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Abstract—Given the flexibility that software-based operation
provides, it is unreasonable to expect that new malware will
demonstrate a fixed behavior over time. Instead, malware can
dynamically change the parameters of their infective hostsin
response to the dynamics of the network, in order to maximize
their overall damage. However, in return, the network can also
dynamically change its counter-measure parameters in order to
attain a robust defense against the spread of malware while
minimally affecting the normal performance of the network.
The infinite dimension of freedom introduced by variation over
time and antagonistic and strategic optimization of malware and
network against each other demand new attempts for modeling
and analysis. We develop a zero-sum dynamic game model and
investigate the structural properties of the saddle-pointstrategies.
We specifically show that saddle-point strategies are simple
threshold-based policies and hence, a robust dynamic defense
is practicable.

I. I NTRODUCTION

a) Motivation and Overture:New wireless technologies
with increasing communication and computation capabilities
transcend our mere person-to-person mobile communication
needs. Sensitive and critical applications are rapidly developed
and popularized, thanks to the software-based operation of
wireless devices. The added flexibility, however, comes at
a price: malware writers are expected to launch malicious
applications which threaten to compromise critical security,
privacy and in case of e-health, vitality of the users.

Worms spread during data or control message transmission
between nodes that are infected (infectives) and those that are
vulnerable, but not yet infected (susceptibles). Worms can dis-
rupt the normal functionalities of the hosts, steal their private
information, and use them to eavesdrop on other nodes. The
worm can also render the host dysfunctional by deliberately
draining its battery, or by executing a pernicious code that
incurs irretrievable critical hardware or software damage, e.g.,
by re-fleshing the BIOS corrupting the bootstrap program re-
quired to initialize the OS [21]. We call these inoperative nodes
dead.Upon an outbreak of a new malware, anomaly detection
techniques can be used to identify the presence of malicious
activities and generate security patches [23] that can thenbe
distributed among the nodes on a transmission-upon-contact
basis. Such patches eitherimmunizesusceptible nodes against
future attacks, by rectifying their underlying vulnerability, or
heal the infectives of the infection and render them robust
against future attacks. Nodes that have been immunized or
healed are denoted asrecovered. In the meanwhile, reducing
the communication rates in the network can quarantine the

worm by slowing down its spread. Specifically, the hosts can
simply drop packets sent to them before processing them, or
even refuse some connection requests.

Given the flexibility that software-based operation provides,
it is unreasonable to expect that new malware will demonstrate
a fixed behavior over time. Instead, malware can dynamically
change its modus operandi in response to the dynamics of
the network, in order to maximize the overall damage it
inflicts. However, in return, the network can also dynamically
change its counter-measure policy to more effectively oppose
the spread of the infection. The infinite dimension of freedom
introduced by variation over time and antagonistic optimiza-
tion of malware and network against each other demand
new attempts for modeling and analysis of their strategic
confrontation. This paper investigates such confrontations and
identifies maximum damage dynamic strategies of attack and
devises robust dynamic defense before such threats emerge.

b) Defense and Attack Decision Problems:Since the
media in the wireless network is common and the channels
are unreliable, the bandwidth consumed for distribution of
the security patches can itself disrupt the normal functionality
of the network. Excessive quarantining through reception rate
reduction also deteriorates the quality of service (QoS) for the
data traffic. Such quarantining can not usually discriminate
based on the identity of the transmitters, since the hosts
applying the reception rate control in general do not know
which other nodes are infected; the reception rate itself may
however be judiciously selected. The network’s challenge now
is to achieve a guaranteed performance by selecting the instan-
taneous (a) rate of patching, and (b) reception rate that jointly
minimize the overall damage due to (i) the subversive activities
of the malware that is capable of annihilating infectives,
and (ii) the additional resource consumption and deterioration
of QoS owing to the application of the countermeasures.
The design must adapt over time remaining cognizant of
the malware’s ability to dynamically optimize its spread in
response to the network’s dynamic strategy.

The malware also faces an interesting tradeoff: should it kill
its host as soon as feasible after infecting it? While a quick
annihilation of a host inflicts a high cost on the network right
away by rendering it completely dysfunctional, it also rules out
the use of that node in infecting the remaining susceptibles.
Thus, early mutilation of infective nodes may thwart the spread
of malware. Moreover, killing a node deprives the malware of
the other malicious activities the node can be used for, such
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as eavesdropping, stealing private information, etc. Deferral
of killing, on the other hand, is at the risk of losing that
node through installation of security patches and recoveryof
that node by the network. The annihilation strategy should
therefore depend on relative benefits for the malware and the
damages for the network incurred by each of the above factors.
For instance, if the malware is primarily interested in stealing
a node’s private information or eavesdropping on others, it
ought to defer killing for some time, however, not too long
lest the node recovers. If on the other hand its primary goal is
to degrade network functions by disabling as many nodes as
possible and as soon as possible, it ought to start the slaughter
as soon as it has infected a sizeable population of hosts.

A robustcounter-measure is one that seeks to minimize the
damage inflicted by the malware assuming that the malware
chooses its strategy so as to maximize this damage with full
knowledge of the counter-measure. Due to the above trade-offs
and since an optimal strategy of the malware depends on the
strategy of the network andvice versa,determination of the
robust strategies of either is non-trivial. This paper proposes
a method to answer these questions.

c) Contributions: First, we construct a mathematical
framework which cogently models the strategic confronta-
tions between the malware and the network as a zero-sum
(minimax) dynamic game (§III-A) drawing from (i) existing
epidemic models that have earlier been proposed and validated
for worm propagation in wireless networks (§II-A), and (ii)
damage functions that we introduce to investigate the trade-
offs resulting from different decisions of the entities concerned
(§II-B). To the best of our knowledge, this is the first paper
that combines epidemiological models with dynamic game
formulations for propagation of worms in wireless networks.
We are also able to prove the existence of therobust, or saddle-
point strategies of the network and the malware (§II-A), and
compute them (§III-B). Existence of such strategies and also
their computations are not clear a priori, since the strategy set
of each player is uncountably infinite and consists of functions
of time.

We prove that the robust defense strategy has a simple
two-phased structure (§III-C): (i) patch at the maximum
possible rate until a threshold time, and then stop patching
(ii) choose the minimum possible reception rate (i.e., the
maximum packet drop rate at the receivers) until a threshold
time and subsequently revert to the normal reception rate. The
initial aggressive defense limits the spread of infection and
thereby the pool of nodes that can potentially be exploited or
killed; this guarantees an upper bound on the damage inflicted
irrespective of the malware’s choice of annihilation rates.
Given its simple structure, the defense control can readilybe
implemented in resource constrained wireless devices. From
a game-theoretical point of view, the structural results are
somewhat surprising given the non-linear dynamics of state
evolutions and the non-monotonicity of the state functions,
and their proofs rely on non-standard techniques.

The game formulations, and in particular the epidemic
models, rely on some abstractions, that have been made for

analytical tractability. Using simulations, we validate the for-
mulations when these assumptions are relaxed (§V). Our nu-
merical computations reveal that our robust dynamic defense
strategy attains substantially lower value of the maximum
damage inflicted by the malware as compared to that for
heuristic static choice of defense parameters.

d) Related Works:Malware outbreaks in wireless net-
works constitute an emerging research topic (e.g., [24]) Epi-
demic modeling based on the classic Kermack-Mckendrick
model [5] has extensively been used to analyze the spread of
malware in wired and cellular networks [3], [24], [25]etc, and
more recently in wireless networks [19]. These works show,
through simulations and matching with actual data, that when
the number of nodes in a network is large, the deterministic
epidemic models can successfully represent the dynamics of
the spread of the malware.

Dynamic control of parameters of the network or the worm
have been investigated in several papers [10]–[14], [22]. These
papers, however, allow only one of the network or malware
to dynamically change their parameters, and assume that the
other’s choice of parameters is not only static but also known
to the opponent. In contrast, we consider a dynamic game
where the network chooses its patching and communication
rates dynamically so as to minimize the overall damage when
the malware also intelligently varies its parameters, specifi-
cally, killing the infective nodes, over time so as to maximize
this damage; also each player remains cognizant of the other
player’s ability to optimally respond to the opponent’s choices.
Specifically, each player (say player A) selects its strategy
without any knowledge of the others’ strategy but being
prepared for the eventuality in which the other (i.e., B) selects
its strategy after learning A’s strategy.

Game theory has been used in the context of security in
networks as it is apt to model the interactions of attackers
and defenders, e.g. in [1], [7], [9], [17]. [17] presents models
for the inference of the intents, objectives and strategiesof a
new attacker and apply it to a DDoS attack. In their work,
however, the sets of actions of both the attack and the defense
are finite, and structural property of Nash Equilibriums or
saddle-points have not been obtained; the work focuses on
the modeling and numerical evaluations. Algorithmic imple-
mentations of (variations of) models in [17] are pursued in
[9], [7], etc.We apply dynamic zero-sum games to model the
strategic confrontations of a malware and the defense in a
wireless network, and delve into the structural propertiesof
the saddle-point strategies, when the attack and defense can
intelligently choose the annihilation, patching and reception
rates respectively. Thus, unlike most of the existing work,
the defense operates also at the MAC and physical layers, as
opposed to only at the routing or application layers. Indeed,
we analyze not only the security risks (fraction of infectives,
dead nodes), but also the QoS degradations (packet drops)
and the lower layer bandwidth consumptions (in transmission
of patches) associated with the tradeoffs. Also, the strategy
sets of each player is uncountably infinite since the strategies
are functions of continuous time with continuous ranges. The
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differences in the contexts and the nature of choices require a
substantially different analytical approach. Our contributions
complement [1], which focuses on detecting the intrusion of
a worm that dynamically controls the intensity of its activity,
but does not investigate subsequent defense.

II. SYSTEM MODEL

A. Dynamics of State Evolution

A susceptiblenode is a mobile wireless device1 which is not
contaminated by the worm, but is prone to infection. A node
is infective if it is contaminated by the worm. An infective
spreads the worm to a susceptible while transmitting data or
control messages to it. The worm cankill an infective host, i.e.,
render it completely dysfunctional - such nodes are denoted
dead. A functional node that is immune to the worm is referred
to asrecovered.

Nodes are roaming in a vast 2-D region of areaA with an
average velocityv. No node is aware of the state of other
nodes. Specifically, if a susceptible node knew a priori which
nodes are infective, then it would have just blacklisted them. It
is also difficult for the malware to constantly measure network
states given that a large number of nodes are roaming over a
large area, and given that the set of neighbors of the infectives
are constantly changing owing to node mobility.

Let the total number of nodes in the network beN. Let the
number of susceptible, infective, recovered and dead nodes
at time t be respectively denoted bynS(t), nI(t), nR(t) and
nD(t), and the corresponding fractions beS(t) = nS(t)/N,
I(t) = nI(t)/N, R(t) = nR(t)/N, andD(t) = nD(t)/N.
Then, S(t) + I(t) + R(t) + D(t) = 1. At the time of the
outbreak of the infection, that is at time zero, some nodes
are infected:0 < I(0) = I0 ≤ 1. For simplicity, we assume
R(0) = D(0) = 0. Thus,S(0) = 1− I0.

We now model the dynamics of the propagation of the
infection as an epidemic model that has been validated for
mobile wireless networks through experiments as well as
network simulations (see e.g. [4], [20]). A susceptible is
infected whenever it receives a message from an infective.
The epidemic models consider homogenous mixing (which
we later relax using simulations) where an infective is equally
likely to initiate communication with each node, and hence
each susceptible, say at ratêβ. This represents worm propa-
gation in 3G and 4G cellular networks where infective mobiles
try to infect randomly and uniformly generated addresses. Note
that in any such mobile to mobile communication, irrespec-
tive of the locations of the mobiles, there are two wireless
communications between access points and mobiles and the
rest of the communications are through the backbone network
where the delays and congestions are relatively limited. The
homogenous mixing can also be justified in delay tolerant
networks (DTN) where the infectives initiate communication

1Similar state dynamics can be motivated for a p2p network (c.f. e.g. [18]).

only with nodes that are within their transmission ranges2.
In fact, under mobility models such as the random waypoint
or the random direction model [2], Groeneveltet al. [6]
have mathematically proven the homogenous mixing assump-
tion 3. In both scenarios,̃β depends only on the rates at
which the infectives scan for the susceptibles, node velocities,
transmission ranges, node densities, and uplink and downlink
communication rates (the last two for cellular networks).

A susceptible accepts a communication request with a prob-
ability uNr(t)4. At any givent, there arenS(t)nI(t) infective-
susceptible pairs. Susceptibles are therefore transformed to
infectives at rateβ̂uNr(t)nS(t)nI(t). Infection propagation,
therefore, can be contained through appropriate regulation of
uNr(t)5 subject to:

0 < uNr

min ≤ uNr(t) ≤ uNr

norm at eacht.

The lower bounduNr

min arises due to the minimum quality
of service (QoS) requirements for data traffic (since the
acceptance probability is the same irrespective of whetherthe
request arrives from another infective, susceptible, or recov-
ered node). The upper bounduNr

norm (which can be normalized
to 1) provides the reception rate that nodes use for providing
the desired QoS in absence of security considerations.

We now consider the dissemination of security patches in
the network. A pre-determined set of nodes, referred to as
dispatchers (e.g., BS for cellular and exit-points for delay-
tolerant networks) are pre-loaded with the patches. We assume
that the dispatchers can not be infected, and that there areNR0

dispatchers where the network parameterR0, is between0 and
1. Each node communicates with the dispatchers, and thereby
fetches security patches, at an overall rateβ̃NR0u

Ni(t) at
any timet. The parameter̃β depends on node density, mobility
parameters, allowable transmission rates etc., whereasuNi(t)6

is a control function which can be used to regulate the
bandwidth consumed in propagation of patches - the higher
the value ofuNi(t), the higher is the recovery rate but so is
the resource consumption in patch transmission. Clearly,

0 ≤ uNi(t) ≤ 1 at eacht.

If the node that receives the patch is a susceptible node, it
installs the patch and its state changes to recovered. If an
infective receives the patch, the patch may fail to heal it, or,
the worm may prevent its installation. We capture the above
possibility, by introducing a coefficient0 ≤ π ≤ 1: π = 0
occurs when the patch is completely unable to remove the

2Infectives do not initiate connection with other nodes as inDTNs mobile
nodes roam a vast area which is much larger than their communication
ranges, and there is no backbone network and more often than not end-to-end
connectivity does not exist.

3The result has been proven when the communication range of the nodes
is small compared to the total area of the region and node velocity v is
sufficiently high. Numerical computations in [6] show that the result mostly
extend even when these assumptions are relaxed.

4The subscriptr represents reception.
5Superscript N designates control functions of the network, and M desig-

nates control functions of the malware.
6The subscripti denotes immunization.
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worm from infectives and only immunizes the susceptibles,
whereasπ = 1 represents the other extreme scenario where
a patch can equally well immunize and heal susceptibles and
infective nodes7 Now, if the patch heals an infective, its state
changes to recovered, else it continues to remain an infective.

The worm at an infective host kills the host with rate
proportional touM (t) at a given timet; this is accomplished
by executing specific codes with a probability of choice. The
worm regulates the death process by appropriately choosing
uM (t) at eacht, subject to:

0 ≤ uM (t) ≤ uMmax at eacht.

The upper bound arises due to processor constraints and the
resulting limitations on the maximum rate of execution of such
codes.

Let, β0 := Nβ̂, β1 := Nβ̃R0,

Our discussions lead to8 the following system of differential
equations representing the dynamics of the system:9

Ṡ(t) = −β0u
NrI(t)S(t)− β1u

Ni(t)R0S(t) (1a)

İ(t) = β0u
NrI(t)S(t) − πβ1u

Ni(t)R0I(t)− uM (t)I(t)
(1b)

Ḋ(t) = uM (t)I(t) (1c)

with initial constraints:

I(0) = lim
N→∞

nI(0)/N = I0, S(0) = 1− I0, D(0) = 0

(2)
and also satisfy the following constraints at allt:

0 ≤ S(t), I(t), D(t) (3a)

S(t) + I(t) +D(t) ≤ 1. (3b)

Thus, (S(.), I(.), D(.)) constitute the system state functions,
uN(.) = (uNr(.), uNi(.)) constitutes the network control func-

7In order to avoid immediate detection and blacklisting, theinfectives may
choose not to refuse all connection requests from the dispatchers.

8The introduction of the set of differential equations system as the dynamics
of the system can be made rigorous if further technical assumptions are made.
Specifically, if(nS(t), nI(t), nD(t)) constitutes a Continuous-Time Markov
Chain (CTMC), then according to the results of [16], asN grows,S(t), I(t)
andD(t) convergeto the solution of the the system of differential equation
in the following sense:

∀ ǫ > 0 ∀ t > 0, lim
N→∞

Pr{sup
τ≤t

|
nS(τ)

N
− S(τ)| > ǫ} = 0

Likewise for I(t) andD(t). Note that the CTMC property entails assuming
that the inter-contact times are exponentially distributed. For DTN networks,
this property is shown for by Groeneveltet al. [6] under a number of mobility
models such as random waypoint or random direction model [2].Also, while
considering the limits,β0, β1 are limits of the respective R.H.S. According
to the results of [6],̂β, β̃ are inversely proportional to the area of the roaming
region (A). Thus, the limitslimN→∞ Nβ̂, limN→∞ Nβ̃ exist as long as
the node densitylimN→∞ N/A exists for largeN , and are also positive
since the node densitylimN→∞ N/A, β̂, β̃ are all positive.

9Throughout the paper, variables with dot marks (e.g.,Ṡ(t)) will represent
their time derivatives (e.g., time derivative ofS(t)).

S I

R

D

β0u
NrIS

β1u
NiR0S

uMI

πβ1u
NiR0I

Fig. 1: State transitions.uNi(t) anduNr(t) are the control parameters of the

network whileuM (t) is the control parameter of the malware.

tions anduM (.) constitutes the malware’s control function10.
Note that nodes useidentical reception, patching and killing
rate functions irrespective of the states in their neighborhoods
since they do not know these states. Nevertheless, since these
rates are allowed to vary with time, they can be chosen in
accordance with how the network states areexpectedto evolve.

Henceforth, wherever not ambiguous, we drop the depen-
dence ont and make it implicit. Fig. 1 illustrates the transitions
between different states of nodes and the notations used.

B. Defense and Attack objectives

We first quantify the total damage inflicted by the malware
during the network operation interval[0, T ]. This damage is
due to the presence of infectives, the death of nodes, the
resources consumed for spreading the security patches, and
the QoS deterioration due to the reduction of reception rate.
Infectives can perform harmful activities over time, e.g.,they
can (i) eavesdrop and analyze traffic that is generated or
relayed by the infected hosts, or the traffic that traverses in
the hosts’ vicinity, and (ii) alter or destroy the traffic that
is generated or relayed by the infected hosts. Dead nodes
are inoperative and thus inflict a time-accumulative cost on
the network. The bandwidth overhead at timet due to the
media scanning and transmission of the security packets by
the dispatchers isR0u

Ni(t). Due to the reception rate control,
the susceptibles lose auNr

norm − uNr(t) fraction of packets
transmitted by all nodes which degrades the overall QoS. We
therefore consider the aggregate network damage at timet as
a combination ofI(t), D(t), uNi(t), uNr(t).11

Note that the damage function can be scaled so that one of
the coefficients may be chosen as unity: we choose the one
associated with the instantaneous bandwidth overhead. Thus,

10Note that in the real systemS(t), I(t), D(t) ∈ {0, 1/N, 2/N, . . . , 1},
i.e., are discrete, but the solutions of the above differential equations are in
the continuum. The resulting error however reduces fast asN increases, and
vanishes in the limitN → ∞. Formally, from mean field approximations [16],
∀ ǫ > 0 ∀ t > 0, limN→∞ Pr{supτ≥t |

nS(τ)
N

− S(τ)| > ǫ} = 0, and
likewise for I(t) and D(t). Also, while considering the limits,β0, β1 are
limits of the respective R.H.S. It can be shown that these limits exist as long
as the node densitylimN→∞ N/A exists for largeN , and are also positive
since the node densitylimN→∞ N/A, β̂, β̃ are all positive.

11We adopt a linear structure for analytical tractability, and also because
non-linear functions may be approximated by (piece-wise) linear versions.
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the damage over the time horizon[0, T ] is12:

J(uN , uM ) =

∫ T

0

[κII(t) + κDD(t) +R0u
Ni(t)

− κru
Nr)(t)] dt+KDD(T ), (4)

KDD(T ) relates to the final tally of the dead nodes. The
coefficients are all non-negative and represent the relative
importance of each corresponding term in the overall damage,
e.g., if the worm gains the most by killing, and thereby
completely disabling nodes,κD >> κI . Let κI > 0, κr > 0.

The network seeks to choose its control vectoruN (.) so as
to minimize the above while the malware seeks to choose
its control uM (.) so as to maximize the above, subject to
satisfying the state constraints (3) and ensuring that

uNr

min ≤ uNr(t) ≤ uNr

norm, 0 ≤ uNi(t) ≤ 1, (5a)

0 ≤ uM (t) ≤ uMmax. (5b)

In §III, we model their interactions resulting from opposing
objectives as a dynamic game. The formulation relies on the
following result (which we prove in Appendix-A) that allows
us to ignore the state constraints without any loss of generality.

Lemma 1:Any pair of strategies(uN (.), uM (.)) that satisfy
the control constraints (5a), (5b), satisfy the state constraints
(3) and ensure thatI(t) > 0, S(t) > 0 for all t ∈ [0, T ].

III. N ETWORK-MALWARE DYNAMIC GAME

A. Formulation

Consider a system with two playersN (network) and
M (malware), specified by a system ofn differential equa-
tions [15, P.83]:

ẋ(t) = f
(

t, x(t), uN (t), uM (t)
)

t ∈ [t0, T ], (6a)

uN ∈ UN ⊂ Rm, uM ∈ UM ⊂ Rs, (6b)

and initial conditionx(t0) = x0, and a damage function

J [uP , uE] = g(x(T )) +

∫ T

t0

h(x, uP , uE , t) dt. (6c)

wherex(t) is then-dimensional state vector.PlayerN seeks
to minimize J by controlling them dimensionalcontrol
function uN(.), and playerM seeks to maximizeJ by
controlling thes-dimensional control functionuM (.).13 The
game is therefore referred to as a dynamic two-player minimax
game. The players’ payoffs, and the set of strategies available
to them are calledrules of the game. Both players know the
rules of the game and each player knows that its opponent
knows the rule and ad infinitum14.

In our context, (1) provides thef(.) functions, the initial
conditions are provided by (2), (4) provides theg(.), h(.)

12Note that(uNr
norm − uNr ) inside the integral is replaced with−uNr as

κru
Nr
normT does not depend on the evolution of the states or the controls.

13Equivalently, if M attains a reward ofJ , andN a reward of−J , and
M,N both seek to maximize their individual rewards - the game is referred
to as zero-sum since their rewards always sum to0.

14each player knows that each player knows that the opponent knows etc.

functions, (5a), (5b) provideUN , UM . Also, we have,n =
3,m = 2, s = 1. Note that thef(.), h(.) functions in our
context depends on timet only implicitly, that is through the
state and control functions. Also, the formulation does not
capture any other constraints on the state functions, and in
our context it does not need to either, owing to Lemma 1.

We now consider the values of the game. Thelower value
denoted byV∗, is the overall damage when the minimizing
player (N) is given the upperhand, i.e., selects its strategy after
learning its opponent’s strategy. Mathematically:

V∗ = max
uM

min
uN

J [uN , uM ]

Conversely, theupper valueof the gameV ∗ is defined as

V ∗ = min
uN

max
uM

J [uN , uM ]

Thus,V∗ (V ∗, resp.) is the maximum (minimum, resp.) dam-
age that the malware (network, resp.) can inflict (incur, resp.)
if the other player has the upper-hand. Also,V∗ ≤ V ∗. A pair
of strategies(uN∗, uM∗) is called asaddle-pointif

J(uN∗, uM ) ≤ J(uN∗, uM∗) = V ≤ J(uN , uM∗)

for any strategyuN of the network anduM of the malware,
and thenV is the value of the game, andV = V∗ = V ∗.

Thus, if the network selects its saddle-point strategyuN∗,
irrespective of the strategy of the malware, the damage it
incurs is at mostV , which is also the minimum damage that
the malware can inflict if it has the upper-hand. Thus, the
network’s saddle-point strategy is also itsrobuststrategy, in the
sense, that it minimizes the maximum possible damage it can
incur. Conversely, the malware’s saddle point strategy is also
its robust strategy, since it maximizes the minimum possible
damage it can inflict. Also, the network’s and the malware’s
saddle point strategies are their respective best responses to
the other’s robust strategy.

Theorem 1:The minimax game defined above has a saddle-
point pair of strategies.
We prove this theorem in Appendix-C.

B. A framework for computation of the saddle-point strategies

Since the set of deterministic strategies of each player is
uncountably-infinite, the saddle-point strategies and thevalue
of the game can not be computed using convex or linear
programming. We now present a framework for numerical
computation of the saddle-point strategies.

Define theHamiltonianfor a given policy pair(uN , uM ) in
an arbitrary two-person minimax dynamic game as follows:

H(uN , uM ) = 〈λ, f(x, uN , uM , t)〉+ h(x, uN , uM , t)

where the state functionsx(.) are those that correspond to the
strategy pair(uN , uM ), andλ, the co-state(or adjoint) func-
tions, are continuous and piecewise differentiable functions of
time that satisfy the following system of differential equations
wherever the controls(uN , uM ) are continuous:

λ̇ = −
∂

∂x
H(x, λ, t)
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and the final value (transversality) condition

λ(T ) =
∂(g(x))

∂(x)
|x=x(T )

In our context,

H(uM , uN ) =

κII + κDD + uNiR0 − κru
Nr + (λI − λS)β0u

NrIS

−λSβ1R0u
NiS − λIβ2R0u

NiI + (λD − λI)u
MI

where again the state functions(S(.), I(.), D(.)) are obtained
from (1) with (uN (.), uM (.) as the control functions, and the
co-state functions(λS(.), λI(.), λD(.)) are obtained from the
following system of differential equations (withuN (.), uM (.)
as the control functions)

λ̇S = −
∂H

∂S
=− (λI − λS)β0u

NrI + λSβ1R0u
Ni (7a)

λ̇I = −
∂H

∂I
=− κI − (λI − λS)β0u

NrS + λIβ2u
NiR0

− (λD − λI)u
M (7b)

λ̇D = −
∂H

∂D
=− κD (7c)

with the final conditions

λS(T ) = 0, λI(T ) = 0, λD(T ) = KD. (8)

Then, following [15, P.31], a necessary condition for the
pair (uN , uM ) to be a saddle-point strategy pair is that for all
t ∈ [0, T ] :

(uN , uM ) ∈ argmin
ũN

max
ũM

H(ũN , ũM ) and (9a)

(uN , uM ) ∈ argmax
ũM

min
ũN

H(ũN , ũM ). (9b)

Henceforth, we denote the saddle point strategy pair as
(uN (.), uM (.)), and(S(.), I(.), D(.)), (λS(.), λI (.), λD(.)) as
the corresponding state and co-state functions andH as the
corresponding Hamiltonian. We now express(uN(.), uM (.))
in terms of (S(.), I(.), D(.)), (λS (.), λI(.), λD(.)) using the
necessary conditions (9). Let







ψNr := (λI − λS)β0IS − κr
ψNi := R0 − λSβ1R0S − λIβ2R0I
ψM := (λD − λI)I

Now, the Hamiltonian can be rewritten as:

H = κII + κDD + ψNruNr + ψNiuNi + ψMuM . (10)

Thus, the Hamiltonian is a separable function of different
components of the defense controls(uNr(.), uNi(.)) and the
attack controluM (.), that is, each of these appear in differ-
ent terms in the R.H.S of the above characterization. Now,
from the necessary conditions in (9) subject to the control

constraints in (5), the saddle-point strategies are derived as:

uNr =

{

uNr

min if ψNr > 0,

uNr

norm if ψNr < 0
(11)

uNi =

{

0 if ψNi > 0,

1 if ψNi < 0
(12)

uM =

{

uMmax if ψM > 0.

0 if ψM < 0,
(13)

Since ψNr , ψNi , ψM are uniquely specified once the state
and the co-state functions are known, the above relations
express the saddle-point strategies in terms of the state and
co-state functions. The strategiesuNr(.), uNi(.), uM (.) can
be substituted by the above characterizations in (1) and (7),
resulting in a system of6 differential equations involving only
the state and the co-state functions. Using standard numerical
methods for solving differential equations, this system can be
solved (very fast) using the initial and final conditions (2),
(8). The state and co-state functions obtained as solutions
will now provide theψNr , ψNi , ψM functions, and thereby the
saddle-point strategies via (11), (12), (13). The resulting set of
differential equations is non-linear and a close-form solution
is unknown. However, as we will show in the next section,
using novel techniques, even without access to the closed-
form solution, we can establish the type of behavior that the
saddle-point strategies exhibit.

C. Structural Properties of Saddle-Point Defense Strategy

We establish that the saddle-point defense strategy has a
simple threshold-based structure that ought to facilitateits
implementation in a localized manner in resource constrained
wireless devices. Specifically, we prove that:

Theorem 2:For the saddle-point defense strategyuN (.) =
(uNr(.), uNi(.)), there exists timest1, t2, 0 ≤ t1 < T, 0 ≤
t2 < T such that:

• uNr(t) = uNr

min for 0 < t < t1, anduNr(t) = uNr

norm for
t1 < t < T.

• uNi(t) = 1 for 0 < t < t2, anduNi(t) = 0 for t2 < t <
T.

The overall strategy therefore has the following three
phases. In the initialaggressive defensephase, i.e., during
(0,min(t1, t2)), the susceptibles select the minimum possi-
ble reception rate, and the dispatchers transmit the patches
whenever they are in contact with any other node. Thus, the
quarantining is the most stringent, and the recovery most rapid
during this phase. Then, in the interimwatchful phase, i.e.,
during (min(t1, t2),max(t1, t2)), one of the defense controls
subside while the other continues as before. Ift1 < t2,
then the reception rate control subsides (i.e., the susceptibles
select their normal reception rateuNr

norm). If, howevert1 > t2,
then instead the dispatchers stop transmitting the patches. If
t1 = t2, there is no watchful period. Finally, in the terminal
relaxedphase, i.e., in(max(t1, t2), T ), both defense controls
subside, that is, the susceptibles select their normal reception
rate and the dispatchers do not transmit the patches. Thus, the
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QoS in data traffic is back to its normal value and the resource
consumption overhead due to patch transmission ends.

The durations of the phases (i.e., the values of the thresh-
old times t1, t2) and which defense subsides in the in-
terim watchful period, depend on the damage coefficients
κI , κD,KD, κr, κi. For example, if the last two are very high
(relative to the first three),t1 and/ort2 may turn out to be zero.
If t1 = 0, then the susceptibles always select their normal
reception rate, and the system never quarantines the infection.
Similarly, if t2 = 0, the dispatchers never transmit patches
and hence there is no immunization, nor healing. Finally, note
that the defense strategy always chooses either the maximum
or the minimum values of the parameters except possibly in
a set of measure zero (i.e., except possibly att1, t2). Such
strategies are referred to asbang-bangin the control literature.
We conclude this sub-section by proving Theorem 2.

Proof: The continuity of ψNr(.), ψNi(.) follows from
those of the co-state functions. From the final conditions
on the co-state functions, i.e., (8),ψNr (T ) = −κr < 0,
ψNi(T ) = R0 > 0. We show thatψNr(.) (ψNi(.), resp.) are
strictly decreasing (increasing, resp.) functions of time. Thus,
each has at most one zero-crossing point in(0, T ); denote
these ast1, t2. If ψNr (ψNi , resp.) has no zero crossing point
in (0, T ), t1 = 0 (t2 = 0, resp.). Thus, from the continuity of
theψ(.) functions, and from their terminal values, (i)ψNr (.)
is negative in(t1, T ) and positive in(0, t1), and (ii)ψNi(.) is
positive in(t2, T ) and negative in(0, t2). The theorem follows
from (11) and (12).

We prove the strict monotonicity ofψNr(.), ψNi(.), using:
Lemma 2:λS > 0 andλI > λS , λD ≥ 0 ∀ t, 0 < t < T.
The lemma is intuitive since the shadow prices (i.e., co-

state variables) associated with the susceptibles and deadnodes
ought to be positive, and also the shadow price associated
with the infectives ought to be at least as high as that asso-
ciated with susceptibles. The proof (provided in Appendix-B)
requires detailed analysis of the state and co-state differential
equations (1), (7) respectively, are less direct.

1) Strict monotonicity ofψNr(.): We show thatψ̇Nr(t) is
strictly negativeat all t ∈ (0, T )15

ψ̇Nr =
∂

∂t
ψNr =

(λ̇I − λ̇S)β0IS + (λI − λS)β0İS + (λI − λS)β0IṠ

which after replacement and simplification yields

⇒
ψ̇Nr

β0IS
= −κI − uM (λD − λS)− β1λIu

Ni + β2λSu
Ni =

−κI − (λD − λI)u
M − (λI − λS)u

M − (β1 − β2)λIu
Ni

−(λI − λS)β2u
Ni

From (13), lemma 2 and sinceκI > 0, β1 ≥ β2, uM (t) ≥
0, uNi(t) ≥ 0 at all t, the right hand side is negative. The
result follows sinceβ0 > 0 andS(t) > 0, I(t) > 0 at all t
(lemma 1).

15partial derivative w.r.t time, only because of the dependence also on the
initial values for the states. Otherwise,t is the only independent variable.

2) Strict monotonicity ofψNi(.):

ψ̇Ni =
∂

∂t
ψNi =

(λ̇I − λ̇S)β0IS + (λI − λS)β0İS + (λI − λS)β0IṠ

⇒
ψ̇Ni

β0I
= κIβ2 + β2u

MλD + β0β1Su
Nr(λI − λS)

The R.H.S is positive from lemma 2 and sinceκI > 0, β0 > 0.
Thus,ψ̇Ni > 0 sinceβ0 > 0 andI(t) > 0 at all t (lemma 1).

D. Structure results for the saddle point attack strategy

The saddle-point attack has a simplefirst-amass, then
slaughterstructure in the special case that the worm benefits
from killing only through the final tally of the dead (i.e.,
κD = 0), and the patches can only immunize the susceptibles,
but can not heal the infectives (i.e.,β2 = 0). Specifically:

Theorem 3:For the saddle-point attack strategyuM (.),
there exists a timet3, 0 ≤ t3 < T such thatuM (t) = 0
for 0 < t < t3, anduM (t) = uMmax for t3 < t < T.

Thus, the worm does not kill any infective during the initial
amass period of(0, t1) when it uses them to spread the
infection; it slaughters them at the maximum rate subsequently.
The intuition behind this structure is as follows. Once the
worm infects a host, it never loses it to the recovery process,
and thus, since it benefits from killing a host only because
this enhances the final tally of the dead, it ought to kill hosts
towards the end and utilize them before. The proof follows.

Proof: Note thatψM (T ) = KII(T ) > 0 (because of
lemma 1). Thus, as in the proof of Theorem 2, the result
follows if we can show thatψM (t) crosses zero at most
once. We establish this slightly differently: we show thatψ̇M

is strictly positive at its zero-crossing point (as opposedto
showing it for all t). But this is also sufficient to conclude
ψM has at most one zero-crossing point.

ψ̇M = I(λ̇D − λ̇I) + İψM = κI − κD + uM (λD − λI)

−β2λIu
Ni + Sβ0u

Nr(λI − λS) + İψM

At a zero-crossing point ofψM , the last term vanishes. Now,
κD = β2 = 0, and the remaining terms are all non-negative
because of (13) and lemma 2. The result follows sinceκI > 0.

The saddle-point attack strategy may however be more
involved when eitherβ2 > 0 or κD > 0. For example, fig. 2
depicts the saddle point strategies and the state evolutionin
an example scenario whereκD = 20, β2 = 0.109. The initial
infection is relatively high (I0 = 0.3) and the dispatchers
are relatively few (R0 = 0.1). The malware starts killing the
nodes from the beginning, but around the time that the defense
strategy relaxes the reception rate of the nodes to normal, the
malware stops the killing and infects the newly accessible
susceptible nodes, boosting the fraction of the infective and
shortly, starts to kill them all again.
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Fig. 2: State evolution and saddle-point strategies. The parameters of
the game are as follows:κI = 10, κD = 20, κu = 10, κr = 15,
β2 = β1 = β0 = 0.109, KI = KD = 0, and initial fractions
I0 = 0.3, R0 = 0.1, D0 = 0, andT = 4 hours.

IV. I SSUES RELATED TO IMPLEMENTATION

The simple structure of the saddle-point defense strategies,
as established in Theorem 2, are conducive to implementa-
tion in resource constrained wireless devices. The threshold
times can be computed by a central unit that estimates the
system parametersβ0, β1 and knows the damage coefficients
κI , κD,KD, κr, κi. This computation needs to be performed
once, (att = 0, i.e., when the central unit learns the presence
of the worm in the system), and transmitted to all devices
via a secure broadcast. Since this is a one-time transmission,
such secure broadcasts can be afforded. The devices can sub-
sequently execute the robust strategies without coordinating
any further among themselves or with the central unit.

Note thatt1, t2 can be determined by solving a system of6
differential equations, as described in§III-B. Such systems
can be solved very fast due to the existence of efficient
numerical algorithms for solving differential equations,and the
computation time is constant in that it does not depend on the
number of nodesN . For example, we obtained computation
times of1 second using an 2.66 GHz Intel Xeon CPU X 5355.
Given that many mobile devices have computing capabilities,
and that this is a one time computation, it can even be executed
at each mobile device once they have estimated and/or learned
β0, β1, κI , κD,KD, κr, κi.

In practice, due to drifts in local clocks, different nodes will
increase (decrease, resp.) the reception (patching, resp.) rates
to normal values at different times instead of exactly att1, t2.
Our simulations presented in the next section reveal that the
overall costs are robust to clock drifts.

V. PERFORMANCEEVALUATION

Epidemic models have been validated for several mobile
wireless networks through experiments as well as network
simulations (see e.g. [4], [20]). Our simulations for specific
wireless networks such as DTNs and cellular networks also
show a close match, even in cases where homogenous mixing
assumption does not hold. Here, we compare the overall
damages predicted by the epidemic differential equations (1)
and obtained through simulations in three different scenarios.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

time

C
on

tr
ol

s

 

 

uN
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Fig. 5: Saddle-point defense and attack strategies for the game
considered in§V. Here, κI = 10, κD = 20, κu = 10, κr = 15,
β1 = β0 = 0.109, β2 = KI = KD = 0, and initial fractions
I0 = 0.1, R0 = 0.1, D0 = 0, andT = 4 hours.

First, we consider a DTN with41 nodes (the number41 is
in accordance with the experiment reported in [8]), where
nodes communicate only when they move to communication
range of each other, i.e., when they meet. We allow the
nodes to move as per a uniform mobility model [6], with
average speedv = 15km/h and with communication range
50m, Defense and attack strategies are saddle-point strategies
calculated based on the estimatedβ0 andβ1 for eachI0. We
consider different initial fraction of the infectives, specifically
I0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25}.

Fig. 3(a) reveals that the average of the state fractions
(S(t), I(t), D(t)) over 20 runs of the simulation closely match
those predicted by the epidemic model differential equations
(1). Moreover, Fig. 4(a) reveals that the average of the total
damage over 20 runs of the simulation with the above parame-
ters, closely match those predicted by the epidemic model; also
as expected the damage increases with increase inI0. Similar
trends and matches can be observed for random waypoint and
random direction mobility models (defined in [6]). Such close
match is expected since homogenous mixing holds for these
models [6]. We next consider the mobility pattern reported
in [8] (based on measurements on human mobility during
Infocom 2005) that does not satisfy homogenous mixing. Here,
inter-contact times are power-law distributed, which arises
since nodes which have just met are more likely to meet in near
future than those who had met a long time ago. Nevertheless,
the average of20 runs shows that the overall damage follow
similar trends (fig. 4(b)) as under the epidemic representations,
with universally lower overall damages as compared with the
calculated damage. This is intuitively because in the lack of
homogenous mixing, the infection tends to stay local and
less frequently reaches new (susceptible) nodes, which has
a self-suppressing effect on the spread of the malware. This
phenomenon can be better seen in fig. 3(b).

Finally, we consider a cellular network composed of 400
nodes and 8 base stations. Nodes follow uniform mobility and
are associated with the nearest base-station. Infective nodes
try to transmit the malware to randomly chosen IDs (cell
phone number) - the communication proceeds through the
base stations serving the node-pair. The security patches are
distributed by base stations to the mobiles via control channels.
The overall data (and control message) exchange bandwidth
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Fig. 3: Average of 20 different runs of the evolution of the states under their the saddle point strategies for DTNs with homogenous mixing
(uniform mobility model) in (a), DTNs with non-homogenous mixing (power-law inter-meeting times) in (b), and for a cellular network
in (c).
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Fig. 4: Average of 20 different runs of the overall damage under their respective saddle point strategies for DTNs of 41 and 123 nodes with
homogenous mixing (uniform mobility model) in (a), DTNs with 41 nodes with non-homogenous mixing (power-law inter-meeting times)
in (b), and for a cellular network of 400 nodes and 8 BST’s in (c). Fig. 4(a) also shows that the match improves with increasing N.

of each base-station is divided equally among the associated
nodes. Fig. 3(c) and 4(c) show an acceptable match between
our simulation and the epidemic model both for states and
game values in the case of a cellular network as well.

We next evaluate the performance, i.e., the overall damage,
when nodes’ clocks drift from the global clocks by different
amounts, and hence they choose different threshold times
(optimal threshold time + individual drift). We consider the
DTN setting with uniform mobility model, and clock drifts
which are statistically independent and uniformly distributed
between−A andA. Fig. 6 depicts the overall damage as a
function of A averaged over 100 simulation runs. Note that
even forA as large asT/2 (i.e., 50% inaccuracy in the value
of the threshold times) the increase in the overall damage is
less than9%.

At this step, using epidemic representations, we will assess
the advantage of considering a dynamic game and imple-
menting saddle-point strategies as robust defense againsta
dynamically optimizing malware. We now measure the gap
between the maximum value of the incurred damage if the
defense parameters, i.e.,uNr and uNi, do not change with
time, and that when saddle-point defense strategies are used.
We will refer to the former as static strategies. Fig. 7 depicts
the maximum damages incurred by thebeststatic and dynamic
saddle-point defense strategies for different values of the initial
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Fig. 6: Robustness of the saddle-point strategy with respect to clock
drift. The increase in the overall cost is less than9%.

fraction of infective nodes (i.e.,I0 is between0.1 to 0.6) when
the other parameters are the same as those reported in the
caption of fig. 5. By best static, we mean the fixed reception
rate, as well as the fixed dissemination rate of patches are
those that achieve the least damage among all possible fixed
choices. Saddle-point defense strategies result in a220% to
270% reduction in the overall damage.

CONCLUSION

We have investigated strategic confrontations of malware at-
tack and network defense in mobile wireless networks through
dynamic choices of reception and patching rates (network’s
actions) and annihilation rate of the infectives (malware’s
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Fig. 7: Comparison of the maximum damage for the best static choice
of defense parameters and dynamic saddle-point defense strategies.

action). Using a dynamic game formulation, we prove that the
robust defense strategies have simple structures conducive to
implementation in resource constrained wireless devices.Our
performance evaluations based on simulations and numerical
computations reveal that the performance (overall damage)
is robust to clock drifts at nodes and is significantly better
than when the reception and patching rates are fixed (i.e.,
are not allowed to vary with time). The analysis is directed
towards capturing scenarios where neither the attack nor the
defense has access to exact network state information, and
the spread in homogenous; design of robust defense when
node localities play significant role in the spread of malware
constitutes directions for future research.
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APPENDIX

APPENDIX-A: PROOF OFLEMMA 1

Statement: Any pair of strategies(uN (.), uM (.)) that sat-
isfy the control constraints (5a), (5b), satisfy the state con-
straints (3) and ensure thatI(t) > 0, S(t) > 0 for all
t ∈ [0, T ].

Proof: All S, I and D, resulting from (1) (and thus
any continuous functions of them) are continuous functions
of time. Since0 < I0 < 1, the initial conditions in (2) ensure
that the state constraintsS > 0 and I > 0 are strictly met
at t = 0. The continuity ofS and I functions ensure that
there exists an interval of nonzero length starting att = 0 on
which bothS andI are strictly positive. Thus, from (1c) and
sinceuM (t) ≥ 0, Ḋ ≥ 0 in the above interval. Thus, since
D(0) = 0, 0 ≤ D in this interval as well. Sinced

dt
(S + I +

D)|t=0 = −β1u
Ni(0)R0S(0) − πβ1u

Ni(0)R0I(0) ≤ 0 and
S(0) + I(0) +D(0) = 1, there exists an interval aftert = 0
over which the constraint ofS(t) + I(t) +D(t) ≤ 1 is met.

Now, suppose by contradiction thatt0 ≤ T be the first time
aftert = 0 at which, at least one of the constraints of0 ≤ S, I
and S + I + D ≤ 1 becomes active, or0 ≤ D becomes
violated right after it. That is, att0, we have (1)S = 0
OR (2) I = 0 OR (3) S + I + D = 1 OR (4) there
exists anǫ > 0 such thatD < 0 on (t0 . . . t0 + ǫ); AND
throughout(0, t0), we have0 < S, I and S + I + D < 1
and D ≥ 0. Hence, for0 ≤ t < t0 from (1a) we have
Ṡ ≥ −β0S − β1R0 Hence,S(t) ≥ S(0)e−(β0+β1R0)t ≥
S(0)e−(β0+β1R0)t0 for all 0 ≤ t < t0. Since S is contin-
uous,S(t0) ≥ S(0)e−(β0+β1R0)t0 . Similarly, we can show
that I(t0) ≥ I(0)e−(β0+πβ1R0)t0 . Thus, sinceS(0) > 0,
I(0) > 0, neither (1) nor (2) could have happened. Also,
d
dt
(S + I + D) = −β1u

Ni(t)R0S(t) − πβ1u
Ni(t)R0I(t) ≤

β1R0S(0)e
−(β0+β1R0)t0 − πβ1R0I(0)e

−(β0+πβ1R0)t0 < 0



11

throughout [0 . . . t0]. Since S(0) + I(0) + D(0) = 1 we
have(S + I + D)|t=t0 < 1, showing that (3) is impossible.
Moreover, from (1c), and sinceI(t0) > 0, andI is continuous,
there exists anǫ′ such thatḊ ≥ 0 over (t0 . . . t0 + ǫ′). From
continuity ofD, D(t0) ≥ 0. Thus,0 ≤ D over(t0 . . . t0+ ǫ′),
dismissing the possibility of (4). This negates the existence of
t0 and the lemma follows.

APPENDIX-B: PROOF FORLEMMA 2

Statement:λS > 0 andλI > λS , λD ≥ 0 ∀ t, 0 < t < T.
Proof: SinceλD(T ) = KD ≥ 0 (from (8)), and d

dt
λD ≤

0, λD ≥ 0.
Now, for the rest, we argue in two steps.

Step 1:λS(T ) = 0 andλI(T ) = KI = 0, also:

λ̇I(T )− λ̇S(T ) = λ̇I(T ) = −κI −KDu
M (T ) < 0

Therefore,∃ǫ > 0 s.t. on(T − ǫ . . . T ) we haveλS > 0 and
(λI − λS) > 0.
Step 2: Proof by contradiction. Letτ be such that:

λS > 0, (λI − λS) > 0 on (τ . . . T ) &

λS(τ) = 0 OR λI(τ) = λS(τ)

From the continuity of the co-state functions,(λI(τ) −
λS(τ)) ≥ 0, andλS(τ) ≥ 0.

We first prove that(λI(τ)−λS(τ)) > 0. Suppose not. Then,
λI(τ) = λS(τ). Thus:

λ̇I(τ) − λ̇S(τ) =

−κI + λIβ2u
Ni − (λD − λI)u

M − λSβ1u
Ni =

−κI − λSu
Ni(β1 − β2)− (λD − λI)u

M

Here, (i) the first term is strictly negative16, (ii) the second term
is negative becauseλS(τ) ≥ 0 andβ2 ≤ β1 and (iii) the third
term is negative because of (13). Thus,λ̇I(τ) − λ̇S(τ) > 0.
But, then bothλI(τ) = λS(τ), and(λI−λS) > 0 on (τ . . . T )
can not happen. Thus,(λI(τ)− λS(τ)) > 0.

Now, supposeλS(τ) = 0.

λ̇S(τ) = −(λI − λS)β0u
NrI|τ < 0.

The last inequality follows since(λI(τ) − λS(τ)) > 0, β0 >
0, uNr ≥ uNr

min > 0 and I(τ) > 0 (lemma 1). This again
contradicts the assumptions thatλS(τ) = 0 and λS > 0 on
(τ . . . T ). Thus,λS(τ) 6= 0, and henceλS(τ) > 0.

APPENDIX-C: PROOF OFTHEOREM 1

Statement:The minimax game defined above has a saddle-
point pair of strategies.

Note that this theorem also implies the existence of the
value.

Proof: This theorem directly follows from theorem 2 in
page 91 of [15]. The necessary conditions of the theorem are
readily satisfied in our game. Namely:
(i): the system functionf(t, x, uP , uE) in this game is con-
tinuous in states and controls and is moreover bounded. Note

16Negative in this proof is distinguished from strictly negative.

that this is sufficient for the condition in page 83 of [15] to
hold.
(ii): the instantaneous pay-off functionh(t, x, uP , uE) and the
terminal pay-off functiong(x(T )) are continuous in the states
and controls (page 84 of [15]).
(iii): the system functionf(t, x, uP , uE) is linear in controls.
the set defining controls are convex sets; and the instantaneous
pay-off functionh(t, x, uP , uE) is linear in controls (page 91
of [15]).


