
Optimal Quarantining of Wireless Malware Through
Power Control

M. H. R. Khouzani
School of Electrical

and Systems Engineering
University of Pennsylvania

Email: khouzani@seas.upenn.edu

Eitan Altman
INRIA, the French national

institute for research in
computer science and control

Email: Eitan.Altman@sophia.inria.fr

Saswati Sarkar
School of Electrical

and Systems Engineering
University of Pennsylvania

Email:swati@seas.upenn.edu

Abstract—The topic of malware propagation in mobile wireless
networks is gaining momentum among the research community,
as actual vulnerabilities are revealed through recent outbreaks
of worms. We introduce a defense strategy that quarantines the
malware by reducing the communication range. This counter-
measure faces us to a trade-off: reducing the communication
range suppresses the spread of the malware, however, it also
negatively affects the performance of the network as the end-to-
end communication delay increases. We model the propagation
of the malware as a deterministic epidemic. Using an optimal
control framework, we select the optimal communication range
that captures the above trade-off by minimizing a global cost
function. Using Pontryagin’s Maximum Principle, we derive
structural characteristics of the optimal communication range
as a function of time for two different cost functions.

I. INTRODUCTION

Malicious computer softwares, in the forms of viruses and
worms have proved to be able to inflict enormous damages
on the computer networks in internet. For instance, during an
outbreak of Code Red on July 19, 2001, hundreds of thousands
of computers were infected in a blazing speed, forcing billions
of dollars for repair [1]. Worms, as self-replicating codes, have
the potential of exploiting their infected hosts to infect other
nodes and exponentially multiply the number of their victims:
a phenomenon that we call an epidemic. Thus detection and
containment of malware in internet has drawn substantial
attention among the internet research community ([1], [2], [3]
etc).

However, a new battle-field has emerged: personal mobile
devices such as cellphones, smartphones and pocket-PCs are
acquiring more computation and communication capabilities,
and thence, new vulnerabilities are introduced. The sprout-
ing popularity of these mobile devices combined with their
new capabilities has created an ideal prey-ground for future
malware [2], [4]. In wireless networks, since resources are
scarce, worms can cause new forms of havoc which was not of
concern in the wired networks. For instance, the functionality
of nodes is limited by the lifetime of their batteries, which can
be rapidly depleted by the elevated activity of an infected node
which tries to find new hosts. For example, Cabir worm, which
hit the mobile phones in June 2004, drains the battery due to
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constant bluetooth scanning [5]. Also, as the media in wireless
networks is common, bandwidth is constrained. The increased
rate of attempts to access the media by infected nodes can
jam the media and can further disturb the functionality of
the network [6]. The dimensions of the threat become more
alarming when we consider the huge investments that are
directed towards wireless communication infrastructure and
the economical liability that is built upon it. The viability
of these investments is contingent upon designing effective
detection and containment strategies.

In this paper, we focus on the containment of infection in a
mobile wireless network. As we pointed out, several wireless
properties enhance the severity of the infection. However, these
unique features can also be utilized to contrive new counter-
measures against the spread of the infection. An infected node
can transmit its infection to another node only if they are in
communication range of each other. We propose to quarantine
an infection by regulating the communication range of the
nodes. Specifically, the reception gain of the healthy nodes
can be reduced to abate the frequency of contacts between the
mobile nodes and thus suppress the spread of the infection. In
fact, there is an interesting analogy between the spread of a
worm in mobile wireless networks and a biological epidemic
in a human community. During a biological virus outbreak,
individuals might choose to restrain their contacts with the
rest of the society. This abstinence decreases the chance of
getting infected at the expense of deterioration in the quality
of life: a decrease in the rate of communication between the
members of the society hampers their ability to fully perform
their daily tasks [7]. Such a trade-off also exists in the case of
a mobile wireless network: reducing the communication range
of nodes can deteriorate the QoS offered by the network, as
the end-to-end communication delay increases.

We present a containment strategy based on power control.
We propose an optimal control framework to characterize the
trade-off between the containment efficacy and communication
capabilities of the nodes (section III). Using Pontryagin’s
Maximum Principle, we devise a framework for computing the
optimal communication range as a function of infection level
in the network. We identify several structural characteristics
of the optimal solution by examining the analytical properties
of the solution (section IV). Specifically, for the important



case of a linear cost function (subsection IV-A), we show
that the optimal solution has the classical bang-bang structure,
i.e., it is only at its minimum or maximum values. We
prove that the optimal solution in this case has at most two
(abrupt) transitions between these extreme values and always
returns to its maximum value towards the end of the operation
time. Subsequently, we consider a nonlinear cost function
(subsection IV-B) and we establish that the optimal solution
follows a similar structure, with the exception that transitions
are smooth instead of being abrupt.

II. LITERATURE REVIEW

First, we present a concise literature review on the topic
of modeling of worm propagation. We focus on the mathe-
matical modeling and analysis of worms and viral epidemics.
For an up-to-date discussion of propagation, detection and
containment of malware in mobile networks from a practical
viewpoint, one can consult with [8]. An engaging historical
review of major recent malware outbreaks in networks with a
discussion of their trends is provided in [9].

Most of the literature on worm propagation traditionally
assume a wired network framework and also chiefly, the un-
derlying network is the internet. Deterministic epidemiological
models are used to investigate the propagation of malware
in computer networks [1], [2], [10], [11], [12], [13], [14],
[15]. [16] combined a deterministic worm propagation model
with a game theoretic process that involves learning, in order
to incorporate decisions of users about whether to install or
uninstall a security patch in a wired network. Controlling the
spread of the worm by reducing the rate of communication
of nodes (i.e., rate-control-based measures) [17], [18], or the
number of communications [3] is the closest analog in the
wired networks to reducing the communication range of the
nodes in the wireless networks. The work in [17] is based
on heuristics and simulations. Also, unlike our work, [18]
does not propose a formal framework for attaining desired
trade-offs. Moreover, [18] only considers a static choice of the
reduced communication rate, whereas we allow the communi-
cation range of the nodes to be dynamically modified over time
as the level of infection evolves. Recently, [3] has proposed
a stochastic branching process to model the early phase of
worm propagation. [3] develops a worm containment strategy
which limits the total number of distinct contacts per node
over the containment cycle. However, this work only applies
to the initial phase of infection and their countermeasure is
ineffective once the epidemic starts.

A malware propagation model based on queueing theory
was proposed in [19] to investigate the problem of malware
attack from the viewpoint of the attackers which have energy
constraints. The authors in [19] introduced an attack strategy
where the attackers dynamically adjust their transmission
power and they investigated the trade-offs between the instan-
taneous attack efficacy and the lifetime of the attackers and
proposed heuristic power control strategies for the attackers.
Note that in contrast, our communication range control policy

is developed as a defense strategy, and it provably minimizes
the overall cost of the system.

Interestingly, only a few papers (e.g. [20]) consider the con-
trol of worm propagation in communication networks (wired
as well as wireless networks) as an optimal control problem.
Optimal control has however been used as an effective tool
to develop strategies to counter the spread of a biological or
social epidemics. Nonetheless, most of these works mainly
focus on immunization and/or screening policies and the
monetary costs which are inflicted on the system. Introduction
of our new countermeasure policy in the framework of mobile
wireless network results in a new optimal control problem that
requires an original analysis and previous results in [20], [21],
[22], [23], [24] do not apply here.

III. SYSTEM MODEL

To begin, let us introduce some terminologies. A node is
called susceptible if it is not contaminated by the worm,
but is prone to infection. A node is infective if it has
the worm. Infective nodes can propagate the worm through
communication with susceptible nodes. Any two nodes can
communicate if they are within certain distance of each other
which we refer to as their communication range. When two
nodes are in communication range of each other, we say they
are in contact. We assume that the worm cannot change MAC
parameters such as transmission or reception gains.

Either the user of an infected device or the network operator
removes the infection of the node by installing a security patch,
which also grants the node permanent immunity against that
threat. However, this does not take place immediately upon
infection, but rather after an exponentially distributed random
delay with mean 1/γ. We use the term recovered for the
infective nodes which receive the security patch.

We propose a system level defense policy that is specific
to wireless networks. Assume that the reception gain of the
susceptible nodes is a variable controlled by the system.
Upon detection of malicious behavior, the reception gain
of the susceptible nodes can be reduced. This effectively
reduces the communication range of the nodes to lessen the
frequency of contacts between the infective and susceptible
nodes. This reduces the rate of propagation of the infection,
thus extending the available time for recovering the infective
nodes. Note that the communication range depends on both the
transmission and the reception gains of two communicating
nodes and reduction of any of the these gains reduces the the
communication range.

Reducing the communication range, however, can adversely
affect the performance of the network, as it undermines the
ability of the nodes to deliver their own traffic and the end-to-
end delay increases. This trade-off can be captured through
a cost function, as we explain later in this section. After
(1) mathematically characterizing the effect of changing the
communication range of the nodes on the dynamics of the
system and (2) constructing a meaningful cost function which
captures the advantages and disadvantages of changing the
communication range, the problem will be well-defined. The



objective then will be to find the optimum transmission range
as a function of the infection level in the system which evolves
with time.

Here we address the first task: we analytically investigate
the effect of changing the communication range on the prop-
agation dynamics. Nodes are assumed to move in a limited
region (of area A) and according to mobility models such as
random waypoint or random direction model [25]. Also the
communication range (u) is small compared to A, and speed
of the movement is sufficiently high. It is shown ([26]) that
under such circumstances, the pairwise meeting time is nearly
exponentially distributed and the rate of pairwise meeting,
which is the rate at which a pair of a susceptible and an
infective node contact, is estimated by the following:

rate of pairwise meeting ≈ 2wuE[V ∗]
A

where w is a constant factor pertaining to the specific mobility
model, and E[V ∗] is the average relative speed between two
nodes. We assume that when a susceptible and an infective
node are in contact, the infection is transmitted to the suscep-
tible node with a fixed probability. We assume that all of the
parameters of the system other than the communication range
is fixed. Thus, we can represent the rate of transmission of the
infection from an infective to a susceptible node as β̂u.

Let N be the total number of nodes, nS(t) the total number
of susceptible nodes and nI(t) be the total number of infected
nodes at time t. Following the conditions we assumed for
the model, the numbers of the infective and recovered nodes
evolve according to a Pure Jump Markov Chain. Let the rate
between state σ1(t) and σ2(t) in that Markov Chain be denoted
by ρ(σ1(t), σ2(t)), where the state of the Markov Chain is the
triplet (nS(t), nI(t), nR(t)). Thus we have:

ρ((nS(t), nI(t), nR(t)), (nS(t)− 1, nI(t) + 1, nR(t))

= β̂unS(t)nI(t)

and

ρ((nS(t), nI(t), nR(t)), (nS(t), nI(t)− 1), nR(t) + 1)
= γnI(t)

Let the fraction of the infective nodes at time t be denoted
by I(t), i.e., I(t) = nI(t)/N. Likewise, let S(t) = nS(t)/N
and R(t) = nR(t)/N respectively represent the fraction of
susceptible and recovered nodes at time t. Now according to
results of [27], if N is large, then S(t) and I(t) converge
asymptotically to the solution of the following differential
equations:

Ṡ = −Nβ̂uIS
İ = Nβ̂uIS − γI

Ṙ = γI

Here as well as in the rest of the paper, whenever not
ambiguous, the dependency on t is made implicit for brevity.
To make equations more legible, we replace Nβ̂ with β.
We assume that at time zero, a nonzero portion (I0) of the

nodes, but not all of them, are infective. That is we assume
that 0 < I(0) = I0 < 1. Adding the initial conditions to
the differential equations, the dynamics of the system can be
represented as follows:

Ṡ = −βuIS S(0) = 1− I0

İ = βuIS − γI I(0) = I0

Ṙ = γI R(0) = 0.

Here, the control variable is the communication range of the
nodes, which is bounded between a maximum and minimum
value:

umin ≤ u ≤ 1 (1)

These bounds are imposed by the physical constraints of
the device as well as the MAC protocol and the minimum
acceptable QoS. We make the technical assumption that

0 < umin.

Note that the actual bounds of the communication range can
always be re-scaled and normalized and their impact can be
captured by an appropriate β, so that umax = 1. Any u(t)
that satisfies the above constraint is called admissible and the
range [umin . . . 1] is referred to as the admissible range.

We also have the following state constraints

0 ≤ S, I,R

S + I +R = 1. (2)

The latter follows because S + I + R is equal to N/N = 1.
Because of constraint (2), the differential system is in fact 2-
dimensional. Thus we can reduce the system to the following

Ṡ = −βuIS S(0) = 1− I0 (3a)

İ = βuIS − γI I(0) = I0 (3b)

with the state constraint

0 ≤ S, I

S + I ≤ 1
(4)

where the constraint on the control variable is the same as
in (1).

We now get to the second task: we construct a cost function
which suitably captures the trade-off which is induced by
decreasing the communication range of the nodes. Our cost
functions are naturally integration of an instantaneous cost
over an operation period. Clearly, for the instantaneous cost to
be meaningful, it should grow larger with an increase in the
fraction of the infective nodes. We assume a linear dependence
on I(t).

We now explore the relation between the instantaneous cost
and the communication range. As mentioned before, as the
communication range of the nodes decreases, the ability of



nodes to which in turn deteriorates the QoS.1 Note that umax

is the normal communication range of the nodes which has
been calculated as an optimum operating work in natural
circumstances. Thus a decrease in the communication range
decreases the QoS, implying that the instantaneous cost must
be a decreasing function of u(t). The exact relation of the
communication range of the nodes, u, to the cost function
depends on the implemented MAC and routing policies. In this
paper, we consider two different instantaneous cost functions,
both of which are decreasing in u and are linearly increasing
in I.

In subsection IV-A the cost function is as follows:

J =
∫ T

t=0

(CI − u) dt (5)

Coefficient C determines the relative importance (hazard) of
the infection. The linearity in u is justified by the fact that
any (undesirable) effect of reduction of the communication
range on the QoS of the network can be approximated by its
linearization around an operation point u ∈ [umin . . . umax].
The approximation is good whenever the range of changing
of the communication range is small compared to its value at
the operating point.

The second cost function in this paper, which we consider
in subsection IV-B is as follows:

J =
∫ T

0

[CI + u−1] dt (6)

Relation between J and u in this case is motivated by the
work of [26] and [28] in which they show that the expected
delivery delay of the network is proportional to the inverse of
the communication range of nodes for a number of different
routing protocols.

The problem is now well-defined. The task at hand is to
find the optimum u(t) that minimizes the cost function over
all admissible u(t)s.

S fraction of susceptible nodes
I Fraction of infective nodes
R Fraction of recovered nodes
u Communication Range
γ Recovery rate of Infective nodes

TABLE I
TABLE OF IMPORTANT NOTATIONS.

IV. STRUCTURAL RESULTS

In this section, we obtain structural results for the optimal
communication range, u as a function of time, that mini-
mizes the overall system cost which captures desired trade-
offs between communication efficacy (and hence QoS) and
containment of the worm.

1Note that assuming a bi-directional communication, u is in fact the
communication range between a susceptible and an infective node or between
two susceptible nodes. Specifically, the communication range between the
infective nodes is unaltered. However, as far as QoS is concerned, we only
care about the communication range between the susceptible nodes, which is
indeed u.

In subsection IV-A we analyze the optimal control problem
that seeks to minimize the cost function (5), which is linear
both in u and I. We present the structural characteristics of
the optimal solution for this case in Theorem 1. We show that
the optimal communication range is of bang-bang form, that
is, it possesses only two possible values umax and umin and
switches abruptly between them. It has at most two such jumps
and the final jump necessarily culminates at umax.

Next, in subsection IV-B, we assume the cost function (6)
which is linear in I but nonlinear in u. We establish the
structural properties of the optimal communication range as
a function of time for this case in Theorem 2. The optimal
solution in this case is not bang-bang anymore, but follows
a similar pattern. Specifically, it has at most two switches
between umax and umin, with the difference that here the
transitions are smooth.

We now state Lemmas 1 and 2 and Corollary 1 which will
be used throughout the proofs.

Lemma 1. I and S are continuous functions of time.

Proof: According to (3), both S and I are integrals of
bounded functions and thus are continuous functions of time.

Note that as a consequence, any continuous function of I
and S is also a continuous function.

Lemma 2. (S, I) strictly satisfy the constraints of (4) for the
entire interval of (0 . . . T ), for any u(t) that satisfies (1).

This lemma allows us to deal with an optimal control
problem with no state constraints, since the state constraints
are never active. In other words, even though (4) might imply
that we have an optimal control with state constraints, we
can ignore the state constraints since they are automatically
satisfied provided that the initial infection is neither zero nor
is equal to the entire population.

Proof: Note that at t = 0, by assumption we have 0 <
I = I0 < 1 and also 0 < S = S0 = 1 − I0 < 1. Hence the
first two constraints in (4), i.e., 0 ≤ S, I are strictly met. The
last constraint, i.e., S + I ≤ 1 is active at t = 0, however,
by summing equations (3a) and (3b) we have d

dt (S + I) at
time zero is equal to −γI0, which by assumption is negative.
Therefore, there exists an interval after time zero on which
the constraint S+ I ≤ 1 is strictly met. Now suppose that the
statement of the Lemma is not true. Then let 0 < t0 ≤ T be the
first time that (at least) one of the three state constraints of (4)
becomes active. Thus for the interval (0 . . . t0) the constraints
are strictly met. For 0 < t < t0, from (3a) we have Ṡ ≥ −βS,
thus d

dt (Se
βt) ≥ 0. Hence (Seβt) ≥ S0, and thus, S(t) > 0

if S0 > 0. Thus the condition S ≥ 0 could not have become
active at t0. Similarly, for 0 < t < t0 from (3b) we have
İ ≥ −γI, thus d

dt (Ie
γt) ≥ 0. Hence (Ieγt) ≥ I0, and thus,

I(t) > 0 if I0 > 0. This means that the constraint I ≥ 0
could not have become active at t0 either. Now by summing
the equations (3a) and (3b), we obtain d

dt (S+I) = −γI which
due to what was just shown is strictly negative for 0 < t < t0.
Thus at t0, S+ I < S0 + I0 and hence, S+ I < 1. Thus none



of the constraints could have become active, a contradiction.

Corollary 1. S is a strictly decreasing continuous function of
time, i.e., S ↘ S(T )

Proof: Form equation (3a) and Lemma 2 and since by
assumption 0 < umin ≤ u we observe that Ṡ is strictly
negative . The result follows.

A. A linear cost function

In this subsection, we assume the cost function (5) as
the cost of the system and derive the optimal controller
accordingly. The structural properties of the optimal controller
are expressed in Theorem 1.

Theorem 1. The optimal u(t) has one of the three following
structures: (Fig.1)

1) u(t) = umax for 0 < t < T ;
2) ∃t1 such that u(t) = umin for 0 < t < t1 and u(t) =

umax for t1 < t < T ;
3) ∃t1, t2 such that u(t) = umax for 0 < t < t1 and

u(t) = umin for t1 < t < t2 and u(t) = umax for
t2 < t < T.

In words, the optimal u(t) is bang-bang and it either has
no jump and is fixed at umax; or has only one jump of the
form u = umin ↑ umax; or has only two jumps of the form
u = umax ↓ umin ↑ umax.

u u u

t ttT

1

0 0 0

1 1

T T

Fig. 1. All three bang-bang controllers stipulated in Theorem 1.

Proof: Throughout the proof, the variables pertain to the
optimum solution. This optimal control is a constrained input
problem, i.e., the optimal controller is bounded (1). We need
to apply Pontryagin’s Maximum Principle [29, P.232].

We construct H as a scaler function of variables λ1 and λ2,
that satisfy the following:

H = CI − u− λ1βuIS + λ2βuIS − λ2γI. (7)

λ̇1 = −∂H
∂S

= λ1βuI − λ2βuI

λ̇2 = −∂H
∂I

= −C + λ1βuS − λ2βuS + λ2γ

(8)

with the final value constraints

λ1(T ) = 0
λ2(T ) = 0.

(9)

In the terminology of Pontryagin’s Maximum Principle, H is
referred to as the Hamiltonian of the system and λ1 and λ2 are
called the co-state variables. Then, according to Pontryagin’s
Maximum Principle, absolutely continuous functions λ1 and

λ2 exist that satisfy (8) and (9) and the optimal control u is
the minimization of the Hamiltonian (7) over all admissible
controls, assuming that all of the state and co-state variables
are according to their value for the optimum u [29, P.232].

Let ϕ, called the switching function, be defined as the
following:

ϕ , ∂H

∂u
= −1 + βIS(λ2 − λ1). (10)

This allows us to rewrite the Hamiltonian in (7) as follows:

H = CI + ϕu− λ2γI. (11)

Therefore, we get the following property for the optimal
control:

u∗(t) =

{
1, ϕ(t) < 0
umin, ϕ(t) > 0

(12)

To affirm that the optimal u takes only its maximum and
minimum values (i.e., is bang-bang), we need to establish that
the set of times on which ϕ(t) = 0 has a zero Lebesgue
measure. If the latter was not true, then we had to deal with
a singular optimal controller. The organization of the proof is
as follows:

Step 1 First we prove that the optimal controller is indeed bang-
bang by negating the possibility of a singular optimal
controller. Specifically, we argue that the switching
function ϕ can be zero at at most three distinct time
epochs.

Step 2 Next we show that ϕ can have at most two zero-crossing
points (which are the time epochs at which ϕ crosses
zero and changes its sign). Note that from (12), these are
the time epochs at which u switches between its extreme
values, and therefore, the optimal controller has at most
two jumps.

Step 3 Finally, we use a terminal value condition of ϕ to
evince the nature of the jumps of the bang-bang optimal
controller.

Proof of Step 1. From (10), (3) and (8), we obtain
ϕ̇

β
= İS(λ2 − λ1) + IṠ(λ2 − λ1) + IS(λ̇2 − λ̇1)

= (βuIS − γI)S(λ2 − λ1) + I(−βuIS)(λ2 − λ1)
+ IS(−C + λ1βuS − λ2βuS + λ2γ − λ1βuI + λ2βuI)

= −IS(C − λ1γ).

Thus,
ϕ̇ = −βIS(C − λ1γ). (13)

The Hamiltonian is autonomous, i.e., does not have an
explicit dependency on the independent variable t. When the
final time T is fixed and the Hamiltonian is autonomous (i.e.,
∂H
∂t ≡ 0), then ([29, P.236]):

H(S(t), I(t), u(t), λ1(t), λ2(t)) ≡ constant. (14)

Let a null point ts be a time when ϕ = 0. Also let the variables
with tilde denote their values at ts. From (10) by equating
ϕ(ts) = 0 we obtain

βĨS̃(λ̃2 − λ̃1) = 1. (15)



Using ϕ̃ = 0 in (11) yields

H(ts) = H̃ = Ĩ(C − γλ̃2). (16)

Now we can obtain

˜̇ϕ = −βĨS̃(C − λ̃1γ) [from (13)]

= −βĨS̃(C + γ(
1

βĨS̃
− λ̃2)) [from (15)]

= −βĨS̃(C − γλ̃2)− γ

= −βS̃H̃ − γ. [from (16)] (17)

Here, we state a general property of differentiable functions
which we prove in the appendix.

Property 1. Assume f(t) is a differentiable function of t.
Assume t1 and t2 to be its two consecutive L-Level points,
that is, f(t1) = f(t2) = L and f(t) 6= L for all t1 < t < t2.
Now if ḟ(t1) 6= 0 and ḟ(t2) 6= 0, then ḟ(t1) and ḟ(t2) must
have different signs.

We investigate the case of H = 0 first. According to (17),
˜̇ϕ = −γ < 0. Thus, first of all, ˜̇ϕ, and thus ϕ, cannot be
zero over an interval of nonzero length. Now suppose that
there were more than one null point and call the first two
consecutive ones ts1 and ts2. We have ˜̇ϕ(ts1) = ˜̇ϕ(ts2) =
−γ 6= 0. However, according to Property 1, ˜̇ϕ(ts1) and ˜̇ϕ(ts2)
must have had different signs, which is a contradiction. Thus
there is at most one null point in this case.

Now consider the case of H 6= 0. Since β,H, γ are
constants, (17) is linear in S̃. Also recall from Corollary (1)
that S is a strictly monotonic function of time. Thus S̃, as
samples of S, is strictly monotonic in ts. Therefore, ˜̇ϕ is
strictly monotonic in ts. First of all, this implies that ˜̇ϕ, and
thus ϕ, cannot be zero over an interval of nonzero length.

Strict monotonicity of ˜̇ϕ in ts implies that there is at most
one ts at which ϕ̇ = 0 (Fact-I).

Now suppose that there were more than three null points.
Let the first four consecutive null points be ts1 to ts4. Based
on Fact-I, at most one of them can have ϕ̇ = 0. Suppose for
example that ϕ̇(ts2) = 0. Now either ϕ̇(ts1) > 0 or ϕ̇(ts1) <
0. If ϕ̇(ts1) > 0, then according to the strict monotonicity
of ˜̇ϕ in ts and since ϕ̇(ts2) = 0, we must have ϕ̇(ts4) <
ϕ̇(ts3) < 0. However, strict negativity of ϕ̇ on consecutive
null points ts3 and ts4 is in violation of Property 1. Now on
the other hand, if ϕ̇(ts1) < 0, then similarly according to strict
monotonicity of ˜̇ϕ in ts and since ϕ̇(ts2) = 0, we conclude
ϕ̇(ts4) > ϕ̇(ts3) > 0. The latter violates Property 1.

Similar arguments apply if ϕ̇ = 0 for any of the other three
null points instead of ts2, or if ϕ̇ is nonzero at every four of
them. Hence, we conclude that there are at most three distinct
time epochs at which ϕ = 0 for the case H 6= 0.

Hence, the set of times at which ϕ = 0 is finite (it has at
most three members) and thus, the optimal controller is not
singular. This concludes Step 1.

Proof of Step 2. In this step, we show that u has at
most two jumps. According to (12), the points at which there
is a jump in u are the time epochs at which ϕ crosses 0 and

changes its sign. We refer to such time epochs as zero-crossing
points or switching times. In what follows, we suppose that
there are more than two switching times and we arrive at a
contradiction.

First, we present another property of differentiable functions
whose proof can be found in the appendix.

Property 2. Let f(t) be a differentiable function of time. Let
t1, t2, t3 be three consecutive L-level points that are also L-
crossing points, that is, f(t1) = f(t2) = f(t3) = L, f(t) 6= L
for all t1 < t < t2 and t2 < t < t3, and (f(t)−L) changes its
sign at these point. Now if we have ḟ(t1) 6= 0 and ḟ(t2) = 0
and ḟ(t3) 6= 0, then ḟ(t1) and ḟ(t3) must be of the same sign.

In step 1, we showed that there are at most three distinct
null points, say ts1 to ts3. Note that, a zero-crossing point
must also be a null point. Thus, if there are more than
two zero-crossing points, then they have to be ts1 to ts3.
Following a similar argument that we used in step 1, we
conclude that the only arrangement that is feasible by Fact-I
and Property 1 and the strict monotonicity of ˜̇ϕ in ts, is when
ϕ̇(ts2) = 0 and furthermore, ϕ̇(ts1) and ϕ̇(ts3) have opposite
signs. But then, ts2 cannot be a zero-crossing point because
according to Property 2 that requires ϕ̇(ts1) and ϕ̇(ts1) to
have identical signs. Therefore, there cannot be more than two
distinct switching times, and thus, u has at most two jumps.

Proof of Step 3. Note that ϕ(t) is a continuous function
that following (9), ends at

ϕ(T ) = −1. (18)

Hence from (12), the optimal controller is at its maximum
for a subinterval towards the end of [0 . . . T ]. Now if ϕ has
no zero-crossing point then the optimal controller is always
at its maximum for the entire interval (case 1). If ϕ has one
zero-crossing point, then it starts from its minimum value and
jumps to its maximum at some t1 ∈ (0 . . . T ) and stays at its
maximum for the remainder of the interval (case 2). Finally, if
ϕ has two zero-crossing points, since it has to finally be equal
to −1, then it would have necessarily changed its sign from
negative to positive at some time 0 < t1 < T and then back to
negative at some later time 0 < t1 < t2 < T. Referring to (12)
we conclude that the optimal controller is at its maximum until
t1, then it is at its minimum until t2 when it jumps up to its
maximum at t2 and stays there (case 3).

Remark 1. We can differentiate the following two cases in
the light of equation (17).

(I): H ≥ − γ

β(1− I0)
. Then ˜̇ϕ < 0. To see this note

that from Corollary 1, 0 < S < S0 = 1− I0 and S
is a monotone continuous function. Now by referring
to (17), it is easy to check that the stated condition
on H guarantees ˜̇ϕ < 0 for both S̃ = S0 and
S̃ = 0, and hence for any value of S̃ in between.
The negativity of ˜̇ϕ along with the fact that ϕ is a
continuous function of time shows that we can have
at most one switch in the sign of ϕ.



In order to qualitatively distinguish these two sub-
cases where we have no jump in the optimal con-
troller and where we have one jump from umin to
umax, recall from (18) that ϕ(T ) = −1 < 0. Thus,
if ϕ(0) = −1 + βI0S0(λ2(0)− λ1(0)) > 0, then by
the Intermediate Value Theorem (IVT), we have such
a jump. Also if ϕ(0) < 0 then there is no jumps in
the optimal controller and u = umax for the entire
interval.
Therefore, referring to the shadow price interpreta-
tion of the co-state variables, we have the following
intuitive interpretation.

If the virus spreads slowly (small β) and/or its
relative cost is low (i.e., not a serious threat),
then we might never reduce the communication
ranges of the nodes as a counter-measure.

(II): H < − γ

β(1− I0)
. Then depending on S̃, the sign

of ˜̇ϕ = −βS̃H̃−γ can be either positive or negative,
and based on what we showed the optimal bang-bang
controller can display up to two jumps.
According to (9) and (14) H = H(T ) = CI(T ) −
1. Also from (3b) we have I(T ) ≥ I0e

−γT . Thus
a necessary condition for having two jumps in the
optimal controller is as follows

CI0e
−γT − 1 < − γ

β(1− I0)
.

Also, another (weaker) necessary condition, derived
from the above inequality, can be the following:

γ

β(1− I0)
< 1.

B. A non-linear cost function

In this subsection, we consider the cost function in equa-
tion (6). We provide the structural properties of the optimal
controller for this case in Theorem 2, which relies on Lem-
mas 3 and 4. Lemma 3 discusses the number of intervals
over which the optimal controller is at its maximum value.
Lemma 4 sheds light on the behavior of the optimal controller
during its transitions between its extrema.

In order to state Theorem 2, we need to define phases as
follows (Fig.2):

Phase 1:
• u(t) = k, on 0 ≤ t ≤ t1 < T for some t1 ≥ 0;
k = umax if t1 > 0;

• u(t) strictly and continually decreases on t1 <
t ≤ t2 < T for some t2 ≥ t1;

• u(t) = umin on t2 < t ≤ t3 < T for some
t3 ≥ t2.

Phase 2:
• u(t) strictly and continually increases on τ1 <
t ≤ τ2 < T for some 0 ≤ τ1 ≤ τ2;

• u(t) = umax on the interval τ2 < t ≤ T.

Theorem 2. The optimal u(t) that minimizes the cost function
in (6) is a continuous function which is necessarily composed
of one the following cases:
• Only Phase 2.
• Phase 1 followed by Phase 2.
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Fig. 2. All possible structures for the optimal controller considered in
Theorem 2. The dotted lines designate the beginning of Phase 2 in each
case. (a) u is entirely Phase 2 with τ1 = τ2 = 0; (b) u is entirely Phase 2
with 0 = τ1 < τ2; (c) u is composed of Phase 1 with 0 = t1 = t2 < t3,
followed by Phase 2; (d) u is composed of Phase 1 with 0 = t1 < t2 = t3,
followed by Phase 2; (e) u is composed of Phase 1 with 0 < t1 < t2 = t3,
followed by Phase 2; (f) u is composed of Phase 1 with 0 = t1 < t2 < t2,
followed by Phase 2; (g) u is composed of Phase 1 with 0 < t1 < t2 < t3,
followed by Phase 2.

Proof: Throughout the proof, the variables with no under-
line denote their values according to the optimal solution. As
we did in subsection IV-A, we will apply the Pontryagin’s
Maximum Principle. Following the Pontryagin’s Maximum
Principle, we construct the Hamiltonian and the co-state vari-
ables for this problem as follows:

H = CI + u−1 − λ1βuIS + λ2βuIS − λ2γI, (19)

and

λ̇1 = −∂H
∂S

, λ̇2 = −∂H
∂I

with the final value conditions:

λ1(T ) = λ2(T ) = 0 (20)

The resulting differential equations for the co-state variables
λ1 and λ2 turn out to be the same as in (8). According to
Pontryagin’s Maximum Principle, we must have [29, P.232]:

H(S, I, u, λ1, λ2) ≤ H(S, I, u, λ1, λ2) over all admissible u.

This leads to the following condition for the optimal controller

u−1 + [λ2 − λ1]βuIS ≤ u−1 + [λ2 − λ1]βuIS. (21)

Let ψ be defined as follows:

ψ , [(λ2 − λ1)βIS], (22)

which is a differentiable function of time. The Hamiltonian
in (19) can be rewritten as follows

H = CI + u−1 + ψu− λ2γI. (23)



Also, the condition for the optimal u in (21) can be restated
as follows

u−1 + ψu ≤ u−1 + ψu.

Note that the function f(u) =
1
u

+ ψu with u ∈ [umin . . . 1]

for an arbitrary ψ has the following minimization:

for ψ > 0

u =





umin, ψ−1/2 < umin

ψ−1/2, umin ≤ ψ−1/2 < 1
1, 1 ≤ ψ−1/2,

and for ψ ≤ 0

u = 1.

Therefore, the optimal controller is obtained as

u =





umin, u−2
min < ψ

ψ−1/2, 1 < ψ ≤ u−2
min

1, ψ ≤ 1.
(24)

Note that the optimal u is a continuous function of ψ, which
itself is a continuous function of time. Hence, the optimal u
is a continuous function of time.

Lemma 3. (A) There exists a time 0 ≤ t1 < T such that
u = umax for t1 < t < T.
(B) Also if there exists times t3 < t2 < t1 such that u =
umax on t3 < t < t2 and u 6= umax on t2 < t < t, then
u = umax for all 0 ≤ t ≤ t2.

This lemma states that there is at least one interval of
nonzero length on which u = umax and that extends until
the end of the operation period. And there are at most two
distinct intervals of nonzero length on which u = umax, which
must occur at the beginning and at the end of the optimization
period.

Proof: We prove this lemma by first verifying a claim.

Claim 1. ψ crosses 1 at at most two distinct time epochs in
(0 . . . T ). Also ψ cannot be equal to 1 over an interval of
nonzero length.

Proof: From (3), (8) and identical to the derivation in (13)
we obtain:

ψ̇ = −βIS(C − λ1γ). (25)

Let ts be a time when ψ = 1. Indicating the values at ts
with a tilde, we have:

ψ̃ = 1 ⇔ (λ̃2 − λ̃1)βĨS̃ = 1

⇒ ˜̇
ψ = −βĨS̃(C − γ(λ̃2 − 1

βĨS̃
))

= −βS̃(CĨ − γλ̃2Ĩ)− γ

The system is again autonomous and thus the Hamiltonian is
a constant [29, P.236], and is therefore equal to its value at
ts. From (24) ũ = 1. Replacing for ũ and ψ̃ in (23) yields:

H = CĨ + 2− γλ̃2Ĩ .

Hence,

˜̇
ψ = −βS̃(H − 2)− γ. (26)

This shows that ˜̇
ψ is linear in S̃. Since ψ is a differentiable

function, similar arguments used after equation (17) ins step
2 of proof of Theorem 1 applies here. Thus the claim follows.

Now, we can prove the first part of the lemma. According
to (20) and the definition of ψ in (22) we have

ψ(T ) = 0. (27)

Thus, as ψ is a continuous function and referring to (24) the
optimal controller must be at umax for a sub-interval that
expands until the end of the optimization period.

For proving the second part of the lemma, suppose that
there were more than two distinct intervals of nonzero length
on which u = umax, or the first interval on which u = umax

occurred somewhere in the middle of (0 . . . T ). Then by
referring to (24) and as ψ is a continuous function of time, ψ
must have had more than two 1-crossing points or must have
been equal to 1 over an interval, both of which are impossible
by Claim 1.

The next lemma describes the behavior of the optimal u
during its transition intervals.

Lemma 4. (A) u̇ = 0 over an interval of nonzero length
only if u = umin or u = umax over that interval.

(B) If u is strictly increasing over (t1 . . . t2) and over
(t3 . . . t4) for some 0 ≤ t1 < t2 < t3 < t4 ≤ T, then u
is stricly increasing over (t1 . . . t4).

In words, part (A) of the lemma states that flat sections of
u can only occur for u = umin or u = umax, and part (B)
says that u is a strictly increasing function of time on at most
one interval of nonzero length during [0 . . . T ].

Proof: Let’s calculate the derivative of u with respect to
time:

du

dt
=

{
− 1

2ψ
−3/2ψ̇, 1 < ψ < u−2

min

0, otherwise
(28)

where ψ̇ is given by (25).
Note that there exists at most one interval of nonzero length

on which ψ > 1. This is because otherwise ψ, as a continuous
function of time that has to satisfy ψ(T ) = 0, had to cross 1
more than twice or had to be at 1 for an interval of positive
length. However, that would be in contradiction with Claim 1.

In order to prove the lemma, we need to establish the
following claim:

Claim 2. ψ has zero time-derivative for at most one time
epoch during the (only possible) interval on which ψ > 1.



Proof: Suppose that ψ̇ is zero at more than one time epoch
during the interval on which ψ > 1. Let those time epochs be
t1 and t2. Since from Lemma 2, IS is never zero, from (25)
we have:

C − λ1(t1)γ = 0 = C − λ1(t2)γ

and hence

λ1(t1) = λ1(t2). (29)

The relation for λ̇1 in (8) can be rewritten as follows:

λ̇1 = −ψu
S
.

Note that by assumption, ψ > 1 during the interval [t1 . . . t2].
Therefore, since by assumption u ≥ umin> > 0, λ1 is strictly
decreasing during the interval [t1 . . . t2]. This contradicts (29).

According to (28) and (24), u̇ = 0 and u /∈ {umin, umax}
only when ψ̇ = 0 and 1 < ψ < u−2

min. Now according to
Claim 2, this cannot take place over an interval of nonzero
length. Hence, Part (A) of the lemma follows.

Now suppose Part (B) was not true, and there were more
than one distinct intervals on which u is strictly increasing. Let
these intervals be (t1 . . . t2) and (t3 . . . t4) where t3 > t2. Note
that according to (28) u can be a strictly increasing function
of time only if ψ > 1. Since we argued that there is only
one interval of nonzero length on which ψ > 1, we must
have ψ > 1 for the entire t1 < t < t4. We now argue that
u must be a strictly decreasing function of time over at least
one sub-interval of the (t2 . . . t3). This is because otherwise,
u is flat throughout (t2 . . . t3). Thus, according to part (A) of
Lemma 4 that we just showed, u = umin or u = umax over
(t2 . . . t3). Recall that after equation (24), we verified that u is
a continuous function of time. Now, u = umin contradicts u
being a strictly increasing function of time over (t1 . . . t2), and
u = umax contradicts u being a strictly increasing function of
time over (t3 . . . t4).

According to (28), u is a strictly increasing function of time
only if (a) ψ̇ ≤ 0 and (b) ψ̇ = 0 only at singular points. Also
similarly, u is a strictly decreasing function of time only if
(a) ψ̇ ≥ 0 and (b) ψ̇ = 0 only at singular points. Therefore,
over the interval (t1 . . . t4), ψ̇ must have changed its sign more
than once. Thus, since ψ̇ is a continuous function of time,
ψ̇ = 0 for at least two distinct time epochs in (t1 . . . t4). This
contradicts Claim 2, since we argued that ψ > 1 for (t1 . . . t4).

Now we focus on the proof of Theorem 2. The proof is
best perceived if we investigate the optimal u from time T
backwards. First recall from the argument that followed (24)
that the optimal u is a continuous function of time. Now,
from Lemma 3 we conclude that u = umax for the interval
(ν1 . . . T ) for some 0 ≤ ν1 < T. If ν1 = 0 then u = umax

for the entire [0 . . . T ]. Referring to the definition of Phases,
this corresponds to the case where u is entirely Phase 2 and
τ1 = τ2 = 0.

On the other hand, if ν1 > 0 then the interval of u =
umax is precedented by an interval of (ν1 . . . ν2) for some 0 ≤
ν1 < ν2 on which u is an increasing function of time, simply
because u cannot exceed umax. Thus, we have established that
the optimal controller necessarily ends with Phase 2.

Subsequently, from Lemma 4 part (B), we conclude that
the optimal controller on the interval (0 . . . ν1) is composed
of only flat or decreasing sections. By part (A) of Lemma 4
we know that the flat parts can only occur for u = c
where c ∈ {umin, umax}. Therefore, there cannot be multiple
decreasing sections either. Thus, the only possiblities for the
interval (0 . . . ν1) are (i) u = umax for some subinterval
starting from t = 0, then it is strictly decreasing to reach
u = umin, and then it is flat on u = umin until t = ν1;
or (ii) u = umax for some subinterval starting from t = 0,
then it is strictly decreasing until t = ν1; or (iii) u is strictly
decreasing over that interval. All of these three possiblities are
captured by Phase 1.

Remark 2. In the light of equation (26), we can differentiate
the following two cases:

(I): H ≥ 2 − γ

β(1− I0)
. Then following a similar

argument as in Remark 1, we conclude that ˜̇
ψ is

always negative and therefore ψ can cross 1 at most
once. If moreover ψ(0) < 1, it never does. In the
latter case, the optimal controller is at umax for the
entire interval.

(II): H < 2− γ

β(1− I0)
. Then depending on the value

of S̃, ˜̇
ψ can be positive or negative. From the fact

that Hamiltonian is a constant and equations (19),
(20) and (24) we obtain H = constant = H(T ) =
CI(T )+1. Thus, following a similar argument as in
Remark 1, a necessary condition for ψ having two 1-
crossing points (and thus, the optimal control having
two intervals of u = umax) is

CI0e
−γT + 1 < 2− γ

β(1− I0)

which can be expressed by the following (weaker)
condition:

γ

β(1− I0)
< 1.

V. CONCLUSION

We proposed reduction of reception gains of susceptible
nodes as a containment strategy in case of a malware outbreak
in mobile wireless networks. We framed the trade-offs intro-
duced by this countermeasure in a cost function. Using optimal
control tools, we identified the optimum policy of controlling
the communication ranges as a function of time so as to
minimize the above cost functions. We analytically derived the
structural properties of the optimal policy for special cases of
linear and nonlinear cost functions.



APPENDIX

Proof of Property 1. We prove the property for ḟ(t1) >
0. The proof follows similarly if ḟ(t1) < 0. We have,

f(t1) = L, ḟ(t1) > 0 and f(t) 6= L for t1 < t < t2

⇒ ∃δ1 ∈ (0 . . .
1
2
(t2 − t1)) such that f(t1 + δ1) > L.

Suppose that Property 1 did not hold, and ḟ(t2) > 0. Then,

f(t2) = L, ḟ(t2) > 0 and f(t) 6= L for t1 < t < t2

⇒ ∃δ2 ∈ (0 . . .
1
2
(t2 − t1)) such that f(t2 − δ2) < L.

But now, by the Intermediate Value Theorem (IVT), there must
exist a time t1 + δ1 < τ < t2 − δ2 such that f(τ) = L. This
contradicts the assumption that f(t) 6= L for all t1 < t <
t2.

Proof of Property 2. Assume ḟ(t1) > 0. The proof
follows similarly if ḟ(t1) < 0. We have,

f(t1) = L, ḟ(t1) > 0 and f(t) 6= L for t1 < t < t2

⇒ ∃δ1 ∈ (0 . . .
1
2
(t2 − t1)) such that f(t1 + δ1) > L.

Also, (f(t)−L) must change its sign from positive to negative
at t2. This is because otherwise, ∃δ2 ∈ (0 . . . 1

2 (t2 − t1)),
such that f(t2 − δ2) < L. But then, following IVT, ∃τ1 ∈
(t1 + δ1 . . . t2− δ2) such that f(τ1) = L. This contradicts the
assumption that f(t) 6= L, for all t1 < t < t2. Thus,

∃δ2 ∈ (0 . . .
1
2
(t3 − t2)) such that f(t2 + δ2) < L.

Now suppose that Property 2 was not true, and ḟ(t3) < 0.
Then,

f(t3) = L, ḟ(t3) < 0 and f(t) 6= L for t2 < t < t3

⇒ ∃δ3 ∈ (0 . . .
1
2
(t3 − t2)) such that f(t3 − δ3) > L.

However, now by the Intermediate Value Theorem (IVT), there
must exist a time t2 + δ2 < τ < t3 − δ3, such that f(τ) = L.
This contradicts the assumption that f(t) 6= L for all t2 < t <
t3.
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