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Abstract—We consider the question of obtaining tight delay
guarantees for throughout-optimal link scheduling in arbitrary
topology wireless ad-hoc networks. We consider two classes
of scheduling policies: 1) a maximum queue-length weighted
independent set scheduling policy, and 2) a randomized indepen-
dent set scheduling policy where the independent set scheduling
probabilities are selected optimally. Both policies stabilize all
queues for any set of feasible packet arrival rates, and are
therefore throughput-optimal. For these policies and i.i.d. packet
arrivals, we show that the average packet delay is bounded
by a constant that depends on thechromatic number of the
interference graph, and the overall load on the network. We
also prove that this upper bound is asymptotically tight in the
sense that there exist classes of topologies where the expected
delay attained by any scheduling policy is lower bounded by
the same constant. Through simulations we examine the scaling
of the average packet delay with respect to the overall load on
the network, and the chromatic number of the link interference
graph.

I. I NTRODUCTION

Recent proliferation of commercial wireless services has
created large scale demands for transmission of traffic like
multimedia, voice and video that require stringent quality-of-
service (throughput, delay etc.) guarantees. Intelligentschedul-
ing of wireless links is imperative for providing such guar-
antees. The main challenge in scheduling wireless links is
that multiple links in a vicinity can not successfully transmit
simultaneously. Efficient resolution of scheduling constraints
is the main bottleneck in providing analytical performance
guarantees.

In a seminal work, Tassiulaset al. [25] obtained a link
scheduling policy that attains the maximum possible through-
put in presence of arbitrary scheduling constraints, by schedul-
ing in each time slot an independent set (in the link inter-
ference or conflict graph) that has the maximum aggregate
queue length. This policy, referred to asMaximum Weighted
Scheduling (MWS)henceforth, schedules at any given time
instant (a) the set of links that can be simultaneously scheduled
while satisfying the scheduling constraints, and (b) has the
maximum sum of queue lengths among all such sets.

Obtaining delay guarantees is substantially more difficult
than obtaining throughput guarantees, which is itself a chal-
lenging problem, due to the following reasons. Throughput
guarantees can be obtained by any scheduling policy as long as
it ensures that the expected time intervals between successive

instants in which the system is empty is finite. However,
obtaining delay guarantees is contingent upon ensuring that the
above expected duration is low. Specifically, consider a family
of variants of MWS which does not scheduleany link in the
system if the queue length of every link is below a certain
threshold, sayL. Any such variant which has a finite value
of L ensures that the above expected duration is finite, and
therefore maximizes the throughput. Yet, the above expected
duration, and therefore the delay, attained by any such variant
monotonically increases with increase inL, and thus no such
variant minimizes the delay as long asL is a positive integer.

Some recent insightful results have advanced our under-
standing in this area. Neelyet al. [19] considered a specific
scheduling policy, maximal scheduling, and showed that if the
arrival traffic is in the stability region of maximal scheduling,
the expected delay under maximal scheduling isO(log N)
where N is the number of links in the network. Maximal
scheduling however provides poor throughput guarantees, as
depending on the network topology, the stability region of
maximal scheduling can become arbitrary small as compared
to the stability region of throughput-optimal scheduling poli-
cies. Shahet al. [12] and Sarkaret al. [22] have shown
that anO(1) expected queue length per link is attainable in
special classes of networks. Asymptotic guarantees on queue
lengths do not imply similar guarantees on delay, and more
importantly, the above guarantees do not apply for arbitrary
network topologies.

Since both throughput and delay are important performance
metrics in wireless networks, we seek to obtain provable
gurantees on expected delay using policies that maximize
throughput. We focus on the following two policies: 1) MWS,
2) a Randomized Scheduling (RS)policy that schedules (in-
dependent sets of) links with a fixed probability irrespective
of the queue length of the links. MWS is guaranteed to attain
maximum throughput [25], has been empirically observed to
attain low delay, and does not use any information about
the arrival statistics in the scheduling process. RS is also
guaranteed to attain maximum throughput for appropriate
choice of scheduling probabilities, can be implemented with-
out any knowledge of global network state, but requires the
knowledge of arrival statistics for enabling the computation of
the optimum scheduling probabilities. We prove that in any
network N the expected delay attained by both MWS and



RS is O(C(N )/β), where C(N ) is the chromatic number
of the link interference graphfor network N , and 1 − β
(0 < β < 1) is a measure of theload on the network
(Section III). More precisely,C(N ) represents the minimum
number of independent sets (“colors”) into which the link
interference graph of networkN can be partitioned, andβ,
henceforth referred to as thearrival slack in the system, is
an appropriately defined measure of the distance between the
arrival rate vector and the boundary of the network stability
region.

Subsequently, we prove that there exists a class of network
topologies where the expected delay attained byany schedul-
ing policy isΩ(C(N )) (Section IV). Thus, for constantβ, the
delay guarantees attained by MWS and RS are asymptotically
tight. Note that one may intuitively expect that the MWS
policy, which determines the link schedules based on queue
lengths, will attain substantially lower delay than the RS
policy. Thus, our results are somewhat counter-intuitive as
they show that the static, possibly idling RS policy is able to
attain the same delay guarantees as the dynamic, non-idling
MWS policy, and that there exist classes of topologies where
givenβ, the expected delay attained by RS differs from that of
any other policy (including MWS) only by a constant factor.
In Section V, we compare the delay performance of MWS
and RS, and examine the scaling of the delay with respect to
C(N ) and β. We provide a brief survey of related literature
in Section VI and conclude in Section VII.

II. SYSTEM MODEL

We consider scheduling at the Medium Access Control
(MAC) layer in a wireless network. We assume that time
is slotted. A wireless network topology can be modeled as
a directed graphG = (V, E), whereV and E respectively
denote the sets of nodes and links, and|E| = N. A link exists
from a nodeu to another nodev if and only if v can receive
u’s signals. The link setE depends on the transmission power
levels of nodes and the propagation conditions in different
directions.

Definition 1: A link i interfereswith a link j if j can not
successfully transmit a packet wheni is transmitting.

A wireless networkN can be described by the topology
G = (V, E) and the pairwise interference relations between
the links.

Definition 2: The interference setof a link i, Si, is the set
of links j such that eitheri interferes withj or j interferes
with i.
Note that if j ∈ Si, theni ∈ Sj .

Definition 3: The interference graphIN = (V N
I , EN

I ) of
a networkN is an undirected graph in which the vertex set
V N

I corresponds to the set of links inN and there is an edge
between two verticesi andj if j ∈ Si.

Definition 4: An independent setin a graph is a subset of
its vertices such that there does not exist an edge between any
two vertices in the subset. LetJ1, . . . , JM be the independent
sets ofIN , and let~J i be the indicator vector representing any
independent setJi. Let J = {J1, . . . , JM}.

Definition 5: A coloring of a graph is allocation of colors
to vertices of the graph such that no two vertices that have an
edge between them is assigned the same color. Thechromatic
numberof a graph is the minimum number of colors required
for coloring the graph. Equivalently, it is the minimum number
of independent sets of a graph that can partition its vertex set.

Let C(N ) = {V1, . . . , VC(N )} represent a minimum color-
ing of the link interference graph of networkN , IN , where
V1, . . . , VC(N ) are the subsets of the vertices ofIN that
have been assigned the same color. Clearly,C(N ) ⊆ J , and
C(N ) = |C(N )| represents the chromatic number ofIN .

At the MAC layer, each packet flow (session) can be
assumed to span a single link. In the following discussion,
therefore, we only consider single-hop flows. We now describe
the arrival process for the single-hop flows (links). LetAi(t)
be the number of packets that linki generates in interval
(t, t + 1], i = 1, . . . , N. We assume that for eachi, Ai(t)
is i.i.d. across slotsn, and E(Ai(t)) = λi, where λi is
referred to as thearrival rate of link i. We also assume that
E(A2

i (t)) ≤ γE(Ai(t)), whereγ is a constant that depends
on the distribution of the arrival process. A sufficient (but
not necessary) condition for this to hold is that the maximum
number of packets that arrive in a slot is upper bounded by a
constant,γ.

Definition 6: The arrival rate vector ~λ is an
N−dimensional vector whose components are the arrival
rates.

Definition 7: A scheduling policyis an algorithm that de-
cides in each slot the subset of links that would transmit
packets in the slot. Clearly, a scheduling policy must select
an element ofJ in each slot.

Every packet has a transmission time of one slot. Thus, if
a backlogged link is scheduled in a slot, it transmits a packet
in the slot. We assume that any packet arriving in a slot may
be transmitted in the next slot.

Let Di(t) be the number of packets that linki transmits
in interval (t, t + 1], i = 1, . . . , N. Clearly the transmissions
depend on the scheduling policy. LetQi(t) be the number
of packets that are waiting for transmission in linki at the
beginning of slott. Let ~Q(t), ~A(t), ~D(t) be the queue length,
arrival and departure vectors respectively, with components,
Qi(t), Ai(t), Di(t) respectively. Then,

Qi(t + 1) = Qi(t) + Ai(t) − Di(t). (1)

We now describe two scheduling policies that we analyze
in this paper: 1) maximum weighted scheduling (MWS), and
2) randomized scheduling (RS(~p)). MWS considers the weight
of an independent setJi as the sum of the queue lengths of
the links in Ji, and in each slott schedules the independent
set that has the maximum weight among all independent
sets inJ . In each slott, RS(~p), schedules independent set
Ji with probability pi irrespective of the queue lengths of
the links, and the schedules selected in different slots are
mutually independent. Here,~p is aM -dimensional probability
vector such that

∑M
i=1 pi = 1 and pi ≥ 0 for eachi. Note

that since RS schedules independent sets at random without



considering queue length information, it can possibly schedule
an independent set with all empty queues, while there are other
independent sets with backlogged queues in the system. In
contrast, MWS is non-idling, in the sense and it will never
serve an independent set with all empty queues as long as
there are backlogged queues in the system.

Definition 8: The network is said to bestable if
limT→∞

∑T
n=1 Qi(t)/T is finite.

Definition 9: The stability regionof a scheduling policy is
the set of arrival rate vectors for which the network is stable
when the policy is used. An arrival rate vector~λ is said to
be feasibleif it is in the stability region of some scheduling
policy. Thenetwork stability regionΛ is the set of all feasible
arrival rate vectors.
Note thatΛ depends on the networkN . Define

Λβ = {~λ : ~λ =

M
∑

i=1

wi
~J i, for somew1, . . . , wM

such thatwi ≥ 0,

M
∑

i=1

wi = 1 − β}.

Tassiulaset al. [25] has shown thatΛβ ⊂ Λ for eachβ ∈ (0, 1]
andΛ ⊆ Λβ whenβ = 0. From the above definition, an arrival
rate vector~λ is in Λβ if (1 −

∑M
i=1 wi) = β. In other words,

if an arrival rate vector~λ is in Λβ then its “distance” from the
boundary of the network stability region isβ. We thus refer
to β as thearrival slack in the system when the arrival vector
~λ is in Λβ.

Definition 10: The expected delayin a network is the
expected number of time slots that elapse between the arrival
and departure of a packet.

In the next section, we upper bound the expected delays of
MWS and RS(~p) for appropriate choice of~p.

III. U PPERBOUNDS ONEXPECTEDDELAY

The maximum weighted scheduling policy is known to
attain the the network stability region, and thereby maximizes
network throughput. With an appropriate choice of scheduling
probabilities, the randomized scheduling policy can be easily
shown to attain maximum throughput as well. We now show
that for any given networkN , when the arrival slack isβ, the
expected delays attained by these policies areO(C(N )/β)
(Theorems 1, 2).

Theorem 1:Consider a networkN , and a~λ ∈ Λβ where
β ∈ (0, 1). Then, the expected delay attained by MWS inN
is at mostγ+1

2
C(N )

β .
Recall thatγ is an upper bound on the ratio of the second

and first moments of the arrival distribution.
Proof: Consider a quadratic Lyapunov functionV :

RN → R such thatV (~x) =
∑N

i=1 x2
i . Using (1), we get

V ( ~Q(t + 1)) − V ( ~Q(t))

=
(

~Q(t + 1) − ~Q(t)
)T (

~Q(t + 1) + ~Q(t)
)

=
(

~A(t) − ~D(t)
)T (

2 ~Q(t) + ~A(t) − ~D(t)
)

= 2
(

~A(t) − ~D(t)
)T

~Q(t)

+
(

~A(t) − ~D(t)
)T (

~A(t) − ~D(t)
)

≤ 2
(

~A(t) − ~D(t)
)T

~Q(t) +
(

~A(t)
)T (

~A(t)
)

+
(

~D(t)
)T (

~D(t)
)

. (2)

Now, since~λ ∈ Λβ, β ∈ (0, 1), ( ~Q(t), ~A(t), ~D(t)) constitutes
a positive recurrent Markov chain [25]. We take expectations
of both sides of (2) under the stationary distribution of this
Markov chain.

First consider the left hand side, and note that

E

(

V ( ~Q(t + 1)) − V ( ~Q(t))
)

= 0. (3)

Now, consider the right hand side. Since~λ ∈ Λβ , there
exists w1, . . . , wM such that

∑M
i=1 wi = 1 − β and ~λ =

∑M
k=1 wk

~Jk. Thus,

E

(

(

~A(t)
)T

~Q(t)| ~Q(t)

)

= ~λT ~Q(t)

=

M
∑

k=1

wk( ~Jk)T ~Q(t)

≤ (
∑

i

wi)
M

max
k=1

( ~Jk)T ~Q(t)

= (1 − β)
M

max
k=1

( ~Jk)T ~Q(t).

Thus,

E

(

(

~A(t)
)T

~Q(t)

)

≤ (1 − β)E
M

max
k=1

( ~Jk)T ~Q(t). (4)

Using the properties of MWS scheduling,
(

~D(t)
)T

~Q(t) =

maxM
k=1(

~Jk)T ~Q(t). Thus,

E

(

~A(t) − ~D(t)
)T

~Q(t) ≤ −βE
M

max
k=1

( ~Jk)T ~Q(t). (5)

SinceE
(

A2
i (t)
)

≤ γE (Ai(t)),

E

(

~A(t)
)T (

~A(t)
)

≤ γ
N
∑

i=1

λi. (6)

The last equality follows since~A(t) is independent of
~Q(t), ~D(t).

Since the components of the departure vector are either0
or 1, D2

i (t) = Di(t). Thus,

E

(

~D(t)
)T (

~D(t)
)

= E(

N
∑

i=1

Di(t)) =

N
∑

i=1

λi. (7)

We now justify the last equality. Since~λ ∈ Λβ whereβ ∈
(0, 1) and MWS is used, the system is stable [25]. Thus, since
the time average of the queue length in each link is finite,
and the Markov chain( ~Q(t), ~A(t), ~D(t)) is positive recurrent,

E

(

~D(t)
)

= ~λ. The equality follows.



Thus, taking expectations w.r.t. the steady state distribution
of ~Q(t) on both sides of (2), it follows from (3) to (7),

0 ≤ −2βE
M

max
k=1

(

~Jk
)T

~Q(t) + (γ + 1)

N
∑

i=1

λi.

Thus,

E
M

max
k=1

(

~Jk
)T

~Q(t) ≤
(γ + 1)

∑N
i=1 λi

2β
.

Thus,

E

∑

k∈J

Qk(t) ≤
(γ + 1)

∑N
i=1 λi

2β
for any J ∈ J . (8)

Now,

E

(

N
∑

k=1

Qk(t)

)

= E





C(N )
∑

j=1

∑

k∈Vj

Qk(t)





≤

C(N )
∑

j=1

(γ + 1)
∑N

i=1 λi

2β
(from (8) and sinceVj ∈ J )

= C(N )(γ + 1)

∑

i λi

2β
.

Since the expected delay isE
(

∑N
k=1 Qk(t)

)

/
(

∑N
i=1 λi

)

,
the result follows.

Theorem 2:Consider a networkN , and ~λ ∈ Λβ where
β ∈ (0, 1). Assume that the arrival process is i.i.d. Bernoulli.
Then, there exists aM -dimensional probability vector~p, such
that the expected delay attained by RS(~p) in N is at most
C(N )

β .

Proof: Since ~λ ∈ Λβ , there existsw1, . . . , wM such
that

∑M
i=1 wi = 1 − β and ~λ =

∑M
k=1 wk

~Jk. Recall
that C(N ) ⊆ J represents a collection of independent sets
that constitutes a minimum coloring of the link interference
graph. Let pk = wk if Jk ∈ J \ C(N ), and pk =
wk + β/C(N ), if Jk ∈ C(N ). Note that pk ≥ 0, and
∑M

k=1 pk =
∑M

k=1 wk + |C(N )|β/C(N ). Since |C(N )| =

C(N ),
∑M

k=1 pk =
∑M

k=1 wk + β = 1. Thus, ~p is a M -
dimensional probability vector.

Now, when an independent set inJ is scheduled, all the
links of N that constitute the independent set are scheduled.
Also, each linkl is in one independent set inC(N ). Thus, each
link l is scheduled with probability

∑M
i=1 wi

~J i
l + β/C(N ),

where ~J i
l is the component corresponding to linkl in ~J i,

the indicator vector representing the independent setJi.
Since λl =

∑M
i=1 wi

~J i
l , l is scheduled with probability

λl + β/C(N ). Since the arrival process is Bernoulli, from
standard queueing analysis, the system is stable and expected
delay for link l is 1−λl

λl+β/C(N )−λl
which is at mostC(N )/β.

The result follows.
Note that unlike the other results stated in the paper,

Theorem 2 relies on an additional assumption that the arrival

process is Bernoulli. Computing the probability vector~p that
attains the above delay guarantee requires finding the weights
{wk} from the arrival vector~λ, and finding the chromatic
number of the interference graph. The rate decomposition
problem to calculate the independent set weights{wk} is
not known to be polynomially solvable in the general case;
in presence of primary interference constraints only (i.e., if
two links can transmit together successfully as long as they
do not have any common end node), this problem can be
solved in polynomial time [10]. Finding the chromatic number
requires solving a graph coloring problem, which is NP-hard
[3]. It should be noted however that these complex calculations
need not be done on a per slot basis – it can be done
once at the very beginning, and the scheduling probabilities
{pk} thus computed can be used thereafter, until the network
topology changes. In contrast, MWS requires solving the NP-
hard maximum-weighted independent set problem at each
scheduling instant.

Thus, for a givenβ, the upper bound on the expected
delay of MWS and RS depends on the network topology
only through the chromatic number of the interference graph.
Therefore, if the size of the network is increased without
increasing the chromatic number, the upper bound does not
change. Furthermore,C(N ) is significantly less thanN in
a large class of topologies. For example, consider a network
wheren nodes are uniformly deployed in a square of side one
unit so as to constitute a random geometric graph, i.e., there
exists a link between two nodes if and only if the distance
between them is less than a given numberD, and two links
interfere if and only if an end node of one is within a distance
D of that of another. It is well known that ifD2 ∼ O( log n

n ),
then for largen, the network is connected and the throughput
is maximized with probability one [9]. Then, for largen, the
degree of each link in the interference graph isO(log n) with
probability one. Since the chromatic number in any graph can
exceed the maximum degree of its nodes by at most1 [11], for
a givenβ, the expected delay attained by the above policies
is O(log n), or equivalentlyO(log N), in such networks.

IV. L OWER BOUNDS ONEXPECTEDDELAY

We now obtain a lower bound on the expected delay of an
arbitrary policy. Specifically, we prove the following theorem.

Theorem 3:For any real numbersβ ∈ (0, 1), ǫ ∈ (0, 1),
and any positive integer̃C, there exists a networkN with
C(N ) = C̃ and an arrival rate vector inΛβ, such that the
expected delay attained inN by any scheduling policy is at
least (1−ǫ)2

(1+ǫ)
C̃
2 .

The above lower bound holds irrespective of the arrival slack
β, and its value does not depend onβ. An important question
therefore is whether a tighter lower bound can be obtained
by exploiting the relation between the expected delay and
β. We show that this is indeed the case for any randomized
scheduling. Specifically, we show the following result.

Theorem 4:For any real numberβ ∈ (0, 1), any probability
vector~p, and any positive integer̃C, there exists a networkN



Group 1
(K links) Group 2

(K links)

Group C  
(K links)

1

J   :
1

J   :
2

J     :
C1

Fig. 1. Group based interference graph topology. There is nointerference
between links in the same group. An edge between two groups implies that
a link in any one group interferes with every link in the othergroup.

with C(N ) = C̃ and an arrival rate vector inΛβ , such that
the expected delay attained inN by RS(~p) is at leastC̃−1

β +1.

Note that for largeC̃, the lower boundC̃−1
β + 1 ≈ C̃

β .
Proving a similar lower bound that involves the arrival slack
β for an arbitrary scheduling policy remains open.

We now prove Theorem 3.
Proof: We first describe a networkN with C(N ) = C̃.

The network consists of̃C disjoint groups (sets) of links,
J1, . . . , JC̃ , each of sizeK. (The value forK will be specified
later.) Thus eachJi consists ofK links, Ji ∩ Jl = φ if
i 6= l. Here, links i, l can be served simultaneously if and
only if i, l ∈ Jw for somew. The interference graph of this
network has been shown in in Figure 1 (setC1 = C̃). Sets
J1, . . . , JC̃ and their subsets constitute the independent sets
of the interference graph ofN . Clearly, the colors assigned
to links in Ji and Jl must be different ifi 6= l. Thus, the
chromatic number of the interference graph is at leastC̃. Note
that the interference graph can be colored using colori for
links in Ji, i = 1, . . . , C̃. Thus, the chromatic number of the
interference graph is at most, and hence equal to,C̃.

We now consider a large class of arrival processes for which
the arrival rate vector is inΛβ of N . Let α = (1 − β)/C̃.
Clearly α ∈ (0, 1). Consider an arbitrary probability distribu-
tion F on non-negative integers with expectationα that satis-
fies the following technical condition: the moment generating
functionZ(τ) of the distributionF (i.e., E (exp(τX)) where
X is a random variable with distributionF ) is finite in some
neighborhood ofτ = 0. Note thatF can be selected from
a large class of probability distributions which consists of,
but is not limited to, Bernoulli(α), Poisson(α), Binomial(x, y)
with xy = α, etc. Let packets arrive in each link as per
temporally and mutually independent random processes with
distribution F each. Note that the corresponding arrival rate
vector ~λ = (α, . . . , α) can be expressed as~λ =

∑

i wi
~J i,

wherewi = α, i = 1, . . . , C̃, andwi = 0 for i > C̃. Since
∑

i wi = α|C̃| = 1 − β, ~λ ∈ Λβ.

Consider an arbitrary slott and the packets that arrive in
this slot. Let the delay of any such packet bēD, and the

expectation ofD̄ be ED̄. Then, the expected delay of any
packet in the system isED̄. We therefore need to show that
ED̄ ≥ (1 − ǫ)2C̃/(2(1 + ǫ)). Note thatD̄ is minimized if
the system schedules the transmissions so as to minimize the
delay experienced by the packets that arrive in this slot. Such
a schedule will not serve a linki if link i does not have any of
the above packets and another linkj has at least one of these
packets. We also assume that the first time a link is served
after t all packets that arrived int in the link are served from
it; the delay can only increase otherwise (which may happen
when a link receives more than one packet int).

Let Xi be the total number of packets received by links
in Ji in t, for i = 1, . . . , C̃. Consider an eventA in which
Kα(1 − ǫ) ≤ Xi ≤ Kα(1 + ǫ) for eachi. Clearly, ED̄ ≥
Pr(A)E(D̄|A). Now, without loss of generality, let links in
J1 be served in slott+1, links in J2 be served in slott+2 and
so on, until all links that have received packets in slott have
been served. Then,E(D̄|A) ≥

∑C̃
i=1 iE( Xi

P

C̃
i=1

Xi

|A). Now,

E( Xi
P

C̃
i=1

Xi

|A) ≥ Kα(1−ǫ)

C̃Kα(1+ǫ)
= 1−ǫ

C̃(1+ǫ)
. Thus, E(D̄|A) ≥

1−ǫ
C̃(1+ǫ)

∑C̃
i=1 i ≥ C̃

2
1−ǫ
1+ǫ .

We now evaluatePr(A). From large deviation results, for
all large enoughK, the probability thatXi 6∈ [Kα(1 −
ǫ), Kα(1 + ǫ)] is at most3 exp(−Kν) whereν is a positive
constant that depends on the distributionF andα, ǫ (Section
5.11 [8])). Using union bound, for all large enoughK, the
probability thatXi 6∈ [Kα(1− ǫ), Kα(1 + ǫ)] for at least one
i is at most3C̃ exp(−Kν), which is at mostǫ for all large
enoughK. Thus,Pr(A) ≥ 1− ǫ for all large enoughK. The
result follows.

The proof reveals that the lower bound on delay holds for
a large class of arrival distributions. Thus, intuitively,there
are no “good” arrival processes for which the above lower
bound on the expected delay attained by any policy does not
apply. The lower bound however applies only for a class of
topologies. Thus, there may be “good” topologies where some
policy may attain delays lower than the above bound. For
example, consider the case of a full mesh link interference
graph (i.e., any two links interfere with each other), where
the chromatic number is equal to the number of links,N .
In this case, our lower bound is roughlyN/2, and the upper
bound on the expected delay obtained for MWS in the last
section isO(N/β). However, any work-conserving scheduling
policy (including MWS) attains an expected delay of(1/β)
in this case for Poisson arrivals. This shows that there exist
topology classes where the lower bound may not apply, or our
upper bounds derived in Section III may be loose, for certain
arrival patterns. An interesting direction for future research
is to identify topologies, or rather characteristic properties
of topologies, that allow at least some scheduling policiesto
attain low delays.

We prove Theorem 4 next.
Proof: We first describe a networkN with C(N ) = C̃.

The network consists of̃C links such that any two links in the
network interfere with each other. Thus, the link interference



graph is a clique of sizẽC, and hence its chromatic number
is C̃. The independent sets of the interference graph consist
of J0, J1, . . . , JC̃ , whereJ0 = φ, andJi consists only of link
i when i ≥ 1.

We now consider a Bernoulli arrival process for which the
arrival rate vector is inΛβ of N . Let α = (1−β)/C̃. Clearly,
α ∈ (0, 1). Let the arrival process at each link be Bernoulli(α),
independent of the arrival processes at other links. The arrival
processes in different slots are also independent. Note that
the corresponding arrival rate vector~λ = (α, . . . , α) can be

expressed as~λ =
∑C̃

i=0 wi
~J i, wherewi = α, i = 1, . . . , C̃,

andw0 = 0. Since
∑

i wi = α|C̃| = 1 − β, ~λ ∈ Λβ .
Consider RS(~p) for an arbitrary (C̃ + 1)−dimensional

probability vector~p. Then, in each slot, RS(~p) serves linki
with probability pi for i ≥ 1, and the service opportunities
are temporally independent. From standard queueing analysis,
the expected delay in linki is 1−α

pi−α . Since all links have

equal arrival rates, the overall expected delay is1
C̃

∑C̃
i=1

1−α
pi−α .

Thus, if ~p∗ minimizes the expected delay for RS(~p) among all
possible choices for~p, then~p∗ must be the optimum solution
of the following convex optimization problem:

minimize
1

C̃

C̃
∑

i=1

1 − α

pi − α
,

subject to: pi ≥ 0, i = 1, . . . , C̃,

C̃
∑

i=1

pi ≤ 1.

It is easy to show that the optimum solution to the above
symmetric convex optimization problem is given byp∗i =
1/C̃. Sinceα = (1− β)/C̃, the expected delay under RS(~p∗)

is
(1− 1−β

C̃
)C̃

β = C̃−(1−β)
β = C̃−1

β + 1.

V. SIMULATION STUDY

In this section, we compare the delay performance of the
two scheduling algorithms, MWS and RS, in a few representa-
tive network topologies. We also evaluate through simulations
how the average delay attained by these algorithms varies as
a function of the quantitiesC(N ) andβ.

One major difficulty in evaluating the performance of MWS
and RS in large scale, arbitrary topology networks (like
networks formed by placing nodes at random in an area) is the
computational complexity of the scheduling algorithms. Both
MWS and RS require solving NP-hard problems – maximum
weighted independent set for MWS, and graph coloring for
RS. In our simulation study, therefore, we focus on small
topologies like “star” and “line” link interference graphs,
where these problems can be solved in polynomial time. To
study the scaling of delay with chromatic number, we consider
large topologies, but those that exhibit a regularity so that
maximum weighted independent set and chromatic number
can be calculated easily.

The topologies that we consider are parametrized by a
constantK, which roughly represents the size of the maximum

1

2

3

K

1 2 3 2K

(a) Star topology

(b) Line topology

Fig. 2. Star and line link interference graph topologies.

independent set in the link interference graph. The first two
of these topologies as shown in Figure 2 are the star and the
line topologies. Note that these topologies correspond to the
link interference graphs (not the actual networks), where each
node represents a link and each edge represents a (symmetric)
interference relationship between the corresponding links. The
chromatic number for both these topologies is 2. For the star
topology, note that there are only two maximal independent
sets, with sizes one (the central link) andK (the peripheral
links). For the line network, while there are manymaximal
independent sets, there are only twomaximum-sizeindepen-
dent sets, each with sizeK (the set of odd nodes, and the set
of even nodes). For this line topology, the maximum weight
independent set calculation, as required by MWS, is performed
in polynomial time using a dynamic programming procedure.

The third topology we consider is the one in Figure 1, where
the link interference graph can be viewed as a collection ofC1

groups of links, each of sizeK, where a link does not interfere
with any other link in its group, but interferes with all links
in the otherC1 − 1 groups. This interference graph topology
is the same as the one considered in Section IV to obtain
a lower bound on the delay performance of any scheduling
policy. Note that there areC1 maximal independent sets in
this topology, one corresponding to each of theC1 groups,
and each of these sets consists ofK links. Also note that at
any time, only one of theC1 maximal independent sets can be
scheduled, andC1 represents the chromatic number of this link
interference graph. The last topology we consider is similar
to the earlier one, but with the difference that theK links in
group i (1 ≤ i ≤ C1) do not interfere with links in group
(i + 1) mod C1. Note that while the third topology consists
of disjoint maximal independent sets, the fourth topology
introduces overlaps between some of the independent sets,
which is more likely to be the case in practice. Note that the
chromatic number of this interference graph is⌈C1/2⌉. We
use these topologies to study how average delay scales with
the chromatic number, by varyingC1. Note that the difference
in the chromatic numbers between the last two topologies (for
the sameC1, K, and therefore same number of links) is caused
due to lower interference in the latter topology. We assume that
packet arrivals occur at each queue according to a Bernoulli
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Fig. 3. Average delay vs network load, for the star interference graph
topology.

process with probabilityr.

Figures 3 and 4 plot the average delay attained by MWS and
RS with the arrival rate, for different values ofK. The delay
curves look similar to those of an M/M/1 queue, and sharply
increases as the arrival rate approaches the boundary of the
stability region (which can be easily computed asr = 0.5
for both topologies). We observe that the delay attained by
MWS is significantly better than the delay for RS at the same
network load. This is intuitively expected, since unlike MWS,
RS is a “static” policy which does not take into account
queue lengths, and can even be non work-conserving. The
results show that the average delay for RS is insensitive to
K (which corresponds to the maximum independent set size
in both topologies): this happens since each queue behaves
independently of the others, owing to random arrivals and
random scheduling. Also the delay for MWS increases asK
increases, for the same arrival rate, as we would expect from
intuition.

Figures 5 and 6 replot the results in Figures 3 and 4, so that
the y-axis corresponds to the logarithm of the average delay,
and the x-axis corresponds tolog(1/β), whereβ is the arrival
slack. We observe an almost linear relationship; furthermore,
the slopes for the curves for MWS and RS are roughly the
same. This is in agreement with the upper bounds derived in
Section III which show a scaling ofO(1/β) for the average
delay for a fixedC(N ).

The average delay vs arrival rate (network load) plots for
the group based interference graph topologies are very similar
to those of the star and line topologies considered above. Thus
we only show how the average delay scales with the chromatic
number in these cases. Figures 7 and 8 show the results for
the two topologies, when the network load is kept at 80%
of the maximum (orβ = 0.2). This implies r = 0.8/C
for the interference graph topology with disjoint maximal
independent sets, andr = (2 × 0.8)/C for the interference
graph topology with overlapping maximal independent sets.
The figures show that the average delay scales linearly with
the chromatic number when network load is kept constant.
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Fig. 4. Average delay vs network load, for the line interference graph
topology. Note that the total number of links in the network is 2K.
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Fig. 5. Logarithm of average delay vs logarithm of arrival slack (β), for the
star interference graph topology.

VI. RELATED WORK

Tassiulaset al. have characterized the maximum throughput
region and also provided a scheduling strategy that attains
this throughput region in any given wireless network [25].
Subsequently, several policies have been shown to attain (in
some cases, for specific topology classses and interference
constraints), either the maximum throughput region [1], [5],
[18], [21], [23], [24] or a guaranteed fraction thereof [2],
[4], [13], [15], [26], while requiring lower computation time.
However, whether these algorithms are able to provide low
delay guarantees remains largely unknown.

There has been some recent interesting work on char-
acterizing the delay performance of scheduling algorithms,
or formulating scheduling and routing policies in random
networks that attain order-optimal delay [6], [7], [20], [14],
[16], [17]. Most of these works do not consider queuing delay,
and focus on attaining order-optimal packet delivery delayin
presence of node mobility. Scheduling policies that exploit
node mobility as in these works are in general unlikely to
attain low delay guarantees for the static network setting that
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Fig. 6. Logarithm of average delay vs logarithm of arrival slack (β), for the
line interference graph topology. Note that the total number of links in the
network is2K.
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Fig. 7. Average delay vsC1, for the group based interference graph topology
shown in Figure 1. The chromatic number for this network topology is C1.

we consider in this paper.
Analysis of scheduling algorithms in terms of expected

queuing delay or expected queue lengths is considered in
[19], [12], [22]. In [19], the author obtains aO(log N)
upper bound on the expected delay, but only for maximal
scheduling policies which (depending on network topology
and interference relationships) can attain only a small frac-
tion of the overall stability region. Specifically, the author
shows that if the arrival rate vector is such that for each
link l, the sum of the arrival rates ofl and the links that
interfere with l is less than or equal to 1 (which ensures
that maximal scheduling stabilizes the network), then maximal
scheduling attainsO(log N) expected delay. The set of arrival
rate vectors that satisfy the above sufficient condition can
however be significantly smaller than the stability region
of the network. Specifically, in the topology considered in
the proof of Theorem 3 (Figure 1), the arrival rate vector
~λ = (α, . . . , α) is in the network stability region provided
C̃α < 1. However,~λ satisfies the above sufficiency condition
for maximal scheduling only ifα

(

K(C̃ − 1) + 1
)

< 1. Thus,
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Fig. 8. Average delay vsC1, for the group based interference graph topology
shown in Figure 1, but without interference between links inadjacent groups.
The chromatic number for this network topology isC1/2.

this sufficiency condition reduces the stability region by a
factor of at leastK (approximately) andK can be arbitrarily
large. Therefore the delay guarantee obtained for maximal
scheduling only applies if the arrival rate vector belongs to
a stability region which is possibly much smaller than the
maximum stability region. While our lower bound on the delay
obtained by any policy (Theorem 3) may appear to contradict
the O(log N) upper bound on delay for maximal scheduling,
there is no contradiction in reality. We prove Theorem 3 by
choosing an arrival rate vector which does not satisfy the above
sufficiency condition (and therefore the above upper bound
does not apply to this case), but is nevertheless in the stability
region of the network.

In [12], [22], the authors show anO(1) upper bound on
expected queue length per link for scheduling policies they
propose, but their results apply only to the special class of
non-expanding graphs (which include random geometric inter-
ference graphs). In [12], the authors also show that there exist
arrival processes for whichΩ(1) queue length is necessary.
Note that a bound on the queue length does not necessarily
translate to that on the expected delay (since expected delay
is expected queue length divided by the expected arrival rate),
without additional assumptions on how the arrival rate scales
with increase in the size of the topology. In contrast, (a) we
obtain bounds on the expected delay, and (b) our results apply
to general network graph models.

VII. C ONCLUDING REMARKS

This paper considers the problem of attaining tight delay
guarantees through link scheduling in arbitrary wireless net-
works. While significant progress has been made in recent
years on the topic of throughput-optimal scheduling, the ques-
tion of characterizing the delay properties of such scheduling
policies, or that of obtaining delay optimal schedules, has
remained largely open. In this work, we take an important
step towards addressing this issue by characterizing the worst-
case performance of the widely known maximum weighted
scheduling (MWS) algorithm [25], which has been a precursor



to a lot of scheduling algorithms developed in this context.We
show that this scheduling policy attains a delay guarantee that
depends on the chromatic number of the interference graph
of the network, and an appropriate measure of the load on
the network. Interestingly, we also show that it is possibleto
attain the same asymptotic delay guarantee by a throughput-
optimal “static” randomized scheduling (RS) policy which pre-
computes the scheduling probabilities (based on the average
arrival rates) and does not take into account the dynamics
of the queue length or arrival processes. We observe that the
delay guarantee attained by these two scheduling policies is
asymptotically tight in the sense that there exist networks(for
any given chromatic number) for which these bounds cannot
be improved (beyond a constant factor) by any scheduling
policy. Our simulation results on a few representative topolo-
gies demonstrate that the average packet delay indeed scales
linearly with the chromatic number of the link interference
graph, and inversely with the arrival slack in the system, in
agreement with the scaling laws obtained analytically.

Both MWS and RS require obtaining solutions to NP-
hard problems. However, since RS requires us to solve the
complex rate decomposition and graph coloring problems
only when the network topology changes, or the arrival rates
change significantly, its “per-slot” complexity is very low,
unlike that of MWS. The reduced complexity of RS comes at
increased delay, although the average delays of RS and MWS
differ asymptotically by only a constant factor. Development
of low-complexity dynamic scheduling algorithms that can
match the performance of MWS, and low message-complexity
distributed adaptations of RS, remain interesting topics for
future research.
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