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Abstract

Large scale proliferation of wireless technologies areedédgnt on developing reliable security measures agaitisteaks of
malware. The first step toward this goal is investigatinggbssible attack strategies of wireless malware and theveafelamage
they can incur. A malware in a mobile wireless network rebtiaesthe infrastructure of the network and the constraineduees
to spread itself. In this paper, we consider a battery-caimgd mobile wireless network. The worm at each infectiwdenat any
given time may choose to amplify the transmission range dewhi the media scanning rate and thus increase the chénce o
contacting susceptible nodes and accelerate its spreadevdq a larger transmission range and an elevated mediaingarate
results in (a) easier detection of the malware and thus nféeetiee counter-measure by the network, and (b) fastetetiep of
the battery and thus losing the node. Even if depleting thtetyais an objective of the malware, early loss of infecthades
may thwart the spread of the malware. We assume the viewpbitfite malware and cast the problem of dynamically selecting
the transmission range and media accessing rate in thetiigfetodes as an optimal control problem. We utilize Porgitya
Maximum Principle to find an optimum solution. Moreover, wwestigate the structural properties of an optimal sotutio
develop intuition about the nature of optimum attacks.

|I. INTRODUCTION

A. Motivation and Overture

Wireless computing infrastructure is prone to the spreagktifreplicating malicious codes known as malware. Thenaed
can be used to initiate different forms of attacks on the f® network. The attacks can vary from the less intrusivgo
such as violation of confidentiality or privacy, as in trafioalysis and eavesdropping, to the more intrusive methuals t
either disrupt the normal functions of the nodes such ayirejadata and establishing end-to-end routes (e.qg., siekditacks
[1]), or even alter the network traffic and hence destroy ttiegrity of the information, as in unauthorized access assisn
hijacking attacks [2], [3]. Worms can moreover deplete thergy reserves of the nodes and render them dysfunctiagglpy
aggressive media access attempts. New investments haeasimgly been directed toward wireless infrastructuamkis to the
rapid growth of consumer demands and advancements in ssrééehnologies. The economic viability of these investsien
is, however, contingent on the design of effective securdyntermeasures. Experiences of malware outbreaks ldsethf
Slammer [4] and Code Red [5] worms in wired Internet have destrated how expenses of the scales of billions of dollars
can be inflicted in repair after viruses rapidly infectedubands of hosts within few hours.

The first step in devising efficient countermeasures is tasage malware hazards, and understand the threats they pose
before they emerge in the hands of the attackers [6]. Speatificks such as the wormhole [7], sinkhole [1], and Sybil {lddt
utilize vulnerabilities in the routing protocols in a wiesls sensor network, and their counter-measures, had besstigated
before they were actually launched. We pursue the complemebut closely related goals of (i) quantifying fundansnt
limits on the damages that the attackers can inflict by igeatitly choosing their actions, and (ii) identifying thetiopal actions
that inflict the maximum damage on the network. Such quaatifio is motivated by the fact that while attackers can pose
serious threats by exploiting the fundamental limitatiohgiireless network, such as limited energy, unreliable comication,
constant changes in topology owing to mobility [9], theipahilities may well be limited by the above as well since thely
on the same network for propagating the malware.

Worms spread during data or control message transmisstwn frodes that are infectednfectives) and those that are
vulnerable, but not yet infectedsusceptibles). Counter-measures can be launched by installing secpatghes that either
immunize susceptible nodes against future attacks, by rectifyirgr tanderlying vulnerability, orheal the infectives of
the infection and render them robust against future attae&s instance, for SQL-Slammer worms [10], while Stack@uar
programs [11] immunize the susceptibles by removing théebudverflow vulnerability that the worms exploit, speczaii
security patches [12] are required to remove the worm framd ¢aereby heal) the infectives. Nodes that have been inaedni
or healed are denoted ascovered. An infective node that has lost its energy reserve, as dtrebaggressive and energy-
intensive activities of the malware, is calledlead node. Depending on whether an infective node is drainedsdfattery by
the malware before it fetches a security-patch, the stasm afifective changes to dead or recovered. States of sildeapbdes
change to infective or recovered depending on whether tbeymunicate with infectives before installing the secupstches.

The goal of the attacker is to infect as many nodes as possihdieuse the worms to disrupt the hosts as well as the network
functions, while being cognisant of the countermeasuras [1



B. A decision problem of the attacker

One of the most critical underlying resources in a mobileeleiss network is the energy reserves of the nodes, i.e., the
battery. An important decision of the worm pertains to itsimpl use of the available energy of the infective nodes. The
infectives, at any given time, can accelerate the rate afegpof the worm by increasing their contact rates with suddep
by selecting higher transmission gains and media scanateg.rSuch a choice, however, (a) can lead to easier detedttbe
malware, prompting the nodes to fetch appropriate secpéatghes sooner, and (b) depletes the infective nodes’ gnesgrves
faster which in turn limits the spread of the infection andoatheir other malicious activities such as eavesdroppnaffic
destructiongtc. Even if the malware’s objective is to render the nodes dydfanal, early loss of infective nodes due to their
battery depletion may thwart the spread of the malware. Dubadse trade-offs, it is not trivial to determine the dyneatly
changing instantaneous transmission gain and/or mediesacaate of the infective nodes that maximizes the overafiadg
inflicted by the worm.

C. Contributions

First, we construct a mathematical framework which cogentbdels the effect of the decisions of the attackers on the
state dynamics and their resulting trade-offs through abioation of epidemic models and damage functions (sectipn |
Specifically, we assume that the damage inflicted by the wara Gumulative function increasing in the number of infected
and dead hosts, which are both changing with time. We asshengi¢wpoint of the malware, which seeks to maximize the
damage by dynamically selecting the energy usages of its dgle assuming full knowledge of the network parametais a
the counter-measures. The maximum value of the damagdduartben quantifies the fundamental limits on the efficacyhef t
worm, particularly, since we assume that the worm has campdeowledge of all the contributing factors, and uses ogltim
dynamic strategies. The damage maximization problem isasaan optimal control problem which can be solved numdyical
by applying Pontryagin’s Maximum Principle [14]-[16] (sien III).

Second, we seek to develop insight about the nature of thenopt policies of the worm, also whether they are simple
enough to be pursued by the malware. Towards this end, wetigage structures of the optimum solutions of the optimal
control problem. Our results are significant and have negatbnnotations from the counter-measures point of viewy@s
show that an attacker can inflict the maximum damage by usémg simple decisions. Specifically, if the malware seeks to
maximize an aggregate over time of the fraction of the imfecand the dead nodes but is not particularly interestedhén t
final tally of them, the transmission range and media scanrate has the following simple structure: until a certaingj the
worm uses maximum power to spread itself, and right aftet; the malware ceases its spreading effort (theorem 1).Harot
words, the malware’s activity can be divided into (at most) distinct phases: an initiddlitz phase and a subsequetdalth
mode phase. During the initial phase, the malware in each infeatiode uses the maximum power to aggressively spread
the malware (blitz phase), until a threshold time at whictiec¢tive nodes cease their media access activities and ante
energy-saving mode. During the stealth mode phase, iméentides furtively perform their malicious activities: eadropping,
traffic analysis, sabotaging routes, changing dettaJn optimal control terminology [14]-[16], we have provedttihe optimal
strategy has #éang-bang structure, that is, at any given time, the optimum power asageither at its minimum or maximum
possible values; in addition it has at most one jump whichessarily terminates at the minimum possible value. Opttynal
of this simple strategy for this nontrivial problem is in fayuite surprising.

If, on the other hand, the malware is interested in increp#ire final tally of the dead nodes in addition, then our next
result (corollary 1) states that there are up to three disfinases: the initiablitz phase during which infective nodes use
maximum power to spread the infection as aggressively asifjesthe intermediate energy-savistgalth mode phase during
which malware ceases the power-intensive media accesdiastin the infective nodes, and finally tiskughter phase when
the media access activities are turned back on with maximawep but this time with the primary goal of depleting the
remaining batteries of the infectives akidling them.

D. Related Works

Malware outbreaks in wireless networks constitute an emgrgesearch topic (e.g., [17]-[24]), though, the researoh
spread of malware has traditionally focused on wired ndta/idEpidemic modeling based on the classic Kermack-Mckekdr
model [25] has extensively been used to analyze the spreadlofare in wired networks [5], [26]-[34&tc, and more recently
in wireless networks [35]. These works show, through sithtes and matching with actual data, that when the number of
nodes in a network is large, the deterministic epidemic rnsodan successfully represent the dynamics of the sprealkeof t
malware.

Dynamic control of parameters of the network or the worm Hasen investigated in several papers. Most of these however
do not identify the optimal policies nor provide provablefpemance guarantees, but instead propose heuristic dgrpficies
in different contexts, and evaluate through simulatiores efficacies and various trade-offs of the policies they psep For
example, [36] proposes heuristics for dynamic quarargimhnodes in wired networks that appear suspicious throraffict
analysis, and [37] introduces heuristic strategies foragiyically adjusting the transmission power of attacker sddevireless



networks. We instead obtain attack policies that provalilyimthe maximum possible damage and consider a generatimod
that incorporates healing, immunization and mortality ofles.

Interestingly, tools from the optimal control theory suahthe effective theorem of Pontryagin maximum Principle taasly
been used for analyzing network security - [38] and our mnesiwork [39] constitute notable exceptions. The first foates
the trade-off for optimal treatment of the infective nodeswired networks. However, in contrast to our work, the doluis
based on numerical evaluations only and no structural ptpeé the optimal policy is established. One of our earliesris
[39] proposes reduction of reception gain of wireless naaea counter-measure for slowing down the spread of malware i
wireless networks. Another one of our papers [40] focusetherattack viewpoint and considers the transmission rahg¢feeo
infective nodes and the rate of killing as two independiyrtamic parameters of the worm to inflict the maximum damage.
In particular, killing a node is achieved by executing a wialis code damaging a vital part of the hardware. Moreové, [
considers a worm with a power budget which specifically esstinat every infective node lasts the entire duration @frast.

In contrast, we consider the case in which the killing precefsthe infective nodes is not independent of the energgeyre
media access activities. Furthermore, we consider ansitiereffects of an aggressive media access activity, whielkposing
an anomaly and hence, easier detection of the malware.

Il. SYSTEM MODEL
A. Dynamics of State Evolution

A susceptible node is a mobile wireless device which is not contaminatethbyworm, but is prone to infection. A node is
infective if it is contaminated by the worm. An infective spreads themdo a susceptible while transmitting data or control
messages to it. A node that has lost its battery reserve isteigras adead node, that is, it cannot function any longer. A
functional node that is immune to the worm is referred taemvered. Installation of appropriate security patches, by the
respective users or the network operator, icamunize susceptibles to the recovered states, hsb infectives to the recovered
states.

Let the total number of nodes in the network be Let the number of susceptible, infective, recovered aratideodes
at time ¢ be denoted byhg(¢),nr(t),nr(t) andnp(t), respectively, and the corresponding fractionsdie) = ng(t)/N,
I(t) = nr(¢t)/N, R(t) = nr(t)/N, and D(t) = np(t)/N (Table I) respectively. ThenS(t) + I(t) + R(t) + D(t) = 1.

) | fraction of the Susceptiblg
(t) | fraction of the Infective
R(t) | fraction of the Recovered
D(t) | fraction of the Dead

TABLE |
LIST OF NOTATIONS OF MEASURES

We assume that at the time of the outbreak of the infectioat th at time zero, some but not all nodes are infected:
0 < I(0) = Iy < 1. For simplicity, we assum&(0) = D(0) = 0. Thus,S(0) =1 — I,.

We now model the dynamics of infection propagation. Nodesassumed to roam in a vast 2-D region of afewith an
average velocity. An infective transmits a message to a susceptible with eangprobability whenever the two are éontact,
that is, the susceptible is in the transmission range of ifeciive. This probability is a linear function of the ratevehich
the infective scans the media in search of susceptibledyeand the proportionality constant is determined by thesage
collision probabilityn;. When the communication range of the nodes is small comptaretl (which is usually the case
in multihop networks)y; is essentially determined by the overall node densiy 4). Next, under mobility models such as
random waypoint or random direction model [41], Groenestedt. [42] have shown that the time between consecutive contacts
of a specific pair of nodes is neardyponentially distributed, and the rate of this exponential process &salily dependehton
the communication range of the nodes with a proportionalitystant), that depends only on and A. Specifically,ns %.

Let u(t) be the product of the infective’s transmission range andrielia scanning rate. Then, the worm is transmitted
between a given infective-susceptible pair as per an exg@mheandom process whose rate at any given tzirhEBu(t), where

B = mn.. The worm regulates the spread of the infection by contrglli(t) through appropriate choice of its transmission
gain and media scanning rate.

The security patches are installed at an infective (suiieptespectively) after exponentially distributed rand times
starting from when it is infectedt (= 0, respectively). The delays account for the time requirediétection of infection,
and fetching the appropriate security patch, etc. We detietémmunization and healing rates respectivelygby Q () and
mq + B(u), which we next explain explicitly. First, consider the pafttile countermeasure rates which does not depend on

1The result has been proved when the communication rangeeohddes is small compared to the total area of the regionwaisdsufficiently high.
Numerical computations reveal that the result holds eveeratise.



u, i.e., ¢ and wq. Typically, the rate of immunization is no less than the ratéhe@aling, as the security patch required for
immunization involves only rectification of the vulneratyilthat rendered the susceptibles accessible to the attdwreas the
second involves both the removal of the worm and the vulnigathat the worm exploits. This makes it harder to obtain a
healing security patch than an immunizing one. Moreover talware in an infective node may sabotage the effectiwokes
the security patchr can also represent the case in which a single type of seqattsh immunizes the susceptibles, however
successfully removes the infection and heals an infectbderwith probabilityr and with probabilityl — 7 it fails to do so.
Next, we investigate the part of the countermeasure ratéshwh a function ofu. The rates of immunization and healing
are affected by, the product of the transmission range and media scanniegfahe infective nodes: a larger transmission
range and a higher rate of scanning the media facilitatesctien of the malware [43], [44]. This in turn increases the overall
recovery rate since it reduces the delay associated widttlen of the malware. This effect is modeled by allowing ¢ierall
rates of immunization and of healing to be increasing fundiofu. The effect ofu can potentially be different for healing
and immunization since detection of the malware is likelyreneritical for healing than the immunization. We have idwoed
increasing and differentiable functiod¥«) andQ(u) to capture the correlation between a higheand easier detection and,
consequently, a larger healing and immunization rate e&sgely. That is, the instantaneous rates of healing amdumzation
are q + B(u) and ¢ + Q(u).2 In practice, the advantage of easier detection starts toatatafter large enough, thus it
makes sense to assume that bBtfu) and Q(u) functions are concave. We will however address both casesrmafave and
convexB and @ functions.

Each node has a limited battery capacity. We allow the noddsate different amounts of initial energy reserves, i.e.,
energy reserve at = 0 when the attack starts. We allow the initial remaining bgtte be random, and for conventicle of
the analysis, exponentially distributed. When the medizess rate is:, the battery depletes proportionally. and the rate of
depletion of the battery can be approximated to be lineamwhés not too large. In wireless networks, especially multpho
wireless networksy is constrained to be less than a designated valug. Thusu cannot be too large and the rate of battery
depletion can be represented by, wherep is a positive coefficient. Since the worm might not know thema@ing energy
reserves, the selectedt) at a given node at a given time is not a function of the remgimiattery at that (and any other)
node(s).

Following the conditions assumed for the model, the numbandes of each type evolves according to a pure jump Markov
chain with state vectofns(t),ns(t),np(t)). Since for allt, ng(t) + nr(t) + nr(t) + np(t) = N, the state of the Markov
chain is three dimensional. L&t = limy _, o NB.

Now® according to the results of [45], @€ grows, S(t), I(t) and D(t) converge to the solution of the following system
of differential equatiorfs

S(t) = =Pu)I(t)S(t) — ¢S(t) — Qu(t))S(t) S5(0)=1-1o (1a)
I(t) = Bu(t)I(£)S(t) — mqI(t) — B(u(t))I(t) — pu(t)I(t) 1(0) = I (1b)
D(t) = pu(t)I(t) D(0) = 0. (1c)

and also satisfy the following constraints at all

0<S8(t),1(t), D(t) (2a)
S(t)+I(t)+D(t) <1 (2b)
The convergence is in the following sense:
ns ()

Ve>0Vt>0, mPr{sup|T—S(7)|>e}:O

li
N—oo Tgt
and likewise forI(t) and D(t).

Similar epidemic models have been validated through erpmris as well as network simulations which indicate thahsuc
epidemic models provide an acceptable representationeopinead of malware in mobile wireless networks (see e.d, [46
[47]).

Henceforth, wherever not ambiguous we drop the dependaméend make it implicit. Figure 1 illustrates the transitions
between different states of nodes.

’Note that we did not assume that the detection is affectechéyfraction of infected nodes. An alternative model coulcbiporate that effect too.

SNote that since3 = 1172, andr; depends only on the node density, apdoc %, the limit B exists as long as the node dendityh oo N/A exists
for large N.

“4variables with dot marks (e.gS(t)) will represent their time derivatives (e.g., time derivatof S(t)) and the prime signs (e.gy/(S)) designate their
derivatives with respect to their argument (e.§j),
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Fig. 1. w(t) is product of the transmission rangmedia scanning rate of infectives at time

B. Maximum Damage Attack

We consider an attack that seeks to inflict the maximum plessibmage in a time windoW), T'] of its choice. An attack
can benefit over time from the dead and the infected hostaalRbat the malware can use the infective nodes to (i) eawepsd
and analyze traffic generated or relayed by the infectedshostthe traffic that traverses in the hosts’ vicinity, anydlter or
destroy the traffic generated or relayed by the infectedsha@st attacker also benefits by inflicting a large death-tglithe
end of the desired time window. These motivate the follondiagnage function:

T
J= / (k1I(t) + kpD()} di + K1 I(T) + KpD(T). @3)
0

wherexy, kp, K7, Kp > 0. Note that this reward function includes the case where a aralwares only about the infective
(by kp = Kp = 0) or the case in which it only seeks after killing the nodes dsguming<; = K; = 0). We make the
following technical assumption:

If xi=kp=¢q=0 thenKp — K;)ptumax — B(tmax) K15 >0 4)

The attacker seeks to maximize the damage function by agptely regulatingu(t), the product of the transmission range
and the scanning rate of the infective nodssbject to:

0 < u(t) < Umax ()

The bounds on(t) are dictated by the physical constraints of the transrsitérd also for ensuring that the interference and
hence collisions between simultaneous transmissionsinelingted.

Any continuous function: : [0,7] — R such that the left and right hand limits exist and that satike constraint in (5)
belongs to thecontrol region denoted byQ.

We first show that for any.(t) € , the state constraints in (2) are automatically satisfiedugphout(0...7]. Thus, we
safely ignore (2) henceforth.

Lemma 1. For anyu € £, the state function$S, I, D) : [0,7] — R? that satisfy (1), also satisfy (2). Moreoves(t) >
(1—1Ip)e 1t >0, I(t) > Ipe~“2* > 0 for t € [0,T] and some finite”;, Cs.

The constants turn out to B8, = Bumax + ¢ + @(Umax), C2 = ¢ + B(umax). The proof is similar to that of lemma 1
in [39], and is omitted for brevity.

Once the control: is selected, the system state vediyI, D) is specified at alt as a solution to (1). The state and control
functions pair((S, I, D), u) is called anadmissible pair if (i) « is in £, i.e. satisfies (5), (iii is piecewise continuous such
that the left and right hand limits exist at the points of distinuity, and (iii) eg.’s in (1) hold. The function is then called
an admissible control. Let(S, I, D), u) be an admissible pair. Now, if

J(u) > J(u) for any admissible contrafu)

then ((S,1, D), u) is called anoptimal solution andw is called anoptimal control of the problem.

In order to obtain fundamental bounds on the efficacy of tteckt we assume that the attacker computes its optimaladontr
assuming full knowledge of the parameters of the systent) agcthe mobility pattern, the reception gain of the susbgsti
and the healing and immunization rate functiopst, Q(.), B(.)). We also assume that the system selects the above parameter
a priori and does not change them with time. The damage canbenéqual or lower if the counter-measures are adaptive or
the attacker does not know the above parameters.

5The attacker does not control any other parameter such asutiueptible’s reception gain, server’s transmissionsgaiobility patternsgtc.



I1l. WORM’S OPTIMAL CONTROL

We now present a framework using which the worm can deteriténeptimal control functionsu and also compute the
maximum value of the damage function. Throughout this eactvariables without an underline correspond to their @alu
according to an optimal solution, whereas underlined Wemare according to any feasible solution.

The main challenge in computing the optimal control is thatdifferential equations (1) can be solved provided thetions
u are known. Thus, the only approach seems to be that of an stWegearch on all functions in Q. This will require the
evaluation of the damage functioi{) for each one of such functions where the correspondind) functions required in
evaluatingJ (u) are obtained by solving (1) for each such function. Butonsists of an uncountably infinite number of such
pairs, which rules out an exhaustive searébntryagin’'s Maximum Principle, however, provides an elegant tool for solving
this seemingly impossible problem, which we apply next.

Let ((S,I,D),u) be an optimal solution. Consider tiamiltonian H, and theco-state or adjoint functionsA; (¢) to As(t)
defined as follows:

H =kl +kpD+ ()\2 — Al)ﬂuIS — /\1((] + Q(u))S — /\2(71'(] + B(u))] + (/\3 — /\Q)pul (6)
: OH
M=—pe = —(A2 = A1) Bul + A (g + Q(u))
. OH
Ao = —r = =k = (Ao = M)BusS + da(mg + B(u) — (s = Aa)pu )
. OH
)\3 = _8—D = —KD

along with the final (oitransversality) conditions:
M(T) =0, X(T)=K;, X(T)=Kp (8)

Then according to Pontryagin’s Maximum Principle With Téwad Constraints ( [14, P.111 theorem 3.14]), there exists
continuous and piecewise continuously differentiablestade functions\;, A2 and A3 that at every point € [0...T] where
u(t) is continuous satisfy (7), and the transversality cond#i@), and we have at each

—

u(t) € arg max H(X(1), (S(0). 1), D(t)) () ©

Maximizing the Hamiltonian as per (9), we obtain:
(A2 — A1)BulS — M Q(u)S — AaB(u)I + (As — Ag)pul
> (Mg — A)BulS — M Q(w)S — Mo B(w)I 4+ (As — o) pul. (10)
for all admissibleu. Let
o(u) == (A2 — A1)BulS — \Q(u)S — Mo B(u)l + (A3 — A2)pul (12)

Thus we ought to maximize(u) over the admissible:.. A very important observation is that(vw) > 0. This is simply
because: = 0 is a feasible candidate for maximization ¢fu) and it makes it zero. Following lemma 2, which will come
later, A1, A2 > 0. Thus the concavity ofp with respect tou is opposite of that of) and B, that is, if Q and B are concave
in u theny(u) is convex, and vice versa. Note that we assumedhand B are either both concave, or both convex. We
thus differentiate the following two cases:

e concave@) = convexy;

e convex(@) = concaveyp.

We start from the first case, i.e., concaiyeand B, which is when the sensitivity of the detection, which is dowathe
(partial) derivative of@ and B with u, reduces with more intense media access activity of the mal{more aggressive
scanning rates, larger transmission powers). Since focax@() and B, ¢ would be convex and is continuousin we face
a convex maximization. Thus the maxima occur necessaritheaextrema of the range of the control, which are determined
by comparison. Hence:

" {O, O(Umax) <0 (12)

Umax, P(Umax) > 0,
Note thaty(umax) iS @ continuous and differentiable function of time.
Now we consider the second case, wh@rand B are convex. Since for convel and B, ¢ is concave, we thus are dealing

with a concave maximization. Hence, the maximaggf:) occur necessarily at the points where the partial derigativ.t u
is zero or the extrema of the ranges of the control, which laga tletermined by comparison. Let

Y= (A2 — A1)BLS + (A3 — Ao)pl (13)



and
C(u) = MQ(u) + A2 B(u)

Then:
0, Y < C'(0),
u={C"7 ) C'(0) <P < C'(umax), (14)
Umax; C' (Umax) <

whereC’(u) := 2C(u) = Q' (u) + A2 B’ (u).

Combining (1), (7), (12) (or (14), depending on the congawat @ and B and (8), we obtain a system of (non-linear)
differential equations with boundary values that involviyathe state and co-state functions (and not the conmfroFunctions
S, I, D and)\; to \; that satisfy these differential equations and final valaas,therefore be obtained using standard numerical
procedures that solve differential equations [48]. Now, dptimal control: can be explicitly obtained using the above solutions
in (12) (or (14), accordingly).

IV. STRUCTURAL PROPERTIES OF OPTIMUMu

In this section, we investigate the structural propertiearooptimal energy usage of the malware that inflicts the manx
damage. It is difficult (or perhaps impossible) to obtain aseb-form solution to the differential equations leadingthe
optimal solution. However, as we will see, it is possible xamine and establish structural properties of the optirohit®n
without access to the close form solution. Our objectiveigiévelop insight about the nature of the optimum policiethef
malware, and to examine whether they are simple enough taitsai@d by the malware. Our results are significant and have
negative connotations from the counter-measures pointes,\as we show that an attacker can inflict the maximum damage
by using very simple decisions. Our major results are thatfmcaveQ and B, the transmission range and media scanning
rate has the following simple structure: until a certaindjnthe worm uses maximum power to spread itself, and riglet aft
that, the malware ceases its spreading effort (theorennldptimal control terminology [14]-[16], we have proved tthiae
optimal strategy has bang-bang structure, that is, at any given time, the optimum power adsageither at its minimum or
maximum possible values; in addition it has at most one jurhclvnecessarily terminates at the minimum possible value.
Optimality of this simple strategy for this nontrivial pren is in fact quite surprising.

Before we delve into the properties of we will need an important lemma, which we appealed to in thevipus section
(after eqg. (11)), and that we will use extensively hereafter

Lemma 2: Fort € [0...T) we havel; > 0,23 >0 and (A2 — A\;) > 0.

Note that the lemma also implies that > 0. The shadow price interpretation of co-state functions jgies an intuition about
this lemma: shadow rewards associated with susceptiblerdective and dead nodes are positive from the viewpointef t
malware. Moreover, the shadow reward of an infective nods igast as much as the shadow reward of a susceptible one.

Proof: The proof forA;s > 0 is straightforward: referring to (8\3(7") = Kp > 0 and A3 = —kp < 0. Hence (e.g. by
integration) Az > 0.

Step-1. We show that\y(t) — A1 (¢) is strictly positive over an interval of nonzero length tods the end of interval
(0...7). Following (8), \2(T) = (A2(T) — A\ (T)) = K; > 0. If K1 > 0, this is due to continuity ofs — Ay, and if K; =0
but ; > 0 it follows becausg\o(T) — A\ (T)) = —k1(T) — pu(T)Kp < 0. If K; = ky =0 but Kp > 0, thenu(T) > 0°
and (Ao(T') — A1 (T)) = —pu(T)Kp < 0, hence the claim. For the case in whify = Kp = x; = 0 and onlyxp > 0, we
have (\2(T~) — M (T7)) = pu(T)®xp > 0 which yields the claim. A similar argument applies ¢ and we can show that
A1(t) > 0 over an interval of nonzero length toward the end®f.. T'). We havel, (T) = —K;Bu(T)I(T) < 0. Now if this
value is strictly negative then the claim follows. &f; = 0, then we have\,(T") = (r; + pu(T)Kp)Bu(T)I(T) > 0. If this
value is strictly positive then the claim is establishegdhbwever,K; = k; = Kp = 0 and onlysxp > 0 thenu(T) > 0° and
N(T7) = —(pu(T)kp)Bu(T)I(T) < 0, settling the validity of the claim.

Step-2. Lett* be the last time at which (at least) one of these two stricitipidg constraints is violated, i.e., far <t < T,
we have:

M) >0, (Aa(t) — Ai(t) > 0. and:
M) =0 OR Ao(t*) — Ay (t*) = 0.

8pecause following (10): needs to maximize> and in this cas& (umax)|T = KppumaxI(T) > 0. Howevero(0)|7 = 0 henced < w(T) < Umax-



o Case L:2(t*) — A (t*) = 0 and A{(t*) > 0. Now:
Ao (t™F) = M (7))
p(u)

== 2 g g @) A7)
= = 21 0 25 o) (15)

Recall thatp(u) > 0. Also, from the definition oft*, A;(¢*) > 0. Thus, we observe thatk (A, — Ay)][;-+ < 0. Thus,
by integration, case 1 could not occur. '
o Case 2:\(t") = 0, and A2(t*) — A(t*) > 0, Then, from (M)A (") = —(Aa — A1)Bupl. Since in this caséy(t*) —
A1(t*)) > 0, we have); (t*T) < 0 which is impossible. Hence case 2 is also ruled out.
Therefore, none of the two cases could occur, which is a adittion with existence of*. Hence follows the lemma. =
We consider concave (or lineaf) and B functions in this section. So far, we know from (12) that fencave@ and B,
an optimumu is at zero oru.,, depending on the sign op(umax). First of all, note that
(p(umax”T = KlﬁumaxI(T)S(T) - B(umax)KII(T) + (KD - Kl)pumaxI(T) (16)
Based on the given parameters, (16) can be either positivegative, if Kp > K; then o(umax)|r > 0. In this case, we
are sure that ends up atu,.x. For the number of jumps we investigate the sign of time dévigaf ¢(umax) :

) d
Sp(umax) = _{()\2 - Al)ﬁumaxls - Q(umax)/\ls - B(umaX)AQI + ()\3 - A2)pumaxl}

dt
= (A2 = A1) Bumax S + (A2 — A1) Bumax S + (A2 — A1) Bumax IS
_Q(Umax)(xls + )\18) - B(umax)(XQI + )\21)
+(A3 - )'\2)pumax[ + (AS - /\2)pumaxj

which after replacing and simplification, we obtain:

¢(umaX)
I
_Trq)\3pumax - Sﬂfilumax + Sﬂ'qﬂ)\lumax - SBAQQUmaX

—Q(u)SBAUmax + Q(Umax)SBA2u — B(u) Az ptmax + B(Umax)Azpu + B(1)SBA1Umax — B(tmax)SBA1u
Notice that following (12),

- B(Umax)’il + RTPUmax — KD PUmax

Q(umax)u - Q(u)umax = O
B(tmax)u — B(t)tmax = 0.

Thus we can further simplify as follows:

()b(umax)
I

= KRr (B(umax) + PUmax — Sﬁumax) — KDPUmax (17)
_7Tq/\3pumax - Sqﬂumax()\Q - 77-)\1)

In the light of eq. (17), we present two types of results foo tenges of parameters. Here are the two cases:
Case 1. m = 0, that is, the healing process relies on the activity of thewaes. This assumption pertains to the case where
recognition of an infective node is essential in removing it
Case 2. B = 0, i.e., healing is not affected by increasing A trivial case is where there is no healing involved and the
only counter-measure is immunization. Moreoves, > ;, and Kp > K : the dead nodes are at least as interesting as the
infective (i.e. achieve no less utility per node for the défaan the infective.) The first case becomes especially ety
when infective nodes are more attractive to the malware thardead. ‘

In the first case, we perform the following re-arrangemernthefremaining terms OM in (17) as the following:

P (Umax)
I

=K1 (B(umax) + pumax) — KD PUmax (18a)
_Klﬂumaxs (18b)
_)\ZSunmax (18C)



We now show that, wherever is continuous, expressions in 18a, 18b and 18c all haveiypmsiine derivatives (i.e., they are
all non-decreasing in time). Note that the expression ira)i8 constant, thus its time derivative is zero. The timevdéve
of the term in (18b) is as follows:

d
E (_ﬁfﬂumaxs) = _Klﬁumaxs

Referring to (1) and lemma 19 is (strictly) negative and hence, the time derivative oftlB positive. For the expression
in (18c) we have:

d . .
E(_/\QSQBumax) = —A25¢BUmax — A25qSUmax (19)

The second term in the above equation is positive due to le@@ad negativity ofS which we just discussed. In order to
prove that the first term is positive we need to show thais negative. We start from rewriting, in (7) as follows (noting
that 7 = 0 for the case we are investigating):

- p(u) QS

)\2 = —KJ — 7 - /\1 Vi (20)
Recalling thaty(u) > 0 and referring to lemmas 1 and 2, all terms in (20) are negalibes, all of the terms in (19) are
positive. Therefore, (18) is positive. A closer scrutingaleveals that at least one of the terms in (18) has a stpotjtive
time-derivative at any given time: if either, > 0 or x; > 0, then this follows respectively from expressions in (18a) €8b).
If ¢ > 0, then the claim follows from expression in (18cYhis leads to the following theorem:

Theorem 1. For concave? and B, if = = 0 (the first case) and moreovéfp = K; = 0, then an optimak, has at most

one jump fromumax t0 0. It can be always ati,. Or can be always at zero.

Proof: Since we showed tha‘-f% is always strictly increasing, and sinde> 0, then (a)p(umax) cannot be equal
to zero on an interval of non-zero length; (PJumax) cannot change its sign more than twice and they are fromipesa
negative and then back to positive throughfiut. . 7']. However,o(umax)|r = 0 and thus, at most one change in the sign of
»(umax) IS possible, and that is from positive to negative. Caseshithvp(um.x) iS always negative or always positive are
not negated. Referring to (12), the proof is complete. ]

Let us develop some intuition about theorem 1. If the findy/taf the infective and dead nodes are not matters of interest
for the malware, i.e.K; = Kp = 0, then the malware’s activity can be divided into (at most) tlistinct phases: &litz
phase and a subsequestgalth mode phase. During the initial phase, the malware in each infeatiode aggressively uses
the maximum power to spread the malware (blitz phase), antiireshold time at which infective nodes cease their media
access activities, and enter an energy-saving mode. Fan#heare, the benefits of using the maximum power for spreadin
the infection prevail over its harms (higher risk of detentand battery-drainage of the infectives) before the it time.
During the stealth mode phase, malware furtively perfortegmalicious activities in infective nodes: eavesdroppingffic
analysis, sabotaging routes, changing detia, During the stealth mode phase, due to the drop in the numbsusufeptibles
from the initial phase, it is not worth trying to spread thelwsae which just results in easier detection and early dieple
of the infective nodes’ batteries.

Corollary 1: If on the other hand, we did NOT have th&; = Kp = 0, then according to the sign @f(umax)|7 in (16),
we can have up to two jumps which terminatesin.. (the case in whickp(umax )|z > 0); or up to one jump which terminates
in 0 (the case in whicho(umax)|T < 0).

Proof: The proof is identical to the proof of theorem 1. ]
Referring to (16), the first case occurs, e.g., wii€n > K, that is, the malware is interested in increasing the findy &l
dead nodes as well. Then corollary 1 can be interpreted &svil There are up to three distinct phases: the inéishssing
phase during which infective nodes use maximum power to gseagively as possible spread the infection, the interatedi
energy-savingstealth mode phase during which malware ceases the power-intensiveanaattiess activities in the infective
nodes, and finally thdlaughter phase when the media access activities are turned back brmaitimum power, but this time
with the primary goal of depleting the batteries of the itifexs and killing them.

Now turning our focus to the second case, 2= 0,kp > k5, Kp > Ky, we rearrange the terms in (17) as in the
following:

M = (K1 — KD)PUmax (21a)
—TgA3PUmax (21b)

—SBKUmax (21c)

—BumaxSq(A2 — A1) (21d)

7In case wheres; = kp = ¢ = 0, then we havep(umax) = 0 which meansp(umax)|¢ = ¢(umax)|7. Referring to (16) and the technical assumption
in (4)1 Sp(umax”t = Sp(umax”T 7é 0.



Each term in each line of the above expression is negativeeder, at least one of them is strictly negative at any given
time®. Hence we have the following theorem:

Theorem 2: For concavey and B, for the case wher® = 0,xp > «; and Kp > K7, the optimalu is uy,., throughout
[0...T].

Proof: Based on the above calculations and sifice 0 for all times, theny < 0 and sincep(umax)|r > 0 () Y(Umax)

is not constant on any subinterval and (b) has no zero cgsimts inside the intervdD...T) and the theorem follows
from (12). ]

Remark 1: From the expressions in (17) and the above proof, it shouldl&éar that the conditiolkp — k1)pumax >
K1 B(tumax) @and (Kp — K71)pumax > K1 B(umax) Suffices for the validity of the same result.

Remark 2: A moment of reflection indicates that this result was notiatjvand its simplicity is indeed significant: using
umax has both the harmful effects of easier detection and thusrfescovery of nodes (losing them) and early battery dipiet
of infective nodes (potentially resulting in self-thraity of the epidemic). But theorem 2 states that for a malwaaeprimarily
cares about the final tally of dead nodes and the effect of aaivity on detection of infective nodes is not dominantrthe
regardless of the negative effects, it is optimal to use mari power for media access throughout.
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