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Information concealing games

Saswati Sarkar, Eitan Altman, and Pramod Vaidyanathan

Abstract

We consider a system whose state is a vector of dimensionn, whose value is chosen randomly by

nature. The system consists of two entities. The first entity (controller) has complete information about

the state of the system, and must reveal a certain “minimum” amount of information about the system

state to the second entity. It can however choose the nature of the information it reveals subject to

satisfying the above constraint. The second entity (actor) takes certain actions based on the information

the controller reveals, and the actions are associated with certain utilities for both the controller and the

actor which also depend on the state of the system. The controller needs to decide the information it

would reveal, or equivalently conceal, so as to maximize its own utility, and the actor needs to determine

its actions based on the information the controller reveals so as to again maximize its utility.

We demonstrate that the above problem forms the basis of several technical and social systems.

We show that the decision problems for the entities can be formulated as a signaling game. The

Perfect Bayesian Equilibrium (PBE) for this game exhibits several counter intuitive properties, e.g.,

some intuitively appealing greedy policies for the controller and the actor turn out to be suboptimal.

We prove that the PBE of this game can be obtained as a saddle point of a different two person zero

sum game. The number of policies of the players in this two person zero sum game is however super-

exponential inn, which implies that standard linear programs for obtaining its saddle points will be

computationally intractable even for moderaten. Next, using specific characteristics of the problem,

we develop linear programs that compute the optimal policies using a computation time that increases

exponentially withn, and can therefore be numerically solved for moderaten. We finally propose simple

linear time computable policies that approximate the optimal policies within guaranteeable approximation

ratios.
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I. I NTRODUCTION

A. Overview

Exchange of information among different entities forms the basis of most technological advances in the

information era and also of social interactions. Several seminal advances in communication systems have

lead to schemes that maximize the rate of exchange of information. An aspect that has received somewhat

less attention, and is as important, is that of designing a framework for deciding what information should

be revealed and what should be concealed during exchange of information among different entities so as to

maximize their utilities. The main challenge towards developing such a framework is that oftentimes such

decisions depend on the objective for exchange of information, and hence can only be determined on a case

by case basis. The contribution of this paper is to develop a rigorous mathematical framework for deciding

what information an entity should reveal when the objectives satisfy certain broad characterizations that

capture the essence of several communication and social systems.

We consider a system with two entities. The state of the system is a random vector of dimensionn. At

any given time the first entity (controller) has complete information about the state of the system, and

must reveal a certain “minimum” amount of information about the system state to the second entity. It

can however choose the nature of the information it reveals subject to satisfying the above constraint.

The second entity (actor) takes certain actions based on the information the controller reveals, and the

actions are associated with certain utilities for both the controller and the actor which also depend on

the state of the system. The same actions and the system states fetch different utilities for the controller

and the actor, and usually when one entity has a high utility the other has a low utility. We devise a

framework that enables the controller to decide the information it would reveal, or equivalently conceal,

so as to maximize its own utility, and the actor to determine its actions based on the information the

controller reveals so as to again maximize its utility.

B. Motivation

We first establish that this information concealing problem forms the basis of several communication

systems.

1) Information concealing problems in wireless networks:

a) Cognitive radio networks:Consider a transmitter with access ton channels, whose qualities constitute

the state of the system. The transmitter needs to select one channel for transmission, and the transmission
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quality of the selected channel determines the rate of successful transmission. Hence, the transmitter

probes the channels in order to assess their qualities before it transmits any packet. A malicious entity,

say a jammer, seeks to reduce the rate of successful transmission. The jammer is usually assumed to

accomplish its goal by generating signals that interfere with the transmitter’s communication; however

the jammer may be able to deteriorate the transmission rate much more by preventing the transmitter

from learning the states of the channels. This may cause the transmitter to make a wrong choice, that

is, select a channel with a poor transmission quality, and thereby obtain a poor data rate for a while.

Note that the jammer can prevent the transmitter from learning the states of some channels, possibly by

generating signals that interfere with the corresponding probe packets or responses to these probes, and

generating such signals may consume less energy as compared to those that jam the actual transmission

since the probe packets are transmitted over shorter durations. We therefore consider the case where

the jammer blocks the probe packets and not the actual transmission. Furthermore, we assume that the

jammer knows the quality of the channels and can block the probes in at mostk channels since the

blocking process consumes energy. Hence, the states of at mostk channels can be concealed from the

transmitter. The transmitter selects the channel after it learns about the states of the channels the jammer

does not conceal. Note that the transmitter may either select a channel whose state has been revealed or

one whose state has been concealed; the latter may happen since the fact that the jammer has concealed

the state of a channel may indicate that the transmission quality of the corresponding channel is good.

The rate of successful transmission attained by the transmitter determines the utility of the transmitter

and the jammer. The information concealing problem we described will enable the jammer (controller)

to optimally determine which channels it would conceal, and the transmitter (actor) to select the channel.

2) Information concealing problems in other information systems:

a) Query resolution networks:We next describe another communication system in which the information

concealing problem arises. Consider a client that needs to locate a desired information. It queries some

data bases to determine which of them has the information. The responses constitute the state of the

system and specify the probability with which the requested information is present in the data base (as

the search in response to such preliminary queries may not be comprehensive and also the information

may be dated). The responses reach the node through a gateway that has a malicious entity which

blocks some of the responses in order to undermine the information location service. The client needs

to determine which database it would request the information from based on the responses to its query,

and again it may choose one it received a response from or one it did not receive a response from (the

latter may happen if the responses it receives reveal low probabilities). The utility of the client and the
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malicious entity depends on the probability that the client obtains the information it is interested in. The

information concealing problem we described will enable the malicious entity (controller) to optimally

determine which responses it would suppress and the client (actor) to select the database it would request

the information from.

b) Buyer-Seller authentication in e-commerce:Consider an e-commerce system where a buyer and a

seller are bargaining. The authentication process between them proceeds in two stages. The buyer hasn

pieces of information using which he can authenticate himself to the seller. He reveals limited information

aboutk of these pieces using which the seller can complete the first stage of the authentication successfully

if the buyer is who he claims to be (e.g., using some proof verification methods). Next, the seller

identifies himself to the buyer, and subsequently asks about complete information for one of then

pieces which may or may not be among those that the buyer initially selects. The buyer provides the

requested information and the authentication is successful if again he is who he claims to be. This two-

stage authentication process allows each entity to identify himself once he has some (albeit incomplete)

information about the other participant. Now, the complete information the buyer reveals about any one

piece in the authenticating process may allow the seller to acquire more information about the buyer

than that required for mere authentication, e.g., information about his previous transactions with other

merchants, etc. This will for example allow him to bargain more effectively with the buyer once the

authentication is successful. Now, the different pieces of information the buyer possesses about himself

reveals different amount of information about him, and the buyer must select thek pieces in the first stage

so as to minimize the additional information he finally reveals to the seller. The seller must subsequently

select the piece in the second stage to acquire maximum possible information about the buyer. The

information concealing problem we described will enable the buyer (controller) and the seller (actor) to

attain their respective objectives by optimally selecting the pieces in question.

3) Information concealing problems in social context:

a) Gambling: Consider a gambling game in which two gamblers have a common collection ofN cards

each of which can have one ofm colors. They randomly select a number for each card and write the

chosen number on one side of the corresponding card. Subsequently, the second gambler drawsn cards

randomly from the collection without observing the numbers on them. The first gambler then observes

the colors and the numbers of the cards drawn and tells the second the numbers and the colors ofk of

these cards, and only the colors of the rest of the cards. The second gambler needs to select one of these

n cards (either a card whose number it knows or one whose number it does not know), and the first pays

him an amount that equals the number on the selected card (if this number is negative then the second
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pays the first). The first gambler (the controller) needs to select thek cards so as to minimize the amount

it pays, and the second needs to select a card so as to maximize the amount it receives.

b) Security systems:Consider a corrupt employee who sells secrets about the company’s security system

to a burglar. The building in which the company is located hasn gates, and the employee knows the

efficacy of the security system at each gate (e.g., he may know the number of guards at each gate which

may be a random variable owing to the company’s security plan), and based on the price the burglar

has offered or in order to conceal his collusion in the event of an enquiry, the employee informs the

burglar about the security system of onlyn− k of these gates. He also decides to select the gates whose

information he reveals so as to minimize the probability that the break in is successful since if there

is a successful break-in a comprehensive enquiry is likely to be launched. Based on the information he

obtains from the employee, the burglar selects one gate through which he tries to enter; he selects this

gate so as to maximize his probability of success.

In both these examples, the information concealing problem we described will enable the controller (first

gambler or employee) and the actor (second gambler or burgler) to attain their objectives by making

appropriate selections.

C. Contribution and Challenges

Our first contribution is to provide a framework for investigating information concealing problems. We

formulate this problem as a signaling game ([5], Chapter 8.2) between two players and consider perfect

Bayesian equilibrium (PBE) ([5], Chapter 8.2) as the solution concept (Section III). The subsequent

challenge is to compute desirable equilibrium policies of the players as in general in signaling games

multiple policy pairs attain this equilibrium and different equilibrium policies fetch different utilities for

the same player. Also, general purpose algorithms for computing a PBE policy-pair are not known for

arbitrary signaling games. We show that in the information concealing game all PBE policy-pairs fetch

the same expected utility for each player - thus all such policy-pairs are functionally equivalent, and hence

choice among them is not critical. We also show that PBE policy-pairs in this game can be computed by

solving linear programs with finite number of variables and constraints. We prove the above by showing

that there is a one-to-one correspondence between the set of PBE in the above game and the set of saddle

points in a two-person zero-sum game (Section IV-A), which we refer to as an equivalent game. This

equivalence holds although the original game is not a zero-sum game, and is an interesting result in itself

as such equivalences are not commonly encountered between signaling games and two-person zero-sum

games. Using this equivalence, we further demonstrate that several intuitively appealing policies of the
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controller and the actor do not in general constitute PBE. For example, in cognitive radio networks, a

naive policy for the jammer that conceals the states of the channels that have thek best transmission

qualities does not constitute a PBE. This happens because the actor can learn about the system not only

from the information the controller reveals, but also from the choices of the controller.

We next investigate the computational tractability of the information concealing games. Our results in this

area constitute our second contribution since general results that can address the computational aspects in

this case are not known in the game theory or approximation algorithm literature. Note that the saddle-

points of the equivalent games can be computed by solving standard linear programs (Chapter III.2.4,

[6]), which would therefore provide a PBE of the original game as well. But, the number of variables and

constraints in the standard linear program formulations for the equivalent games are super-exponential inn

(Ω(en2n

)), wheren is the dimension of the state-space of the system. Thus, the standard linear programs

become computationally intractable even for small values ofn. Exploiting specific characteristics of

the game under consideration, we next obtain linear programs which compute the saddle points of the

equivalent game and the optimal policies for the two players while using exponential number of variables

and constraints (Section IV-B). This significant reduction in computation time enables the computation of

the optimal policies for moderaten. We next obtain linear time (O(n)) computable policies with provable

performance guarantees for the two players (Section V). Specifically, these policies attain utilities that

differ from the utilities of the saddle points by (a) constant factors in several important special cases,

and (b) by factors that depend only on the amount of information that the controller reveals to the actor,

and do not depend onn in the most general case. We also show that there exists examples where these

performance guarantees are tight, which in turn allows us to complete characterize the performance of

these policies.

II. RELATED LITERATURE

To the best of our knowledge, the information concealing game has not been investigated before.

Information concealing game is however a special case of the well-known signaling games ([5], Chapter

8.2), and arises when the utilities of the two players in signaling games satisfy certain structure. The

investigation of this special case has been motivated by its relevance in modeling a diverse range of

applications in technical and social context, and also because a framework for computing the solutions

and investigating their characteristics is not known for signaling games in general.

A game that is close to the information concealing games and has been investigated before is that

introduced by noble-laureate P. Aumannet. al. [2]. They consider a scenario where nature randomly
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selects a game from a family of two-player matrix games, and informs player1, but not player2, about

the selected game. The same game will now be played again and again. At each time unitt = 1, 2, ...,

the players choose their moves (actions) which collectively determine their payoffs, and both players

observe each others actions. Player 1 is confronted with the dilemma of whether to play optimally in the

game chosen by nature; if he does that (and if player 2 knows which policy is used by player 1), then

player 2 will eventually be able to guess which is the game being played, so that player 1 looses his

advantage of being informed. If, on the contrary, he uses a policy that does not utilize his knowledge

of the game, then again he does not gain from being informed. Unlike in the game we consider, in this

game the informed player does not directly control what information to reveal or to conceal to the other

player. Also, here the information chosen by nature does not change with time, whereas we assume that

the nature’s choice changes with time and the evolution is temporally independent. Thus, here, unlike

in the game we consider, at any given time a player can exploit the knowledge he has acquired from

past interactions; in our case the game effectively starts fresh at each instant (our solutions therefore

do not consider any temporal relation at all). Thus, the formal questions that are answered and also the

techniques used to obtain the answers substantially differ in the two cases.

Information concealing has been extensively investigated in context of multi-media [10]. An example is

the research on watermarking, where one tries to hide a signature in some picture or audio recording in

order to be able to identify it later. Informally speaking, these scenarios consist of only one player who

seeks to conceal as much information as possible. We consider a scenario with two players such that both

players act sequentially and the first conceals information with the goal of degrading the performance

of the second by decreasing the second’s capabilities to make good action choices. Again, the formal

questions that are answered and also the techniques used to obtain the answers substantially differ in the

two cases.

Finally, standard results in classical and computational game theory do not apply in the information

concealing game we consider. First, classical game theory provides us with the PBE solution concept

for signaling games [5], but does not guarantee uniqueness of this equilibrium. In our case, for any

given pair of policies of the players, their utilities are functions of their informations, which in turn

depend on the system states, and the system can be in one of several possible states. Next, general

purpose algorithms are not known for computing a PBE policy-pair, either exactly or approximately

with a provable-approximation guarantee, except when the PBE is the same as the well-known Nash
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equilibrium [3]1, which happens in our case only when the number of system states is1. We show that

all PBE policy-pairs are functionally equivalent, and a PBE policy-pair can be obtained (exactly and not

approximately) by solving linear programs with finite (but super-exponential inn) number of variables and

constraints. The above results follow from a one-to-one correspondence that we have established between

the PBE in the game we consider and the saddle-point strategies in an equivalent two-person zero-sum

game. To the best of our knowledge, such equivalence is not commonly encountered in game-theory.

Now, this equivalence does not however guarantee polynomial-time (polynomial inn) computation of

equilibrium policies since the number of deterministic policies in the equivalent game is super-exponential

in n in our case, which results in super-exponential number of variables and constraints of the above linear

programs. Note that computational game theory focuses on determining exact solutions (e.g., for saddle-

points of two-person zero-sum games Chapter III.2.4, [6])) whenever such solutions are computationally

tractable, or approximations otherwise (e.g., for Nash equilibrium of bi-matrix games [4], [7]), using

computation times that are polynomial in the number of deterministic policies of the players. Thus,

since the number of deterministic policies is super-exponential inn in our case, standard algorithms will

have computation times that are again super-exponential inn. To the best of our knowledge, standard

algorithms for fast computation of exact solutions or approximations when the number of policies of

the players is itself intractable (e.g., super-exponential) are not available in the literature. Thus, one

of our important contributions has been to develop computationally efficient (that is with computation

time that is polynomial inn) (i) exact solutions in special cases, and (ii) approximations with provable

approximation guarantees in general cases using specialized arguments that exploit the above equivalence

and the special characteristics of the game under consideration.

III. A M ATHEMATICAL FRAMEWORK

We formulate the information concealing problem as a signaling game and consider the Perfect Bayesian

Equilibrium or the PBE solution concept (Section III-A). We next elucidate the terminologies and the

solution concept using the motivating examples presented in the previous section (Section III-B). We

finally demonstrate that the PBE for this game exhibits several counter-intuitive properties which indicate

that the computation of such equilibrium may not be straight-forward (Section III-C). In Section VI, we

generalize the framework to relax several assumptions made in this Section.

1Nash equilibrium policies can be computed (i) exactly using a computation time that is exponential in the number of

deterministic policies of the players (Chapter 3.4 [9]) (ii) approximately with provable approximation guarantees using a

computation time that is polynomial in the number of deterministic policies of the players [4], [7].
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A. Terminologies and Solution Concepts

We start by modeling the information concealing game as a stochastic leader-follower game between two

players: the controller and the actor. We describe the game in both the normal form as well as in the

strategic form.

• System state: The state of the system is ann-dimensional vector~X whose entries take values in

K = {0, ..., K−1}. LetN = {1, . . . , n}. The state space isKn. The random variables corresponding

to the components of the state vector may be dependent and can be described by a joint probability

distributionβ.

• Information of the Controller: The controller knows the system state~X, and thereby has full

information.

• Actions of the Controller: The controller conceals the values of at mostk components of the

system state from the actor; it decides which components it would conceal based on its information.

Thus, the controller’s action is a subset ofN with cardinality k or lower. LetAc(~x) denote the

set of all sub-vectors of~x with n − k or more components, andAc = ∪~x∈KnAc(~x). We show in

Section VI, the formulations and most of the results in this paper hold when we allow the controller

to conceal exact values of all components in the entire system-state, and reveal arbitrary functions

of the system state to the actor instead (e.g., the average of the states of the components, ranges

containing the states of some components, etc.).

• Information of the actor: The actor knows the states of those components of the system state

which the controller does not conceal. Specifically, ifc is the action taken by the controller and the

system state is~x, then the actor’s information~y consists of the sub-vector of~x with components in

N \ c. Therefore, from its information~y, the actor knows the controller’s action, i.e., the subset of

componentsa(~y) the controller conceals.

• Actions of the actor: The actor selects one of the components of the system state. Thus, its action

is an integerl ∈ N . Again, we show in Section VI that the formulations and most of the results

in this paper hold when we generalize the actions of the actor, that is, when the actor selects a

sub-vector of the system state (instead of one component only).

• Payoff function: If a component of the system state has valuei, then the expected utility associated

with that component isr(i) such thatr(0) < r(1) < . . . < r(K − 1). If the system state is~x, and

the actor selects componentl, then its payoff isr(xl).

• Common Knowledge:The parametersn, k, K, r(i) for eachi ∈ K andβ are common knowledge.

These parameters are determined based on goals and constraints of specific systems (e.g.,k may
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be determined based on resource constraints of the jammer in the cognitive radio network and the

price the burglar has offered in the security system) - investigation of how these parameters are

determined is beyond the scope of the current paper.

• Strategies:

– Pure policies: A controller’s (actor’s, respectively) pure policy is a function fromKn to Ac

(Ac to N , respectively). LetUp (Vp, respectively) be the set of pure policies for the controller

(actor, respectively).

– Mixed policies: A mixed policy of a player is a probability measure over its pure policies.

Let U (V, respectively) be the set of mixed policies for controller (actor, respectively). Note

that each pure policy of a player can be viewed as a (degenerate) mixed policy for the same

player. A policyu in U (v in V) can also be represented as the probability distribution{u(~x)}
(v(~y), respectively) used by the controller (actor, respectively) for selecting its actions when

its information is~x (~y, respectively). Specifically,u(~x)~y (v(~y)i, respectively) is the probability

with which the controller (actor, respectively) reveals the sub-vector~y ∈ Ac(~x) (selects the

componenti ∈ N , respectively) when its information is~x (~y, respectively).

Let Eu,v
β be the expectation operator for the action and informations of the two players when the

players use policiesu ∈ U , v ∈ V andβ is the probability distribution of the system state.

• Utility: The utility of each player is its expected payoff conditioned on its information, and is

therefore a function of its information.

– Utility of the actor: When the actor’s information is~y, the controller and the actor use

(behavioral or mixed) policiesu andv respectively, and the joint probability distribution of the

system state isβ, the actor’s utilityJβ,u,v
a (~y) is given by

Jβ,u,v
a (~y) = Eu,v

β [r(XB)|~Ya = ~y], (1)

where~Ya is the random information of the actor,Xi is the random state of theith component

of the system state,B is the (potentially random) action of the actor.

– Utility of the controller: The controller’s utility is the negative of the expected payoff of

the actor conditioned on the controller’s information. Specifically, when the system state is~x,

and the controller and the actor use (behavioral or mixed) policiesu and v respectively, the

controller’s utility Ju,v
c (~x) is given by

Ju,v
c (~x) = −Eu,v[r(xB)| ~X = ~x], (2)
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where ~X is the random system state,xB is the Bth component of~x, B is the (potentially

random) action of the actor. This expectation depends onβ only throughu, v.

Thus, for any given policy-pair of the players, the utility of each player is a function of its information,

rather than a single number. Also, note that the utility functions are quite general, except for the

special relation we assume between the utilities of the two players, that is, that the controller’s

utility is the negative of the expected payoff of the actor conditioned on the controller’s information;

the payoff function of the actor can be arbitrary. This relation between the utility functions of the

players has been motivated by our requirement that the players’ utilities oppose each other and if

one player’s utility is high, the other’s utility must be low. This relation will be key in computing

the solutions of this game.

• Controller’s and Actor’s goals: The controller and the actor seek to maximize their respective

utilities Ju,v
c (~x), Jβ,u,v

a (~y) for all values of their respective informations~x, ~y.

We now define the Perfect Bayesian Equilibrium (PBE) solution concept ([5], Chapter 8.2).

Definition 3.1: Let u∗ and v∗ be mixed policies of the controller and actor respectively. Then(u∗, v∗)

is a Perfect Bayesian Equilibrium if the following conditions hold:

• for each~x ∈ Kn such thatβ(~x) > 0, u∗(~x) is a best response of the controller againstv∗ of the

actor, i.e.,u∗(~x) maximizesJu,v∗
c (~x) among allu ∈ U , and

• for each~y ∈ Ac which occurs with positive probability underβ, u∗, v∗(~y) is a best response of the

actor againstu∗ of the controller, i.e.,v∗(~x) maximizesJβ,u∗,v
a (~y) among allv ∈ V.

B. Elucidating examples

We now elucidate the above terminologies using the examples in Section I-B.

In cognitive radio networks the system state constitutes the states of the channels, andr(i) is the expected

rate of successful transmission of the transmitter (actor) when it transmits in a channel that is in statei.

The jammer’s (controller’s) action is to conceal the states some (≤ k) channels and the transmitter’s action

is to select a channel for transmission. An example class of policies of the jammer, denoted asGreedy for

Controller or GC, is to conceal the channels withk-best states, that is, those withk-best expected rates

of successful transmission.uGC denotes an arbitrary policy in this class. An example class of policies of

the transmitter, denoted asBest Among Revealed for Actoror BRA, is to select the channel that has the

highest state among the revealed channels. The pure policies in these classes are those that break the ties in

some deterministic order. Let the jammer and transmitter use policiesu, v respectively. Then, (a)Ju,v
c (~x)
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is the negative of the expected rate of successful transmission of the transmitter when the channel state

is ~x, and (b)Jβ,u,v
a (~y) is the expected rate of successful transmission of the transmitter when the jammer

reveals~y to the transmitter, and the joint distribution of the channel state isβ. Consider theUniform

among Concealed for Actoror UCA policy of the transmitter that selects a channel for transmission

uniformly among those whose states are concealed. ThenJuGC,UCA
c (~x) = − 1

k maxS⊆N,|S|=k

∑
i∈S xi,

and Jβ,uGC,UCA
a (~y) = 1

k

∑
i∈a(~y) EuGC,UCA

β (Xi|~y). If the transmitter uses a policy in the class BRA,

any policy in the class GC is the jammer’s best response, and if the state processes of the channels are

identically distributed, UCA is the transmitter’s best response against the GC policy of the jammer that

breaks ties uniformly and randomly among the channels.

In the authentication example for e-commerce, the seller (actor) may have different bargaining powers

associated with different informations it can learn about the buyer (controller), and the buyer may not

know the seller’s bargaining power associated with any piece even though he knows the details about the

piece. This is because different sellers may have access to different data bases and therefore may be able

to extract different amount of additional information about the buyer from the same content. The buyer

may however know the expected bargaining power of the seller associated with each piece of information.

This scenario can be modelled by assuming that each different piece of information of the buyer can be

in one of K states and the knowledge of the state of a piece of information implies the knowledge of

the expected and not the exact value of the bargaining power associated with that piece. Now,r(i) is the

expected bargaining power associated with a piece when it is in statei. The system state consists the

states of then pieces of informations the buyer has about himself. The action of the buyer is to reveal

limited information about some (n− k) pieces of information in the first stage of the authentication: the

seller can only determine~y the states of these pieces of information from the limited information the

buyer reveals (since although he knows what databases he can search he does not know the details about

any of these pieces). Let the buyer and the seller use policiesu, v respectively. The seller’s action is to

select one piece for which it requests details. Then, (a)Ju,v
c (~x) is the negative of the expected bargaining

power of the seller when the system state is~x, and (b)Jβ,u,v
a (~y) is the expected bargaining power of the

seller when it observes~y in the first stage, and the joint distribution of the system state isβ.

In the gambling game,β can be obtained from the distribution that is simultaneously used to draw the

random numbers, andK is the cardinality of the support set of this original distribution. Note that the

random numbers drawn may be negative; we enumerate them usingK positive integers, and each such

enumeration constitutes the state of a card. Thus, each card hasK possible states, andr(i) is the number

associated with theith state. The system state consists the random numbers on the cards drawn by the
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second gambler (actor), and is known only to the first. The action of the first gambler (controller) is to

reveal the states of some (≥ n − k) of these cards, which constitutes the information~y for the second.

The second gambler’s action is to select one card among those that it selected initially, and his payoff is

the number on this card. Let the gamblers use policiesu, v respectively. Then, (a)Ju,v
c (~x) is the negative

of the expectation of the random number on the card the second finally (potentially randomly) selects for

examination when the system state is~x, and (b)Jβ,u,v
a (~y) is the expectation of the number on the card

the second finally selects for examination, when it observes~y and the joint distribution of the system

state isβ.

The query resolution network and the security systems are similar to the cognitive radio network. In the

former, the system state constitutes the states of the databases, each database can be inK states, and

r(i) is the probability that the information sought is in a database that is in statei. In the latter, the

system state constitutes the states of the gates (e.g., the number of guards at each gate), each gate can

be in K states, each state represents a level of efficacy of the security system at the gate andr(i) is the

probability that the burglar will successfully break in through a gate that is in statei.

C. Counter-intuitive properties of the Perfect Bayesian Equilibrium

We now demonstrate that the PBE exhibits several counter-intuitive properties which suggests that it may

not always consist of simple policies that can be represented in closed form. This in turn motivates the

design of efficient frameworks for computing it, which is the focus of the next two sections.

Consider the “Greedy for Controller” (GC) class of policies for the controller (Section III-B). The policies

in this class conceal the components withk highest states. Intuitively, it seems that some GC policy

minimizes the efficacy of the actor and therefore there always exists some GC policy and some policy

v for the actor such that the pair is a point-wise nash equilibrium. The following lemma shows that this

intuition is unfounded, even when the state processes for different components are mutually independent

and identically distributed (i.e., even when all channels are i.i.d. in cognitive radio networks).

Lemma 3.1:There may not exist any policyu in the class GC, andv ∈ V such that(u, v) is a PBE, even

in systems where the state processes for different components are mutually independent and identically

distributed.

Next, consider a simple class of policies “ Statistically Best for Actor” (SBA) for the actor under which

when its information is~y, it selects a componenti for which Eβ[r(Xi)|~Y = ~y] is the maximum. Again,

different policies in this class use different tie-break rules. Note that the above conditional expectation
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is computed using onlyβ and not the controller’s policy. For example, when the state processes of all

components are mutually independent,K = 2, componenti is in statej with probability pij , r(0) = 0,

a policy in SBA selects a component that is in state1 if the state of a component that is in state1 has

been revealed, and selects a concealed componenti for which pi1 is the maximum. We will usevSBA

to denote an arbitrary policy in this class. It may seem that at least in simple special cases, i.e., when

K = 2, there always exists somevSBA such that (u, vSBA) is a PBE for some policyu of the controller.

The following lemma shows that such intuition is unfounded.

Lemma 3.2:There may not exist a policy pairu ∈ U , vSBA ∈ SBA such that(u, vSBA) is a PBE, even

in systems where the state processes for different components are mutually independent andK = 2.

We prove lemmas 3.1 and 3.2, in appendices A and B respectively, after obtaining some additional

properties of the PBE.

IV. A COMPUTATIONAL FRAMEWORK FOR THEPERFECTBAYESIAN EQUILIBRIUM

The signaling game formulated in the previous section is clearly not a two-person zero-sum game as the

arguments of the controller’s and actor’s utility functions have different dimensions, and hence the sum of

these functions is not well-defined. Nevertheless, owing to the relations between the players’ utilities ((1)

and (2)) we demonstrate that there exists an equivalent zero-sum game with finitely many pure policies

for each player such that a policy pair(u, v) of the controller and actor is a PBE in the original game

if and only if it is a saddle point in the equivalent game (Section IV-A). This equivalence implies that

all PBE policy-pairs are functionally equivalent in the original game, and one such equilibrium can be

determined by solving a pair of linear programs. The number of variables and constraints of this linear

program is however super-exponential inn, and hence the linear program turns out to be computationally

intractable even for moderaten. Nevertheless, using this equivalence, we next develop a framework for

computing the PBE using a computation time which is exponential inn (Section IV-B).

A. An equivalent two-person zero-sum game

Definition 4.1: Consider a game with two players: the controller and the actor. The action of each player

now is to select one of its pure policies in the signaling game described in the previous section. When the

two players select policiesu, v respectively, the utility of the actor under the joint probability distribution

β for the system states is given by

Ru,v
β = Eu,v

β [r(XB)] =
∑

~x∈Kn

β(~x)Eu,v
β [r(xB)| ~X = ~x]. (3)
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where B is the action of the actor under policiesu, v and random system state~X. The actor seeks

to maximize its utility and the controller seeks to minimize the actor’s utility. The game is clearly a

two-person zero-sum game with finitely many pure policies for each player.

For notational simplicity, we use the same notations (e.g., u, v,U ,V, etc.) to denote the individual mixed

policies and the sets of mixed policies in both games. Clearly,

Ru,v
β = −

∑

~x∈Kn

β(~x)Ju,v
c (~x) ∀ u, v, β, (4)

andRu,v
β =

∑

~y∈Ac

Prβ,u(~y)Jβ,u,v
a (~y) ∀ u, v, β. (5)

Thus, although the utilities of the controller and actor in the original game are functions of their

informations, utility of the actor in the above two-person zero sum game is a number, which turns

out to be (a) the negative of the expectation of the utility of the controller in the original game over all

system states (which are the controller’s information) (from equation (4)), and also (b) the expectation

of the utility of the actor in the original game over all possible information vectors of the actor (from

equation (5)).

Definition 4.2: The upper and lower values,Rβ, Rβ of the above two-person zero-sum game are

Rβ = inf
u∈U

sup
v∈V

Ru,v
β , Rβ = sup

v∈V
inf
u∈U

Ru,v
β .

Thus,Rβ, referred to as the min-max utility of the actor, is the minimum possible utility of the actor in

the two-person zero-sum game if it selects its policy so as to maximize its utility while assuming full

knowledge of the controller’s policy. Also,Rβ, referred to as the max-min utility of the actor, is the

maximum possible utility of the actor in the two-person zero-sum game if the controller selects its policy

so as to minimize the actor’s utility while assuming full knowledge of the actor’s policy.

For anyu∗ ∈ U andv∗ ∈ V we have

inf
u∈U

Ru,v∗

β ≤ Rβ ≤ Rβ ≤ sup
v∈V

Ru∗,v
β . (6)

Definition 4.3: If for some u∗ ∈ U and v∗ ∈ V, infu∈U Ru,v∗

β = supv∈V Ru∗,v
β then all inequalities in

(6) hold with equality andu∗ (v∗, respectively) is called the saddle point policy of the controller (actor,

respectively).

If u∗, v∗ are saddle point policies of the controller and actor respectively,infu∈U Ru,v∗

β = Ru∗,v∗

β =

supv∈V Ru∗,v
β , and henceRu∗,v∗

β = Rβ = Rβ. Thus, Ru∗,v∗

β is denoted as the value of the two-person

zero-sum game. Also, if both the controller and the actor selects the saddle-point policies, the actor’s

utility in the two-person zero-sum game equals its max-min and min-max utilities.
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Two-person zero-sum games, with finitely many pure policies for each player, are known to have a saddle

point within the mixed policies (Chapter III.2.4, [6]). The following theorem proves that a pair of policies

constitutes a saddle point for the two-person zero-sum game if and only if it is a PBE of the original

game.

Theorem 4.1:A mixed policy pair(u∗, v∗) is a PBE in the original game if and only if the corresponding

mixed policy pair(u∗, v∗) is a saddle point pair in the two-person zero-sum game.

This theorem holds because of the relation between the utilities of the controller and actor we consider,

that is, since the controller’s utility is the negative of the expected payoff of the actor conditioned on the

controller’s information ((1) and (2)). Such equivalence is not true for arbitrary signaling games, or even

for arbitrary “partial zero-sum games” [1] of which our game is a special case. Partial zero sum games

are those that have a basic zero-sum feature: the sum of utilities for the two players that correspond to a

fixed action-pair and system state, is zero, but are not zero-sum games since the players have different

information. Aumannet. al. [1] showed that such games may lead to equivalent games that are not

zero-sum. Hence, although the transformation that we use is quite standard, the fact that it leads to a

zero-sum game is new and specific to our problem.

Proof: Assume that(u∗, v∗) is a PBE. We show that it is a saddle point pair. From definition 4.3

and since there always exists a saddle point pair in the two-person zero-sum game, the above is indeed

the case if (i)u∗ minimizes Ru,v∗

β and (ii) v∗ maximizesRu∗,v
β . We show that (i) holds. Assume it

does not. Then for someu, Ru,v∗

β < Ru∗,v∗

β . Hence, from (4), there exists some~x ∈ Kn such that

Ju,v∗
c (~x) > Ju∗,v∗

c (~x) and β(~x) > 0. This contradicts the assumption that(u∗, v∗) is a PBE. Thus, (i)

holds. Using (5), it can be similarly shown that (ii) holds as well. Thus,(u∗, v∗) is a saddle point pair.

Conversely, assume that(u∗, v∗) is a saddle point pair. We show that (i) in Definition 3.1 holds. Assume

it does not. Then for some~x and u, Ju,v∗
c (~x) > Ju∗,v∗

c (~x) and β(~x) > 0. Define the policyw for the

controller as the one that coincides withu if the system state is~x and that coincides otherwise withu∗.

ThenRw,v∗

β < Ru∗,v∗

β . This contradicts the assumption that(u∗, v∗) is a saddle point pair. Thus, (i) holds.

It can be similarly shown that (ii) holds as well. Thus,(u∗, v∗) is a PBE.

Theorem 4.1 constitutes the basis for proving the counter-intuitive properties of the PBE described in

Section III-C. For example, for proving lemma 3.1, we show that whenK ≥ 3, no GC policy may

constitute a saddle point for the controller. This is because if the actor knows that the controller is using

a GC policy, it also knows that any component whose state has been concealed is in a state which is

at least as good as that of a component whose state has been revealed, and thus, its best action is to
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select a channel whose state has been concealed. Now, if instead of using a GC policy, the controller

reveals the states of some components whose states are better than those of the components whose states

he conceals, the actor may be confused regarding the choice of the component even when it knows the

controller’s policy, and is therefore more likely to make a poor selection. For example, whenK = 3, if

the controller reveals some components in state1 and conceals some components in state0, the actor

may select a concealed component hoping that it is in state2, and the component may instead be in state

0. This is however not the case whenK = 2 (Observation 2). This is because now the components are

in states1 or 0. Thus, the controller can not confuse the actor by revealing some component that are in

state1, as then the actor will select the revealed component since it knows that no other component can

be in a better state.

We next argue that a PBE exists in this original game, and that although the PBE policy-pairs are

not-necessarily unique, all PBE policy-pairs are however functionally equivalent in the following sense:

Corollary 4.1: A PBE (u∗, v∗) exists in the original game. All PBE policy-pairs in the original game

fetch in the original game (i) the same expected utility over all system states for the controller and (ii)

the same expected utility over all possible information vectors for the actor.

Proof: The first statement follows since the information revealing game is a signaling game with a

finite number of players, policies and system states. Such signaling games, referred to as finite signaling

games, always have at least one PBE [8]2.

The second statement follows from Theorem 4.1 since (i) any PBE policy-pair constitutes a saddle-point

in the equivalent two-person zero-sum game, (ii) any saddle-point policy pair fetches the same utility,

Rβ, for the actor in the equivalent game and (iii) the utility of the actor in the equivalent game under

any policy-pair equals the expectation of the utility of the actor, and the negative of the expectation of

the utility of the controller, in the original game under the same policy pair (equations (4) and (5) and

the discussion immediately after).

Henceforth, we focus on the properties and computations of the saddle point. Also, owing to the

equivalence of the saddle-point policies in the two games and since the utilities of the players in the

original games are vectors, while the utility of the actor in the two-person zero-sum game is a number

which has a simple linear relation with (that is, either positive or negative of, depending on the player

2In our context, this statement also independently follows from Theorem 4.1 and since two-person zero-sum games, with

finitely many pure policies for each player, are known to have a saddle point within the mixed policies (Chapter III.2.4, [6]).
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as discussed after equations (4) and (5)) the expectations of the utilities of both players in the original

game, we will henceforth focus on the utility of the actor in the two-person zero-sum game. Specifically,

whenever we refer to the utility of the actor, we will refer to that in the two-person zero-sum game,

unless stated otherwise.

B. Computation of the saddle point policies

We now investigate the computation of saddle point policies. It is well-known that a saddle point policy

of a player in a two-person zero-sum game can be computed using a linear program whose number

of variables equal the number of its pure policies and the number of constraints equal the number of

pure policies of the other player (Chapter III.2.4, [6]). This may sound quite encouraging at first since

solving linear programs is polynomial in the number of decision variables and constraints. Nevertheless,

the computation is intractable due to the huge number of pure policiesNc of the controller andNa of

the actor, given by

Nc =

(
k∑

i=0

(
n

i

))Kn

and Na = n
Pk

i=0 (n

i)Kn−i

. (7)

(7) is obtained as follows.

• The controller’s information hasKn possible values, and for each such information it can choose
∑k

i=0

(
n
i

)
actions (note that

∑k
i=0

(
n
i

)
is the number of subsets of the components of cardinality at

mostk).

• The actor’s information has
∑k

i=0

(
n
i

)
Kn−i possible values, and for each such information it can

choosen actions.

Simplifying (7), the number of pure policies of the controller (actor, respectively) in the original game

is at least
(
n
k

)
Kn

(n
min(

(
n

bn/2c
)
,Kbn/2c)

, respectively). The computation is therefore intractable even for

moderate values ofn,K.

Exploiting system characteristics, we however compute the saddle point policies using linear programs

whose number of variables and constraints are substantially fewer than those of the linear programs

((Knk)
(
n
k

)
as opposed toNc andNa above) which the generic theory for two-person zero sum games

provide. Specifically, the computation times of the linear programs we develop are polynomials in

(Knk)
(
n
k

)
, and therefore substantially lower than that of the generic linear programs.

Henceforth,u (v, respectively) denotes the probabilities with which the controller (actor, respectively)

select the actions given their informations. Specifically,u(~x)~y (v(~y)i, respectively) is the probability with
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which the controller (actor, respectively) reveals the sub-vector~y ∈ Ac(~x) (selects the componenti ∈ N ,

respectively) when its information is~x (~y, respectively). Each such probability distribution corresponds

to a mixed policy for the respective player. Hence, with slight abuse of notations, we state thatu ∈ U
andv ∈ V.

1) Saddle point for the controller:The following linear program obtains a saddle point policy for the

controller.

LP-CONTROLLER: Min{z(~y),u(~x)~y}
∑

~y∈Ac

z(~y) s.t.

z(~y) ≥
∑

~x:~y∈Ac(~x)

β(~x)r(xi)u(~x)~y

∀ i ∈ N , ~y ∈ Ac∑

~y∈Ac(~x)

u(~x)~y = 1 for all ~x ∈ Kn

u(~x)~y ≥ 0 ∀ ~x ∈ Kn, ~y ∈ Ac(~x)

Theorem 4.2:Any optimum solution{u(~x)~y}~y∈Ac(~x),~x∈Kn of LP-CONTROLLER is a saddle point policy

u∗ for the controller.

We first provide the intuition behind the proof. Note thatz(~y) is the product of (i) the probability that

the controller reveals~y to the actor and (ii) the maximum possible utility of the actor if the controller

uses policyu and reveals~y to the actor. The following theorem will prove that the saddle-point policy of

the controller is the one that minimizes the sum ofz(~y) over the set of all possible information vectors

of the actor. The constraints of the above linear program can be motivated by the following observations.

The right hand side of the first constraint is the product of (i) the probability that the controller reveals

~y to the actor and the (ii) utility of the actor if it selects componenti and the controller uses policyu

and reveals~y to the actor. From the characterization ofz(~y) in the second sentence of this paragraph,

z(~y) must be at least the above quantity for each componenti. Note that{u(~x)~y} satisfies the last two

constraints of the above linear program if and only if it is a policy of the controller. The formal proof

follows.

Proof: From (5), for anyu ∈ U , v ∈ V, β,

Ru,v
β =

∑

~y∈Ac

Prβ,u(~y)Eu,v
β [r(XB)|~Y = ~y].

Given u ∈ U , consider a policyvu ∈ V such that for each~y ∈ Ac, vu(~y)j = 1 for somej such that

Eu
β [r(Xj)|~Y = ~y] = maxi∈N Eu

β [r(Xi)|~Y = ~y], and vu(~y)j = 0, for other values ofj (i.e., undervu

w.p. 1 B is a componenti that attains the above maximum and hencevu is the actor’s best response to
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controller’s policyu). Note that

max
v∈V

Eu,v
β [r(XB)|~Y = ~y] = max

i∈N
Eu

β [r(Xi)|~Y = ~y] = Eu,vu

β [r(XB)|~Y = ~y], ∀ ~y ∈ Ac.

Thus, sup
v∈V

Ru,v
β =

∑

~y∈Ac

Prβ,u(~Y = ~y)max
i∈N

Eu
β [r(Xi)|~Y = ~y] = Ru,vu

β . (8)

Thus,Rβ = inf
u∈U

Ru,vu

β . (9)

Next, Eu
β [r(Xi)|~Y = ~y] =

∑

~x∈Kn

Eu
β [r(Xi)|~Y = ~y, ~X = ~x]Prβ,u( ~X = ~x|~Y = ~y)

=
∑

~x∈Kn

r(xi)Prβ,u(~Y = ~y| ~X = ~x)Prβ,u( ~X = ~x)/Prβ,u(~Y = ~y)

=
∑

~x∈Kn

r(xi)u(~x)~yβ(~x)/Prβ,u(~Y = ~y).

Thus,Eu
β [r(Xi)|~Y = ~y]Prβ,u(~Y = ~y) =

∑

~x∈Kn

r(xi)u(~x)~yβ(~x).

Thus, from (8) and (9),

Ru,vu

β =
∑

~y∈Ac

max
i∈N

∑

~x∈Kn

r(xi)u(~x)~yβ(~x)

andRβ = inf
u∈U

∑

~y∈Ac

max
i∈N

∑

~x∈Kn

r(xi)u(~x)~yβ(~x).

Now, consider a feasible solution(u, z) of LP-CONTROLLER, such thatz is chosen so as to minimize

the value of the objective function subject to choosingu. The value of the objective function isRu,vu

β

for any such pair.

Thus, if uO is the optimum solution ofLP-CONTROLLER, Rβ = R
uO,vuO

β . Thus, from (8),Rβ =

supv∈V RuO,v
β . Now, since a saddle point policy pair always exists, it follows from Definition 4.3 that

any u′ ∈ U for which Rβ = supv∈V Ru′,v
β is a saddle point policy of the controller. Thus,uO is a saddle

point policy of the controller.

The following corollary proves an intuitive property of saddle point policies of the controller, and will

help reduce the number of variables ofLP-CONTROLLER.

Corollary 4.2: There exists a saddle point policyu∗ of the controller which always conceals the states

of k components.

Proof: Consider an optimal solution(u, z) of LP-CONTROLLER which conceals the states of

fewer thank components with positive probability for one or more system states, that is, there exists

~x ∈ Kn, ~y ∈ Ac(~x) such thatu(~x)~y > 0 and |a(~y)| < k (recall thata(~y) is the set of components the
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controller conceals when the actor’s information is~y). Since (u, z) is an optimal solution,z(~y′) =

maxi∈N
∑

~x′:~y′∈Ac(~x′) β(~x′)r(x′i)u(~x′)~y′ ∀ ~y′ ∈ Ac. We will show that there exists another optimal

solution of LP-CONTROLLER which always conceals the states ofk components.

Consider a sub-vector of~y, ~w, such that|a(~w)| = k. Consider a new feasible solution(u′, z′) of

LP-CONTROLLER such that for each~x′ ∈ Kn, ~y′ ∈ Ac(~x′),

u′(~x′)~y′ =





u(~x′)~y + u(~x′)~w if ~y′ = ~w, ~y ∈ Ac(~x′)

0 if ~y′ = ~y,

u(~x′)~y′ otherwise.

(10)

In words,u′ is the same asu except that it reveals~w to the actor wheneveru reveals~y to the actor. Let,

z′(~y′) = maxi∈N
∑

~x′:~y′∈Ac(~x′) β(~x′)r(x′i)u
′(~x′)~y′ ∀ ~y′ ∈ Ac.

Here,(u′, z′) is feasible since~w ∈ Ac(~x′) for all ~x′ such that~y ∈ Ac(~x′).

Also,

{~y′ : u′(~x′)~y′ > 0 for some~x′ ∈ Kn, and |a(~y′)| < k}

⊂ {~y′ : u(~x′)~y′ > 0 for some~x′ ∈ Kn, and |a(~y′)| < k}. (11)

Thus, u′ conceals the states ofk − 1 or fewer components with positive probability for strictly fewer

system states thanu does.

Clearly, z′(~y′) = z(~y′) for all ~y′ 6∈ {~y, ~w}, z′(~y) = 0 and z′(~w) ≤ z(~w) + z(~y). Thus, the value of the

objective function under(u′, z′) is not higher than that under(u, z). Thus, (u′, z′) is also an optimal

solution of LP-CONTROLLER.

Thus, due to (11), repeating this process we obtain an optimal solution(u∗, z∗) of LP-CONTROLLER

such that{~y′ : u∗(~x′)~y′ > 0 for some~x′ ∈ Kn, anda(~y′) < k} = φ, i.e., u∗ always conceals the states

of k components. The result follows.

Now, consider the following definition.

Definition 4.4: Let Ac,k = {~y : |a(~y)| = k, ~y ∈ Ac} andAc,k(~x) = Ac,k ∩ Ac(~x).

Due to Corollary 4.2, we only need to consider the variablesz(~y) such that|a(~y)| = k. Also, note that

for any ~y and~x such that~y ∈ Ac(~x), xi = yi for any i ∈ N \ a(~y). Thus, LP-CONTROLLER can be

described as follows.
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LP-CONTROLLER: Min{z(~y),u(~x)~y}
∑

~y∈Ac

z(~y) s.t.

z(~y) ≥ max
i∈N\a(~y)

r(yi)
∑

~x:~y∈Ac(~x)

β(~x)u(~x)~y, ∀ ~y ∈ Ac,k

z(~y) ≥
∑

~x:~y∈Ac(~x)

β(~x)r(xi)u(~x)~y, ∀ i ∈ a(~y), ~y ∈ Ac,k,

∑

~y∈Ac,k(~x)

u(~x)~y = 1 ∀~x ∈ Kn

u(~x)~y ≥ 0 ∀ ~x ∈ Kn, ~y ∈ Ac,k(~x)

Here, the right hand side of the first constraint is the product of (i) the probability that the controller

reveals~y to the actor and (ii) the utility of the actor if it selects the revealed component that has the

highest state and the controller uses policyu and reveals~y to the actor. The right hand side of the second

constraint is the product of (i) the probability that the controller reveals~y to the actor and (ii) the utility

of the actor if it selects concealed componenti and the controller uses policyu and reveals~y to the

actor.

Henceforth, we will use this description ofLP-CONTROLLER. Note thatLP-CONTROLLERhasO(Kn
(
n
k

)
)

variables andO(k
(
n
k

)
Kn) constraints. Thus, the computation time of this linear program is polynomial

in Knk
(
n
k

)
.

2) Saddle point for the actor:The following linear program obtains a saddle point policy for the actor.

LP-ACTOR: Max{z(~x), v(~y)i}
∑

~x∈Kn

β(~x)z(~x)

z(~x) ≤
∑

i∈N
v(~y)ir(xi) ∀~y ∈ Ac(~x), ~x ∈ Kn

v(~y)j ≥ 0 ∀ ~y, j ∈ N
∑

j∈N
v(~y)j = 1 ∀ ~y ∈ Ac

Theorem 4.3:The optimum solution{v(~y)i}i∈N ,~y∈Ac
of LP-ACTOR is a saddle point policyv∗ for the

actor.

We first provide the intuition behind the proof. Note thatz(~x) is the minimum possible utility of the

actor if it uses policyv and the state of the system is~x. Since ~x is a random variable, so isz(~x).

The following theorem will prove that the saddle-point policy of the actor is the one that maximizes

the expectation ofz(~x) over all possible system states~x. The constraints of the above linear program

can be motivated by the following observations. The right hand side of the first constraint is the actor’s

utility when the system state is~x and the actor’s information is~y and the actor uses the policyv. From

the characterization ofz(~x) in the second sentence of this paragraph,z(~x) must be at most the above
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quantity for each possible information of the actor,~y. This is because the controller can reveal any such

~y to the actor. Note thatv satisfies the last two constraints of the above linear program if and only if it

is a policy of the actor. The formal proof follows.

Proof: From (4), for anyu ∈ U , v ∈ V, β,

Ru,v
β =

∑

~x∈Kn

β(~x)Eu,v
β [r(xB)| ~X = ~x] =

∑

~x∈Kn

β(~x)
∑

~y∈Ac(~x)

u(~x)~y
∑

i∈N
v(~y)ir(xi).

Consider a policyuv ∈ U such that for each~x ∈ Kn, uv(~x)~y = 1 for some~y ∈ Ac(~x) such that
∑

i∈N v(~y)ir(xi) = min~t∈Ac(~x)

∑
i∈N v(~t)ir(xi) anduv(~x)~y = 0, for all other~y ∈ Ac(~x).

Sinceu(~x) is a probability distribution onAc(~x),

inf
u∈U

∑

~y∈Ac(~x)

u(~x)~y
∑

i∈N
v(~y)ir(xi) = min

~y∈Ac(~x)

∑

i∈N
v(~y)ir(xi) =

∑

~y∈Ac(~x)

uv(~x)~y
∑

i∈N
v(~y)ir(xi).

Thus, inf
u∈U

Ru,v
β =

∑

~x∈Kn

β(~x) min
~y∈Ac(~x)

∑

i∈N
v(~y)ir(xi) = Ruv,v

β (12)

(i.e., uv is the controller’s best response to actor’sv). Now, Rβ = supv∈V Ruv,v
β . Thus, from (12),

Rβ = sup
v∈V

∑

~x∈Kn

β(~x) min
~y∈Ac(~x)

∑

i∈N
v(~y)ir(xi).

Now, consider a feasible solution(v, z) of LP-ACTOR, such thatz is chosen so as to maximize the

value of the objective function subject to choosingv. The value of the objective function isRuv,v
β for

any such pair. Thus, ifvO is the optimum solution ofLP-ACTOR, Rβ = R
uvO ,vO

β . Thus, from (12),

Rβ = infu∈U Ru,vO

β . Now, since a saddle point policy pair always exists, it follows from Definition 4.3

that anyv′ ∈ V for which Rβ = infu∈U Ru,v′

β is a saddle point policy of the actor. Thus,vO is a saddle

point policy of the actor.

Definition 4.5: A policy v ∈ V of an actor is said to besensible if it never selects a component whose

state has been revealed and which is in a state that is lower than the highest state among the states of

all components whose states have been revealed (i.e.,v(~y)i = 0 if i 6∈ a(~y) andyi 6= maxj∈N\a(~y) yj).

Observation 1:Note thatRu,v1

β = Ru,v2

β for any u ∈ U , v1, v2 ∈ V such thatv1(~y)i = v2(~y)i for any

i ∈ a(~y) and
∑

i:i6∈a(~y),yi=j v1(~y)i =
∑

i:i6∈a(~y),yi=j v2(~y)i for eachj ∈ {0, . . . , K − 1}.

The following corollary proves an intuitive property of saddle point policies of the actor, and will help

reduce the number of variables ofLP-ACTOR.

Corollary 4.3: There exists a sensible saddle point policyv∗ of the actor.
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Proof: For anyi ∈ N \ a(~y), xi = yi if ~y ∈ Ac(~x). Thus, the first constraint inLP-ACTOR can be

written asz(~x) ≤ γ(v, ~y)+
∑

i∈a(~y) v(~y)ir(xi) for all ~y ∈ Ac(~x), whereγ(v, ~y) =
∑

i∈N\a(~y) v(~y)ir(yi).

Given a feasible solutionv, consider another feasible solutionv′ such that for each~y ∈ Ac,

v′(~y)i =





v(~y)i if i ∈ a(~y),
∑

j∈N\a(~y) v(~y)j for somei s.t. i ∈ N \ a(~y) andyi = maxj∈N\a(~y) yj ,

0 otherwise.

Note thatv′ is a sensible policy, and the maximum value of the objective function forv (the maximization

is w.r.t. z) is not higher than that forv′. This is becauseγ(v′, ~y) ≥ γ(v, ~y) for each~y ∈ A and
∑

i∈N\a(~y) v′(~y)ir(xi) =
∑

i∈N\a(~y) v(~y)ir(xi) for each~x, ~y. The result follows.

Due to Corollaries 4.2 and 4.3 and the above observation, we only consider sensible saddle point policies

v for the actor and variablesv(~y) such that|a(~y)| = k and need to determine the componentsv(~y)j for

j ∈ a(~y). For any sensible saddle point policyv of the actor,

∑

i∈N
v(~y)ir(xi) =


1−

∑

i∈a(~y)

v(~y)i


 max

i∈N\a(~y)
r(yi) +

∑

i∈a(~y)

v(~y)ir(xi),

where the first component in the r.h.s arises due to the actor’s selection of revealed components with the

highest state only under such a policy and the second arises due to the actor’s selection of concealed

components. Thus, the r.h.s of the first component ofLP-ACTOR can be modified, and the overall linear

program can be re-written as follows.

LP-ACTOR: Max{z(~x), v(~y)i}
∑

~x∈Kn

β(~x)z(~x)

z(~x) ≤

1−

∑

i∈a(~y)

v(~y)i


 max

i∈N\a(~y)
r(yi)

+
∑

i∈a(~y)

v(~y)ir(xi) ∀ ~y ∈ Ac,k(~x), ~x ∈ Kn

v(~y)j ≥ 0, ∀ j ∈ a(~y), ~y ∈ Ac,k∑

j∈a(~y)

v(~y)j ≤ 1, ∀ ~y ∈ Ac,k

Henceforth, we consider the above description forLP-ACTOR. Thus,LP-ACTOR hasO(Knk
(
n
k

)
) vari-

ables andO(Knk
(
n
k

)
) constraints. Thus, the computation time ofLP-ACTOR is polynomial in(Knk)

(
n
k

)
.
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V. PERFORMANCE GUARANTEES USING POLYNOMIAL TIME COMPUTATION

We have proved that the saddle point policies can be obtained by solving linear programs whose number

of variables is exponential inn and polynomial inK. Using fast algorithms for solving linear programs,

the saddle point policies can now be computed for moderate values ofn but the computation will

still be intractable for largen. We therefore focus on obtaining provable performance guarantees using

polynomial time computable policies. We first consider the important special case where the system

consists of few classes of components such that all components in each class are statistically identical

and the number of statesK is small (note that each class may have a large number of components and

thereforen can be large). We prove that the saddle point policies can be computed in polynomial time

in such systems (Section V-A). Specifically, when the system consists ofM classes of components, the

saddle point policies can be obtained by solving linear programs withO(n2KM ) variables andO(n2KM )

constraints for arbitraryn,K, k, M. Thus, when all components are statistically identical (M = 1), the

computation time is polynomial inn, but exponential inK (note thatK is small in most systems). The

result is interesting given that some intuitive policies do not constitute saddle point policies even when all

components are statistically identical (Lemma 3.1). We next show that provable approximation guarantees

can be obtained in arbitrary systems using some simple policies that can be computed in almost linear

time (eitherO(n) or O(nlogn)) time (Section V-B).

A. Polynomial time computation of saddle point policies in systems with constant number of classes of

components and constant number of states

We first formally define the notion of classes of components and motivate the investigation of the special

case where the system consists of a few classes and few states for the components. We subsequently

present a key technical property (Theorem 5.1) for systems with arbitrary number of classes of components

and states (Section V-A.1). Using this property and some additional terminologies (Section V-A.2), we

show how saddle point policies for the controller and actor can be computed in polynomial time when

K,M are constant (Sections V-A.3 and V-A.4).

Definition 5.1: Let ~xi,j ∈ Kn be obtained by interchanging theith and thejth components of~x ∈ Kn.

Let ~yi,j ∈ Ac be obtained as follows: (a) ifi, j 6∈ a(~y), then a(~yi,j) = a(~y), yi,j
i = yj , yi,j

j = yi,

yi,j
l = yl, l 6∈ a(~y)∪ {i, j} (b) if i ∈ a(~y), j 6∈ a(~y), thena(~yi,j) = a(~y)∪ {j} \ {i}, yi,j

i = yj , yi,j
l = yl,

l 6∈ a(~yi,j) ∪ {i}, (c) if i 6∈ a(~y), j ∈ a(~y), then a(~yi,j) = a(~y) ∪ {i} \ {j}, yi,j
j = yi, yi,j

l = yl,

l 6∈ a(~yi,j) ∪ {j}, (d) ~yi,j = ~y, otherwise.
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Definition 5.2: Componentsi, j are said to be in the same class ifβ(~x) = β(~xi,j) for all ~x ∈ Kn.

Note that the membership in the same class is an equivalence relation and hence the classes constitute

a partition ofN . Let the system consist ofM classes, where1 ≤ M ≤ n. The classes are numbered as

1, . . . ,M , andni components are in classi where
∑M

i=1 ni = n. Let a(~y, i) be the set of components in

classi that have been concealed when the actor’s information is~y. Note thata(~y) = ∪M
i=1a(~y, i).

Note thatM can be determined fromβ and hence is also known to both players.

Several systems have large number of components but small or moderate number of classes of components

and states. For example, cognitive radio networks may have large number of channels, but often, many of

these channels are statistically identical, and hence the number of classes of channels is often substantially

less than the number of channels. Also, the total number of states of these channels is likely to be moderate

as well. Next, consider the gambling example (Section I-B). The cards that have the same color constitute

the same class as the distributions of the random numbers are statistically identical for all cards of the

same color. Usually, the number of colors, or more generally number of types of cards (e.g., aces, jokers,

etc.) is small although the number of cards can be large.

We first present a key property of systems with arbitrary number of classes of components.

1) Symmetry among components in the same class:

Definition 5.3: Let u, v be behavioral policies of the controller and actor respectively andi, j ∈ N . The

mirror image w.r.t(i, j) of the policy u (v, respectively),ui,j ∈ U (vi,j ∈ V, respectively) is a policy

obtained as follows:ui,j(~x)~y = u(~xi,j)~yi,j (vi,j(~y)i = v(~yi,j)j andvi,j(~y)j = v(~yi,j)i, respectively).

Intuitively, ui,j (vi,j , respectively) treati as j and j as i.

Definition 5.4: A policy u ∈ U (v ∈ V, respectively) is said to be symmetric w.r.t.(i, j) if u = ui,j

(v = vi,j , respectively). A policyu ∈ U (v ∈ V, respectively) is said to be symmetric if it is symmetric

w.r.t. each pair of components that are in the same class. LetUs ⊂ U andVs ⊂ V be the classes of all

symmetric policies of the controller and actor respectively.

The following theorem shows the existence of a symmetric saddle point policy for each player.

Theorem 5.1:There exists a symmetric policyu ∈ Us (v ∈ Vs, respectively) for the controller (actor,

respectively) such thatu (v, respectively) is a saddle point policy of the controller (actor, respectively).

Proof: We prove the theorem for the controller, and the proof for the actor is similar. LetSu ⊆ N×N
be the set of tuples(a, b) such thata, b are in the same class andu is not symmetric w.r.t.a, b. From

the definition of a symmetric policy,u is symmetric (i.e.,u ∈ Us), iff Su = φ. From Theorem 4.2, it is
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sufficient to prove that if there exists an optimal solutionu of LP-CONTROLLER such thatSu 6= φ, there

exists an optimal solution̂u of LP-CONTROLLER such thatS û ⊂ Su. Note that such âu is symmetric

w.r.t. a strictly larger set of tuples of components in the same class. Thus, repeating the process, we can

obtain an optimal solution which is symmetric w.r.t. all components in the same class, and is therefore,

a symmetric optimal solution by definition.

Thus, we now consideru an optimal solution ofLP-CONTROLLER such thatSu 6= φ, and set to obtain

an optimal solutionû of LP-CONTROLLER such thatS û ⊂ Su. Then ua,b is an optimal solution of

LP-CONTROLLER for any pair of componentsa, b that are in the same class. Now, consider an arbitrary

pair of componentsi, j ∈ Su, and a policyû ∈ U such thatû(~x)~y = u(~x)~y+ui,j(~x)~y

2 for each~x ∈ Kn

and ~y ∈ Ac(~x). In other words,û is the same asu except that it treats componenti (j respectively)

asu treats componentj (i respectively)50% of the time. Now, sincêu is a linear combination of two

optimal solutions ofLP-CONTROLLER, u andui,j , û is an optimal solution ofLP-CONTROLLER. Next,

ûi,j(~x)~y = ui,j(~x)~y+u(~x)~y

2 = û(~x)~y for each~x ∈ Kn and ~y ∈ Ac(~x). Thus, ûi,j = û, and hencêu is

symmetric w.r.t.(i, j). Thus, (i, j) 6∈ S û. Also, note thatui,j , and clearlyu, are symmetric w.r.t. all

tuples(a, b) 6∈ Su. Thus,û is clearly symmetric w.r.t. all such tuples, and no such tuple belongs inS û.

Thus,S û ⊆ Su \ {(i, j)}. The result follows.

Using Theorem 5.1, we show that the computation time forLP-CONTROLLER and LP-ACTOR can be

substantially reduced whenM andK are small.

2) Additional Terminologies:

Definition 5.5: Let l(~x) be a matrix withM rows andK columns and entries in0, . . . , n such thatl(~x)i,j

is the number of components of~x that are in classi and statej. Let L = {l : l(~x) = l, ~x ∈ Kn}. Let

m(~y) be a matrix withM rows andK columns with entries in0, . . . , n− |a(~y)| such thatm(~y)i,j is the

number of components of~y that are in classi and statej. Let M~x = {m : m(~y) = m, ~y ∈ Ac,k(~x)}.
Note thatM~x1 = M~x2 if l(~x1) = l(~x2). Let Ml = ∪~x∈Kn,l(~x)=lM~x, andM = ∪l∈LMl.

With slight abuse of notation, we have usedl,m to denote both the functions and the values of the

functions as well - the implication of specific usages are clear from the context. We will use~l, ~m instead

of ~x, ~y so as to substantially reduce the number of variables and constraints ofLP-CONTROLLER.

Note that (a)|{~y : m(~y) = m, ~y ∈ Ac,k(~x)}| depends on~x only throughl(~x). and (b)|{~x : l(~x) = l, ~y ∈
Ac(~x)}| depends on~y only throughm(~y). Thus, we can introduce the following definitions.

Definition 5.6: Let Θ1(l,m) denote for one (representative)~x such thatl(~x) = l the number of~y

in Ac,k(~x) such thatm(~y) = m. Let Θ2(l,m) denote the number of system state vectors~x such
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that (a) l(~x) = l and (b)~y ∈ Ac(~x) for one (representative)~y such thatm(~y) = m. Let Θ3(m) =

|~y ∈ Ac,k : m(~y) = m|, andΘ4(l) = |~x ∈ Kn : l(~x) = l|.

Note that bothΘ2(l,m)Θ3(m) and Θ1(l,m)Θ4(l) constitute the number of tuples(~x, ~y) such that

~x ∈ Kn, ~y ∈ Ac,k(~x) and l(~x) = l,m(~y) = m. Thus,

Θ2(l,m)Θ3(m) = Θ1(l,m)Θ4(l)

Definition 5.7: Let

R1(m) = max
j:
PM

i=1 mi,j>0
r(j),

andR2(l,m, i) =
K−1∑

j=0

r(j)
li,j −mi,j

ni −
∑K−1

j=0 mi,j

.

Note thatR1(m) is the expected reward the actor obtains when its information is~y such thatm(~y) = m

and it selects a component whose state has been revealed and whose state is the highest among those

of the components whose states have been revealed. Also,R2(l,m, i) is the expected reward the actor

obtains when its information is~y such thatm(~y) = m, the system state is~x such thatl(~x) = l and it

selects a component of classi uniformly amonga(~y, i).

Definition 5.8: Let C(m), 1 ≤ |C(m)| ≤ min(k,M), be the set of classes for which at least one

component’s state has been concealed when the actor’s information~y is such thatm(~y) = m. Let

Φ(m, i) be the number of components of classi that have been concealed when the actor’s information

~y is such thatm(~y) = m. Note thatΦ(m, i) =
∑K−1

j=0 mi,j , and |C(m)| = ∑M
i=1 min (Φ(m, i), 1) .

Finally, sinceβ(~x) = β(~xi,j) for all i, j that are in the same class,β(~x1) = β(~x2) if l(~x1) = l(~x2).

Definition 5.9: Let β′(l) denoteβ(~x) for some (representative)~x ∈ Kn such thatl(~x1) = l, andβ′′(l) =

Θ4(l)β′(l).

Thus,β′′(l) is the probability that the system is in a state~x such thatl(~x) = l.

3) Polynomial time computation of saddle point policy of controller for constantK, M : We now consider

the simplification ofLP-CONTROLLER.

Note thatu is symmetric if and only ifu(~x1)~y1 = u(~x2)~y2 whenever the following conditions hold: (a)

l(~x1) = l(~x2), (b) m(~y1) = m(~y2) (c) ~y1 ∈ Ac(~x1), ~y2 ∈ Ac(~x2). Let u′(l)m denoteu(~x)~y for some

(representative)~x ∈ Kn, ~y ∈ Ac,k(~x) such thatl(~x) = l, m(~y) = m. Thus, eachu ∈ Us is uniquely

described byus(l)m whereus(l)m = Θ1(l,m)u′(l)m. Also, {us(l)m}m∈Ml,l∈L is a symmetric policy

for the controller if and only if
∑

m∈Ml
u′(l)m = 1 for all l ∈ L andu(l)m ≥ 0 ∀ m ∈Ml, l ∈ L.
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We now stateLP-CONTROLLER-CLASS that computes{us(l)m} for a symmetric saddle point policy of

the controller.

LP-CONTROLLER-CLASS: Min{η(m),u′(l)m}
∑

m∈M
η(m) s.t.

∀ m ∈M, η(m) ≥ R1(m)
∑

l:m∈Ml

β′′(l)us(l)m

∀ m ∈M, i ∈ C(m) η(m) ≥
∑

l:m∈Ml

β′′(l)us(l)mR2(l,m, i)

∑
m∈Ml

u′(l)m = 1 for all l ∈ L
u′(l)m ≥ 0 ∀ m ∈Ml, l ∈ L.

(13)

Theorem 5.2:The optimum solution{us(l)m}m∈Ml,l∈L of LP-CONTROLLER-CLASS is a symmetric

saddle point policy for the controller.

We first provide the intuition behind the proof. Note that since we focus on computing a symmetric saddle

point policy of the controller, and since the components in the same class are statistically identical, we

can consider the controller’s and actor’s information as~l, ~m instead of~x, ~y respectively. Now,η(m) is

the product of the probability that the controller reveals~m to the actor and the maximum possible utility

of the actor if the controller uses policyus and reveals~m to the actor. Thus,η(m) plays the role ofz(~y)

in LP-CONTROLLER (refer to the paragraphs just after the statement of Theorem 4.2 and the formulation

of LP-CONTROLLER at the end of Section IV-B.1). Now,LP-CONTROLLER-CLASS seeks to compute the

saddle-point policyus by minimizing the sum ofη(~m) over the set of all possible information vectors

~m of the actor, just asLP-CONTROLLER seeks to compute the saddle-point policyu of the controller by

minimizing the sum ofz(~y) over the set of all possible information vectors~y of the actor. The constraints

of LP-CONTROLLER-CLASS can be motivated by relating them to those ofLP-CONTROLLER formulated

just before Section IV-B.2. The right hand side of the first constraint ofLP-CONTROLLER-CLASS is the

product of (i) the probability that the controller reveals~m to the actor and (ii) the utility of the actor if

it selects the revealed component with the highest state and the controller uses policyus and reveals~m

to the actor. The right hand side of the second constraint ofLP-CONTROLLER-CLASS is the product of

(i) the probability that the controller reveals~m to the actor and (ii) the utility of the actor if it selects a

concealed componenti and the controller uses policyus and reveals~m to the actor. Both of these are

analogous with the r.h.s. of the corresponding constraints ofLP-CONTROLLER. Again, analogous to the

last two constraints ofLP-CONTROLLER, us satisfies the last two constraints ofLP-CONTROLLER-CLASS
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if and only if it is a policy of the controller. The formal proof is relegated to appendix C.

Thus,LP-CONTROLLER-CLASS hasO(n2KM ) variables andO(n2KM ) constraints. Thus, the computa-

tion time ofLP-CONTROLLER-CLASS is polynomial inn and exponential inK,M , and hence polynomial

in n if K, M are constants. The computation time can be reduced further forK = 2. We first observe

the following.

Observation 2:For K = 2, there exists a saddle point policy for the controller in the GC class.

Recall that the ties can be broken by policies in the GC class in several different ways and thus all members

in the GC class need not be saddle points; a saddle point policy can be computed if the appropriate tie-

break policy is determined. Also, for any policy of the controller, there exists a best response policy of

the actor that selects a component whose state is revealed and which is in state1 whenevermi,1 > 0 for

somei. Due to these observations,LP-CONTROLLER-CLASS needs to considerη(m),us(l)m only for

l,m such that
∑M

i=1 li,1 ≤ k, mi,1 = 0 ∀ i ∈ {1, . . . ,M}. Thus, LP-CONTROLLER-CLASS hasO(kM )

variables andO(kM ) constraints in this case.

4) Polynomial time computation of saddle point policy of actor for constantK, M : We now consider the

computation of a symmetric saddle point policy for the actor. Note that the actor’s policyv is symmetric

if and only if v(~y1)i = v(~y2)j whenever the following conditions hold: (a)m(~y1) = m(~y2) (b) i, j are

in the same class, and (b) either (i)i ∈ a(~y1), j ∈ a(~y2), or (ii) i 6∈ a(~y1), j 6∈ a(~y2), y1
i = y2

j .

Consider am ∈ M and a classi ∈ C(m). Then, letv′(m)i be the probability with which a symmetric

policy v selects one (representative) component, sayj, that is in classi and has been concealed, when

the actor’s information state is a (representative)~y such thatm(~y) = m (i.e., v′(m)i = v(~y)j). Let

vs(m)j = Φ(m, j)v′(m)j , j ∈ C(m), be the total probability with which a symmetric policyv ∈ Vs

of the actor selects a component which is in classj and whose state has been concealed, when the

actor’s information state is a (representative)~y such thatm(~y) = m. Thus,v selects a component whose

state has been revealed with probability1 −∑
j∈C(m(~y)) vs(m (~y))j . From Corollary 4.3 it is sufficient

to consider only sensible policies. Note thatvs(m)j , j ∈ C(m) uniquely specifies a symmetric sensible

saddle point policyv ∈ Vs for the actor. Also, any{vs(m)j}m∈M,j∈C(m) that satisfiesvs(m)i ≥ 0 ∀ i ∈
C(m),m ∈M,

∑
i∈C(m) vs(m)i ≤ 1 ∀ m ∈M provides a symmetric, sensible policy for the actor.

We prove that the following linear program,LP-ACTOR-CLASS, computes s symmetric, sensible saddle

point policy for the actor.
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LP-ACTOR-CLASS: Max{η(l),vs(m)i}
∑

l∈L
β′′(l)η(l) s.t.

η(l) ≤

1−

∑

i∈C(m)

vs(m)iR1(m)


 +

∑

i∈C(m)

vs(m)iR2(l,m, i)

∀ m ∈Ml, l ∈ L
vs(m)i ≥ 0 ∀ i ∈ C(m),m ∈M

∑
i∈C(m) vs(m)i ≤ 1 ∀ m ∈M

Theorem 5.3:The optimum solution{vs(m)j}m∈M,j∈C(m) of LP-ACTOR-CLASS is a symmetric saddle

point policy for the actor.

We first provide the intuition behind the proof. Note that since we focus on computing a symmetric

saddle point policy of the actor, and since the components in the same class are statistically identical,

we can consider the controller’s and actor’s information as~l, ~m instead of~x, ~y respectively. Now,η(l)

is the minimum possible utility of the actor if it uses policyv and the state of the system is~l. Thus,

η(l) plays the role ofz(~x) in LP-ACTOR (refer to the paragraphs just after the statement of Theorem 4.3

and just before the formulation ofLP-ACTOR at the end of Section IV-B.2). Now,LP-ACTOR-CLASS

seeks to compute the saddle-point policyvs by maximizing the sum ofη(~l) over the set of all possible

system states~l, just asLP-ACTOR seeks to compute the actor’s saddle-point policyv by minimizing the

sum of z(~x) over the set of all possible system states~x. The constraints ofLP-ACTOR-CLASS can be

motivated by relating them to those ofLP-ACTOR formulated at the end of Section IV-B.2. The right

hand side of the first constraint ofLP-ACTOR-CLASS is the actor’s utility when the system state is~l

and the actor’s information is~m and the actor uses the policyv. This is analogous with the r.h.s. of the

first constraint ofLP-ACTOR. Again, analogous to the last two constraints ofLP-ACTOR, vs satisfies the

last two constraints ofLP-ACTOR-CLASS if and only if it is a policy of the actor. The formal proof is

relegated to appendix D.

LP-ACTOR-CLASS hasO(MnKM ) variables andO(n2KM ) constraints. Thus, the computation time of

LP-ACTOR-CLASS is polynomial inn and exponential inK,M.

Observation 3:For K = 2, there exists a symmetric sensible saddle point policy of the actorv ∈ Vs such

that
∑

i∈C(m) vs(m)i = 1 if all revealed components are in state0 and
∑

i∈C(m) vs(m)i = 0 otherwise.

Also, whenK = 2, for any policy of the actor, there exists a best response for the controller that is

a GC policy (with a tie-break rule that may depend on the actor’s policy). Using these observations,

when K = 2, the number of variables and constraints ofLP-CONTROLLER-CLASS may be reduced to

O(MkM ) andO(kM ) respectively.



32

B. Approximation guarantees using polynomial time computable policies for arbitrary systems

Saddle point policies can be computed in polynomial time when eithern is a constant (usingLP-

CONTROLLER or LP-ACTOR) or K, M are constants (usingLP-CONTROLLER-CLASS or LP-ACTOR-

CLASS). The computation however becomes intractable when two or more of these parameters are large.

We first develop notions of approximations for saddle-point policies. We next prove that simple linear

(O(n)) or almost linear (O(nlogn)) time computable policies can provably approximate the saddle point

policies as per the above notions. We also show that the approximation guarantees are tight, which in

turn, completely characterize the performances of these policies. The policies we consider are intuitively

appealing, and simple to implement, and hence may be of independent interest.

We first develop notions for approximations of saddle-point policies. Recall that when both players use

saddle-point policies, the utility of the actor isRu∗,v∗

β which in turn equals the max-min and the min-max

utilities of the actors. Since the actor seeks to maximize its utility, a policy of the actor may be considered

a κ−approximation of its saddle-point policy, if the actor is guaranteed to obtain a utility that is at least

Ru∗,v∗

β /κ irrespective of the policy used by the controller. Similarly since the controller seeks to minimize

the actor’s utility, a policy of the controller may be considered aκ−approximation of its saddle-point

policy, if this policy ensures that the actor’s utility is at mostκRu∗,v∗

β irrespective of the policy used by

the actor.

We show that there exists aO(n) time computable(min(k, M) + 1)−approximation of the saddle-point

policy for the actor. This policy, which is referred to as UA (“uniform for actor”) and which is a variation

of the UCA policy described earlier, selects uniformly among the concealed components and the revealed

component with the highest state. Specifically, irrespective of the policy of the controller, the utility of

the actor with this policy is at least1/(min(k,M)+1) times the max-min utility of the actor for arbitrary

n,K, k, M (Theorem 5.4, Section V-B.1). Thus, the worst case approximation guarantee of this policy

is (k + 1) (attained for largeM ), and the approximation guarantee when all components are statistically

identical (M = 1) is 2. Also, the approximation improves with decrease inM andk. We also show that

this approximation bound is tight in that given anyM and ε > 0, there exists a system withK = 3

which satisfies the following property: if the actor uses this policy, the controller can select its policy

so as to upper bound the actor’s utility by1/(min(k, M) + 1) times the actor’s max-min utility plusε

(Section V-B.1). Nevertheless, our extensive simulations reveal that for large ranges ofn,K, k, M, β, the

minimum utility attained by the actor when he uses this policy is at least2/3 of the max-min utility of

the actor (Section V-B.1).
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We next show that there exists aO(nlogn) time computablek + 1-approximation of the saddle-point

policy for the controller. This policy is referred to as UGC (a GC policy that breaks ties randomly and

uniformly). Specifically, irrespective of the policy of the actor, the utility of the actor when the controller

uses this policy is at mostk + 1 times the actor’s min-max utility for arbitraryn,K, k, M , and at most

2 times the actor’s min-max utility for arbitraryn, K, k and M = 1 (i.e., when all components are

statistically identical) (Theorem 5.5, Section V-B.2). We also show that this approximation bound is tight

in that there exists a system whereM = 2,K = 3 and the maximum utility of the actor when the

controller uses this policy is at leastk times the min-max utility of the actor (Section V-B.2). Also, when

M = 1, given anyε > 0, there exists a system whereK = 3 and the maximum utility of the actor

when the controller uses this policy is at least2 − ε times the min-max utility of the actor (Section V-

B.2). Again, our extensive simulations reveal that for large ranges ofn,K, k, M, β, the maximum utility

attained by the actor when the controller uses this policy is at most1.3 times that of the min-max utility

of the actor (Section V-B.2).

1) Approximation guarantees using a linear time computable policy for the actor:Consider a symmetric

sensible policy, denoted as “Uniform for Actor” or “UA”, that selects each concealed class and a revealed

component with equal probabilities, i.e.,UA(m)i = 1/ (|C(m)|+ 1) for eachm ∈M, i ∈ C(m). Note

that this uniquely describes any symmetric sensible policy since a symmetric policy selects uniformly

among the concealed components in each class and a sensible policy selects only a revealed component

with the highest state whenever it selects a revealed component. Clearly, the actor needsO(n) time and

memory to select a component using this policy.

We now prove the main result of this section.

Theorem 5.4:For anyβ, k, n, K,M ,

inf
u∈U

Ru,UA
β ≥ 1

min(k, M) + 1
sup
v∈V

inf
u∈U

Ru,v
β .

Proof: Consider an arbitrary sensible policyv ∈ Vs. Let T (l,m, v) be the utility of the actor if the

system state is~x such thatl(~x) = l and the actor’s information is some~y such thatm(~y) = m and the

actor uses the policyv. Then,

T (l,m, v) = (1−
∑

i∈C(m)

vs(m)i)R1(m) +
∑

i∈C(m)

vs(m)iR2(l,m, i)

≤ max
(

R1(m), max
i∈C(m)

R2(l,m, i)
)

. (14)

Also, inf
u∈U

Ru,v
β =

∑

l∈L
β′′(l) min

m∈Ml

T (l,m, v). (15)
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From (14) and (15),

inf
u∈U

Ru,UA
β =

∑

l∈L
β(l) min

m∈Ml

T (l,m, UA), where, (16)

T (l,m, UA) =
R1(m) +

∑
i∈C(m) R2(l,m, i)

|C(m)|+ 1

≥ max(R1(m), maxi∈C(m) R2(l,m, i)
min(k, M) + 1

(since|C(m)| ≤ min(k, M)) (17)

Now, let v∗ be the optimal solution ofLP-ACTOR-CLASS. Then, from Theorem 5.3 and (15),

sup
v∈V

inf
u∈U

Ru,v
β =

∑

l∈L
β′′(l) min

m∈Ml

T (l,m, v∗).

Thus, from (16) it is sufficient to prove thatT (l,m, UA) ≥ T (l,m, v∗)/ (min(k, M) + 1) for each

l ∈ L,m ∈M.

Sincev∗ is sensible, the result follows from (14) and (17).

For K = 2, the approximation ratio can be improved slightly using Observation 3. It follows from

Observation 3, the actor’s policy that selects (a) a component in state1 if the state of at least one

such component is revealed and (b) each concealed class with equal probability, otherwise, attains a

1/ min(k, M) approximation ratio.

We prove that the approximation bound obtained for UA is tight. Specifically, given anyε > 0, there

exists a system with components whose state processes are mutually independent where the minimum

utility obtained by the actor when it uses the uniform policy exceeds1/ (min(k, M) + 1) times the max-

min utility in the system by at mostε. Consider a system whereM > 1, K = 3. Let the first class

consist of only 1 component which is in state2 w.p. 1− ε1 and in state0 w.p. ε1. The components in the

other classes are either in states0 or 1 (the probability distributions for the state processes for channels

in different classes are different). The state processes of the components are mutually independent. Let

r(2) = 1− δ1, r(1) = δ2. Let v1 ∈ V be the policy that always selects the component in the first class.

Clearly Ru,v1

β = (1− δ1)(1− ε1) for any u ∈ U . Thus,supv∈V infu∈U Ru,v
β ≥ (1− δ1)(1− ε1). Consider

a u1 ∈ U that conceals the component from the first class, and selects the rest of the components to be

concealed in a round robin manner. Specifically, in the first roundu1 selects one component from classes

2, . . . ,M each, repeats the process in second, third rounds etc. untilk components have been selected.

Thus, min(k,M) classes are concealed. Clearly, the state of the component that has the highest state
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among the revealed components is no more than1. Thus,

Ru1,UA
β ≤ (r(2) + min(k, M)r(1)) /(min(k, M) + 1)

≤ (1 + min(k,M)δ2)/(min(k,M) + 1)

≤ (1− δ1)(1− ε1)
(min(k, M) + 1)

+ ε for sufficiently smallδ1, δ2, ε1

≤
supv∈V infu∈U Ru,v

β

(min(k, M) + 1)
+ ε.

Thus, infu∈U Ru,UA
β ≤

(
supv∈V infu∈U Ru,v

β /(min(k,M) + 1)
)

+ ε. The result follows. The scenario

where this approximation factor turns out to be tight however rarely arises in practice, and as our numerical

computations demonstrate, the minimum utility obtained by the uniform policy closely approximates the

max-min utility of the actor in general.

We now compare, using simulations, the minimum utility attained by the actor when he uses UA with

max-min utility attained by the actor. We assumer(i) = i + 1 throughout. We first consider the case

when the states processes of all components are independent. In this case, we consider the subcases

where (a) the states of each component is selected uniformly among0, . . . , K − 1 (b) the states of each

component is selected as per a Binomial(K − 1, ν) distribution for differentν and (c) the states of odd

(even) numbered components are selected as per (a) (b). We next consider the case where the states of

components are correlated. In this case, we consider the subcases where (a) only the states of first two

components are correlated (i.e., if the first component is in statei, the second component is in statei w.p.

α and in states adjacent toi with equal probabilities otherwise), and the states of the rest of the channel

are mutually independent and (b) the states of all components are correlated (i.e., forj > 1 the state of

componentj depends on that ofj − 1 in the manner described in (a)). In each of the above subcases,

we allow the state of the first component to be either fixed or distributed Uniformly or Binomially. For

all these scenarios we consider different values ofn, k, K such thatn ≤ 6,K ≤ 4, k ≤ n− 1. In all of

these cases, the minimum utility attained by the actor when he uses UA turns out to be at least2/3 of

the max-min utility of the actor [12]. Thus, the performance of UA is generally significantly better than

the worst case analytical bounds.

2) Approximation guarantees using an almost linear time computable policy for the controller:Consider

UGC, the GC policy of the controller that breaks ties randomly and uniformly. Clearly, UGC∈ Us. Note

that the controller needsO(nlogn) time andO(n) memory to decide its actions using this policy.

Theorem 5.5:For any β, k, n,K, supv∈V RUGC,v
β ≤ (k + 1) infu∈U supv∈V Ru,v

β . For any β such that

M = 1 and arbitraryk, n,K, supv∈V RUGC,v
β ≤ 2 infu∈U supv∈V Ru,v

β .
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Proof: The proof proceeds in three steps. The first step is to obtain a sufficiency condition for the

following to hold for an arbitraryκ and arbitraryβ, k, n, K, M : supv∈V RUGC,v
β ≤ κ infu∈U supv∈V Ru,v

β .

The next steps are to show that the above sufficiency condition is satisfied for (a)κ = k+1 and arbitrary

β, k, n, K, M and (b)κ = 2 and arbitraryk, n, K andM = 1. The last two steps prove the two statements

of the theorem respectively.

Step 1: We obtain a sufficiency condition for the following to hold for an arbitraryκ and arbitrary

β, k, n, K, M : supv∈V RUGC,v
β ≤ κ infu∈U supv∈V Ru,v

β . Towards this end, we will first prove that

sup
v∈V

RUGC,v
β ≤ κ inf

u∈U
Ru,v′

β for somev′ ∈ V. (18)

Now, supv∈V RUGC,v
β ≤ κ infu∈U supv∈V Ru,v

β sinceinfu∈U Ru,v′

β ≤ supv∈V infu∈U Ru,v
β = infu∈U supv∈V Ru,v

β .

Now, (18) can be proved as follows. Clearly,

sup
v∈V

RUGC,v
β =

∑

~x∈Kn

β(~x)θ(~x) (19)

for some real-valued functionθ onKn which depends onβ, k, n, K,M. Let T ′(~x, ~y, v′) be the utility of

the actor if the system state is~x and the actor’s information is~y and the actor uses the policyv′. Then,

inf
u∈U

Ru,v′

β =
∑

~x∈Kn

β(~x) min
~y∈Ac(~x)

T ′(~x, ~y, v′). (20)

Thus, from (19) and (20), (18) follows if we can prove that there exists a policyv′ of the actor such that

for each~x ∈ Kn,

θ(~x) ≤ κ min
~y∈Ac(~x)

T ′(~x, ~y, v′). (21)

Thus, (21) is the desired sufficiency condition.

Terminologies for Steps 2 and 3:We introduce some terminologies first. Consider an arbitrary~x ∈ Kn

and~y ∈ Ac(~x). Let UGC(~x) be the set of components whose states have been concealed by UGC when

the system state is~x, D1(~x, ~y) = UGC(~x)\a(~y), andD2(~x, ~y) = a(~y)\UGC(~x). Let ~xUGC be the actor’s

information under UGC when~x is the system state.

Note that the actor’s best response to UGC is to select components whose states have been concealed

since the state of any such component is at least as high as that of a component whose state has been

revealed. Thus,θ(~x) =
∑

i∈UGC(~x) γ(~xUGC)ir(xi) whereγ(~xUGC) is a probability distribution on UGC(~x)

which depends on~xUGC, β, k, n,K, M.

Step 2: We now consider the general case, that is, arbitraryβ, k, n, K and construct a policyv′ of

the actor such that the sufficiency condition (21) holds withκ = k + 1. Thus, the first statement of
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the theorem follows. We considerv′ that selects each concealed component w.p.1/(|a(~y)| + 1) and

the revealed component with the highest state w.p.1/(|a(~y)| + 1). Then, T ′(~x, ~y, v′) = (1/(|a(~y)| +
1))

(
maxi∈N\a(~y) r(xi) +

∑
i∈a(~y) r(xi)

)
. Since|a(~y)| ≤ k as~y ∈ Ac(~x), (21) follows if we can show

that

θ(~x) ≤ max
i∈N\a(~y)

r(xi) +
∑

i∈a(~y)

r(xi) ∀ ~x ∈ Kn, ~y ∈ Ac(~x). (22)

θ(~x)−
∑

i∈a(~y)

r(xi) =
∑

i∈UGC(~x)

γ(~xUGC)ir(xi)−
∑

i∈a(~y)

r(xi)

≤
∑

i∈D1(~x,~y)

γ(~xUGC)ir(xi)−
∑

i∈D2(~x,~y)

r(xi) (since0 ≤ γ(~xUGC)i ≤ 1 ∀ i ∈ UGC(~x))

≤
∑

i∈D1(~x,~y)

γ(~xUGC)ir(xi)

≤ max
i∈D1(~x,~y)

r(xi) (since
∑

i∈D1(~x,~y)

γ(~xUGC)i ≤ 1)

≤ max
i∈N\a(~y)

r(xi) (sinceD1(~x, ~y) = UGC(~x) \ a(~y) ⊆ N \ a(~y))

Thus, (22) follows.

Step 3: We now consider the special case in whichM = 1, and construct a policyv′ of the actor such

that the sufficiency condition (21) holds withκ = 2. Thus, the second statement of the theorem follows.

SinceM = 1, all components are statistically identical. In this case, from symmetry,γ(~xUGC(~x))i = 1/k,

for eachi ∈ UGC(~x), that is, the actor’s best response is to select each concealed component w.p.1/k.

Thus,

θ(~x) =
∑

i∈UGC(~x)

r(xi)/k. (23)

We considerv′ that selects (a) each concealed component w.p.1/(2|a(~y)|) and the revealed component

with the highest state w.p.1/2 if at least one component is concealed and (b) the revealed component

with the highest state if no component is concealed. Then,

T ′(~x, ~y, v′) =

(
max

i∈N\a(~y)
r(xi) +

∑
i∈a(~y) r(xi)

|a(~y)|

)
/2.

Here, we assume that the second term in the sum is0 if a(~y) = φ. Thus, from (23), (21) follows if we

can show that

∑

i∈UGC(~x)

r(xi)/k ≤ max
i∈N\a(~y)

r(xi) +

∑
i∈a(~y) r(xi)

|a(~y)| ∀ ~x ∈ Kn, ~y ∈ Ac(~x). (24)
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If a(~y) = φ, the result clearly holds as then the left hand side ismaxi∈N r(xi), and since|UGC(~x)| = k,

maxi∈N r(xi) ≥
∑

i∈UGC(~x) r(xi)/k. We therefore assume thata(~y) 6= φ.

∑

i∈UGC(~x)

r(xi)
k

−
∑

i∈a(~y) r(xi)

|a(~y)| ≤
∑

i∈UGC(~x)

r(xi)
k

−
∑

i∈a(~y)

r(xi)
k

(since|a(~y)| ≤ k as~y ∈ Ac(~x))

≤
∑

i∈D1(~x,~y)

r(xi)
k

≤ max
i∈D1(~x,~y)

r(xi) (since|D1(~x, ~y)| ≤ k asD1(~x, ~y) ⊆ UGC(~x))

≤ max
i∈N\a(~y)

r(xi) (sinceD1(~x, ~y) = UGC(~x) \ a(~y) ⊆ N \ a(~y)).

Thus, (24) follows.

Note that whenK = 2 the approximation factor turns out to bek (instead ofk + 1) for arbitrary

β, k, n, M . The proof is similar, but considers only states~y in which all revealed components are in

state0 and instead ofv′ considers a policy Modified Uniform for Actor or MUA∈ V that selects (a) a

revealed component that is in state1 if the state of one such component is revealed and (b) the concealed

components with equal probability if the revealed components are in state0.

We now prove that the approximation bound obtained for UGC is tight. We first consider the case with

arbitrary β, and prove that there exists a system whereM = 2 and the maximum utility of the actor

when the controller uses UGC isk times the min-max utility of the actor. LetK = 3, r(2) = 1, r(1) =

1/k, r(0) = 0, n ≥ 2k − 1. The first class of components hask components such that one of these

components is in state2 and the rest are in state0, and every component is as likely as any other

component to be in state2. Each component in the second class is in state1. UGC will conceal the state

of the component that is in state2 and the states ofk− 1 components in the second class. Consider the

policy of the actor that selects a component in the first class provided one such is concealed. When the

controller uses UGC, this policy always selects a component in state1, and thus fetches the maximum

possible utility,1. Thus, the actor’s maximum expected utility in this case is1. Now, consider another

policy of the controller which conceals the states of allk components in class1 and reveals the states of

the components in class2. Now, if the actor selects a component in class2, it attains a utility of1/k. If the

actor selects a component in class1, it maximizes its utility by selecting the component uniformly among

the components in class1, since it does not know the state of any component in class1 and all components

in class1 are statistically identical. Thus, the actor’s expected utility is(1/k)×1+(1−1/k)×0 = 1/k.

Thus, the actor’s overall maximum expected utility is1/k. Thus, the min-max expected utility of the

actor is at most1/k. Thus, the maximum utility of the actor when the controller uses UGC is at leastk

times the min-max utility of the actor.
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We now prove that the approximation bound obtained for UGC is tight forM = 1. Specifically, given any

ε > 0, there exists a system with components whose state processes are identically distributed where the

maximum utility obtained by the actor when the controller uses UGC exceeds2− ε times the min-max

utility in the system. Letn = 2(b1/εc + 1), k = n/2 andK = 3. Let r(2) = 1, r(1) = 1/k, r(0) = 0.

Next, β is such that the state processes of all components are identically distributed and1 component

is in state2, k − 1 components are in state1 and the rest of the components are in state03. Under

UGC, the controller conceals the states of the components that are in states1, 2. Since all components

are identically distributed, when the controller uses UGC, the actor maximizes its utility by selecting

uniformly and randomly among the components whose states have been concealed. Thus, the actor’s

expected utility is(1/k) × 1 + (1 − 1/k) × (1/k) = (2/k) − (1/k2). Now, consider another policy of

the controller which conceals the states of (a) the component that is in state2 and (b)k− 1 components

that are in state0 (selected randomly and uniformly among the components that are in state0). Since

the state processes of the components are identically distributed, in order to maximize its utility, the

actor can select (a) a component whose state is revealed and which is in state1 or (b) a component

selected uniformly among those whose states have been concealed. Under (a), the actor’s expected utility

is 1/k. Under (b), the actor’s expected utility is(1/k) × 1 + (1 − 1/k) × 0 = 1/k. Thus, the actor’s

overall expected utility is1/k. Thus, the min-max expected utility of the actor is at most1/k. Note that
(2/k)−(1/k2)

1/k = 2 − 1/k = 2 − 2/n > 2 − ε. Thus, the maximum utility obtained by the actor when the

controller uses UGC exceeds2− ε times the min-max utility in the system.

We now compare, using simulations, the maximum utility attained by the actor when the controller uses

UGC with min-max utility attained by the actor. We use the same scenarios as those described in the last

paragraph of Section V-B.1. When the states of the components are independent, the maximum utility

attained by the actor when the controller uses UGC turns out to be very close to the min-max utility.

When the states of the components are correlated, the maximum utility attained by the actor when the

controller uses UGC turns out to be within1.3 times that of the min-max utility of the actor [12]. Thus,

the performance of UGC is generally significantly better than the worst case analytical bounds.

3This can for example be accomplished by selecting the component that is in state2 with probability 1/n first, and then

selecting the set ofk − 1 components that will be in state1 among the rest such that the probability of selecting each set of

sizek − 1 is equal, and assigning state0 to the rest of the components.
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VI. GENERALIZATIONS

We have so far assumed that the controller conceals a sub-vector of the system state, and reveals the

residual sub-vector. But, in general, the controller may wish to reveal a function of the system state. For

example, the controller may reveal (a) limited information about each component of the system state,

e.g., it may reveal for each component an interval that contains its state, or (b) a vector of a certain

minimum dimensionality where each component is a function of the system state, e.g., component1 may

be the average of the firsti components of the system state, etc. Next, we have assumed that the actor

selects a component of the system state, and its utility is determined by the state of the component it

selects. But, in general, it can select a subset of the components, and its utility may be a function of

the subset it selects. For example, in cognitive radio networks, an actor may decide to transmit in more

than one channels, and split its transmission power among the channels it selects; its rate of successful

transmission then depends on the channels it selects and its power allocation. Our framework can be

generalized to capture the above artifacts, and many of our results extend to this case.

We now describe the generalizations of the terminologies and solution concepts. For each~x ∈ Kn, there

exists a setAc(~x), such that the controller selects a member~y of Ac(~x) as the actor’s information, when

the system state is~x. Here,Ac(~x) must be designed in accordance with the constraints on the controller’s

actions, e.g., in previous sectionsAc(~x) consists of all sub-vectors of~x of dimension at leastn−k, now

Ac(~x) may also consist of the range of other vector functions of~x that satisfy specific constraints, e.g.,

intervals containing the states of the components of~x, etc. The actor knows the vector~y selected by the

controller, which may in turn reveal the controller’s action (i.e., the function selected by the controller to

obtain~y from ~x) to the actor. When the actor’s information is~y, its possible actions constitute a setN (~y),

e.g.,N (~y) may consist of possible power allocations used by the transmitter when its information is~y.

If the system state is~x, and the actor selects actionz, then the payoff for the actor is a functionw(~x, z)

of both ~x, z (in previous sections we assumed thatw(~x, z) = r(xz)). Both the controller and the actor

know n,K, β,Ac(~x) for each~x ∈ Kn, N (~y) for each~y ∈ A, w(~x, z) for each~x ∈ Kn, z ∈ N (~y) for

each~y ∈ Ac(~x). Next, a behavioral policyu(~x) (v(~y), respectively) of the controller (actor, respectively)

is the probability distribution used by the controller (actor, respectively) for selecting its actions when

its information is~x (~y, respectively). Specifically,u(~x)~y (v(~y)z, respectively) is the probability with

which the controller (actor, respectively) selects the information~y ∈ Ac(~x) for the actor (selects the

action z ∈ N (~y), respectively) when its information is~x (~y, respectively). The controller’s (actor’s,

respectively) utility Ju,v
c (~x) (Ju,v,β

a (~y), respectively) is given byJu,v
c (~x) = −Eu,v[r(x,B)| ~X = ~x]

(Jβ,u,v
a (~y) = Eu,v

β [w(X, B)|~Ya = ~y], respectively) whereB is the action of the actor. Finally, the PBE
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can now be described as before.

We now discuss the generalizations of the results. An equivalent zero-sum game can be obtained as

in Section IV-A. Here,Ru,v
β can be defined usingw(~x,B) instead ofr(xB) in (3). Theorem 4.1 and

Corollary 4.1 hold - the proofs remain the same. The saddle point policy for the controller can be

computed using a slight modification ofLP-CONTROLLER as described in p. 19. The modification is

that the lower bound constraint becomesz(~y) ≥ ∑
~x:~y∈Ac(~x) β(~x)w(x, j)u(~x)~y ∀ j ∈ N (~y), ~y ∈ Ac.

Theorem 4.2 holds. The modified version ofLP-CONTROLLER has O(
∑

~x∈Kn |Ac(~x)|) variables and

O(
∑

~y∈Ac
|N (~y)|+ ∑

~x∈Kn |Ac(~x)|) constraints. The saddle point policy for the actor can be computed

using a slight modification ofLP-ACTOR as described in p. 22. The modification is that the first constraint

becomesz(~x) ≤ ∑
i∈N (~y) v(~y)iw(x, i) for all ~y ∈ Ac(~x), ~x ∈ Kn, andN must be replaced byN (~y) in

the second and third constraints. Theorem 4.3 holds. The modified version ofLP-ACTOR hasO(Kn +
∑

~y∈Ac
|N (~y)|) variables andO(

∑
~x∈Kn |Ac(~x)|) constraints. Thus, the computation times for these linear

programs depend polynomially onKn, |Ac(~x)| for each~x ∈ Kn and |N (~y)| for each~y ∈ Ac. Next, we

can generalize the UA policy for the actor - the generalization is to uniformly choose among different

possible actions. We can show that for anyβ, n,K, infu∈U Ru,UA
β ≥ 1

max~y∈Ac |N (~y)| supv∈V infu∈U Ru,v
β .

The proof is similar to that for Theorem 5.4. The performance guarantee may be improved if some

actions inN (~y) can be ruled out for each~y ∈ Ac for at least one saddle point policy of the actor. For

example, in the special case in whichN (~y) = N for each~y ∈ Ac, |N (~y)| = n, for each~y ∈ Ac. But, in

addition, whenAc consists of the sub-vectors of the vectors inKn of sizen−k or more, we know that at

least one saddle point policy of the actor is sensible (Corollary 4.3) and therefore selects among at most

k + 1 possible actions irrespective of~y. Thus, the worst case approximation guarantee is1/(k + 1) in

Theorem 5.4. Obtaining performance guarantees for the controller, using polynomial time computation,

as in Section V-B.2, however remains open.

VII. C ONCLUSIONS AND OPEN QUESTIONS

We have studied a leader-follower game where the actions of the leader (controller) determine the infor-

mation available to the follower (actor). By concealing information, the leader degrades the performance

of the follower that attempts to choose one out of several resources with the best state among all. We have

provided a rich body of computation and approximation tools for that problem along with mathematical

foundations and complexity analysis.

Open problems include establishing that the computation of the saddle point policies is NP-hard, and

determining whether the approximation factors can be substantially improved while using polynomial
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time computation. We plan to extend our study to the stochastic game framework in which the states can

change in time according to some Markov structure.
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APPENDIX

A. Proof for Lemma 3.1

Proof: Recall thatuGC refers to an arbitrary policy in the GC class. We show that there exists a

system withn = 2, k = 1,K = 3, 0 = r(0) < r(1) < r(2) = 1 and β under which the states of the

components are mutually independent and statistically identical such that

Rβ < sup
v∈V

RGC,v
β . (25)

Thus, from (6),infu∈U Ru,v
β < supv∈V RuGC,v

β for eachv ∈ V. Thus,uGC is not a saddle point policy

for the controller. The lemma follows from Theorem 4.1.

Let qi be the probability with which a component is in statei andr(1) < q2/(q0 + q2), q0 > 0, q1 > 0.
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Let Us
1 ⊂ Us be the set of symmetric policies of the controller that conceal one component reveal the state

of a component that is in state2 only if both components are in state2. Note that every policy inUs
1 can

be described by a parameterα whose role is as follows: when the system state~x ∈ {(0, 1), (1, 0)}, the

controller reveals the component that is in state1 with probability α. Also, uGC ∈ Us
1 and corresponds

to α = 0.

Let Vs
1 ⊂ Vs be the set of symmetric policies of the actor that (a) never selects a revealed component

that is in state0 if a component is concealed, (b) selects a component that is in state2 if the state of one

such component is revealed and selects the component with higher state if the states of both components

are revealed and one has a higher state than the other. Note that every policy inVs
1 can be described

by a parameterγ whose role is as follows: when a component that is in state1 is revealed and another

component is concealed, the actor selects the revealed component with probabilityγ.

Using Theorem 5.1, we can prove that there exists policiesu∗ ∈ Us
1 and v∗ ∈ Vs

1 that constitute the

saddle point policies of the controller and the actor respectively. For anyu′ ∈ Us
1 , v′ ∈ Vs

1 ,

inf
u∈U

Ru,v′

β ≤ inf
u∈Us

1

Ru,v′

β ≤ R′
β ≤ R

′
β ≤ sup

v∈Vs
1

Ru′,v
β ≤ sup

v∈V
Ru′,v

β (26)

whereR
′
β = inf

u∈Us
1

sup
v∈Vs

1

Ru,v
β

R′
β = sup

v∈Vs
1

inf
u∈Us

1

Ru,v
β .

Sinceu∗ ∈ Us
1 andv∗ ∈ Vs

1 constitute the saddle point policies of the controller and the actor respectively,

infu∈U Ru,v∗

β = supv∈V Ru∗,v
β . Thus, all the inequalities in (26) become equalities foru′ = u∗, v′ = v∗.

Thus, sinceinfu∈U Ru,v∗

β ≤ Ru∗,v∗

β ≤ supv∈V Ru∗,v
β , Ru∗,v∗

β = R′
β. Also, sinceu∗, v∗ constitute the

saddle point policies of the controller and actor respectively,Ru∗,v∗

β = Rβ. Thus, Rβ = R′
β. Also,

clearly, supv∈Vs
1
RuGC,v

β ≤ supv∈V RuGC,v
β . Thus, (25) follows if we show that

R′
β < sup

v∈Vs
1

RuGC,v
β . (27)

Consider arbitraryu ∈ Us
1 ,Vs

1 and letα and β respectively representu and v. First, Eu,v
β [r(xB)| ~X =

~x] = αγr(1) + (1 − α)r(1) if ~x ∈ {(0, 1), (1, 0)}, and Eu,v
β [r(xB)| ~X = ~x] = γr(1) + (1 − γ) if

~x ∈ {(1, 2), (2, 1)}. Next,Eu,v
β [r(xB)| ~X = ~x] does not depend onα, γ if ~x 6∈ {(0, 1), (1, 0), (1, 2), (2, 1)}.

Also, β(~x) = q0q1 if ~x ∈ {(0, 1), (1, 0)}, andβ(~x) = q1q2 if ~x ∈ {(1, 2), (2, 1)}. Thus, from (3),

Ru,v
β = 2q0q1 (αγr(1) + (1− α)r(1)) + 2q1q2 (γr(1) + (1− γ)) + C, (28)

whereC is a constant that depends onq0, q1, q2 but notα, γ.
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Sinceα = 0 for uGC, from (28), forv ∈ Vs
1 , RuGC,v

β = 2q0q1r(1) + 2q1q2 (γr(1) + (1− γ)) + C. Thus,

sup
v∈Vs

1

RuGC,v
β = 2q0q1r(1) + C + 2q1q2 max

0≤γ≤1
(γr(1) + (1− γ))

= 2q0q1r(1) + C + 2q1q2 (sincer(1) < 1). (29)

R′
β = C + max

0≤γ≤1
min

0≤α≤1
2q0q1 (αγr(1) + (1− α)r(1)) + 2q1q2 (γr(1) + (1− γ)) (from (28))

= C + 2q1 max
0≤γ≤1

(γr(1)(q0 + q2) + (1− γ)q2) (sinceγ ≤ 1, r(1) ≥ 0)

= C + 2q1q2 sincer(1) < q2/(q0 + q2). (30)

Now, (27) follows from (29) sinceq0 > 0, q1 > 0, r(1) > 0.

B. Proof for Lemma 3.2

Proof: Let vSBA refer to an arbitrary policy in the SBA class. Recall the description of the MUA

policy for the actor at the end of Section V-B.1. We show that there exists a system withn = 3, k =

2, K = 2, r(0) = 0, r(1) = 1, β under which the states of the components are mutually independent, a

policy u′ of the controller such that

Ru′,vSBA

β < inf
u∈U

Ru,MUA
β . (31)

Thus, sinceinfu∈U Ru,vSBA

β ≤ Ru′,vSBA

β , andinfu∈U Ru,MUA
β ≤ supv∈V infu∈U Ru,v

β = Rβ, infu∈U Ru,vSBA

β <

Rβ. Thus, from (6),infu∈U Ru,vSBA

β < supv∈V Ru,v
β for eachu ∈ U . Thus,vSBA is not a saddle point

policy for the actor. The lemma follows from Theorem 4.1.

Let qi be the probability with which a component is in statei andq1 > max(q2, q3). Thus,vSBA selects

component1 whenever component1 has been concealed and no revealed component is in state1.

Let u′ ∈ U (a) conceal2 components and never reveal a component that is in state1 unless all components

are in state1 and (b) conceal component1 unless both components2 and 3 are in state1, and reveal

component1 otherwise. Now,

Ru′,vSBA

β = q1 + (1− q1)q2q3. (32)

Clearly, for anyu ∈ U , Ru,MUA
β ≥ Θ1/2+Θ2, whereΘ1 is the probability that only one component is in

state1 andΘ2 is the probability that two or more components are in state1. Now, Θ1 = q1(1− q2)(1−
q3) + q2(1− q1)(1− q3) + q3(1− q1)(1− q2) andΘ2 = q1 (1− (1− q2)(1− q3)) + (1− q1)q2q3. Thus,

Θ1/2+Θ2 = q1+(1−q1)q2q3−q1(1−q2)(1−q3)/2+q2(1−q1)(1−q3)/2+q3(1−q1)(1−q2)/2. We now

show that there existsq1 > q2 > q3 such thatq2(1−q1)(1−q3)+q3(1−q1)(1−q2)−q1(1−q2)(1−q3) >
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0.0625. Thus, for anyu ∈ U , Ru,MUA
β ≥ Θ1/2 + Θ2 > q1 + (1− q1)q2q3 + 0.0625. Hence, (31) follows

from (32).

Let q1 = 0.5, q2 = 0.5 − ε1, q3 = 0.5 − ε2, where ε1 > 0 and ε2 > 0. Note that q2(1 − q1)(1 −
q3) + q3(1− q1)(1− q2) = (1− q1)(q2 + q3 − 2q2q3) = 0.5 (1− ε1 − ε2 − 2(0.5− ε1)(0.5− ε2)) . Next,

q1(1− q2)(1− q3) = 0.5(1− q2 − q3 + q2q3) = 0.5 (ε1 + ε2 + (0.5− ε1)(0.5− ε2)) . Thus,

q2(1− q1)(1− q3) + q3(1− q1)(1− q2)− q1(1− q2)(1− q3)

= 0.5 (1− 2ε1 − 2ε2 − 3(0.5− ε1)(0.5− ε2))

> 0.5(1− 2ε1 − 2ε2 − 0.75− 3ε1ε2) = 0.5(0.25− 2ε1 − 2ε2 − 3ε1ε2) > 0.0625 for small ε1, ε2.

C. Proof for Theorem 5.2

Proof: Consider the description ofLP-CONTROLLER at the end of Section IV-B.1, and restrict the

feasible solutionsu to Us. From Theorem 5.1, the optimal solution ofLP-CONTROLLER is a saddle

point policy of the controller even with this restriction, and the optimal solution is clearly a symmetric

policy for the controller. The last two constraints inLP-CONTROLLER-CLASS ensure that its optimal

solution is a symmetric policy of the controller. Thus, we only need to show that there is a one-to-one

correspondence between the sets of optimal solutions ofLP-CONTROLLER-CLASS andLP-CONTROLLER

with the above restriction, such that the corresponding solutions in the two sets provide the same policies.

Consider LP-CONTROLLER with the additional constraint thatu ∈ Us. Let L(~y) = {l : l(~x) =

l for some~x s.t. ~y ∈ Ac(~x)}. Note thatL(~y) depends on~y only throughm(~y), and can therefore be

denoted asL(m(~y)). Sinceu ∈ Us, for each~y ∈ Ac,k, we can write the first constraint as

z(~y) ≥ R1(m(~y))
∑

l∈L(m(~y))

β′(l)u′(l)m(~y)Θ2(l,m(~y)). (33)

Let ν(i) denote the class of componenti. Now, note that
P

~x:l(~x)=l,~y∈Ac(~x) r(xi)

Θ2(l,m(~y)) = R2(l,m(~y), ν(i)). Thus,

for each~y ∈ Ac,k, i ∈ a(~y), we can write the second constraint as

z(~y) ≥
∑

l∈L(m(~y))

β′(l)u′(l)m(~y)Θ2(l,m(~y))R2(l,m(~y), ν(i)). (34)

SinceM~x depends on~x throughl(~x) and can be denoted byMl(~x), the third and fourth constraints are:
∑

m∈Ml(~x)

Θ1(l(~x),m)u′(l(~x))m = 1 for all ~x ∈ Kn. (35)

u′(l(~x))m(~y) ≥ 0 ∀ ~x ∈ Kn, ~y ∈ Ac,k(~x). (36)
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We can write the objective function as
∑

m∈M
∑

~y:m(~y)=m z(~y).

The optimization that maximizes the above objective function subject to constraints(33) to (36) has at

least one optimal solution in whichu′, z depend on~x, ~y only throughm(~y) and l(~x), and any suchu′

is in Us. Thus, we can rewriteLP-CONTROLLER with the additional constraint as follows.

LP-CONTROLLER: Min{u′(l)m,z(m)}
∑

m∈MΘ3(m)z(m)

z(m) ≥ R1(m)
∑

l∈L(m) β′(l)u′(l)mΘ2(l,m) ∀ m ∈M
z(m) ≥ ∑

l∈L(m) β′(l)u′(l)mΘ2(l,m)R2(l,m, i) ∀ m ∈M, i ∈ C(m)
∑

m∈Ml
Θ1(l,m)u′(l)m = 1 for all l ∈ L

u′(l)m ≥ 0 ∀ l ∈ L,m ∈Ml

SinceΘ2(l,m)Θ3(m) = Θ1(l,m)Θ4(l)) andΘ4(l)β′(l) = β′′(l), the first constraint is:

Θ3(m)z(m) ≥ R1(m)
∑

l∈L(m)

β′′(l)u′(l)mΘ1(l,m) ∀ m ∈M.

Similarly, the rest of the constraints can be written as

Θ3(m)z(m) ≥
∑

l∈L(m)

β′′(l)u′(l)mΘ1(l,m)R2(l,m, i) ∀ m ∈M, i ∈ C(m)

∑

m∈Ml

u′(l)mΘ1(l,m) = 1 ∀ l ∈ L

u′(l)mΘ1(l,m) ≥ 0 ∀ l ∈ L,m ∈Ml

In the above linear program, we substitute (a)Θ3(m)z(m) with η(m) in the objective function and the

first two constraints, and (b)u′(l)mΘ1(l,m) with us(l)m in all the constraints. Clearly, there is a one to

one correspondence, given by (a) and (b) above, between the set of optimal solutions ofLP-CONTROLLER

(with the additional constraint thatu ∈ Us) and the resulting linear program which isLP-CONTROLLER-

CLASS, and they have equal optimal values. Also, the corresponding optimal solutions provide the same

symmetric policy for the controller. The result follows.

D. Proof for Theorem 5.3

Proof: Consider the description ofLP-ACTOR at the end of Section IV-B.2, and restrict the feasible

solutionsv to Vs. From Theorem 5.1, even with this restriction, the optimal solution ofLP-ACTOR is

a saddle point policy for the actor, and is clearly a symmetric policy as well. It is therefore sufficient

to show that there is a one-to-one correspondence between the sets of optimal solutions ofLP-ACTOR-

CLASS and LP-ACTOR with the above restriction. such that the corresponding optimal solutions in the

two sets provide the same policies.
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ConsiderLP-ACTOR with the additional constraint thatv ∈ Vs. SinceR2 (l(~x),m(~y), i) =
P

j∈a(~y,i) r(xj)

Φ(m(~y),i) ,

for each~x ∈ Kn and~y ∈ Ac,k(~x), we can write the first constraint as

z(~x) ≥ R1(m(~y))


1−

∑

i∈C(m(~y))

v′ (m(~y))i Φ(m(~y), i)


 +

∑

i∈C(m(~y))

v′ (m(~y))i Φ(m(~y), i)R2 (l(~x),m(~y), i) .

We can write the second and third constraints as

v′ (m(~y))i Φ(m(~y), i) ≥ 0, ∀ i ∈ C (m(~y)) , ~y ∈ Ac,k.
∑

i∈C(m(~y))

v′ (m(~y))i Φ(m(~y), i) ≤ 1 ∀ ~y ∈ Ac,k.

The objective function can be written as
∑

l∈L
∑

~x:l(~x)=l β(~x)z(~x), which equals
∑

l∈L β′(l)
∑

~x:l(~x)=l z(~x).

The optimization that minimizes the above objective function subject to the above constraints has at least

one optimal solution in whichv′, z depend on~x, ~y only throughl(~x) and m(~y) respectively, and any

suchv′ is in Vs. Thus, the dependence on~x, ~y can be replaced withl(~x) andm(~y). Thus, the objective

function for example becomes,
∑

l∈L β′(l)z(l)Θ4(l), and thenβ′(l)Θ4(l) can be replaced byβ′′(l). Also,

v′(m)iΦ(m, i) can be replaced byvs(m)i in all the constraints.

Clearly, there is a one to one correspondence, between the set of optimal solutions ofLP-ACTOR (with

the additional constraint thatv ∈ Vs) and the resulting linear program which isLP-ACTOR-CLASS, and

they have equal optimal values. Also, the corresponding optimal solutions provide the same symmetric

policy for the actor. The result follows.


