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Abstract

Large scale proliferation of wireless technologies are dependent on developing reliable security measures against outbreaks of
malware. The first step toward this goal is investigating thepossible attack strategies of wireless malware and the extent of damage
they can incur. A malware in a mobile wireless network relieson the infrastructure of the network and the constrained resources
to spread itself. In this paper, we consider a battery-constrained mobile wireless network. The worm at each infective node at any
given time may choose to amplify the transmission range and elevate the media scanning rate and thus increase the chance of
contacting susceptible nodes and accelerate its spread. However, a larger transmission range and an elevated media scanning rate
results in (a) easier detection of the malware and thus more effective counter-measure by the network, and (b) faster depletion of
the battery and thus losing the node. Even if depleting the battery is an objective of the malware, early loss of infectivenodes
may thwart the spread of the malware. We assume the viewpointof the malware and cast the problem of dynamically selecting
the transmission range and media accessing rate in the infective nodes as an optimal control problem. We utilize Pontryagin’s
Maximum Principle to find an optimum solution. Moreover, we investigate the structural properties of an optimal solution to
develop intuition about the nature of optimum attacks.

I. I NTRODUCTION

A. Motivation and Overture

Wireless computing infrastructure is prone to the spread ofself-replicating malicious codes known as malware. The malware
can be used to initiate different forms of attacks on the wireless network. The attacks can vary from the less intrusive forms
such as violation of confidentiality or privacy, as in trafficanalysis and eavesdropping, to the more intrusive methods that
either disrupt the normal functions of the nodes such as relaying data and establishing end-to-end routes (e.g., sinkhole attacks
[1]), or even alter the network traffic and hence destroy the integrity of the information, as in unauthorized access and session
hijacking attacks [2], [3]. Worms can moreover deplete the energy reserves of the nodes and render them dysfunctional, e.g., by
aggressive media access attempts. New investments have increasingly been directed toward wireless infrastructure thanks to the
rapid growth of consumer demands and advancements in wireless technologies. The economic viability of these investments
is, however, contingent on the design of effective securitycountermeasures. Experiences of malware outbreaks like those of
Slammer [4] and Code Red [5] worms in wired Internet have demonstrated how expenses of the scales of billions of dollars
can be inflicted in repair after viruses rapidly infected thousands of hosts within few hours.

The first step in devising efficient countermeasures is to envisage malware hazards, and understand the threats they pose,
before they emerge in the hands of the attackers [6]. Specificattacks such as the wormhole [7], sinkhole [1], and Sybil [8], that
utilize vulnerabilities in the routing protocols in a wireless sensor network, and their counter-measures, had been investigated
before they were actually launched. We pursue the complementary but closely related goals of (i) quantifying fundamental
limits on the damages that the attackers can inflict by intelligently choosing their actions, and (ii) identifying the optimal actions
that inflict the maximum damage on the network. Such quantification is motivated by the fact that while attackers can pose
serious threats by exploiting the fundamental limitationsof wireless network, such as limited energy, unreliable communication,
constant changes in topology owing to mobility [9], their capabilities may well be limited by the above as well since theyrely
on the same network for propagating the malware.

Worms spread during data or control message transmission from nodes that are infected (infectives) and those that are
vulnerable, but not yet infected (susceptibles). Counter-measures can be launched by installing securitypatches that either
immunize susceptible nodes against future attacks, by rectifying their underlying vulnerability, orheal the infectives of
the infection and render them robust against future attacks. For instance, for SQL-Slammer worms [10], while StackGuard
programs [11] immunize the susceptibles by removing the buffer overflow vulnerability that the worms exploit, specialized
security patches [12] are required to remove the worm from (and thereby heal) the infectives. Nodes that have been immunized
or healed are denoted asrecovered. An infective node that has lost its energy reserve, as a result of aggressive and energy-
intensive activities of the malware, is called adead node. Depending on whether an infective node is drained of its battery by
the malware before it fetches a security-patch, the state ofan infective changes to dead or recovered. States of susceptible nodes
change to infective or recovered depending on whether they communicate with infectives before installing the security-patches.

The goal of the attacker is to infect as many nodes as possible, and use the worms to disrupt the hosts as well as the network
functions, while being cognisant of the countermeasures [13].



B. A decision problem of the attacker

One of the most critical underlying resources in a mobile wireless network is the energy reserves of the nodes, i.e., the
battery. An important decision of the worm pertains to its optimal use of the available energy of the infective nodes. The
infectives, at any given time, can accelerate the rate of spread of the worm by increasing their contact rates with susceptibles
by selecting higher transmission gains and media scanning rates. Such a choice, however, (a) can lead to easier detection of the
malware, prompting the nodes to fetch appropriate securitypatches sooner, and (b) depletes the infective nodes’ energy reserves
faster which in turn limits the spread of the infection and also their other malicious activities such as eavesdropping,traffic
destruction,etc. Even if the malware’s objective is to render the nodes dysfunctional, early loss of infective nodes due to their
battery depletion may thwart the spread of the malware. Due to these trade-offs, it is not trivial to determine the dynamically
changing instantaneous transmission gain and/or media access rate of the infective nodes that maximizes the overall damage
inflicted by the worm.

C. Contributions

First, we construct a mathematical framework which cogently models the effect of the decisions of the attackers on the
state dynamics and their resulting trade-offs through a combination of epidemic models and damage functions (section II).
Specifically, we assume that the damage inflicted by the worm is a cumulative function increasing in the number of infected
and dead hosts, which are both changing with time. We assume the viewpoint of the malware, which seeks to maximize the
damage by dynamically selecting the energy usages of its hosts while assuming full knowledge of the network parameters and
the counter-measures. The maximum value of the damage function then quantifies the fundamental limits on the efficacy of the
worm, particularly, since we assume that the worm has complete knowledge of all the contributing factors, and uses optimal
dynamic strategies. The damage maximization problem is cast as an optimal control problem which can be solved numerically
by applying Pontryagin’s Maximum Principle [14]–[16] (section III).

Second, we seek to develop insight about the nature of the optimum policies of the worm, also whether they are simple
enough to be pursued by the malware. Towards this end, we investigate structures of the optimum solutions of the optimal
control problem. Our results are significant and have negative connotations from the counter-measures point of view, aswe
show that an attacker can inflict the maximum damage by using very simple decisions. Specifically, if the malware seeks to
maximize an aggregate over time of the fraction of the infective and the dead nodes but is not particularly interested in the
final tally of them, the transmission range and media scanning rate has the following simple structure: until a certain time, the
worm uses maximum power to spread itself, and right after that, the malware ceases its spreading effort (theorem 1). In other
words, the malware’s activity can be divided into (at most) two distinct phases: an initialblitz phase and a subsequentstealth
mode phase. During the initial phase, the malware in each infective node uses the maximum power to aggressively spread
the malware (blitz phase), until a threshold time at which, infective nodes cease their media access activities and enter an
energy-saving mode. During the stealth mode phase, infective nodes furtively perform their malicious activities: eavesdropping,
traffic analysis, sabotaging routes, changing data,etc. In optimal control terminology [14]–[16], we have proved that the optimal
strategy has abang-bang structure, that is, at any given time, the optimum power usage is either at its minimum or maximum
possible values; in addition it has at most one jump which necessarily terminates at the minimum possible value. Optimality
of this simple strategy for this nontrivial problem is in fact quite surprising.

If, on the other hand, the malware is interested in increasing the final tally of the dead nodes in addition, then our next
result (corollary 1) states that there are up to three distinct phases: the initialblitz phase during which infective nodes use
maximum power to spread the infection as aggressively as possible, the intermediate energy-savingstealth mode phase during
which malware ceases the power-intensive media access activities in the infective nodes, and finally theslaughter phase when
the media access activities are turned back on with maximum power, but this time with the primary goal of depleting the
remaining batteries of the infectives andkilling them.

D. Related Works

Malware outbreaks in wireless networks constitute an emerging research topic (e.g., [17]–[24]), though, the researchon
spread of malware has traditionally focused on wired networks. Epidemic modeling based on the classic Kermack-Mckendrick
model [25] has extensively been used to analyze the spread ofmalware in wired networks [5], [26]–[34],etc, and more recently
in wireless networks [35]. These works show, through simulations and matching with actual data, that when the number of
nodes in a network is large, the deterministic epidemic models can successfully represent the dynamics of the spread of the
malware.

Dynamic control of parameters of the network or the worm havebeen investigated in several papers. Most of these however
do not identify the optimal policies nor provide provable performance guarantees, but instead propose heuristic dynamic policies
in different contexts, and evaluate through simulations the efficacies and various trade-offs of the policies they propose. For
example, [36] proposes heuristics for dynamic quarantining of nodes in wired networks that appear suspicious through traffic
analysis, and [37] introduces heuristic strategies for dynamically adjusting the transmission power of attacker nodes in wireless



networks. We instead obtain attack policies that provably attain the maximum possible damage and consider a general model
that incorporates healing, immunization and mortality of nodes.

Interestingly, tools from the optimal control theory such as the effective theorem of Pontryagin maximum Principle hasrarely
been used for analyzing network security - [38] and our previous work [39] constitute notable exceptions. The first formulates
the trade-off for optimal treatment of the infective nodes in wired networks. However, in contrast to our work, the solution is
based on numerical evaluations only and no structural property of the optimal policy is established. One of our earlier works
[39] proposes reduction of reception gain of wireless nodesas a counter-measure for slowing down the spread of malware in
wireless networks. Another one of our papers [40] focuses onthe attack viewpoint and considers the transmission range of the
infective nodes and the rate of killing as two independentdynamic parameters of the worm to inflict the maximum damage.
In particular, killing a node is achieved by executing a malicious code damaging a vital part of the hardware. Moreover, [40]
considers a worm with a power budget which specifically ensures that every infective node lasts the entire duration of interest.
In contrast, we consider the case in which the killing process of the infective nodes is not independent of the energy-greedy
media access activities. Furthermore, we consider anotherside-effects of an aggressive media access activity, whichis exposing
an anomaly and hence, easier detection of the malware.

II. SYSTEM MODEL

A. Dynamics of State Evolution

A susceptible node is a mobile wireless device which is not contaminated bythe worm, but is prone to infection. A node is
infective if it is contaminated by the worm. An infective spreads the worm to a susceptible while transmitting data or control
messages to it. A node that has lost its battery reserve is denoted as adead node, that is, it cannot function any longer. A
functional node that is immune to the worm is referred to asrecovered. Installation of appropriate security patches, by the
respective users or the network operator, canimmunize susceptibles to the recovered states, alsoheal infectives to the recovered
states.

Let the total number of nodes in the network beN . Let the number of susceptible, infective, recovered and dead nodes
at time t be denoted bynS(t), nI(t), nR(t) and nD(t), respectively, and the corresponding fractions beS(t) = nS(t)/N,
I(t) = nI(t)/N, R(t) = nR(t)/N, andD(t) = nD(t)/N (Table I) respectively. Then,S(t) + I(t) + R(t) + D(t) = 1.

S(t) fraction of the Susceptible
I(t) fraction of the Infective
R(t) fraction of the Recovered
D(t) fraction of the Dead

TABLE I
L IST OF NOTATIONS OF MEASURES.

We assume that at the time of the outbreak of the infection, that is at time zero, some but not all nodes are infected:
0 < I(0) = I0 < 1. For simplicity, we assumeR(0) = D(0) = 0. Thus,S(0) = 1− I0.

We now model the dynamics of infection propagation. Nodes are assumed to roam in a vast 2-D region of areaA with an
average velocityv. An infective transmits a message to a susceptible with a given probability whenever the two are incontact,
that is, the susceptible is in the transmission range of the infective. This probability is a linear function of the rate at which
the infective scans the media in search of susceptibles nearby, and the proportionality constant is determined by the message
collision probabilityη1. When the communication range of the nodes is small comparedto A (which is usually the case
in multihop networks),η1 is essentially determined by the overall node density (N/A). Next, under mobility models such as
random waypoint or random direction model [41], Groeneveltet al. [42] have shown that the time between consecutive contacts
of a specific pair of nodes is nearlyexponentially distributed, and the rate of this exponential process is linearly dependent1 on
the communication range of the nodes with a proportionalityconstantη2 that depends only onv andA. Specifically,η2 ∝ 1

A
.

Let u(t) be the product of the infective’s transmission range and itsmedia scanning rate. Then, the worm is transmitted
between a given infective-susceptible pair as per an exponential random process whose rate at any given timet is β̂u(t), where
β̂ = η1η2. The worm regulates the spread of the infection by controlling u(t) through appropriate choice of its transmission
gain and media scanning rate.

The security patches are installed at an infective (susceptible, respectively) after exponentially distributed random times
starting from when it is infected (t = 0, respectively). The delays account for the time required indetection of infection,
and fetching the appropriate security patch, etc. We denotethe immunization and healing rates respectively byq +Q(u) and
πq + B(u), which we next explain explicitly. First, consider the part of the countermeasure rates which does not depend on

1The result has been proved when the communication range of the nodes is small compared to the total area of the region andv is sufficiently high.
Numerical computations reveal that the result holds even otherwise.



u, i.e., q and πq. Typically, the rate of immunization is no less than the rate of healing, as the security patch required for
immunization involves only rectification of the vulnerability that rendered the susceptibles accessible to the attack, whereas the
second involves both the removal of the worm and the vulnerability that the worm exploits. This makes it harder to obtain a
healing security patch than an immunizing one. Moreover, the malware in an infective node may sabotage the effectiveness of
the security patch.π can also represent the case in which a single type of securitypatch immunizes the susceptibles, however
successfully removes the infection and heals an infective node with probabilityπ and with probability1− π it fails to do so.
Next, we investigate the part of the countermeasure rates which is a function ofu. The rates of immunization and healing
are affected byu, the product of the transmission range and media scanning rate of the infective nodes: a larger transmission
range and a higher rate of scanning the media facilitates detectionof the malware [43], [44]. This in turn increases the overall
recovery rate since it reduces the delay associated with detection of the malware. This effect is modeled by allowing theoverall
rates of immunization and of healing to be increasing functions ofu. The effect ofu can potentially be different for healing
and immunization since detection of the malware is likely more critical for healing than the immunization. We have introduced
increasing and differentiable functionsB(u) andQ(u) to capture the correlation between a higheru and easier detection and,
consequently, a larger healing and immunization rate, respectively. That is, the instantaneous rates of healing and immunization
are πq + B(u) and q + Q(u).2 In practice, the advantage of easier detection starts to saturate after large enoughu, thus it
makes sense to assume that bothB(u) andQ(u) functions are concave. We will however address both cases ofconcave and
convexB andQ functions.

Each node has a limited battery capacity. We allow the nodes to have different amounts of initial energy reserves, i.e.,
energy reserve att = 0 when the attack starts. We allow the initial remaining battery to be random, and for conventicle of
the analysis, exponentially distributed. When the media access rate isu, the battery depletes proportionally. and the rate of
depletion of the battery can be approximated to be linear when u is not too large. In wireless networks, especially multi-hop
wireless networks,u is constrained to be less than a designated valueumax. Thusu cannot be too large and the rate of battery
depletion can be represented byρu, whereρ is a positive coefficient. Since the worm might not know the remaining energy
reserves, the selectedu(t) at a given node at a given time is not a function of the remaining battery at that (and any other)
node(s).

Following the conditions assumed for the model, the number of nodes of each type evolves according to a pure jump Markov
chain with state vector(nS(t), nI(t), nD(t)). Since for allt, nS(t) + nI(t) + nR(t) + nD(t) = N, the state of the Markov
chain is three dimensional. Letβ = limN→∞Nβ̂.

Now3 according to the results of [45], asN grows,S(t), I(t) andD(t) converge to the solution of the following system
of differential equations4:

Ṡ(t) = −βu(t)I(t)S(t) − qS(t)−Q(u(t))S(t) S(0) = 1− I0 (1a)

İ(t) = βu(t)I(t)S(t) − πqI(t) −B(u(t))I(t)− ρu(t)I(t) I(0) = I0 (1b)

Ḋ(t) = ρu(t)I(t) D(0) = 0. (1c)

and also satisfy the following constraints at allt:

0 ≤ S(t), I(t), D(t) (2a)

S(t) + I(t) +D(t) ≤ 1. (2b)

The convergence is in the following sense:

∀ ǫ > 0 ∀ t > 0, lim
N→∞

Pr{sup
τ≤t

|
nS(τ)

N
− S(τ)| > ǫ} = 0

and likewise forI(t) andD(t).

Similar epidemic models have been validated through experiments as well as network simulations which indicate that such
epidemic models provide an acceptable representation of the spread of malware in mobile wireless networks (see e.g. [46],
[47]).

Henceforth, wherever not ambiguous we drop the dependence on t and make it implicit. Figure 1 illustrates the transitions
between different states of nodes.

2Note that we did not assume that the detection is affected by the fraction of infected nodes. An alternative model could incorporate that effect too.
3Note that sincêβ = η1η2, andη1 depends only on the node density, andη2 ∝ 1

A
, the limit β exists as long as the node densitylimN→∞ N/A exists

for largeN.
4Variables with dot marks (e.g.,̇S(t)) will represent their time derivatives (e.g., time derivative of S(t)) and the prime signs (e.g.,q′(S)) designate their

derivatives with respect to their argument (e.g.,S).
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Fig. 1. u(t) is product of the transmission range×media scanning rate of infectives at timet.

B. Maximum Damage Attack

We consider an attack that seeks to inflict the maximum possible damage in a time window[0, T ] of its choice. An attack
can benefit over time from the dead and the infected hosts. Recall that the malware can use the infective nodes to (i) eavesdrop
and analyze traffic generated or relayed by the infected hosts, or the traffic that traverses in the hosts’ vicinity, and (ii) alter or
destroy the traffic generated or relayed by the infected hosts. An attacker also benefits by inflicting a large death-toll by the
end of the desired time window. These motivate the followingdamage function:

J =

∫ T

0

{κII(t) + κDD(t)} dt+KII(T ) +KDD(T ). (3)

whereκI , κD,KI ,KD ≥ 0. Note that this reward function includes the case where a malware cares only about the infective
(by κD = KD = 0) or the case in which it only seeks after killing the nodes (byassumingκI = KI = 0). We make the
following technical assumption:

If κI = κD = q = 0 then(KD −KI)ρumax −B(umax)KIs > 0 (4)

The attacker seeks to maximize the damage function by appropriately regulatingu(t), the product of the transmission range
and the scanning rate of the infective nodes5 subject to:

0 ≤ u(t) ≤ umax (5)

The bounds onu(t) are dictated by the physical constraints of the transmitters and also for ensuring that the interference and
hence collisions between simultaneous transmissions remain limited.

Any continuous functionu : [0, T ] → R such that the left and right hand limits exist and that satisfy the constraint in (5)
belongs to thecontrol region denoted byΩ.

We first show that for anyu(t) ∈ Ω, the state constraints in (2) are automatically satisfied throughout(0 . . . T ]. Thus, we
safely ignore (2) henceforth.

Lemma 1: For anyu ∈ Ω, the state functions(S, I,D) : [0, T ] → R
3 that satisfy (1), also satisfy (2). Moreover,S(t) ≥

(1− I0)e
−C1t > 0, I(t) ≥ I0e

−C2t > 0 for t ∈ [0, T ] and some finiteC1, C2.
The constants turn out to beC1 = βumax + q + Q(umax), C2 = πq + B(umax). The proof is similar to that of lemma 1

in [39], and is omitted for brevity.
Once the controlu is selected, the system state vector(S, I,D) is specified at allt as a solution to (1). The state and control

functions pair((S, I,D), u) is called anadmissible pair if (i) u is in Ω, i.e. satisfies (5), (ii)u is piecewise continuous such
that the left and right hand limits exist at the points of discontinuity, and (iii) eq.’s in (1) hold. The functionu is then called
an admissible control. Let((S, I,D), u) be an admissible pair. Now, if

J(u) ≥ J(u) for any admissible control(u)

then ((S, I,D), u) is called anoptimal solution andu is called anoptimal control of the problem.
In order to obtain fundamental bounds on the efficacy of the attack, we assume that the attacker computes its optimal control

assuming full knowledge of the parameters of the system, such as the mobility pattern, the reception gain of the susceptibles
and the healing and immunization rate functions (q, π,Q(.), B(.)). We also assume that the system selects the above parameters
a priori and does not change them with time. The damage can only be equal or lower if the counter-measures are adaptive or
the attacker does not know the above parameters.

5The attacker does not control any other parameter such as thesusceptible’s reception gain, server’s transmission gains, mobility patterns,etc.



III. W ORM’ S OPTIMAL CONTROL

We now present a framework using which the worm can determineits optimal control functionsu and also compute the
maximum value of the damage function. Throughout this section, variables without an underline correspond to their value
according to an optimal solution, whereas underlined variables are according to any feasible solution.

The main challenge in computing the optimal control is that the differential equations (1) can be solved provided the functions
u are known. Thus, the only approach seems to be that of an exhaustive search on all functionsu in Ω. This will require the
evaluation of the damage functionJ(u) for each one of such functions where the corresponding(I,D) functions required in
evaluatingJ(u) are obtained by solving (1) for each such function. But,Ω consists of an uncountably infinite number of such
pairs, which rules out an exhaustive search.Pontryagin’s Maximum Principle, however, provides an elegant tool for solving
this seemingly impossible problem, which we apply next.

Let ((S, I,D), u) be an optimal solution. Consider theHamiltonian H , and theco-state or adjoint functionsλ1(t) to λ3(t)
defined as follows:

H := κII + κDD + (λ2 − λ1)βuIS − λ1(q +Q(u))S − λ2(πq +B(u))I + (λ3 − λ2)ρuI (6)

λ̇1 = −
∂H

∂S
= −(λ2 − λ1)βuI + λ1(q +Q(u))

λ̇2 = −
∂H

∂I
= −κI − (λ2 − λ1)βuS + λ2(πq +B(u))− (λ3 − λ2)ρu

λ̇3 = −
∂H

∂D
= −κD

(7)

along with the final (ortransversality) conditions:

λ1(T ) = 0, λ2(T ) = KI , λ3(T ) = KD (8)

Then according to Pontryagin’s Maximum Principle With Terminal Constraints ( [14, P.111 theorem 3.14]), there exists
continuous and piecewise continuously differentiable co-state functionsλ1, λ2 andλ3 that at every pointt ∈ [0 . . . T ] where
u(t) is continuous satisfy (7), and the transversality conditions (8), and we have at eacht :

u(t) ∈ arg max
u(t)∈Ω

H(~λ(t), (S(t), I(t), D(t)), u(t)) (9)

Maximizing the Hamiltonian as per (9), we obtain:

(λ2 − λ1)βuIS − λ1Q(u)S − λ2B(u)I + (λ3 − λ2)ρuI

≥ (λ2 − λ1)βuIS − λ1Q(u)S − λ2B(u)I + (λ3 − λ2)ρuI. (10)

for all admissibleu. Let

ϕ(u) := (λ2 − λ1)βuIS − λ1Q(u)S − λ2B(u)I + (λ3 − λ2)ρuI (11)

Thus we ought to maximizeϕ(u) over the admissibleu. A very important observation is thatϕ(u) ≥ 0. This is simply
becauseu = 0 is a feasible candidate for maximization ofϕ(u) and it makes it zero. Following lemma 2, which will come
later,λ1, λ2 ≥ 0. Thus the concavity ofϕ with respect tou is opposite of that ofQ andB, that is, ifQ andB are concave
in u thenϕ(u) is convex, and vice versa. Note that we assumed thatQ andB are either both concave, or both convex. We
thus differentiate the following two cases:

• concaveQ⇒ convexϕ;
• convexQ⇒ concaveϕ.
We start from the first case, i.e., concaveQ andB, which is when the sensitivity of the detection, which is equal to the

(partial) derivative ofQ andB with u, reduces with more intense media access activity of the malware (more aggressive
scanning rates, larger transmission powers). Since for concaveQ andB, ϕ would be convex and is continuous inu, we face
a convex maximization. Thus the maxima occur necessarily atthe extrema of the range of the control, which are determined
by comparison. Hence:

u =

{

0, ϕ(umax) < 0

umax, ϕ(umax) > 0,
(12)

Note thatϕ(umax) is a continuous and differentiable function of time.
Now we consider the second case, whereQ andB are convex. Since for convexQ andB, ϕ is concave, we thus are dealing

with a concave maximization. Hence, the maxima ofϕ(u) occur necessarily at the points where the partial derivative w.r.t u
is zero or the extrema of the ranges of the control, which are then determined by comparison. Let

ψ := (λ2 − λ1)βIS + (λ3 − λ2)ρI (13)



and

C(u) = λ1Q(u) + λ2B(u)

Then:

u =











0, ψ ≤ C′(0),

C′−1(ψ) C′(0) < ψ ≤ C′(umax),

umax, C′(umax) < ψ

(14)

whereC′(u) := ∂
∂u
C(u) = λ1Q

′(u) + λ2B
′(u).

Combining (1), (7), (12) (or (14), depending on the concavity of Q andB and (8), we obtain a system of (non-linear)
differential equations with boundary values that involve only the state and co-state functions (and not the controlu). Functions
S, I,D andλ1 to λ3 that satisfy these differential equations and final values,can therefore be obtained using standard numerical
procedures that solve differential equations [48]. Now, the optimal controlu can be explicitly obtained using the above solutions
in (12) (or (14), accordingly).

IV. STRUCTURAL PROPERTIES OF OPTIMUMu

In this section, we investigate the structural properties of an optimal energy usage of the malware that inflicts the maximum
damage. It is difficult (or perhaps impossible) to obtain a closed-form solution to the differential equations leading to the
optimal solution. However, as we will see, it is possible to examine and establish structural properties of the optimal solution
without access to the close form solution. Our objective is to develop insight about the nature of the optimum policies ofthe
malware, and to examine whether they are simple enough to be pursued by the malware. Our results are significant and have
negative connotations from the counter-measures point of view, as we show that an attacker can inflict the maximum damage
by using very simple decisions. Our major results are that for concaveQ andB, the transmission range and media scanning
rate has the following simple structure: until a certain time, the worm uses maximum power to spread itself, and right after
that, the malware ceases its spreading effort (theorem 1). In optimal control terminology [14]–[16], we have proved that the
optimal strategy has abang-bang structure, that is, at any given time, the optimum power usage is either at its minimum or
maximum possible values; in addition it has at most one jump which necessarily terminates at the minimum possible value.
Optimality of this simple strategy for this nontrivial problem is in fact quite surprising.

Before we delve into the properties ofu, we will need an important lemma, which we appealed to in the previous section
(after eq. (11)), and that we will use extensively hereafter.

Lemma 2: For t ∈ [0 . . . T ) we haveλ1 > 0, λ3 ≥ 0 and (λ2 − λ1) > 0.

Note that the lemma also implies thatλ2 > 0. The shadow price interpretation of co-state functions provides an intuition about
this lemma: shadow rewards associated with susceptible andinfective and dead nodes are positive from the viewpoint of the
malware. Moreover, the shadow reward of an infective node isat least as much as the shadow reward of a susceptible one.

Proof: The proof forλ3 ≥ 0 is straightforward: referring to (8),λ3(T ) = KD ≥ 0 and λ̇3 = −κD ≤ 0. Hence (e.g. by
integration)λ3 ≥ 0.

Step-1. We show thatλ2(t) − λ1(t) is strictly positive over an interval of nonzero length towards the end of interval
(0 . . . T ). Following (8),λ2(T ) = (λ2(T )−λ1(T )) = KI ≥ 0. If KI > 0, this is due to continuity ofλ2 −λ1, and ifKI = 0
but κI > 0 it follows because(λ̇2(T )− λ̇1(T )) = −κI(T )− ρu(T )KD < 0. If KI = κI = 0 but KD > 0, thenu(T ) > 06

and (λ̇2(T )− λ̇1(T )) = −ρu(T )KD < 0, hence the claim. For the case in whichKI = KD = κI = 0 and onlyκD > 0, we
have(λ̈2(T−)− λ̈1(T

−)) = ρu(T )6κD > 0 which yields the claim. A similar argument applies toλ1 and we can show that
λ1(t) > 0 over an interval of nonzero length toward the end of(0 . . . T ). We haveλ̇1(T ) = −KIβu(T )I(T ) ≤ 0. Now if this
value is strictly negative then the claim follows. IfKI = 0, then we havëλ1(T ) = (κI + ρu(T )KD)βu(T )I(T ) ≥ 0. If this
value is strictly positive then the claim is established. If, however,KI = κI = KD = 0 and onlyκD > 0 thenu(T ) > 06 and...
λ1(T

−) = −(ρu(T )κD)βu(T )I(T ) < 0, settling the validity of the claim.
Step-2. Let t∗ be the last time at which (at least) one of these two strict positivity constraints is violated, i.e., fort∗ < t < T,

we have:

λ1(t) > 0, (λ2(t)− λ1(t)) > 0. and:

λ1(t
∗) = 0 OR λ2(t

∗)− λ1(t
∗) = 0.

6because following (10)u needs to maximizeϕ and in this caseϕ(umax)|T = KDρumaxI(T ) > 0. Howeverϕ(0)|T = 0 hence0 < u(T ) ≤ umax.



• Case 1:λ2(t∗)− λ1(t
∗) = 0 andλ1(t∗) ≥ 0. Now:

(λ̇2(t
∗+)− λ̇1(t

∗+))

= −κI −
ϕ(u)

I
+ λ2πq − λ1q − λ1

Q(u)S

I
− λ1Q(u) [∵(7)]

= −κI −
ϕ(u)

I
− (1− π)λ2q − λ1

Q(u)S

I
− λ1Q(u) (15)

Recall thatϕ(u) ≥ 0. Also, from the definition oft∗, λ2(t∗+) ≥ 0. Thus, we observe that[ d
dt
(λ2 − λ1)]|t∗+ ≤ 0. Thus,

by integration, case 1 could not occur.
• Case 2:λ1(t∗) = 0, andλ2(t∗) − λ(t∗) > 0, Then, from (7),λ̇1(t∗+) = −(λ2 − λ1)βu0I. Since in this case(λ2(t∗)−
λ1(t

∗)) > 0, we haveλ̇1(t∗+) < 0 which is impossible. Hence case 2 is also ruled out.

Therefore, none of the two cases could occur, which is a contradiction with existence oft∗. Hence follows the lemma.
We consider concave (or linear)Q andB functions in this section. So far, we know from (12) that for concaveQ andB,

an optimumu is at zero orumax, depending on the sign onϕ(umax). First of all, note that

ϕ(umax)|T = KIβumaxI(T )S(T )−B(umax)KII(T ) + (KD −KI)ρumaxI(T ). (16)

Based on the given parameters, (16) can be either positive ornegative, ifKD ≫ KI thenϕ(umax)|T > 0. In this case, we
are sure thatu ends up atumax. For the number of jumps we investigate the sign of time derivative of ϕ(umax) :

ϕ̇(umax) =
d

dt
{(λ2 − λ1)βumaxIS −Q(umax)λ1S −B(umax)λ2I + (λ3 − λ2)ρumaxI}

= (λ̇2 − λ̇1)βumaxIS + (λ2 − λ1)βumaxİS + (λ2 − λ1)βumaxIṠ

−Q(umax)(λ̇1S + λ1Ṡ)−B(umax)(λ̇2I + λ2İ)

+(λ̇3 − λ̇2)ρumaxI + (λ3 − λ2)ρumaxİ

which after replacing and simplification, we obtain:

ϕ̇(umax)

I
= B(umax)κI + κIρumax − κDρumax

−πqλ3ρumax − SβκIumax + Sπqβλ1umax − Sβλ2qumax

−Q(u)Sβλ2umax +Q(umax)Sβλ2u−B(u)λ3ρumax +B(umax)λ3ρu+B(u)Sβλ1umax −B(umax)Sβλ1u

Notice that following (12),

Q(umax)u −Q(u)umax ≡ 0

B(umax)u−B(u)umax ≡ 0.

Thus we can further simplify as follows:

ϕ̇(umax)

I
= κI(B(umax) + ρumax − Sβumax)− κDρumax

−πqλ3ρumax − Sqβumax(λ2 − πλ1)
(17)

In the light of eq. (17), we present two types of results for two ranges of parameters. Here are the two cases:
Case 1. π = 0, that is, the healing process relies on the activity of the malware. This assumption pertains to the case where
recognition of an infective node is essential in removing it.
Case 2. B ≡ 0, i.e., healing is not affected by increasingu. A trivial case is where there is no healing involved and the
only counter-measure is immunization. Moreover,κD ≥ κI , andKD ≥ KI : the dead nodes are at least as interesting as the
infective (i.e. achieve no less utility per node for the deadthan the infective.) The first case becomes especially interesting
when infective nodes are more attractive to the malware thanthe dead.

In the first case, we perform the following re-arrangement ofthe remaining terms ofϕ̇(umax)
I

in (17) as the following:

ϕ̇(umax)

I
= κI(B(umax) + ρumax)− κDρumax (18a)

−κIβumaxS (18b)

−λ2Sqβumax (18c)



We now show that, whereveru is continuous, expressions in 18a, 18b and 18c all have positive time derivatives (i.e., they are
all non-decreasing in time). Note that the expression in (18a) is constant, thus its time derivative is zero. The time derivative
of the term in (18b) is as follows:

d

dt
(−κIβumaxS) = −κIβumaxṠ

Referring to (1) and lemma 1,̇S is (strictly) negative and hence, the time derivative of (18b) is positive. For the expression
in (18c) we have:

d

dt
(−λ2Sqβumax) = −λ̇2Sqβumax − λ2Ṡqβumax (19)

The second term in the above equation is positive due to lemma2 and negativity ofṠ which we just discussed. In order to
prove that the first term is positive we need to show thatλ̇2 is negative. We start from rewritinġλ2 in (7) as follows (noting
that π = 0 for the case we are investigating):

λ̇2 = −κI −
ϕ(u)

I
− λ1

QS

I
(20)

Recalling thatϕ(u) ≥ 0 and referring to lemmas 1 and 2, all terms in (20) are negative. Thus, all of the terms in (19) are
positive. Therefore, (18) is positive. A closer scrutiny also reveals that at least one of the terms in (18) has a strictlypositive
time-derivative at any given time: if eitherκD > 0 or κI > 0, then this follows respectively from expressions in (18a) and (18b).
If q > 0, then the claim follows from expression in (18c)7. This leads to the following theorem:

Theorem 1: For concaveQ andB, if π = 0 (the first case) and moreoverKD = KI = 0, then an optimalu has at most
one jump fromumax to 0. It can be always atumax or can be always at zero.

Proof: Since we showed thatϕ̇(umax)
I

is always strictly increasing, and sinceI > 0, then (a)ϕ(umax) cannot be equal
to zero on an interval of non-zero length; (b)ϕ(umax) cannot change its sign more than twice and they are from positive to
negative and then back to positive throughout[0 . . . T ]. However,ϕ(umax)|T = 0 and thus, at most one change in the sign of
ϕ(umax) is possible, and that is from positive to negative. Cases in which ϕ(umax) is always negative or always positive are
not negated. Referring to (12), the proof is complete.

Let us develop some intuition about theorem 1. If the final tally of the infective and dead nodes are not matters of interest
for the malware, i.e.,KI = KD = 0, then the malware’s activity can be divided into (at most) twodistinct phases: ablitz
phase and a subsequentstealth mode phase. During the initial phase, the malware in each infective node aggressively uses
the maximum power to spread the malware (blitz phase), untila threshold time at which infective nodes cease their media
access activities, and enter an energy-saving mode. For themalware, the benefits of using the maximum power for spreading
the infection prevail over its harms (higher risk of detection and battery-drainage of the infectives) before the switching time.
During the stealth mode phase, malware furtively performs its malicious activities in infective nodes: eavesdropping, traffic
analysis, sabotaging routes, changing data,etc. During the stealth mode phase, due to the drop in the number ofsusceptibles
from the initial phase, it is not worth trying to spread the malware which just results in easier detection and early depletion
of the infective nodes’ batteries.

Corollary 1: If on the other hand, we did NOT have thatKI = KD = 0, then according to the sign ofϕ(umax)|T in (16),
we can have up to two jumps which terminates inumax (the case in whichϕ(umax)|T > 0); or up to one jump which terminates
in 0 (the case in whichϕ(umax)|T < 0).

Proof: The proof is identical to the proof of theorem 1.
Referring to (16), the first case occurs, e.g., whenKD ≫ KI , that is, the malware is interested in increasing the final tally of
dead nodes as well. Then corollary 1 can be interpreted as follows. There are up to three distinct phases: the initialamassing
phase during which infective nodes use maximum power to as aggressively as possible spread the infection, the intermediate
energy-savingstealth mode phase during which malware ceases the power-intensive media access activities in the infective
nodes, and finally theslaughter phase when the media access activities are turned back on with maximum power, but this time
with the primary goal of depleting the batteries of the infectives and killing them.

Now turning our focus to the second case, i.e.B ≡ 0, κD ≥ κI ,KD ≫ KI , we rearrange the terms in (17) as in the
following:

ϕ̇(umax)

I
= (κI − κD)ρumax (21a)

−πqλ3ρumax (21b)

−SβκIumax (21c)

−βumaxSq(λ2 − πλ1) (21d)

7In case whereκI = κD = q = 0, then we haveϕ̇(umax) = 0 which meansϕ(umax)|t = ϕ(umax)|T . Referring to (16) and the technical assumption
in (4), ϕ(umax)|t = ϕ(umax)|T 6= 0.



Each term in each line of the above expression is negative. Moreover, at least one of them is strictly negative at any given
time8. Hence we have the following theorem:

Theorem 2: For concaveQ andB, for the case whereB ≡ 0, κD ≥ κI andKD ≫ KI , the optimalu is umax throughout
[0 . . . T ].

Proof: Based on the above calculations and sinceI > 0 for all times, thenϕ̇ < 0 and sinceϕ(umax)|T ≥ 0 (a) ϕ(umax)
is not constant on any subinterval and (b) has no zero crossing points inside the interval[0 . . . T ) and the theorem follows
from (12).

Remark 1: From the expressions in (17) and the above proof, it should beclear that the condition(κD − κI)ρumax ≥
κIB(umax) and (KD −KI)ρumax ≥ KIB(umax) suffices for the validity of the same result.

Remark 2: A moment of reflection indicates that this result was not trivial, and its simplicity is indeed significant: using
umax has both the harmful effects of easier detection and thus faster recovery of nodes (losing them) and early battery depletion
of infective nodes (potentially resulting in self-throttling of the epidemic). But theorem 2 states that for a malware that primarily
cares about the final tally of dead nodes and the effect of highactivity on detection of infective nodes is not dominant then
regardless of the negative effects, it is optimal to use maximum power for media access throughout.
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