation is intractable
state has been concealed. Now, if instead of using a GC policy, tihee to the huge number of pure policids of the controller andV,
controller reveals the states of some components whose statesaddrine actor, given by
better than those of the components whose states he conceals, th —
actor may be confused regarding the choice of the component even L% K oy omi
N. = ( ( )) and N, = nZt=o ()K",

when it knows the controller’s policy, and is therefore more likely to Z (7
make a poor selection. For example, wh&n= 3, if the controller =0
reveals some components in statand conceals some component&h
in state0, the actor may select a concealed component hoping tha
it is in state2, and the component may instead be in stat&his is
however not the case wheki = 2 (Observation 2). This is because
now the components are in statesr 0. Thus, the controller can not
confuse the actor by revealing some component that are in Etate
as then the actor will select the revealed component since it know:
that no other component can be in a better state.

We next argue that a PBE exists in this original game, and thatmplifying (7), the number of pure policies of the controller
although the PBE policy-pairs are not-necessarily unique, all PEECtor, respectively) in the original game is at leagt)™"
policy-pairs are however functionally equivalent in the foIIowingtnmin((Ln%J)’KL"/QJ)l respectively). The computation is therefore

sense. o . intractable even for moderate valuesmfK.

Corollary 4.1: A PBE (u”,v") exists in the original game. Al gypoiting system characteristics, we however compute the saddle
PBE policy-pairs in the original game fetch in the original game (pint policies using linear programs whose number of variables and
the same expected utility over all system states for the controller afghstraints are substantially fewer than those of the linear programs

(ii) the same expected utility over all possible information vectors fc«Knk)(n) as opposed taV. and N, above) which the generic

k
the actor. theory for two-person zero sum games provide. Specifically, the

Proof: The first statement follows since the information regompytation times of the linear programs we develop are polynomials

vealing game is a signaling game with a finite number of playerg, (K™k) (Z) and therefore substantially lower than that of the

policies and system states. Such signaling games, referred to as ﬁﬁgﬁeric linear programs.

signaling games, always have at least one PBE [8] ) ] Henceforth, v (v, respectively) denotes the probabilities with
The second statement follows from Theorem 4.1 since (i) afyhich the controller (actor, respectively) select the actions given
PBE policy-pair constitutes a saddle-point in the equivalent Wereir informations. Specifically(z); (v(ij):, respectively) is the
person zero-sum game, (ii) any saddle-point policy pair fetches thgypapility with which the controller (actor, respectively) reveals the
sgme utility, R, for_the actor |_n the equivalent game and (_|||) the.sub-vectorgj € A.(7) (selects the componenite A, respectively)
utility of the actor in the equivalent game under any policy-paifnen its information isz (7, respectively). Each such probability
equals the expectation of the utility of the actor, and the negatiygsiribution corresponds to a mixed policy for the respective player.
of the expectation of the utility of the controller, in the original gameyance. with slight abuse of notations, we state thati{ andv € V.
under the same policy pair (equations (4) and (5) and the discussiony gaqgle point for the controllerThe following linear program

immediately after). obtains a saddle point policy for the controller.

2 is obtained as follows.

o The controller's information hag(™ possible values, and for
each such information it can choo3€?_, (%) actions (note
that 3% (7) is the number of subsets of the components of
cardinality at most).

¢ The actor’s information has ¥, ()K"~ possible values, and

for each such information it can chooseactions.

Henceforth, we focus on the properties and computations of the -P-CONTROLLER Min . g).u(@zr D 2(@) st
saddle point. Also, owing to the equivalence of the saddle-point . . y'EAj
policies in the two games and since the utilities of the players in 2(y) = Z B(@)r(xi)u(T)y
the original games are vectors, while the utility of the actor in the TYEA(T) ) .

VieN,je A

two-person zero-sum game is a number which has a simple linear
relation with (that is, either positive or negative of, depending on the
player as discussed after equations (4) and (5)) the expectations pof geEAL®) . . .
the utilities of both players in the original game, we will henceforth w@)y > 0V Fek" §e A(T)
focus on the utility of the actor in the two-person zero-sum game. Theorem 4.2:Any optimum solution {u(Z) 7} yc 4. (#),zexn Of
Specifically, whenever we refer to the utility of the actor, we will refeP-CONTROLLER s a saddle point policy.” for the controller.
to that in the two-person zero-sum game, unless stated otherwise. We first provide the intuition behind the proof. Note tha(y)
is the product of (i) the probability that the controller reveglso
the actor and (ii) the maximum possible utility of the actor if the
controller uses policyu and revealsy to the actor. The following
We now investigate the computation of saddle point policies. It {feorem will prove that the saddle-point policy of the controller is
well-known that a saddle point policy of a player in a two-persofhe one that minimizes the sum efi) over the set of all possible
2 ) ) information vectors of the actor. The constraints of the above linear
In our context, this statement also independently follows from Theorem

and since two-person zero-sum games, with finitely many pure policies ABJFogram can be motivated by the following observations. The right

each player, are known to have a saddle point within the mixed policig@nd side of the first constraint is the product of (i) the probability
(Chapter 111.2.4, [6]). that the controller revealg to the actor and the (ii) utility of the actor

<
=
&

4

|

g = 1 forallzek”

B. Computation of the saddle point policies



if it selects componentand the controller uses poliayand revealg  probability for one or more system states, that is, there exists
to the actor. From the characterizationzgf)) in the second sentenceK",y € A.(Z) such thatu(Z); > 0 and |a(y)] < k (recall
of this paragraphz(y) must be at least the above quantity for eacthat (%) is the set of components the controller conceals when

component. Note that{u(Z)y} satisfies the last two constraints ofthe actor’s information isy). Since (u,z) is an optimal solution,

the above linear program if and only if it is a policy of the controllerz(§') = maxien Y.y rea. @) BE Nr(zu(@ )y ¥V ¥ € A
The formal proof follows. We will show that there exists another optimal solution Ld?-
Proof: From (5), for anyu € U,v € V, 3, CONTROLLER which always conceals the statesiofomponents.

Consider a sub-vector af, w, such thatja(w)| = k. Consider

u,v 3, u u,v o
Ry Z Pt @) B r(Xp)[Y =g, a new feasible solutiorfu’, 2") of LP-CONTROLLER such that for

vede eachi’ € K", i € A.(Z),
Given u € U, consider a policyv, € V such that for each
7 € Ac, va(7); = 1 for somej such thatE4[r(X;)|Y = §] = . w@)g+u(@)g 1§ =0, § € A(T)
max;en E4[r(X;)|Y = 7], andvu(7); = 0, for other values of  w (Z)y =4 0 ity =4, (11)
j (i.e., underv,, w.p. 1 B is a componen{ that attains the above u(@) g otherwise.

maximum and hence,, is the actor’s best response to controllerﬁn words,
policy u). Note that

max Ey’ [r(XB)[Y =]

is the same asu except that it revealsw to
the actor wheneveru reveals i to the actor. Let,z/(§’) =
max E5r(Xy)|Y =49 MaXieN Yz .gre 4,z BE)r(@)u' (@) g ¥V § € Ae.

v Here, (v, 2") is feasible sinced € A.(z") for all £’ such that
By lr (XB)|Y =7], V7€ A je A(T).

Thus, Also,
sup Ry" = > Pr( )maXEa[ (Xa)|[Y = 3] = Ry {7 =/ (&) > 0 for somez’ € K", and |a(¥)| < k}
vey
© vede ® C {7+ uw(@)y > 0 for somez’ € K", and|a(7)| < k}. (12)
Hence, _ v Thus, v’ conceals the states df — 1 or fewer components with
R = ,125 Ry ©) positive probability for strictly fewer system states thamloes.
Next Clearly,/(7') = =(7") forall §' ¢ {7, 1w}, () = 0 and=' () <
. z(wW) + z(y). Thus, the value of the objective function under, z")
E5[r(Xs)|Y =4 is not higher than that undé, z). Thus, (', 2') is also an optimal
= Z E4[r(X)Y =4, X = #Pr»(X = ZY = §) solution of LP-CONTROLLER
Fern Thus, due to (12), repeating this process we obtain an optimal
b e PR =) solution (u*,lz*) of LP-CONTROLLER such that{gj”’ st (@) g >
= > r@)P?(Y =7 ZCC)W 0 for somei’ € K", anda(7’) < k} = ¢, i.e., u* always conceals
Fekn (Y =9) the states ok components. The result follows. m
= Y r(@)u(@)y8&) /P’ (Y = ). (10)  Now, consider the following definition.
ek Definition 4.4: Let Acx, = {7 : |a(¥)| = k,¥ € A.} and
Thus, Ac i () = Ac, e N Ac(T).
u - Baugo . Due to Corollary 4.2, we only need to consider the variablgg
Blr(X)lY =glPr™"(Y =7) = _Z r(zi)u(Z)g6(2) such that|a(7)| = k. Also, note that for anyy and Z such that
Fern ¥ € Ac(@), ©i = y; for anyi € N\ a(%). Thus, LP-CONTROLLER
Thus, from (8) and (9), can be described as follows.
Ry = max 7B(Z)
’ yEZAC TEZ,@ LP-CONTROLLER Min Gy D 2(0) st
— gEA,
andRy = inf > max 3 r(e:)u(@);0(@). Ve A 2F) = max r(y) > B@u@)y,
jeA. "< dexn Nt FFEAc()
Now, consider a feasible solutidm, z) of LP-CONTROLLER, such 2(9) > > B@r(x)u(@)y,
that z is chosen so as to minimize the value of the objective functipn F:jE Ao ()
subject to choosing:.. The value of the objective function B} Vieay),ye Ack,
for any such pair. B Y ow@y; = WWFek”
'I;)hus, if u© is the optimum solution of P-CONTROLLER Rg = FEA 1 (D)
Ry "¢ . Thus, from (8).Rs = sup,cy, Rgo’”. Now, since a saddle u(@)y > 0¥ Fe K", §e€ Acr(d)

p0|nt policy pair always exists, it foIIows from Definition 4.3 that any Here, the right hand side of the first constraint is the product of

u' € U for which Rg = SUP, ey Rﬁ 'Y is a saddle point policy of (i) the probability that the controller revealsto the actor and (ii)

the controller. Thusy© is a saddle point policy of the controllem the utility of the actor if it selects the revealed component that has
The following corollary proves an intuitive property of saddle pointhe highest state and the controller uses poliand revealg/ to the

policies of the controller, and will help reduce the number of variablegstor. The right hand side of the second constraint is the product of

of LP-CONTROLLER (i) the probability that the controller revealsto the actor and (ii)

Corollary 4.2: There exists a saddle point poliay* of the con- the utility of the actor if it selects concealed componeérand the
troller which always conceals the stateskoEomponents. controller uses policy. and revealgj to the actor.

Proof: Consider an optimal solutiofw, z) of LP-CONTROLLER Henceforth, we will use this description bP-CONTROLLER Note

which conceals the states of fewer tharomponents with positive that LP-CONTROLLER has O(K"(})) variables andO(k(})K"™)



constraints. Thus, the computation time of this linear program feat any»’ € V for which Ry = infueu R“ is a saddle point

polynomial in K"k (}).
2) Saddle point for the actor:The following linear program
obtains a saddle point policy for the actor.

LP-ACTOR: Max{z(z—)’ v(#)i} Z ﬁ(f)z(f)
ZekKn
2F) < D v@)ir(w) Vi€ Ac(E),F e K"
iEN
v(@; > 0V §jeN
du@); = 1VFeA
JEN

Theorem 4.3:The optimum solution{v(y): }icn,yea. Of LP-
ACTOR is a saddle point policy™ for the actor.

We first provide the intuition behind the proof. Note thdf) is
the minimum possible utility of the actor if it uses polioyand the
state of the system 8. SinceZ is a random variable, so iZ). The

following theorem will prove that the saddle-point policy of the actor

is the one that maximizes the expectationz¢f) over all possible

policy of the actor. Thusy® is a saddle p0|nt policy of the actom
Definition 4.5: A policy v € V of an actor is said to bgensibleif

it never selects a component whose state has been revealed and which

is in a state that is lower than the highest state among the states of

all components whose states have been revealed «{#); = 0 if

i ¢ a(y) andy; # max;en\a() Y5)- ,
Observation 1:Note that Ry = Rp" for any u ¢

U,v',v? € V such thatv'(y); = v*(%): for any i € a(¥)

and E”ga y)f 0 )i = Yiiga iy V()i for eachj €

{0,.

The foIIowmg corollary proves an intuitive property of saddle point
policies of the actor, and will help reduce the number of variables of
LP-ACTOR.

Corollary 4.3: There exists a sensible saddle point policy of
the actor.

Proof: For anyi € N\ a(y), z: = y if § € A(D).
Thus, the first constraint il.LP-ACTOR can be written as(Z) <

system states’. The constraints of the above linear program can B&(Vs %) + 2 icap v(@)ir(zi) for all 7 € A.(Z), wherey(v, §) =

motivated by the following observations. The right hand side of t

first constraint is the actor’s utility when the system state’ iand
the actor’s information igj and the actor uses the poliey From

the characterization of(Z) in the second sentence of this paragraph,,
z(Z) must be at most the above quantity for each possible |nformat|8n(
of the actor,y. This is because the controller can reveal any siich

h&icaa(y V()T (y:). Given a feasible solution, consider another

feasible solutiorv” such that for eacly € A.,
v(9)i if i € a(y),
> jenrag V@), for somei s.t. i € N\ a(y) and

Yi = MaAXjeN\a () Yi»
0 otherwise.

to the actor. Note that satisfies the last two constraints of the above

linear program if and only if it is a policy of the actor. The formal

proof follows.
Proof: From (4), for anyu € U,v € V, 3,

> B@ES [r(zp)|X = 7]

zekn
= > B@ D u@g D v@ir(w).
FEA(T) ieN

TekKn
Consider a policyu, € U such that for eacht € K",
uy(Z)y = 1 for somey € A.(Z) such thatZZeN o(y)ir(z:) =
ming. 4z Dien V(0ir(z:) and u, (F)y = 0, for all otheryj €
(T).

Sinceu(Z) is a probability distribution ond. (%),

Z u(Z)g Z v(y)ir(xs)

FeAL(T) ieN

w, v
Ry =

8

inf
ueu

= min_ v(y)ir(x;)
GEA(E) byva

= Y w@ Y v@ir().

JEAL(T) iEN

Thus, inf Ry" = > 8@

reKn

_min_
JEAC(T) N

o(@)ir(e) = Ry

(13)

(i.e., u, is the controller's best response to actars Now, B; =
sup, ey R5". Thus, from (13),

=su B(Z) min v(y)ir(z;).
Ry p Z FeActn) 2. ()ir (ws)

acEIC

Now, consider a feasible solutiof, z) of LP-ACTOR, such that

z is chosen so as to maximize the value of the objective functign

subject to choosing. The value of the objective function iRg”"”
for any such palr Thus, i#© is the optimum solution OEP-ACTOR,

Ry = Ruvo’ - Thus, from (13).R; = infucu R . Now, since a

Note thatv’ is a sensible policy, and the maximum value of the
objective function forv (the maximization is w.r.tz) is not higher
than that forv’. This is because/(v', %) > (v, %) for eachy € A
and>>, c \aep ¥V (@)ir (%) = 3o, c A a(g) V(@)ir (@) for each, .

The result follows. [}
Due to Corollaries 4.2 and 4.3 and the above observation, we only
consider sensible saddle point policiedor the actor and variables
v(y) such that|a(y)| = k£ and need to determine the components
v(y); for j € a(y). For any sensible saddle point polieyof the
actor,

S @) = (1= Y v@) ) vl
ieN ica(y) reMAalY
+ ) v
i€a(g)

where the first component in the r.h.s arises due to the actor’s
selection of revealed components with the highest state only under
such a policy and the second arises due to the actor’s selection of
concealed components. Thus, the r.h.s of the first component of
LP-ACTOR can be modified, and the overall linear program can be
re-written as follows.

LP-ACTOR: Max{z(f), v(#);} Z ﬁ(i”)z(i”)
i‘e’(:’n
z(Z) < 1-— v(Y)s max r(y;
(@) < 3 vl@ | s ()
i€a(y)
+ > v(@ir(wi) Y § € Ack(E),& € K"
i€a(¥)
v(g)j > 07 VJ S (1(27), ?j S Ac,k’
Su@); < 1, ViEAn
j€a(¥)

Henceforth, we consider the above description EG?-ACTOR.
Thus, LP-ACTOR hasO(K"k(})) variables andD(K"k(})) con-
straints. Thus, the computation time bP-ACTOR is polynomial in

saddle ponnt policy pair always exists, it foIIows from Definition 4.3 K"k )( )
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V. PERFORMANCE GUARANTEES USING POLYNOMIAL TIME is likely to be moderate as well. Next, consider the gambling example
COMPUTATION (Section I-B). The cards that have the same color constitute the same

We have proved that the saddle point policies can be obtained 9935_ as the distributions of the random numbers are statistically
solving linear programs whose number of variables is exponenﬂgpntlcal for all cards of the same color. Usually, the numbe_r of colors,
in n and polynomial ink. Using fast algorithms for solving linear O more generally number of types of cards (e.g., aces, jokers, etc.)
programs, the saddle point policies can now be computed for modi§rSmall although the number of cards can be large.
ate values of. but the computation will still be intractable for large We first present a key property of systems with arbitrary number
n. We therefore focus on obtaining provable performance guarantéé<lasses of components.
using polynomial time computable policies. We first consider the 1) Symmetry among components in the same class:
important special case where the system consists of few classes dpefinition 5.3: Let u,v be behavioral policies of the controller
components such that all components in each class are statisticaig actor respectively and;j € N. The mirror image w.r.(3, j)
identical and the number of statéé is small (note that each classof the policy u (v, respectively)u™’ € U (v € V, respectively)
may have a large number of components and thereforean be is a policy obtained as follows:™ () = w(Z"7)gi.; (V" (§); =
large). We prove that the saddle point policies can be computeduty*’); andv*? (%); = v(7"?):, respectively).
polynomial time in such systems (Section V-A). Specifically, when Intuitively, "7 (v*7, respectively) treat asj andj asi.
the system consists a¥/ classes of components, the saddle point Definition 5.4: A policy v € U (v € V, respectively) is said to
policies can be obtained by solving linear programs witn>**)  be symmetric w.r.t(s,5) if « = v/ (v = v*J, respectively). A
variables andD (n***) constraints for arbitrary,, K, k, M. Thus, policy v € U (v € V, respectively) is said to be symmetric if it is
when all components are statistically identicAf (= 1), the compu- symmetric w.r.t. each pair of components that are in the same class.
tation time is polynomial inn, but exponential inK (note thatK Leti/® C U andV?® C V be the classes of all symmetric policies of
is small in most systems). The result is interesting given that sortie controller and actor respectively.
intuitive policies do not constitute saddle point policies even when The following theorem shows the existence of a symmetric saddle
all components are statistically identical (Lemma 3.1). We next shqwint policy for each player.
that provable approximation guarantees can be obtained in arbitrarfTheorem 5.1:There exists a symmetric policy € U® (v €
systems using some simple policies that can be computed in almps} respectively) for the controller (actor, respectively) such that
linear time (eitherO(n) or O(nlogn)) time (Section V-B). u (v, respectively) is a saddle point policy of the controller (actor,

respectively).

A. Polynomial time computation of saddle point policies in systems Proof: We prove the theorem for the controller, and the proof

with constant number of classes of components and constant numf@éithe actor is similar. Le§* C N x N be the set of tuplesa, b)
of states such thata,b are in the same class andis not symmetric w.r.t.

' ) . b. From the definition of a symmetric policy, is symmetric (i.e.,
We first formall fine the notion of cla f components . e -
st 1o y define the notion of classes of compone t%ng u?®), iff S* = ¢. From Theorem 4.2, it is sufficient to prove

and motivate the investigation of the special case where the syst . . : .
t if there exists an optimal solutian of LP-CONTROLLER such

consists of a few classes and few states for the components. LS th ist timal solutianof LP
subsequently present a key technical property (Theorem 5.1) ];o?h th#us(% ?Srs e’il('stsgln tOp |mhamspu laho t_'CONtTROLtL.EE
systems with arbitrary number of classes of components and st Regh thais™ ¢ o Note that suc IS Symmetric w.r.L. a strictly

(Section V-A.1). Using this property and some additional terminol arger set of tuples of components in the same class. Thus, repeating

gies (Section V-A.2), we show how saddle point policies for th@e process, we can _obtain an optimal solu?ion which is symmetri(?
controller and actor can be computed in polynomial time wher/ w.r.t. all components in the same class, and is therefore, a symmetric

are constant (Sections V-A.3 and V-A.4). optlhmal solution by d(.acf;mtlon' imal soluti i
Definition 5.1: Let #/ € K™ be obtained by interchanging the Thus, we now consider an optimal solution oL P-CONTROLLER

ith and thejth components off € K. Let 7 € A. be obtained such thatS* # ¢, and set to obtain an optimal solutianof LP-
as follows: (a) ifi, j & a(§), thena(§?) = a(i) Y = g,y = CONTROLLERsuch thatS® ¢ S§*. Thenu®? is an optimal solution of
i AN e S NG LP-coNTRoOLLERfor any pair of components, b that are in the same
vio 7 =y, L& a(g) U, g} (0) 1f 7 € a(g), j & alg), then class. Now, consider an arbitrar i Nj “
g N ; R P A i ; . : y pair of componéngse S*, and a
a(@’) =a(@ U{i\{i}h 4,7 = v, y? =, L € a(y?) U{i}, o L, W(@) gHutd (8) 5 - n
© if i ¢ a(§), j € (@), thena(i77) = a(@) Ui} \ {7}, v = vi, policy & € U such thati(zZ) =" for eachz e IC and
vl =y, L a(@@) U {5}, (d) 7 = 7, otherwise ' ¥y € A:(Z). In other words,u is the same as except that it treats
l - il 1 - ) . ., . . . .
Definition 5.2: Components, j are said to be in the same class i€°MPONeNt (j respectively) as: treats component (i respectively)
B(7) = B(#) forall # € K. Note that the membership in the saméO% of the time. Now, sincéi is a Iinea_r g:ombination of two optimal
class is an equivalence relation and hence the classes constituf@!ytions ofLP-CONTROLLER u and ”l:ijj?@'iir(‘i?f’t'mal solution
partition of \V. Let the system consist dif classes, wheré < M <  Of LP-CONTROLLER Next, 4"’ (7)y = ——5——" = a()y for
n. The classes are numberedias. ., M, andn; components are in €ach € K" andy € A.(Z). Thus, 4"/ = 4, and hencei is
classi where " n; = n. Let a(¥,4) be the set of components inSymmetric w.r.t.(i, j). Thus, (i, j) ¢ §*. Also, note thatu™’, and
classi that have been concealed when the actor’s informatiojt is clearly u, are symmetric w.r.t. all tuplega,b) ¢ S". Thus, 4 is

Note thata(7) = UM, a(7, ). clearly symmetric w.r.t. all such tuples, and no such tuple belongs in
Note thatM can be determined fromd and hence is also known S*. Thus,5* C 8"\ {(4,4)}. The result follows. m
to both players. Using Theorem 5.1, we show that the computation timelfBr

Several systems have large number of components but smallGEINTROLLER andLP-ACTOR can be substantially reduced whafi
moderate number of classes of components and states. For exan@id, K are small.
cognitive radio networks may have large number of channels, but2) Additional Terminologies:
often, many of these channels are statistically identical, and hencé®efinition 5.5: Let 1(Z) be a matrix withM rows andK columns
the number of classes of channels is often substantially less than @ne entries irD, . . ., n such that(Z); ; is the number of components
number of channels. Also, the total number of states of these chanrelg’ that are in class and statej. Let £ = {1: 1(¥) =1,Z € K"}.



Let m(y) be a matrix withM rows andK columns with entries
in0,...,n
of 7 that are in class and statej. Let Mz = {m : m(%)

11

We now statel P-CONTROLLER-CLASS that computeu®(1)m }

— |a(%)| such thatm(%);,; is the number of components for a symmetric saddle point policy of the controller.

m, 7 € A.x(Z)}. Note thatMz; = Mg if 1(z') = 1(72). Let
Mi = Ugeicn 1(3)=1Mz, and M = Uiec M.

With slight abuse of notation, we have udeeh to denote both the
functions and the values of the functions as well - the implicatig
specific usages are clear from the context. We will Gs@ instead
of 4 so as to substantially reduce the number of variables
constraints ofLP-CONTROLLER

Note that (a)|{y : m(%) = m,y € A, x(Z)}| depends orE only|
throughl(z). and (b)|{Z : I(Z) = 1,7 € A.(Z)}| depends ory only,

LP-CONTROLLER-CLASS: Min () (m),u’ (1)m} Z n(m) s.t.
meM
n of VmeM, gm) > Ri(m) Y B'0)u’m
lmEMl
align € M i€ C(m) n(m) > > A" ()u’()mR2(1,m, )
ImeM,;
Yomer, Wm = 1 forallle £
WDm > 0V meM,leL.

throughm(%). Thus, we can introduce the following definitions.
Definition 5.6: Let ©:(1,m) denote for one (representanvé)

such thal(Z) = 1the number ofj in A, (%) such thatm(y) =

Let ©2(1,m) denote the number of system state vectmrsuch

that () 1(Z) = 1 and (b)y € A.(Z) for one (representative)

such thatm(y) = m. Let ©3(m) = |§ € Acx : m(¥) = m|, and

04(1) =T e K" : 1(Z) =1].

Note that both®:(1, m)O3(m) and ©(1, m)©4(1) constitute the

number of tuplegZ, ) such that? € K", 7 € A. (%) andl(Z) =

I, m(%) = m. Thus,
62(1, m)@g(m) = @1(1, m)(94(1)

Definition 5.7: Let

Ri(m) = max r(3),
3 M my >0
K—1 L e
andRz(1,m,i) = () —mm o
jgo ni =355 miy
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Theorem 5.2:The optimum solution{«®(1)m } meamt,,1e2 Of LP-
CONTROLLER-CLASS is a symmetric saddle point policy for the
controller.

We first provide the intuition behind the proof. Note that since
we focus on computing a symmetric saddle point policy of the
controller, and since the components in the same class are statistically
identical, we can consider the controller's and actor’s information
aslq,m instead ofZ, § respectively. Now,y(m) is the product of
the probability that the controller reveald to the actor and the
maximum possible utility of the actor if the controller uses policy
u® and revealsn to the actor. Thusy(m) plays the role ofz(%) in
LP-cONTROLLER (refer to the paragraphs just after the statement of
Theorem 4.2 and the formulation &P-CONTROLLER at the end of
Section IV-B.1). Now,LP-CONTROLLER-CLASS seeks to compute
the saddle-point policy.® by minimizing the sum ofn(m) over
the set of all possible information vectorg of the actor, just as
LP-CONTROLLER seeks to compute the saddle-point poligyof
the controller by minimizing the sum of(y) over the set of all

Note thatR:(m) is the expected reward the actor obtains whepossible information vectorg of the actor. The constraints &fP-
its information isy such thatm(y) = m and it selects a compo- conTROLLERCLASS can be motivated by relating them to those of
nent whose state has been revealed and whose state is the highpst onTROLLER formulated just before Section IV-B.2. The right
among those of the components whose states have been revegigg side of the first constraint &fP-CONTROLLER-CLASS is the
Also, Rz2(1,m, 1) is the expected reward the actor obtains when 'ﬁ§roduct of (i) the probability that the controller revealsto the actor

information is such thatm(y) = m, the system state i such
thatl(z) = 1 and it selects a component of clasaniformly among
a(y, ).

Definition 5.8: Let C(m), 1 < |C(m)| < min(k, M), be the set

and (ii) the utility of the actor if it selects the revealed component
with the highest state and the controller uses poli€yand reveals
m to the actor. The right hand side of the second constrairtRof
CONTROLLER-CLASS is the product of (i) the probability that the

of classes for which at least one component's state has been concegigfiroller reveals: to the actor and (ii) the utility of the actor if it

when the actor’s informatiog is such thatm(y) = m. Let ®(m, )

selects a concealed componéand the controller uses poliey’ and

be the number of components of classhat have been concealedrevealsy: to the actor. Both of these are analogous with the r.h.s. of

when the actor’s informatiory is such thatm(y) = m. Note that

O(m, i) = 31y, and|C(m)| = S M, min (®(m,d),1).
Finally, sinceg(z) = B(&*
B(E) = p(@*) if U(z') = 1(F).

Definition 5.9: Let 3'(1) denote 3(F) for some (representative)

# € K™ such thail(#') =1, and3”(1) = ©4(1)5'(1).
Thus, 8”(1) is the probability that the system is in a statesuch
that1(Z) = 1.

the corresponding constraintsloP-CONTROLLER Again, analogous
to the last two constraints dfP-CONTROLLER u° satisfies the last

7) for all i, j that are in the same class,two constraints ofLP-CONTROLLER-CLASS if and only if it is a

policy of the controller. The formal proof is relegated to appendix C.
Thus, LP-CONTROLLER-CLASS has O(n**™) variables and
O(n**M) constraints. Thus, the computation time dfP-
CONTROLLER-CLASS is polynomial inn and exponential inK, M,
and hence polynomial in if K, M are constants. The computation

3) Polynomial time computation of saddle point policy of contime can be reduced further fokk = 2. We first observe the
troller for constant K, M: We now consider the simplification of following.

LP-CONTROLLER

Note thatw is symmetric if and only ifu(z )
whenever the foIIownng condmons hoId @z =
m(7) = m(@P) © 7' € A(@), € A(). Let v/ (D
denote u(Z)y for some (representatlve)? e KMy € Ac.k(Z)
such thatl(#) = 1, m(y) = m. Thus, eachu € U°® is uniquely
described byu’()m where u’()m = O1(l, m)u’()m. Also,

Observation 2:For K = 2, there exists a saddle point policy for
the controller in the GC class.
Recall that the ties can be broken by policies in the GC class in
several different ways and thus all members in the GC class need
not be saddle points; a saddle point policy can be computed if the
appropriate tie-break policy is determined. Also, for any policy of
the controller, there exists a best response policy of the actor that

{v’(D)m }mem, 1c2 1S @ symmetric policy for the controller if and selects a component whose state is revealed and which is in state

only if 3° @' (Dm =1 forallle £andu(l)m >0 V m e

My,le L.

1 wheneverm;,; > 0 for somei. Due to these observationkP-
CONTROLLER-CLASS needs to considef(m), u®(1)m only for 1, m
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such thaty" ™ 1;1 < k,m;1 = 0V i € {1,...,M}. Thus, LP- LP-ACTOR-CLASS hasO(Mn*™M) variables and)(n*%™) con-
CONTROLLER-CLASS hasO(k™) variables andD(k*) constraints straints. Thus, the computation time bP-ACTOR-CLASS is poly-
in this case. nomial inn and exponential i<, M.

4) Polynomial time computation of saddle point policy of actor for Observation 3:For K = 2, there exists a symmetric sensible
constantk, M: We now consider the computation of a symmetri¢addle point policy of the actare V* such thad_, . ,,,) v*(m); =
saddle point policy for the actor. Note that the actor's policys 1 if all revealed components are in statendy, . (,,,) v*(m); =0
symmetric if and only ifv(7"); = v(¢?); whenever the following Otherwise.
conditions hold: (a)m(7") = m(7?) (b) 4,7 are in the same class, Also, when K = 2, for any policy of the actor, there exists a best
and (b) either ()i € a(7'),j € a(@®), or (i) i & a(7),j ¢ response for the controller that is a GC policy (with a tie-break rule
a(?),yt = yf_ that may depend on the actor’'s policy). Using these observations,

Consider am € M and a class € C(m). Then, letv’(m); when K = 2, the number of variables and constraints loP-
be the probability with which a symmetric policy selects one CONTROLLER-CLASS may be reduced t(MkM) and O(k™)
(representative) component, say that is in classi and has been respectively.
concealed, when the actor's information state is a (representative)
¢ such thatm(j) = m (i.e, v'(m); = v(§);). Let v°(m); = B Approximation guarantees using polynomial time computable
®(m, j)v'(m);, j € C(m), be the total probability with which a policies for arbitrary systems
symmetric policyv € V* of the actor selects a component which is . L . o
in classj and whose state has been concealed, when the actor_‘%addlef point policies can be computed in polynomial time when
information state is a (representativg) such thatm(j) = m. either n is a constant (_usmg_P-CONTROLLER or LP-ACTOR) or
Thus, v selects a component whose state has been revealed V\;ﬁhM are constants (US.'nQP_CONTROLLERCLA.SS or LP-ACTOR-
probability 1 — 3, (s v" (m (7)), From Corollary 4.3 it is CLASS). The computation however becomes .|ntractable whe.n two
sufficient to consiéer g‘ni!y sensible pjolicies. Note thafm);, j € or more of_these parameters_ are "?“.ge- We first develop ”O“F’“S of
C(m) uniquely specifies a symmetric sensible saddle point polic} proximations for sado_lle-pomt poI|C|es._We next prove that_ s_,lmple
v € V* for the actor. Also, anyv* (m); }mer.jcc(m) that satisfies near (O(n)) or almo_st linear Q@ (nlogn)) time cqmputable policies
v*(m); >0 VieC(m),me MY, v*(m); <1 Vme can provably approximate the saddle pqlnt poI|C|es as per the apove

€€ (m) notions. We also show that the approximation guarantees are tight,

M provides a symmetric, sensible policy for the actor. S .
We brove that the following linear proaram.P-ACTOR-CLASS which in turn, completely characterize the performances of these
P 9 prog ’ ' policies. The policies we consider are intuitively appealing, and

computes s symmetric, sensible saddle point policy for the actor. simple to implement, and hence may be of independent interest.

We first develop notions for approximations of saddle-point poli-

" /!
LP-ACTOR-CLASS: MaXy1),v° (m); } Zﬁ (Mn(D) st | cies. Recall that when both players use saddle-point policies, the
leL utility of the actor iskj; **" which in turn equals the max-min and the
o) < 1_ Z v* (m); Ry (m) min-max utilities of the actors. Since the actor seeks to maximize its

utility, a policy of the actor may be considered aapproximation of

its saddle-point policy, if the actor is guaranteed to obtain a utility that

is at Ieasth*’”*/n irrespectiveof the policy used by the controller.

v(m) > 0 ¥ieC(m),me M Slmllarly since the controller seeks .to minimize the.act(.)rs Utl!lty, a
R policy of the controller may be considered:a-approximation of its

Ziec(m) vi(m); < 1 VmeM saddle-point policy, if this policy ensures that the actor’s utility is at

1€C(m)
+ EiGC(m) v° (m)1R2(l7 m, Z)
Vme M1,1 el

Theorem 5.3:The optimum  solution{v®(m); }me,jec(m) Of mostnRg*’”* irrespectiveof the policy used by the actor.
LP-ACTOR-CLASS is @ symmetric saddle point policy for the actor. We show that there exists@(n) time computablgmin(k, M) +

We first provide the intuition behind the proof. Note that since w&)—approximation of the saddle-point policy for the actor. This
focus on computing a symmetric saddle point policy of the actor, apalicy, which is referred to as UA (“uniform for actor”) and which
since the components in the same class are statistically identical,i&ea variation of the UCA policy described earlier, selects uni-
can consider the controller's and actor’s information/a8 instead formly among the concealed components and the revealed component
of Z, ¢ respectively. Nowy (1) is the minimum possible utility of the with the highest state. Specifically, irrespective of the policy of
actor if it uses policyv and the state of the system lTsThus,n(l) the controller, the utility of the actor with this policy is at least
plays the role ofz(Z) in LP-ACTOR (refer to the paragraphs just1l/(min(k, M) + 1) times the max-min utility of the actor for
after the statement of Theorem 4.3 and just before the formulationarbitraryn, K, k, M (Theorem 5.4, Section V-B.1). Thus, the worst
LP-AcTOR at the end of Section IV-B.2). Now,P-ACTOR-CLASS case approximation guarantee of this policy(As+ 1) (attained for
seeks to compute the saddle-point policyby maximizing the sum large M), and the approximation guarantee when all components are
of (1) over the set of all possible system statejsist asLP-AcTor  statistically identical § = 1) is 2. Also, the approximation improves
seeks to compute the actor's saddle-point policpy minimizing with decrease ifV/ and k. We also show that this approximation
the sum ofz(&) over the set of all possible system statésThe bound is tight in that given any/ ande > 0, there exists a system
constraints ofLP-ACTOR-CLASS can be motivated by relating themwith K = 3 which satisfies the following property: if the actor uses
to those ofLP-ACTOR formulated at the end of Section I1V-B.2. Thethis policy, the controller can select its policy so as to upper bound the
right hand side of the first constraint &fP-ACTOR-CLASS is the actor’s utility by1/(min(k, M)+1) times the actor's max-min utility
actor’s utility when the system state fiand the actor’s information pluse (Section V-B.1). Nevertheless, our extensive simulations reveal
is m and the actor uses the polioy This is analogous with the r.h.s. that for large ranges of, K, k, M, 3, the minimum utility attained
of the first constraint o P-ACTOR. Again, analogous to the last two by the actor when he uses this policy is at lez& of the max-min
constraints oLP-ACTOR, v° satisfies the last two constraintsloP-  utility of the actor (Section V-B.1).
ACTOR-CLASS if and only if it is a policy of the actor. The formal We next show that there exists@(nlogn) time computable: +
proof is relegated to appendix D. 1-approximation of the saddle-point policy for the controller. This
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policy is referred to as UGC (a GC policy that breaks ties randomly From (15) and (16),
and uniformly). Specifically, irrespective of the policy of the actor,

the utility of the actor when the controller uses this policy is at most .2, Ry "= >80 mm T(1,m,UA), where, (17)
k + 1 times the actor's min-max utility for arbitrary., K, k, M, teL .

and at mose® times the actor’s min-max utility for arbitrany, K, k T(1,m,UA) = Ri(m) + Zz'GC(rr-) Ra(1,m, q)

and M = 1 (i.e., when all components are statistically identical) ’ |C(m)[ +1

(Theorem 5.5, Section V-B.2). We also show that this approximation S max(R1(m), max;ec(m) R2(l, m, 1) (18)
bound is tight in that there exists a system whife= 2, K = 3 and - min(k, M) +1

the maximum utility of the actor when the controller uses this policy (since|C(m)| < min(k, M))

is at leastk times the min-max utility of the actor (Section V-B.2).

Also, whenM = 1, given anye > 0, there exists a system where Now, letv* be the optimal solution oEP-ACTOR-CLASS. Then,
K = 3 and the maximum utility of the actor when the controlleffom Theorem 5.3 and (16),

uses this policy is at least — ¢ times the min-max utility of the sup inf R Zﬂ min T(l,m,v").

actor (Section V-B.2). Again, our extensive simulations reveal that vey uEU = meM,;

for large ranges ofi, K, k, M, 3, the maximum utility attained by

the actor when the controller uses this policy is at mbgttimes ~ Thus, from (17) it is sufficient to prove thaf'(l,m,UA) >

that of the min-max utility of the actor (Section V-B.2). T(1,m,v")/ (min(k, M) + 1) for eachl € £, m € M.

Finally, it would be useful to distinguish our notion of approxima- Sincev” is sensible, the resuit follows from (15) and (18). m

tion from that ofe—approximate Nash equilibria [9], which bounds For K= 2,_the approximation ratio can be improved :sllght_ly
the loss of a player only when he unilaterally deviates (i.e., th sing Observation 3. It follows from Observation 3, the actor’s policy

other player uses his—approximate Nash equilibrium strategy). OU|I at selects (a) a component in stdtef the state of at least one
notion of approximation is therefore stronger in that it bounds the such component Is revealed and (b) each concealed class with equal
loss of utility for each player for arbitrary choices of policies by thgmbab'“ty' otherwise, attains B min(k, M) approximation ratio.

other player. But, at the same time, owing to the notion being strongg We prove that the approximation bound obtained for UA is tight.

we are able to attain weaker guarantees in thapproximate Nash pecifically, given any > 0, there exists a system with components
equilibria can oftentimes guarantee arbitrarily small loss, whereJ0S€ state processes are mutually independent where the minimum

we can bound the loss by specific factors, ergin(k, M) + 1,2 utility obtained by the actor when it uses the uniform policy exceeds

etc. Such loss bounds are oftentimes sought in the approximatlolrf{ min(k, M_) +1) times the max-min utility in the sys_tem by at
algorithms literature [13]. moste. Consider a system wher®l > 1, K = 3. Let the first class

consist of only 1 component which is in statenv.p. 1 —¢; and in

1) Approximation guarantees using a linear time computablgiate( w.p. ¢;. The components in the other classes are either in
policy for the actor: Consider a symmetric sensible policy, denotedtates) or 1 (the probability distributions for the state processes for
as “Uniform for Actor” or “UA”, that selects each concealed clasghannels in different classes are different). The state processes of the
and a revealed component with equal probabilities Ue4,( )z = Components are mu’[ua"y mdependent t@) =1— 517 ( ) = Js.
1/(|C(m)| + 1) for eachm € M, i € C(m). Note that this uniquely | et », € V be the policy that always selects the component in the
describes any symmetric sensible policy since a symmetric poligyst class. CIearIyR“ 1= (1 —6)(1 — &) for anyu € U. Thus,
selects uniformly among the concealed components in each C|§§B ey infucy Ry > (1= 61)(1 — e1). Consider au; € U that
and a sensible policy selects only a revealed component with hceals the component from the first class, and selects the rest of the
highest state whenever it selects a revealed component. Clearly, ¢Bgponents to be concealed in a round robin manner. Specifically, in
actor need$)(n) time and memory to select a component using thige first roundu; selects one component from clasges. ., M each,

policy. repeats the process in second, third rounds etc. kntbmponents
We now prove the main result of this section. have been selected. Thusjn(k, M) classes are concealed. Clearly,
Theorem 5.4:For any 3, k, n, K, M, the state of the component that has the highest state among the
revealed components is no more thanThus,
inf RE’UA > ———————sup inf R RZ“UA < (r(2) + min(k, M)r(1)) /(min(k, M) + 1)
weu © 7 min(k, M) + 1 vey ueu < (1 + min(k, M)Ss)/(min(k, M) + 1)
Proof: Consider an arbitrary sensible poliay € V°. Let (1= 6)(1—e1)
T(1,m, v) be the utility of the actor if the system statedisuch that < ! + € for sufficiently smalldy, 62, €1

1(Z) = 1 and the actor’s information is somggsuch thatm(i) = m (min(k, M) +1) .
and the actor uses the poliey Then, sup, ey infueu R@
(min(k, M) + 1)

T(Lm,v) = (1— Y v°(m);)Ri(m) Thus, inf ey RoY < gsupvevinfueu R /(min(k, M) + 1)) +

1€C(m) e. The result follows. The scenario where this approximation factor
+ Z )i R2(1, m, ) turns out to be tight however rarely arises in practice, and as our

i€C(m) numerical computations demonstrate, the minimum utility obtained

by the uniform policy closely approximates the max-min utility of

S max (Rl(m)’lr%?f;) Ra(1,m Z)> (15)  the actor in general.
We now compare, using simulations, the minimum utility attained
Also by the actor when he uses UA with max-min utility attained by the
' actor. We assume(:) = ¢ + 1 throughout. We first consider the
irelzfA Ry Zﬁu( mHéIJ\I}(IT(l m,v). (16) case when the states processes of all components are independent.

ler In this case, we consider the subcases where (a) the states of each
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component is selected uniformly amofig . ., K —1 (b) the states of D2 (Z, %) = a(y) \ UGC(Z). Let #YCC pe the actor’s information
each component is selected as per a Binoriial( 1, v) distribution under UGC wher¥ is the system state.

for differentr and (c) the states of odd (even) numbered componentsNote that the actor’s best response to UGC is to select components
are selected as per (a) (b). We next consider the case where the statexse states have been concealed since the state of any such
of components are correlated. In this case, we consider the subcasesponent is at least as high as that of a component whose state
where (a) only the states of first two components are correlated (ifeas been revealed. ThUZ) = >, o ~(#Y6%)r(z;) where

if the first component is in state the second component is in state ,y(fUGC) is a probability distribution on UG(&) which depends on

w.p. a and in states adjacent fowith equal probabilities otherwise), zUCC 3 k. n K, M.

and the states of the rest of the channel are mutually independgmp 2:We now consider the genera| case, that is, arbltﬂaliy, n, K

and (b) the states of all components are correlated (i.e.j forl  and construct a policy’ of the actor such that the sufficiency
the state of component depends on that of — 1 in the manner condition (22) holds withx = k + 1. Thus, the first statement
described in (a)). In each of the above subcases, we allow the sigtehe theorem follows. We considef that selects each concealed

of the first component to be either fixed or distributed Uniformly Oéomponent Wpl/(|a(37)| + 1) and the revealed component with the
Binomially. For all these scenarios we consider different values ffghest state w.pl/(|a(7)| + 1). Then,T"(Z, 7,v") = (1/(|a(7)| +
n,k,[_( _such thg_tn < 6,_K <4,k <n—1.In all of these cases, Up (max,-e/v\a(y—)r(xi) + Eiea@) r(xz_)) . Since |a(7)| < k as

the minimum utility attained by the actor when he uses UA turns o € Y.(&), (22) follows if we can show that

to be at leas®2/3 of the max-min utility of the actor [12]. Thus, the 4 A

performance of UA is generally significantly better than the WOrstg(z) < max  r(z;) + Z rz) ¥V Z K™, 7€ A(F). (23)

case analytical bounds. iEM\a(@) ica(d)
2) Approximation guarantees using an almost linear time com-
putable policy for the controller:Consider UGC, the GC policy L
of the controller that breaks ties randomly and uniformly. Clearly, (@) — _Z_ r(w:)
UGC € U*. Note that the controller need(nlogn) time andO(n) el
memory to decide its actions using this policy. = > @) i (2i) — > r(w)
Theorem 5.5:For any 3, k,n, K, supvengGc’“ < (k + ieUGC(#) i€a(7)
1) infuey sup,cy, Ry". For any 8 such thatM = 1 and arbitrary < Z (@YY i () — Z r(z:)
k,n, K, sup,cy R;’GC’“ < 2infycy sup, ey RZ’“. i€D1(Z,7) i€D5 (,7)
Proof: The proof proceeds in three steps. The first step is (since0 < w(a?UGC)i <1VieUGC))
to obtain a sufficiency condition for the following to hold for _UGC
an arbitrary  and arbitrary 3, k,n, K, M: sup,c,, REGC*“ < < Z V(@) (i)

K infuey sup,cy, Riy". The next steps are to show that the above €P1(E9) Uee

sufficiency condition is satisfied for (a3 = k£ + 1 and arbitrary < max r(x;) (since Z F(@ETT) < 1)

8,k,n, K, M and (b)x = 2 and arbitraryk,n, K and M = 1. The €h (@) i€D1(&,7)

last two steps prove the two statements of the theorem respectively<  max r(z;) (sinceD: (@, ) = UGC(Z) \ a(y) C N \ a(¥))
Step 1: We obtain a sufficiency condition for the following to hold 1€M@

for an arbitraryx and arbitrarys, k,n, K, M: sup,cy Rch*” < Thus, (23) follows.

% infyey sup, ¢y, Ry". Towards this end, we will first prove that ~ Step 3 We now consider the special case in whigh = 1, and

construct a policyy’ of the actor such that the sufficiency condition

sup RgGC’“ <k irellg Ry" for somev’ € V. (19) (22) holds withx = 2. Thus, the second statement of the theorem
veV follows.
Now, sup,c, RgGCw < Kinfuey sup ey RYy"  since Since M = 1, all components are statistically identical. In this

case, from symmetryy(£Y°C®), = 1/k, for eachi € UGC(Z), that

is, the actor’s best response is to select each concealed component
Lee w.p. 1/k. Thus,

sup Rgo-" = > B(£)6(%) (20) 0(z) = Z r(z;)/k. (24)

vev Fekn +cUGC()

for some real-valued functiond on K" which depends on e considers’ that selects (a) each concealed component w.p.

B,k n, K, M. Let T'(Z,,v') be the utility of the actor if the system 1 /(5|4(7)|) and the revealed component with the highest state w.p.

state ist’ and the actor’s information ig and the actor uses the policy1/2 if at least one component is concealed and (b) the revealed

infycy R;‘v < sup,ey infueu Rg’” = infucy sup, ey Rg’v.
Now, (19) can be proved as follows. Clearly,

v'. Then, component with the highest state if no component is concealed. Then,
inf RyY = 3" (@) min_ T'(Z,7,0). (1) ()
weu P FEA () v i o ica(y) "\ Ti
Femn e T(Z,y,v) = max 7(x;) + ———5— ] /2.
< _ (@.9:0) = | ey, (=) la(9)] /
Thus, from (20) and (21), (19) follows if we can prove that there _ )
exists a policys” of the actor such that for eache K", Here, we assume that the second term in the sufnifisa(y) = ¢.
, , Thus, from (24), (22) follows if we can show that
0(%) <k min T (7, 7,v). 22
(Z) < i ( ) (22) S icats (@)
. . - N Yo r@)/k < max r(z)+ T e (25)
Thus, (22) is the desired sufficiency condition. seloem i€N\a(9) la(7)]

Terminologies for Steps 2 and 3\We introduce some terminologies
first. Consider an arbitrary € K™ and g € A.(Z). Let UGQZ)
be the set of components whose states have been concealedf by(y) = ¢, the result clearly holds as then the left hand side
UGC when the system state i§ D:(Z,§) = UGC(Z) \ a(¥), and is max;en 7(z;), and since|UGC(Z)| = k, max;en r(z:) >

VZeK",§E A().
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> icuccs) T(wi)/k. We therefore assume thaty) # ¢. rest of the components are in staté Under UGC, the controller
conceals the states of the components that are in stafesSince
r(zi)  2ica@ r(x;) all components are identically distributed, when the controller uses
Z P la(?)] UGC, the actor maximizes its utility by selecting uniformly and
i€UGC() randomly among the components whose states have been concealed.
< ¥ r(z) 3 r(z:) Thus, the actor’s expected utility {4 /k) x 1+ (1—1/k) x (1/k) =
1eUGeE) k ieate) (2/k)—(1/k?). Now, consider another policy of the controller which

conceals the states of (a) the component that is in 8tatel (b)k—1

sincela(y)| < k asy € A.(Z \ .
( la@)] < g€ A7) components that are in state (selected randomly and uniformly

< Z T(:i) among the components that are in st@feSince the state processes
i€D1 (Z,7) of the components are identically distributed, in order to maximize
< max r(zi) its utility, the actor can select (a) a component whose state is revealed
€h@n - o . and which is in statel or (b) a component selected uniformly
(since|D1(Z, ¥)| < k asD1 (&, 3) € UGC()) among those whose states have been concealed. Under (a), the actor’s
< ve}\r/l?x(ﬂ)r(xi) expected utility is1/k. Under (b), the actor’'s expected utility is
(3 a(y
. L . . . (1/k) x 14 (1—1/k) x 0 = 1/k. Thus, the actor’s overall expected
(since Dy (7, ) = UGC(Z) \ a(y) S N \ a(7)). utility is 1/k. Thus, the min-max expected utility of the actor is at
Q/R)-(1/k*) _ o _ — 9 _ _
Thus, (25) follows. - most1/k. Note that 7k =2-1/k=2-2/n>2—¢

h h —oth imation f Thus, the maximum utility obtained by the actor when the controller
Note that whenK' = 2 the approximation factor turns out to ke uses UGC exceeds— e times the min-max utility in the system.

(|nst§ad ofk + 1) for a_lrbltra_ryﬁ, k,n, M. The proof is S|m|Iar_, but We now compare, using simulations, the maximum utility attained
considers only stateg in which all revealed components are in stat%y the actor when the controller uses UGC with min-max utility

) ; . ; o .
0 and instead ob" considers a policy Modified Uniform f_or_Actor attained by the actor. We use the same scenarios as those described
or MUA €V that selects (a) a revealed component that is in state | the last paragraph of Section V-B.1. When the states of the

if the state of one such comporjlent. is revealed and (b) the Conceaéﬁ%ponents are independent, the maximum utility attained by the
components with equal probability if the revealed components ar€4Btor when the controller uses UGC turns out to be very close to the

state0. min-max utility. When the states of the components are correlated, the

~ We now prove that the approximation bound obtained for UGaximum utility attained by the actor when the controller uses UGC
is tight. We first consider the case with arbitrafy and prove that s out to be withinl.3 times that of the min-max utility of the

there exists a system whefd = 2 and the maximum utility of the actor [12]. Thus, the performance of UGC is generally significantly
actor when the controller uses UGC kstimes the min-max utility petter than the worst case analytical bounds.

of the actor. LetK = 3,7(2) = 1,7(1) = 1/k,r(0) = O,n >
2k — 1. The first class of components h&scomponents such that
one of these components is in st&eand the rest are in sta@
and every component is as likely as any other component to be inWe have so far assumed that the controller conceals a sub-vector of
state2. Each component in the second class is in statdGC will the system state, and reveals the residual sub-vector. But, in general,
conceal the state of the component that is in statind the states the controller may wish to reveal a function of the system state.
of £k — 1 components in the second class. Consider the policy Bbr example, the controller may reveal (a) limited information about
the actor that selects a component in the first class provided azach component of the system state, e.g., it may reveal for each
such is concealed. When the controller uses UGC, this policy alwagemponent an interval that contains its state, or (b) a vector of a
selects a component in stateand thus fetches the maximum possibleertain minimum dimensionality where each component is a function
utility, 1. Thus, the actor's maximum expected utility in this case ief the system state, e.g., componémnmhay be the average of the first
1. Now, consider another policy of the controller which conceals components of the system state, etc. Next, we have assumed that
the states of alk components in clask and reveals the states of thethe actor selects a component of the system state, and its utility is
components in clasa Now, if the actor selects a component in classletermined by the state of the component it selects. But, in general, it
2, it attains a utility of1/k. If the actor selects a component in class can select a subset of the components, and its utility may be a function
it maximizes its utility by selecting the component uniformly among@f the subset it selects. For example, in cognitive radio networks,
the components in clask since it does not know the state of anyan actor may decide to transmit in more than one channels, and
component in clas$ and all components in clagsare statistically split its transmission power among the channels it selects; its rate of
identical. Thus, the actor’s expected utility(is/k) x 1+ (1—1/k) x  successful transmission then depends on the channels it selects and
0 = 1/k. Thus, the actor’s overall maximum expected utilityligk. its power allocation. Our framework can be generalized to capture
Thus, the min-max expected utility of the actor is at mb&t. Thus, the above artifacts, and many of our results extend to this case.
the maximum utility of the actor when the controller uses UGC is at We now describe the generalizations of the terminologies and
leastk times the min-max utility of the actor. solution concepts. For eaci € K", there exists a sefd.(Z),

We now prove that the approximation bound obtained for UG8Uch that the controller selects a membgenf A.(f) as the ac-
is tight for M = 1. Specifically, given anye > 0, there exists tor's information, when the system state @ Here, A.(Z) must
a system with components whose state processes are identicefydesigned in accordance with the constraints on the controller’s
distributed where the maximum utility obtained by the actor whe@ctions, e.g., in previous sectiov&.(¥) consists of all sub-vectors

the controller uses UGC exceeds— ¢ times the min-max utility

in the system. Letn = 2(|1/e| + 1), k = n/2 and K = 3. ?Thi;s tca2n fg;lr']exar;pkl;_el_t?/el}alccfc_)nlplish;c:hby sellectti‘ng tt?]e cort'ngls)nint that
_ _ _ . IS In SstateZ with proobabill n TIrst, an en selecting the se —

Let T(Q) - 1,r(1) - l/k,r(()) = 0. Ngxt, ﬂ IS Su_Ch .that the components that will be in stateamong the rest such that the probability of

state processes of all components are identically dlstrlbutedlangdecﬁng each set of size— 1 is equal, and assigning staleto the rest of

component is in stat€, k — 1 components are in state and the the components.

VI. GENERALIZATIONS
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of Z of dimension at least — k, now A.(Z) may also consist of the follower (actor). By concealing information, the leader degrades the
range of other vector functions af that satisfy specific constraints, performance of the follower that attempts to choose one out of several
e.g., intervals containing the states of the components’,oétc. resources with the best state among all. We have provided a rich body
The actor knows the vectaf selected by the controller, which mayof computation and approximation tools for that problem along with
in turn reveal the controller’'s action (i.e., the function selected hyathematical foundations and complexity analysis.

the controller to obtainy from %) to the actor. When the actor’s

information isy, its possible actions constitute a $¢({%), e.g.,.N (7)) REFERENCES

may C.Ons.ISt of pQSSIplg power allocations “s_e‘j' by the transmltt(ﬂ] R. J. Aumann. Subjectivity and correlation in randomized strategies.
when its information isy. If the system state ig, and the actor Journal of Mathematical Economicé(7):67-96, 1974.

selects actiore, then the payoff for the actor is a functian(z, z) [2] R. J. Aumann and M. Maschler.Repeated games with incomplete
of both ¥, 2 (earlier w(&,z) was r(x.)). Both the controller and information M.L.T. Press, Cambridge, MA, 1995.

= = n — [3] C. Daskalakis, P. Goldberg, and C. H. Papadimitriou. The complexity
the actor known, K, 5, A.(z) for eachz € K", N(g) for each of computing a nash equilibriumCommun. ACM52(2):89-97, 2009.

ye A wd, z) for eaghf € IC",ﬂz € N(y) for eachy € A.(Z). [4] C. Daskalakis, A. Mehta, and C. H. Papadimitriou. A note on approx-
Next, a behavioral policy:(Z) (v(%), resp.) of the controller (actor, imate nash equilibria. Theoretical Computer Sciencé10(17):1581—
resp.) is the probability distribution used by the controller (actor, 1588, 2009. _ '
resp.) for selecting its actions when its informationzigy, resp.). [5] D. Fudenberg and J. TiroleGame Theory M..T. Press, Cambridge,

- _, ~ . L - . MA, 2000.

Specifically, u(Z)y (v(9)-, resp.) is the proba_lblllty with which the [6] A. Haurie and J. Krawczyk. An Introduction to Dynamic Games
controller (actor, resp.) selects the informatigne .A.(z) for the http://ecolu-info.unige.chihaurie/fame/textbook.pdif.
actor (selects the action € N/ (%), resp.) when its information i [7] S. Kontogiannis, P. Panagopoulou, and P. Spirakis. Polynomial algo-
(#, resp.). The controller’s (actor’s, resp.) utilitf (z) (J:,vﬂ(g)' rithms for app_roximating nash equilibria of bimatrix gam&seoretical
resp.) is given by () = —E""[r(x B)|)? = 7] (Jﬂ,u,v(?j) _ Computer Scien¢et10(17):1599-1606, 2009.

P e 7 . @ [8] A. Manelli. The convergence of equilibrium strategies of approximating
Eg [w(X, B)|Y, = 4], resp.) Wher.eB is the action of the actor. signaling gamesEconomic Theory7(2):323-335, 1996.
Finally, the PBE can now be described as before. [9] N.Nisan, T. Roughgarden, E. Tardos, and V. Vaziratgorithmic Game

We now discuss the generalizations of the results. An equiv- Theory Cambridge University Press, New York, 2007.

alent zero-sum game can be obtained as in Section IV-A He[éO] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding
) " — a survey. Proceedings of the IEEE, special Issue on protection of

Ry" can be defined usingv(Z, B) instead of r(zp) in (?_’)' multimedia content87(7):1062—1078, July 1999.
Theorem 4.1 and Corollary 4.1 hold - the proofs remain thg1] S. Sarkar, E. Altman, R. El-Azouzi, and Y. Hayel. Information con-
same. The saddle point policy for the controller can be com- cealing games. IProceedings of INFOCOM mini-conferencgages

puted using a slight modification of P-CONTROLLER as de- 12 g33;/5_3(;91 Ph?r]eniX'AZ,AApf:l:ZOQS- R ¢ informati
. . e . . 1 . aldyanathan. n mpirical nvestigation o nrormation
scribed in p. 7. The modification is that the lower bound co Concealing Games in Communication Networks  M.S.

straint becomes:() > 3 ;. e,z B@E)w(z, ))u(@)y ¥V j € Thesis, University of Pennsylvania, Philadelphia, PA, 2007.
N(@),7 € A.. Theorem 4.2 holds. The modified ver- http:/Avww.seas.upenn.eduswati/publication.htm.

sion of LP-CONTROLLER has O(}" ;cxn |4c(Z)|) variables and [13] V. Vazirani. Approximation AlgorithmsSpringer, New York, 2001.

O jea, W@+ X zexn [Ac(2)]) constraints. The saddle point

policy for the actor can be computed using a slight modification APPENDIX

of LP-ACTOR as described in p. 9. The modification is that the\. proof for Lemma 3.1

first constraint becomes(z) < 3=,y v(¥)iw(z,4) for all § €
Ac(Z),Z € K", and N/ must be replaced byV (%) in the sec-
ond and third constraints. Theorem 4.3 holds. The modified v
sion of LP-ACTOR has O(K™ + >, |N()|) variables and

Proof: Recall thatu®C refers to an arbitrary policy in the GC
class. We show that there exists a system with- 2,k = 1, K =
eor,_() =r(0) < r(1) < r(2) =1 and g under which the states of the
components are mutually independent and statistically identical such

O(Y zexn |Ac(Z)]) constraints. Thus, the computation times fofat

these linear programs depend polynomially &, |.A.(Z)| for each R.. < sup RSC (26)
Z € K™ and |V ()| for eachi € A.. Next, we can generalize the e A b

UA policy for the actor - the generalization is to uniformly choose GC

among different possible actions. We can show that for @ny, K,  Thus, from (6),infucy Riy* < sup,ey, R for eachv € V.

. u,UA . u,v . GC : A .
infuey Ry~ > m sup, ¢y infuey Ry The proof is  Thus,u™™ is not a saddle point policy for the controller. The lemma

similar to that for Theorem 5.4. The performance guarantee may fgows from Theorem 4.1.

improved if some actions iV (%) can be ruled out for eacli € A. Let ¢; be the probability with which a component is in statand
for at least one saddle point policy of the actor. For example, in ti¢l) < g2/(qo + q2), g0 > 0,q1 > 0.
special case in whichV() = N for eachiy € A, IN(%)| = n, for Let Ui C U, be the set of symmetric policies of the controller

eachi € A.. But, in addition, whenA. consists of the sub-vectorsthat conceal one component reveal the state of a component that is

of the vectors inK™ of sizen — k or more, we know that at leastin state2 only if both components are in stafe Note that every

one saddle point policy of the actor is sensible (Corollary 4.3) aflicy in U7 can be described by a parameterwhose role is as

therefore selects among at mdst- 1 possible actions irrespective follows: when the system statg € {(0,1),(1,0)}, the controller

of . Thus, the worst case approximation guaranteg/ig: + 1) in  reveals the component that is in statewith probability «. Also,

Theorem 5.4. Obtaining performance guarantees for the controlleP© € U and corresponds ta = 0.

using polynomial time computation, as in Section V-B.2, however Let Vi C Vs be the set of symmetric policies of the actor that (a)

remains open. never selects a revealed component that is in $tatea component

is concealed, (b) selects a component that is in Saifethe state

of one such component is revealed and selects the component with

higher state if the states of both components are revealed and one
We have studied a leader-follower game where the actions ludis a higher state than the other. Note that every policyyircan

the leader (controller) determine the information available to thHee described by a parameterwhose role is as follows: when a

VII. CONCLUSION
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component that is in state is revealed and another component igomponents are mutually independent, a poli¢yof the controller
concealed, the actor selects the revealed component with probabiitich that

v.
Using Theorem 5.1, we can prove that there exists policies U}

andv* € Vi that constitute the saddle point policies of the controll
and the actor respectively. For any € U7, v" € V§,

inf R%" < inf RYY <R, <Rjy< sup RY"W < sup R
weu B Tueus P A o= IVE o= lev P
(27)
whereR; = inf sup R%°
s ueUy veEV] s
R, = sup inf RY".
=R veEVY ueUy f
Since u* € U7 and v* € Vi constitute the saddle point

policies of }he controller and the actor respectivélf,.c Ry" =

ut v
sup,ey R .
ities for u’ v*. Thus, sinceinf,cy Rg’” <

R " <sup,ey Rp Y, Ry Y = Rj. Also, sinceu”,v* consti-

’
= u*,’U =

tute the saddle point policies of the controller and actor respectively,

,V

. G
N _ _ /
Rg V= Rs. Thus, Ry = Rj. Also, clearly, SUp,, e s Rg

GC
sup,ey R " Thus, (26) follows if we show that

GC
E}} < sup Ry .
veEVY

(28)

Consider arbitraryu € U7, V7 and let « and § respectively
represent: andv. First, B4 " [r(z5)|X = ] = aryr(1)+(1—a)r(1)
if € {(0,1),(1,0)}, andEg'”[r(a:B)p? =Z =yr(1)+ (1 —7)
if ©€{(1,2),(2,1)}. Next, Ej"[r(z5)|X = 7] does not depend
ona,vy if £ ¢ {(0,1),(1,0),(1,2),(2,1)}. Also, 5(Z) = qoq: if
Z € {(0,1),(1,0)}, and 3(Z) = q1g2 if T € {(1,2),(2,1)}. Thus,
from (3),

Ry" 2qoq1 (ayr(1) + (1 — a)r(1))

+2q1q2 (yr(1) + (1 = 7)) + C,
whereC' is a constant that depends @#, q1, g2 but note, .

Since a = 0 for w®C, from (29), forv € Vi, R}
2qoq1m(1) + 2g1q2 (yr(1) + (1 — 7)) + C. Thus,

(29)

U

GC
sup Ry "
veEVY

2qoqar(1) + C

+2q1g2 max (yr(1) + (1 -7))
2qoq1r7(1) + C

+2q1q2 (sincer(1l) < 1). (30)

Now, from (29),

/ .
By C+ max min 2goq1 (arr(1) + (1= a)r(1))

+2q1g2 (vr(1) + (1 = 7))
C+2q Jnax, (yr(1)(go + g2) + (1 — v)q2)
(sincey < 1,r(1) > 0)

C + 2q1g2 sincer(1) < g2/(qo0 + g2).

Now, (28) follows from (30) sinceo > 0,q1 > 0,7(1) >0. =

B. Proof for Lemma 3.2

SBA

Proof: Letwv refer to an arbitrary policy in the SBA class.

Recall the description of the MUA policy for the actor at the end o

Section V-B.1. We show that there exists a system with 3,k =
2,K = 2,r(0) = 0,r(1) = 1, 8 under which the states of the

ef’hus, sinceinf, cy RZ’”

Thus, all the inequalities in (27) become equal

u/,vSBA w,MUA
Ry RyMUA.

< inf
ueU

(CHY)

SBA / SBA

< Ry, andinfuey RYMYA <
. . SBA

sup, ey infucu Ry"" = Ry, infucy Rjy" < Rg. Thus, from (6),

infucu RYy" < sup,ey, RyY for eachu € U. Thus, v°B4 is

not a saddle point policy for the actor. The lemma follows from
Theorem 4.1.

Let ¢; be the probability with which a component is in state
and ¢ > max(qz, gs). Thus,vSBA selects componernitt whenever
componentl has been concealed and no revealed component is in
statel.

Letu’ € U (a) conceal components and never reveal a component
that is in statel unless all components are in statand (b) conceal
componentl unless both component and 3 are in statel, and
reveal component otherwise. Now,

/  SBA
Ry =q+(1—-aq1)gqs. (32)

Clearly, for anyu € U, RZ’MUA > 01/2 + O3, where O, is
the probability that only one component is in statand O, is the
probability that two or more components are in statdNow, ©; =
q1(1 —g2)(1 —g3) + ¢2(1 — q1)(1 — g3) + gs(1 — q1)(1 — ¢2) and
©2 =q (1 —(1—¢g2)(1—gs))+(1—q1)g2gs. Thus,01/2+03 =
at+(1-q1)q2q3— 1 (1-q2)(1—g3) /24 q2(1—q1) (1 —q3) /2+q3(1—
q1)(1—g2)/2. We now show that there exisgs > ¢2 > g3 such that
Q2(1—CI1)(1—q3)+Q3(1—Q12(1—Q2)—Q1(1—Q2)(1—Q3) > 0.0625.
Thus, for anyu € U, RE’MU >01/2402>q1+ (1 —q1)g2qs +
0.0625. Hence, (31) follows from (32).

Let g1 = 0.5,q2 = 0.5 — €1,93 = 0.5 — €2, wheree; > 0 and
€2 > 0. Note thatga (1 — ¢1)(1 —¢3) + g3(1 — q1)(1 — g2) = (1 —
ql)(Q2 +q3 — 2q2q3) =0.5 (1 — €1 — €3 — 2(0.5 — 61)(0.5 — 62)) .
Next, ¢1(1 — g2)(1 — gs) 0.5(1 — g2 — g3 + q2g3)
0.5 (61 + €2 + (05 — 61)(0.5 — 62)) . Thus,

e(l-q)l-g)+gl—-q)l-g)—a(l-qg)l-ag)
0.5 (1 — 261 — 262 — 3(05 — 61)(0.5 — 62))
> 0.0625 for small ey, 2.

C. Proof for Theorem 5.2

Proof: Consider the description df P-CONTROLLER at the
end of Section IV-B.1, and restrict the feasible solutianso /°.
From Theorem 5.1, the optimal solution &P-CONTROLLER is a
saddle point policy of the controller even with this restriction, and
the optimal solution is clearly a symmetric policy for the controller.
The last two constraints ihP-CONTROLLER-CLASS ensure that its
optimal solution is a symmetric policy of the controller. Thus, we
only need to show that there is a one-to-one correspondence between
the sets of optimal solutions dfP-CONTROLLER-CLASS and LP-
CONTROLLERwith the above restriction, such that the corresponding
solutions in the two sets provide the same policies.

ConsiderLP-coNTROLLERWith the additional constraint that €
U’s. Let L(y) = {1: 1(&) =1 for someZ s.t. j € A.(Z)}. Note that
L(y) depends o only throughm(%), and can therefore be denoted
as L(m(¥y)). Sinceu € U?®, for eachy € A., we can write the
f]jrst constraint as

2(H) = Ri(m(@) > B O D)myO2(1, m()).

leL(m(7))

(33)
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LP-CONTROLLER MiN gy 1y, 2(m)t Domen ©3(m)z(m) that the corresponding optimal solutions in the two sets provide the
z(m) > Ri(m) 3 cr(m B Du'(DmO2(1,m)  same policies.
VmeM ConsiderLP-ACTOR with tzhe additi?nsal constraint that € V*.
zm) > 3ierm) B MY ()mO2(1, m)Re(1,m,4) Since Ry (1(F), m(¥),i) = % for each# ¢ K™ and
Vm e M,i€eC(m) y|€ Ac.x(Z), we can write the first constraint as
ZmEM] 61(17 m)u/(l)m = 1vlel
"Mm > 0V 1elLmeM . ~ ~ .
e m e M A > Ram@) (1 -y (m(y»i@(m(ym)
i€C(m(y))
—+ "(m(%)), ®(m(¥), )Rz (1(X), m(%), 1) .
Let v(i) denote the class of component Now, note that iec%n:@)v (m($); (), Rz (1(7), m(5). 2
Z“%?gfif};é? ")~ Ry(L,m(g),v(i). Thus, for eachj e _ _ _
Ack, i € a(y), we can write the second constraint as We can write the second and third constraints as
2@z Y B O Dmep©a(Lm(@)Ra(L m(@), v(0)). o (m(@); 2(m(@),7) 2 0, Vi€ C(m),5E A
1eL(m()) (34) Z v (m(¥)), ®(m(y),i) < 1V§e A
ieC(m(¥))
Since Mz depends onZ through1(Z) and can be denoted by h ! biecti functi b )
My, the third and fourth constraints are: The objective UPC“OP can € written
as e 2zam—1 B(@)z(@), which equals
> 01(1(#@), m)/ (1(&)m =1 forall #eK".(35) Xier (1) X um- 2D
meEMy(z) The optimization that minimizes the above objective function
U (U@))mipy 20 ¥ &€ K", € An(@). (36) Subject to the above constraints has at least one optimal solution in

which v, z depend or, i only throughl(Z) andm() respectively,
We can write the objective function 3§, Zg:m(m:m 2(¢). and any suchv’ is in V°. Thus, the dependence afi i can be
The optimization that maximizes the above objective functioreplaced with1(Z) and m(y). Thus, the objective function for
subject to constraints(33) to (36) has at least one optimal solutionérample become$,”, . 5'(1)z(1)©4(1), and thens’ (1)©4(1) can be
which v’, z depend ong, ¢ only throughm(7) and 1(Z), and any replaced by3”(1). Also, v'(m);®(m, ) can be replaced by®(m);
suchv’ is in U*. Thus, we can rewrite. P-CONTROLLER with the in all the constraints.

additional constraint as follows. Clearly, there is a one to one correspondence, between the set of
optimal solutions ofLP-ACTOR (with the additional constraint that
Since ©2(1,m)O3(m) = O:(1,m)O4(1)) and ©4(1)3'(1) = v € V?)andthe resulting linear program whichli®-ACTOR-CLASS,
B (1), the first constraint is: and they have equal optimal values. Also, the corresponding optimal
solutions provide the same symmetric policy for the actor. The result
O3(m)z(m) > Ri(m) Z 8" (Dm©1(1,m) V m € M. follows. n
le£L(m)

Similarly, the rest of the constraints can be written as ) ) ) )
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O3(m)z(m) > Z ﬂ”(l)ul(l)m(%(l, m)Rz(1, m, ) Engineering from University of Maryland, College Park, USA in 2000. She is
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Vm e M,i€C(m) resource allocation and performance analysis in communication networks.
She received the National Science Foundation (NSF) Faculty Early Career
D01 (1 — 1vler Development Award in 2003. She is serving (and has served) in the editorial
Z w(DmO1(l,m) = € boards of IEEE/ACM Transactions on Networking since 2008 (Transaction
meM, on Wireless Communications from 2001 to 2006).

W (Dm©1(Lm) > 0V 1€L,me M

leL(m

In the above linear program, we substitute ()(m)z(m) with

n(m) in the objective function and the first two constraints, and (i§itan Altman (SM'00) received the Ph. D. degree in Electrical Engineering

w' (1)mO1 (1, m) with u*(1)m in all the constraints. Clearly, there igfrom the Technion Israel Institute of Technology, Haifa in 1990 and the B.
m ’ m . ) ’ Mus. degree in music composition from Tel Aviv University, Tel Aviv, Israel

a one to one correspondence, given by (a) and (b) above, betwgehggo ~Since 1990, he has been with the National Research Institute in

the set of optimal solutions dfP-CONTROLLER (with the additional nformatics and Control (INRIA) Sophia, Antipolis, France. He is the author

constraint that: € /°) and the resulting linear program whichli®- of more than 140 papers in international refereed scientific journals. His

CONTROLLER-CLASS, and they have equal optimal values. Also th&urrent research interests include the performance evaluation and control of
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D. Proof for Theorem 5.3

Proof: Consider the description dfP-ACTOR at the end of Pramod Vaidyanathan received the B.A.Sc degree in Engineering with

Section IV-B.2, and restrict the feasible solutionsto V. From ©Ption in Mathematics from University of Waterloo, Canada, in 2006, and
Sc. in Electrical Engineering from the University of Pennsylvania, USA

Theorem 5_-1’ even with .this rgstriction, the optimal .solution q’ﬂ 2007. He worked in quantitative research at Citigroup from 2007-2009 as
LP-ACTOR is a saddle point policy for the actor, and is clearly & research analyst and since 2009, has been working in an equity derivatives

symmetric policy as well. It is therefore sufficient to show that therading role.
is a one-to-one correspondence between the sets of optimal solutions
of LP-ACTOR-CLASSandLP-ACTOR with the above restriction. such



