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Abstract—We consider the question of obtaining tight delay instants in which the system is empty is finite. However,
guarantees for throughout-optimal link scheduling in arbitrary  obtaining delay guarantees is contingent upon ensurirtgttea
topology wireless ad-hoc networks. We consider two classesgpqgye expected duration is low. Specifically, consider alfam

of scheduling policies: 1) a maximum queue-length weighted . . L
independent set scheduling policy, and 2) a randomized ingen- of variants of MWS which does not schedway link in the

dent set scheduling policy where the independent set scheihg  System if the queue length of every link is below a certain
probabilities are selected optimally. Both policies stablize all threshold, sayL. Any such variant which has a finite value
queues for any set of feasible packet arrival rates, and are of [, ensures that the above expected duration is finite, and
therefore throughput-optimal. For these policies and i.id. packet therefore maximizes the throughput. Yet, the above exgecte
arrivals, we show that the average packet delay is bounded . L .
by a constant that depends on thechromatic number of the duratlon,.and therefore the_dellay, attained by any suclanari
interference graph, and the overall load on the network. We Mmonotonically increases with increasefin and thus no such
also prove that this upper bound is asymptotically tight in the variant minimizes the delay as long &sis a positive integer.
sense that there exist classes of topologies where the expec  Some recent insightful results have advanced our under-
delay attained by any scheduling policy is lower bounded by gianding in this area. Neelgt al. [19] considered a specific

the same constant. Through simulations we examine the scadj - . . . .
of the average packet delay with respect to the overall loadro scheduling policy, maximal scheduling, and showed thatef t

the network, and the chromatic number of the link interference ~ arrival traffic is in the stability region of maximal scheahg,
graph. the expected delay under maximal schedulingDifog N)

where N is the number of links in the network. Maximal
scheduling however provides poor throughput guarantees, a
Recent proliferation of commercial wireless services hatepending on the network topology, the stability region of
created large scale demands for transmission of traffic likeaximal scheduling can become arbitrary small as compared
multimedia, voice and video that require stringent quadity to the stability region of throughput-optimal schedulingjip
service (throughput, delay etc.) guarantees. Intelligehedul- cies. Shahet al. [12] and Sarkaret al. [22] have shown
ing of wireless links is imperative for providing such guarthat anO(1) expected queue length per link is attainable in
antees. The main challenge in scheduling wireless links dpecial classes of networks. Asymptotic guarantees onequeu
that multiple links in a vicinity can not successfully tram$ lengths do not imply similar guarantees on delay, and more
simultaneously. Efficient resolution of scheduling coasits importantly, the above guarantees do not apply for arlitrar
is the main bottleneck in providing analytical performanceetwork topologies.
guarantees. Since both throughput and delay are important performance
In a seminal work, Tassiulast al. [25] obtained a link metrics in wireless networks, we seek to obtain provable
scheduling policy that attains the maximum possible thheuggurantees on expected delay using policies that maximize
put in presence of arbitrary scheduling constraints, bedak throughput. We focus on the following two policies: 1) MWS,
ing in each time slot an independent set (in the link inte®) a Randomized Scheduling (RBJlicy that schedules (in-
ference or conflict graph) that has the maximum aggregatependent sets of) links with a fixed probability irrespexti
gueue length. This policy, referred to Baximum Weighted of the queue length of the links. MWS is guaranteed to attain
Scheduling (MWShenceforth, schedules at any given timenaximum throughput [25], has been empirically observed to
instant (a) the set of links that can be simultaneously saleeld attain low delay, and does not use any information about
while satisfying the scheduling constraints, and (b) has tkthe arrival statistics in the scheduling process. RS is also
maximum sum of queue lengths among all such sets. guaranteed to attain maximum throughput for appropriate
Obtaining delay guarantees is substantially more difficuthoice of scheduling probabilities, can be implementedhwit
than obtaining throughput guarantees, which is itself d-chaut any knowledge of global network state, but requires the
lenging problem, due to the following reasons. Throughplhowledge of arrival statistics for enabling the compatatbf
guarantees can be obtained by any scheduling policy as bondle optimum scheduling probabilities. We prove that in any
it ensures that the expected time intervals between sueeessetwork A/ the expected delay attained by both MWS and

I. INTRODUCTION



RS is O(C(N)/3), where C(N) is the chromatic number  Definition 5: A coloring of a graph is allocation of colors
of the link interference graptor network A/, and1 — 3 to vertices of the graph such that no two vertices that have an
(0 < 8 < 1) is a measure of théoad on the network edge between them is assigned the same colorchh@natic
(Section 111). More preciselyC(N') represents the minimum numberof a graph is the minimum number of colors required
number of independent sets (“colors”) into which the linkor coloring the graph. Equivalently, it is the minimum nuenb
interference graph of network/ can be partitioned, an@, of independent sets of a graph that can partition its verex s
henceforth referred to as tharival slack in the system, is  Let C(N) = {Vi,..., V() } represent a minimum color-
an appropriately defined measure of the distance between itig of the link interference graph of network, IV, where
arrival rate vector and the boundary of the network stabilitiy, ..., Vo(n) are the subsets of the vertices ot that
region. have been assigned the same color. Cledtyy) C J, and

Subsequently, we prove that there exists a class of netwa@tk\') = |C(N)| represents the chromatic numberiof .
topologies where the expected delay attainechbyschedul- At the MAC layer, each packet flow (session) can be
ing policy isQ(C(N)) (Section IV). Thus, for constart, the assumed to span a single link. In the following discussion,
delay guarantees attained by MWS and RS are asymptoticdhigrefore, we only consider single-hop flows. We now describ
tight. Note that one may intuitively expect that the MWShe arrival process for the single-hop flows (links). L&t(?)
policy, which determines the link schedules based on quele the number of packets that linkgenerates in interval
lengths, will attain substantially lower delay than the R®,¢+ 1], ¢ = 1,...,N. We assume that for each A,(t)
policy. Thus, our results are somewhat counter-intuitige @& i.i.d. across slots:, and E(A;(t)) = \;, where )\; is
they show that the static, possibly idling RS policy is alde treferred to as tharrival rate of link i. We also assume that
attain the same delay guarantees as the dynamic, non-idllagd?(t)) < yE(A;(t)), where~ is a constant that depends
MWS policy, and that there exist classes of topologies wheoa the distribution of the arrival process. A sufficient (but
given 3, the expected delay attained by RS differs from that oot necessary) condition for this to hold is that the maximum
any other policy (including MWS) only by a constant factomumber of packets that arrive in a slot is upper bounded by a
In Section V, we compare the delay performance of MW&onstant;y.
and RS, and examine the scaling of the delay with respect tdDefinition 6: The arrival rate vector X is an
C(N) and 3. We provide a brief survey of related literatureN —dimensional vector whose components are the arrival
in Section VI and conclude in Section VII. rates.

Definition 7: A scheduling policyis an algorithm that de-
cides in each slot the subset of links that would transmit

We consider scheduling at the Medium Access Contrghckets in the slot. Clearly, a scheduling policy must selec
(MAC) layer in a wireless network. We assume that timgn element of7 in each slot.
is slotted. A wireless network topology can be modeled asEvery packet has a transmission time of one slot. Thus, if
a directed graptG' = (V, E), whereV and E respectively a backlogged link is scheduled in a slot, it transmits a packe
denote the sets of nodes and links, aAfi= N. A link exists in the slot. We assume that any packet arriving in a slot may
from a nodeu to another node if and only if v can receive pe transmitted in the next slot.
u's signals. The link setr depends on the transmission power et D;(t) be the number of packets that linktransmits
levels of nodes and the propagation conditions in differept interval (t,t +1], i =1,...,N. Clearly the transmissions
directions. depend on the scheduling policy. L&k (t) be the number

Definition 1: A link ¢ interfereswith a link j if j can not of packets that are waiting for transmission in linkat the
successfully transmit a packet wheis transmitting. beginning of slott. Let Q(t), A(t), D(t) be the queue length,

A wireless networkN" can be described by the topologyarrival and departure vectors respectively, with comptsien
G = (V, E) and the pairwise interference relations between, (), A;(t), D;(t) respectively. Then,
the links.

Il. SYSTEM MODEL

Definition 2: The interference sebf a link i, S;, is the set Qi(t+1) = Qi(t) + Ai(t) — Di(t). 1)
of links j such that eitheii interferes withj or j interferes  \we now describe two scheduling policies that we analyze
with . in this paper: 1) maximum weighted scheduling (MWS), and
Note that ifj € S;, theni € 5. 2) randomized scheduling (RSJ. MWS considers the weight

Definition 3: The interference graphi = (V{¥', E%) of  of an independent sef; as the sum of the queue lengths of
a network V" is an undirected graph in which the vertex sehe links in.J;, and in each slot schedules the independent
V¥ corresponds to the set of links /il and there is an edgeset that has the maximum weight among all independent
between two vertices and j if j € S;. sets in7. In each slott, RS{), schedules independent set

Definition 4: An independent seih a graph is a subset of . with probability p; irrespective of the queue lengths of
its vertices such that there does not exist an edge betwgen @z |inks, and the schedules selected in different slots are
two vertices in the subset. Léf, ..., Jy be the independent mytyally independent. Herg,is a M -dimensional probability
sets ofV, and letJ’ be the indicator vector representing anyector such thab " p; = 1 andp; > 0 for eachi. Note

independent sef;. Let 7 = {J1,..., Jm}. that since RS schedules independent sets at random without



considering queue length information, it can possibly decihe - 9 (g(t) _ ﬁ(t))T Q)
an independent set with all empty queues, while there aex oth T
independent sets with backlogged queues in the system. In + (/T(t) - ﬁ(t)) (A'(t) - ﬁ(t))
contrast, MWS is non-idling, in the sense and it will never B RN olr,
serve an independent set with all empty queues as long as < 2 (A(t) - D(t)) Q) + (A(t)) (A(t))
there are backlogged queues in the system. LoNT,
Definition 8: The network is said to bestable if + (D(t)) (D(t)) . 2

im0 Zn L Qi(t)/T is finite. L
Definition 9: The stability regionof a scheduling policy is Now, sinceX € Ag, 3 € (0,1), (Q(t), A(t), D(t)) constitutes

the set of arrival rate vectors for which the network is stabp positive recurrent Markov chain [25]. We take expectation
when the policy is used. An arrival rate vectdris said to of both sides of (2) under the stationary distribution ofsthi
be feasibleif it is in the stability region of some schedulingMarkov chain. _

policy. Thenetwork stability regionA is the set of all feasible ~ First consider the left hand side, and note that

arrival rate vectors. = =
Note thatA depends on the network’. Define E (V(Q(t +1) - V(Q(t))) =0 3)
Lo, M Now, consider the right hand side. Sindee A, there
Ag = {X:X=) wJ', for somews, ... wy eXiStSwl,.. ,wy such thaty M w;, = 1— g and X =
=1 224:1 wyJ*. Thus,
M
— Y NT L o
such thatw; > 0, " w; =1 f}. E <(A(t)) Q(t)lQ(t)> = NG
i=1
Tassiulaset al.[25] has shown thats C A for eachs € (0, 1] M T R
andA C Ag wheng = 0. From the above definition, an arrival = Z wi(J7)7 Q1)
rate vector) is in Ag if (1 — Zf\il w;) = (. In other words, k=1 o .
if an arrival rate vectod is in Ag then its “distance” from the < O_w) I,?E‘X(ﬂ )T Q(t)
boundary of the network stability region & We thus refer i B
to 3 as thearrival slackin the system when the arrival vector = (1-5) mf‘gx(ﬂ)TQ(t)_
o k=1
Alsin Ag.
Definition 10: The expected delayin a network is the Thus,
expected number of time slots that elapse between the larriva o ONT M g <
and departure of a packet. E ((A(t)) Q(t)) < (1= BEmax(J") Q).  (4)
In the next section, we upper bound the expected delays of .
MWS and RS{) for appropriate choice of. Using the properties of MWS schedulin@ﬁ(t)) Qt) =
I1l. UPPERBOUNDS ONEXPECTEDDELAY max}c‘il(jk)TQ(t). Thus,

The maximum weighted scheduling policy is known to . o N\T . T
attain the the network stability region, and thereby maxzénsi E (A(t) - D(t)) Qt) < —pE ma{((c’ )7 Q). (5)
network throughput. With an appropriate choice of scheduli .
probabilities, the randomized scheduling policy can béleas SinceE (A?(t)) < E (A1),
shown to attain maximum throughput as well. We now show L o\T , . N
that for any given network/, when the arrival slack ig, the E (A(t)) (A(t)) <~ Z i (6)
expected delays attained by these policies @€' (N)/f3) i=1

(Theorems 1, 2). _ - The last equality follows since/f(t) is independent of
Theorem 1:Consider a networlV/, and a\ € Ag where G(t), D).

f € (0,1). Then, the expected delay attained by MWSAR Since the components of the departure vector are either

+1 C(N)
is at most™>= or 1, D#(t) = Dy(t). Thus,
Recall thaty is an upper bound on the ratio of the second

and first moments of the arrival distribution. o N\T /o N
Proof: Consider a quadratic Lyapunov functior : E(D(t)) (D(t)) = ZD Z)‘ @)
RN — R such thatV(7) = Y, 2. Using (1), we get =t
- We now justify the last equality. Since € Ag where €
V(@ (t +1)) - V(%(t)) (0,1) and MWS is used, the system is stable [25]. Thus, since
— (Q(t—i- 1) - Q(t )) Ot +1) + Q(t)) the time average of the queue length in each link is finite,
- and the Markov chaif@(t), A(t), D(t)) is positive recurrent,

- (A’(t) - ﬁ(t)) (2@’@) +A®) - ﬁ(t)) E (ﬁ(t)) = X. The equality follows.



Thus, taking expectations w.r.t. the steady state didtdbu process is Bernoulli. Computing the probability vecfothat
of Q(t) on both sides of (2), it follows from (3) to (7), attains the above delay guarantee requires finding the weeigh
N {wy,} from the arrival vector), and finding the chromatic
0 < _%Emj\gx (jk)TQ(t) t i+ 1)2)\1,_ number of the interference graph. The rate decomposition
k=1 Pt problem to calculate the independent set weighis,} is
not known to be polynomially solvable in the general case;
N in presence of primary interference constraints only,(ife.
E max (ﬂ“)T Q(t) < % two links can transmit together successfully as long as they
=1 26 do not have any common end node), this problem can be
Thus, solved in polynomial time [10]. Finding the chromatic numbe
(v +1) Z{\i A requires solving a graph coloring problem, which is NP-hard
E Z Qr(t) < 55 =L foranyJ € J. (8) [3].Itshould be noted however that these complex calaurati
keJ need not be done on a per slot basis — it can be done
Now, once at the very beginning, and the scheduling probalsilitie
N {px} thus computed can be used thereafter, until the network
E (Z Qk(ﬂ) topology changes. In contrast, MWS requires solving the NP-
P hard maximum-weighted independent set problem at each

(cw) ) scheduling instant.
E

Thus,

Z Z Qn(t) Thus, for a giveng, the upper bound on the expected
0 kev, delay of MWS and RS depends on the network topology
W) N only through the chromatic number of the interference graph
Z (y+1D)> N (from (8) and since’; € J) Therefore, if the size of the network is increased without
23 J increasing the chromatic number, the upper bound does not
change. Furthermore; () is significantly less thanV in
2o i i
= CN)(y+1)==, a large class of topologies. For example, consider a network
26 wheren nodes are uniformly deployed in a square of side one
: N N unit so as to constitute a random geometric graph, i.e.ether
tSh”eeris:[LTI? fgﬁgfv:ed delay I (Zkzl Qk(t)) / (Zizl )\1)’ exists a link between two nodes if and only if the distance

Theorem 2:Consider a networkV, and % & As where between them is less than a given numbkerand two links

e (0,1). Assume that the arrival process is i.i.d Bernoulliinterfere if and only if an end node of one is within a distance

i D2 ~ O(legn
Then, there exists &/-dimensional probability vectqgs, such tlrze?wf ggfra?fgiree;eli\/bsomei! Iégﬁ\rgvgcizztalﬁd the(z)t(hr?)u)’h ut
that the expected delay attained by RSih A is at most gen, gnp

IN

Jj=1

C(N) is maximized with probability one [9]. Then, for large the

I L _ degree of each link in the interference grapl®ifog n) with
Pr%?f: Since A € Ag, there existsw,., ... ey such  hrobability one. Since the chromatic number in any graph can

that ., w; = 1 — g and X = 3707, wiJ". Recall exceed the maximum degree of its nodes by at mést], for

that C(A) € J represents a collection of independent sef§ given 3, the expected delay attained by the above policies
that constitutes a minimum coloring of the link interferencis O(10g n), or equivalentlyO(log V), in such networks.

graph. Letpy, = wy if Jy € J\CW), and p, =

wy, + B/CN), It Jp € C(N). Note thatp, > 0, and IV. LOWERBOUNDS ONEXPECTED DELAY

Dk=1Pk = D wk + [CN)|B/C(N). Since [C(N)| = _

C(N), chu—ﬂk - ZIJQ\/[—l wp + B = 1. Thus, 7 is a M- We now obtain a lower bound on the expected delay of an
dimensional probability:/ector. arbitrary policy. Specifically, we prove the following theon.

Now, when an independent set i is scheduled, all the Theorem 3:For any real numberg € (0,1),¢ € (0,1),
links of A that constitute the independent set are schedul@nd any positive intege€’, there exists a network/ with
Also, each link is in one independent seti{\). Thus, each C(N) = C and an arrival rate vector ik, such that the
link 7 is scheduled with probability" | w;J; + 3/C(N), expected delay attained iN" by any scheduling policy is at
Wherefli is the component corresponding to likin J?, least ((111?) %
the indicator vector representing the independent .5et  The above lower bound holds irrespective of the arrivalkslac
Since y = .M w.Ji, I is scheduled with probability 3, and its value does not depend 8nAn important question
A + B/C(N). Since the arrival process is Bernoulli, fromtherefore is whether a tighter lower bound can be obtained
standard gueueing analysis, the system is stable and expeby exploiting the relation between the expected delay and
delay for link [ is W@{,}_/\L which is at mostC(N)/68. 3. We show that this is indeed the case for any randomized
The result follows. m scheduling. Specifically, we show the following result.

Note that unlike the other results stated in the paper,Theorem 4:For any real numbes € (0, 1), any probability

Theorem 2 relies on an additional assumption that the &rriwaectorp, and any positive intege?, there exists a network’




Jy : Group 1
(K links) J, : Group 2
(K links)

expectation ofD be ED. Then, the expected delay of any
packet in the system ED. We therefore need to show that
ED > (1 —€)2C/(2(1 + ¢€)). Note thatD is minimized if
the system schedules the transmissions so as to minimize the
delay experienced by the packets that arrive in this slathSu
a schedule will not serve a linkif link 7 does not have any of
the above packets and another lifikas at least one of these
packets. We also assume that the first time a link is served
aftert all packets that arrived inin the link are served from
it; the delay can only increase otherwise (which may happen
when a link receives more than one packet)in

Let X; be the total number of packets received by links
in J; int, fori = 1,...,C. Consider an eventl in which
Ka(l —¢€) < X; < Ka(l + ) for eachi. Clearly, ED >
Pr(A)E(D|A). Now, without loss of generality, let links in
Jy be served in slot+1, links in J; be served in slot+2 and

Fig. 1. Group based interference graph topology. There isntesference
between links in the same group. An edge between two groupBeinthat

a link in any one group interferes with every link in the otlyeoup. so on, until all links that have received packets in gltiave

with C(\) = € and an arrival rate vector i, such that been served. TherE(D[4) > i, iE( 2—14). Now,

the expected delay attained M by RS{) is a}t Ieast% +}. E(—X—|A) > é;a(l;é) — éll—e ' Thals ii](D|A) >
Note that for largeC, the lower bound“zt + 1 ~ <. 1_26i:1Xic‘ .G 1—5( h e

Proving a similar lower bound that involves the arrival &lacC(i+e) i1 3T

3 for an arbitrary scheduling policy remains open. We now evaluatePr(A). From large deviation results, for
We now prove Theorem 3. all large enoughK, the probability thatX; ¢ [Ko(l —

Proof: We first describe a network/ with C(\) = ¢.  €), Ka(l + €)] is at most3 exp(—Kwv) wherev is a positive

The network consists of' disjoint groups (sets) of links, constant that erenQS on the distributibrand «, e (Section
Ji, ..., Jg, each of sizek. (The value fork will be specified ©-11 [8])). Using union bound, for all large enoud), the
later.) Thus each/; consists of K links, J; N J, = ¢ if Probability thatX; ¢ [Ka(l —¢), Ka(1 + €)] for at least one
i # 1. Here, linksi,! can be served simultaneously if and iS at most3C exp(—Kwv), which is at most for all large
only if 4,1 € J,, for somew. The interference graph of this €NOUghK. Thus, Pr(A4) > 1 — ¢ for all large enoughk’. The
network has been shown in in Figure 1 (€&t = C). Sets result follows. u
Ji,...,Ja and their subsets constitute the independent setsThe proof reveals that the lower bound on delay holds for
of the interference graph of/. Clearly, the colors assigneda large class of arrival distributions. Thus, intuitivethere
to links in J; and J; must be different ifi # . Thus, the are no “good” arrival processes for which the above lower
chromatic number of the interference graph is at |€ashlote bound on the expected delay attained by any policy does not
that the interference graph can be colored using colfar ~ apply. The lower bound however applies only for a class of
links in J;, i = 1,...,C. Thus, the chromatic number of thetopologies. Thus, there may be “good” topologies where some
interference graph is at most, and hence equatto, policy may attain delays lower than the above bound. For

We now consider a large class of arrival processes for whi€kample, consider the case of a full mesh link interference
the arrival rate vector is imz of N. Let « = (1 — 8)/C. 9raph (i.e., any two links interfere with each other), where
Clearly « € (0,1). Consider an arbitrary probability distribu-the chromatic number is equal to the number of linRs,
tion F on non-negative integers with expectatiorthat satis- In this case, our lower bound is roughly/2, and the upper
fies the following technical condition: the moment genagti bound on the expected delay obtained for MWS in the last
function Z(7) of the distributionF” (i.e., E (exp(rX)) where Section isO(N/(3). However, any work-conserving scheduling
X is a random variable with distributiof) is finite in some Policy (including MWS) attains an expected delay (@f/ )
neighborhood ofr = 0. Note thatF can be selected from in this case for Poisson arrivals. This shows that theret exis
a large class of probability distributions which consisfs otopology classes where the lower bound may not apply, or our
but is not limited to, Bernoulli¢), Poissong), Binomial(z,y) Upper bounds derived in Section Ill may be loose, for certain
with zy = «, etc. Let packets arrive in each link as pe@ffival patterns. An interesting direction for future rassh
temporally and mutually independent random processes wighto identify topologies, or rather characteristic prdjgesr
distribution /' each. Note that the corresponding arrival ratef topologies, that allow at least some scheduling polittes

vector X = (a,...,q) can be expressed as = }_; w;J¢, attain low delays.
wherew; = o, i = 1,...,C, andw; = 0 for i > C. Since ~ We prove Theorem 4 next. i
Yuwi=aofCl=1-p06, A€ Ag. Proof: We first describe a network/ with C(NV) = C.

Consider an arbitrary slat and the packets that arrive inThe network consists af' links such that any two links in the
this slot. Let the delay of any such packet be and the network interfere with each other. Thus, the link interfere



graph is a clique of siz€’, and hence its chromatic number
is C. The independent sets of the interference graph consist
of Jo, J1,...,Ja, WhereJ, = ¢, and.J; consists only of link
i wheni > 1.

We now consider a Bernoulli arrival process for which the
arrival rate vector is in\ 3 of \. Leta = (1—3)/C. Clearly,

€ (0,1). Let the arrival process at each link be Bernoul}i(
independent of the arrival processes at other links. Theahrr
processes in different slots are also independent. Note tha

the corresponding arrival rate vectar= (,...,a) can be ° ° Py ° ° PY

expressed as = Zf OwZJZ wherew; = o, i = 1,. C,

andwy = 0. Since}", w; = a|C| =1 - 3, Xe Ag.
Consider RS{) for an arbitrary (C' + 1)—dimensional (b Line topology

probability vectorp. Then, in each slot, RB) serves linki

with probability p; for i« > 1, and the service opportunities.

independent set in the link interference graph. The first two
are temporally independent. From standard queueing aaalygf these topologies as shown in Figure 2 are the star and the
1—a gjince all links have

pi—a’ . line topologies. Note that these topologies correspond¢o t
equal arrival rates, the overall expected dela: Eiczl pli_j;. link interference graphs (not the actual networks), wheehe
Thus, if p* minimizes the expected delay for Rp@mong all node represents a link and each edge represents a (symmetric
possible choices fop, thenp™ must be the optimum solution interference relationship between the correspondinglifike

(a) Star topology

N
w

2K

Fig. 2. Star and line link interference graph topologies.

of the following convex optimization problem: chromatic number for both these topologies is 2. For the star
& topology, note that there are only two maximal independent

minimize  — Z s_ets, with sizes one (the centra_l link) ahd (the penpheral

C “ ; links). For the line network, while there are mamaximal

independent sets, there are only twaximum-sizéndepen-

N dent sets, each with siz€ (the set of odd nodes, and the set
< of even nodes). For this line topology, the maximum weight
Zp <1 independent set calculation, as required by MWS, is perédrm
in polynomial time using a dynamic programming procedure.

It is easy to show that the optimum solution to the above The third topology we consider is the one in Figure 1, where

symmetric convex optimization problem is given by = the link interference graph can be viewed as a collectiof,of

1/€ §1n<§ga - (1 1_ p/C, ~the expected delay under FS] groups of links, each of siz&’, where a link does not interfere
5 (ﬁ B — % + 1. B with any other link in its group, but interferes with all ligk

in the otherC; — 1 groups. This interference graph topology
is the same as the one considered in Section IV to obtain
In this section, we compare the delay performance of tlkelower bound on the delay performance of any scheduling
two scheduling algorithms, MWS and RS, in a few representaelicy. Note that there ar€; maximal independent sets in
tive network topologies. We also evaluate through simoiredi this topology, one corresponding to each of ifig groups,
how the average delay attained by these algorithms variesamsl each of these sets consistsioflinks. Also note that at
a function of the quantitie€’(\) and 3. any time, only one of th€’; maximal independent sets can be
One major difficulty in evaluating the performance of MWScheduled, and’; represents the chromatic number of this link
and RS in large scale, arbitrary topology networks (likmterference graph. The last topology we consider is simila
networks formed by placing nodes at random in an area) is tfeethe earlier one, but with the difference that tRelinks in
computational complexity of the scheduling algorithmsttBo groupi (1 < ¢ < (p) do not interfere with links in group
MWS and RS require solving NP-hard problems — maximui@ 4+ 1) mod C;. Note that while the third topology consists
weighted independent set for MWS, and graph coloring faf disjoint maximal independent sets, the fourth topology
RS. In our simulation study, therefore, we focus on smadltroduces overlaps between some of the independent sets,
topologies like “star” and “line” link interference graphswhich is more likely to be the case in practice. Note that the
where these problems can be solved in polynomial time. ®romatic number of this interference graph[is;/2]. We
study the scaling of delay with chromatic number, we conrsidase these topologies to study how average delay scales with
large topologies, but those that exhibit a regularity sa ththe chromatic number, by varyin@;. Note that the difference
maximum weighted independent set and chromatic numberthe chromatic numbers between the last two topologies (fo
can be calculated easily. the same”;, K, and therefore same number of links) is caused
The topologies that we consider are parametrized bydae to lower interference in the latter topology. We assurae t
constanti’, which roughly represents the size of the maximumpacket arrivals occur at each queue according to a Bernoulli

1
subject to: 2 0,i=1,....C,

V. SIMULATION STUDY
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Fig. 4. Average delay vs network load, for the line interfe® graph
Fig. 3. Average delay vs network load, for the star interfeee graph topology. Note that the total number of links in the netwaskR K.

topology.
process with probability-.

Figures 3 and 4 plot the average delay attained by MWS an + MWS‘ -
RS with the arrival rate, for different values &f. The delay 4f | ——Mws k=8
curves look similar to those of an M/M/1 queue, and sharply || o paereie
increases as the arrival rate approaches the boundary of tl —+— RSK=8 A
stability region (which can be easily computedas= 0.5 RS K16
for both topologies). We observe that the delay attained b
MWS is significantly better than the delay for RS at the same
network load. This is intuitively expected, since unlike NBW
RS is a “static” policy which does not take into account
gueue lengths, and can even be non work-conserving. Th
results show that the average delay for RS is insensitive t
K (which corresponds to the maximum independent set siz
in both topologies): this happens since each queue behav %  os
independently of the others, owing to random arrivals anc
random scheduling. Also the delay for MWS increaseskas
increases, for the same arrival rate, as we would expect frc’g_[gé
intuition.

Figures 5 and 6 replot the results in Figures 3 and 4, so that
the y-axis corresponds to the logarithm of the average delayTassiulast al. have characterized the maximum throughput
and the x-axis correspondsliez(1/3), wheres is the arrival region and also provided a scheduling strategy that attains
slack. We observe an almost linear relationship; furtheemothis throughput region in any given wireless network [25].
the slopes for the curves for MWS and RS are roughly tt8ubsequently, several policies have been shown to attain (i
same. This is in agreement with the upper bounds derivedgéme cases, for specific topology classses and interference
Section Ill which show a scaling ab(1/3) for the average constraints), either the maximum throughput region [1], [5
delay for a fixedC'(N). [18], [21], [23], [24] or a guaranteed fraction thereof [2],

The average delay vs arrival rate (network load) plots f¢4], [13], [15], [26], while requiring lower computationrtie.
the group based interference graph topologies are veryasimiHowever, whether these algorithms are able to provide low
to those of the star and line topologies considered abougs Tlilelay guarantees remains largely unknown.
we only show how the average delay scales with the chromaticThere has been some recent interesting work on char-
number in these cases. Figures 7 and 8 show the resultsdoterizing the delay performance of scheduling algorithms
the two topologies, when the network load is kept at 80%r formulating scheduling and routing policies in random
of the maximum (org = 0.2). This impliesr = 0.8/C networks that attain order-optimal delay [6], [7], [20],4]1
for the interference graph topology with disjoint maxima]16], [17]. Most of these works do not consider queuing delay
independent sets, and= (2 x 0.8)/C for the interference and focus on attaining order-optimal packet delivery defay
graph topology with overlapping maximal independent setstesence of node mobility. Scheduling policies that exploi
The figures show that the average delay scales linearly withde mobility as in these works are in general unlikely to
the chromatic number when network load is kept constant.attain low delay guarantees for the static network settivag t
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Fig. 6. Logarithm of average delay vs logarithm of arrivacsi (3), for the

line interference graph topology. Note that the total nurmdtfelinks in the Fig. 8. Average delay v€', for the group based interference graph topology

network is2K. shown in Figure 1, but without interference between linksadijacent groups.
The chromatic number for this network topologydy /2.

this sufficiency condition reduces the stability region by a

60

= | ‘ ‘ factor of at least’ (approximately) and< can be arbitrarily
sol | o e keas // | large. Therefore the delay guarantee obtained for maximal
- RSK=4 scheduling only applies if the arrival rate vector belongs t
20 +E§E:§6 / | a stability region which is possibly much smaller than the
/ maximum stability region. While our lower bound on the delay

obtained by any policy (Theorem 3) may appear to contradict
the O(log N') upper bound on delay for maximal scheduling,
there is no contradiction in reality. We prove Theorem 3 by
choosing an arrival rate vector which does not satisfy tfevab
sufficiency condition (and therefore the above upper bound
does not apply to this case), but is nevertheless in thelisgabi
region of the network.
o 2 s 6 8 0 12 In [12], [22], the authors show a®(1) upper bound on

€, (ehromatic numben expected queue length per link for scheduling policies they
ropose, but their results apply only to the special class of
on-expanding graphs (which include random geometrig-inte

Avg Delay
w
o

N
o
T

10

Fig. 7. Average delay v€'1, for the group based interference graph topolog)hp

shown in Figure 1. The chromatic number for this network togg is C. )
ference graphs). In [12], the authors also show that thest ex

we consider in this paper. . . )
bap rrival processes for whick2(1) queue length is necessary.

AnegS|s of scheduling algorithms in terms of egpecteﬁlﬁte that a bound on the queue length does not necessarily
gueuing delay or expected queue lengths is considered, |

[19], [12], [22]. In [19], the author obtains @(log N) translate to that on the expected delay (since expecteg dela

. is expected queue length divided by the expected arriva),rat
upper bound on the expected delay, but only for maXIm\?jithout additional assumptions on how the arrival rate exal

scheduling policies which (depending on network topology.., . : .
and interference relationships) can attain only a smah-frgx'th increase in the size of the topology. In contrast, (a) we

tion of the overall stability region. Specifically, the aath Obtae'?l:&lljzimgrihergxﬁerﬁtggefselay’ and (b) our resulty appl
shows that if the arrival rate vector is such that for eactﬁ 9 grap )
link [, the sum of the arrival rates df and the links that VII. CONCLUDING REMARKS

interferelwithl is Ies_s than or equal to 1 (which ENSUres Thig paper considers the problem of attaining tight delay
that maximal scheduling stabilizes the network), then mai guarantees through link scheduling in arbitrary wirelest n

scheduling attain®)(log V) expected delay. The set of arriValvvorks. While significant progress has been made in recent

rate vectors that satisfy the above sufficient condition C3Rars on the topic of throughput-optimal scheduling, thesgu
however be significantly smaller than the stability regiofj,, of characterizing the delay properties of such schiagul
of the network. Specifically, in the topology considered iR jicies or that of obtaining delay optimal schedules, has
the proof of Th.eo_rem 3 (Figure 1), t,h,e arrlv_al rate VeclGhmained largely open. In this work, we take an important
A = (a,...,a) is in the network stability region provided g0, yoyards addressing this issue by characterizing thstwo
Ca < 1. However,\ satisfies the above sufficiency condition. ¢ performance of the widely known maximum weighted

for maximal scheduling only if (K(C -1+ 1) < 1.Thus, scheduling (MWS) algorithm [25], which has been a precursor



to a lot of scheduling algorithms developed in this contéve:.

show that this scheduling policy attains a delay guararttate t

El

depends on the chromatic number of the interference gra%ﬂ
of the network, and an appropriate measure of the load pn]
the network. Interestingly, we also show that it is posstble [12]

attain the same asymptotic delay guarantee by a throughput-

optimal “static” randomized scheduling (RS) policy whiatep

[13]

computes the scheduling probabilities (based on the agerag

arrival rates) and does not take into account the dynami
of the queue length or arrival processes. We observe that the

delay guarantee attained by these two scheduling polisies i

asymptotically tight in the sense that there exist netwdftus

[15]

any given chromatic number) for which these bounds cannot

be improved (beyond a constant factor) by any scheduli
policy. Our simulation results on a few representative topo
gies demonstrate that the average packet delay indeeds scale

)

linearly with the chromatic number of the link interferencé'’]

graph, and inversely with the arrival slack in the system,

agreement with the scaling laws obtained analytically.

in
[18]

Both MWS and RS require obtaining solutions to NP-

hard problems. However, since RS requires us to solve

complex rate decomposition and graph coloring problems
only when the network topology changes, or the arrival raté€!

change significantly, its “per-slot” complexity is very low

unlike that of MWS. The reduced complexity of RS comes &1]

increased delay, although the average delays of RS and MWS

differ asymptotically by only a constant factor. Developrne [22]
of low-complexity dynamic scheduling algorithms that can

match the performance of MWS, and low message-complexity
distributed adaptations of RS, remain interesting topims f[23]

future research.
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