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Abstract—Given the flexibility that software-based operation worm by slowing down its spread. Specifically, the hosts can
provides, it is u_nreasonabl_e to expt_act that new malware will simply drop packets sent to them before processing them, or
demonstrate a fixed behavior over time. Instead, malware can even refuse some connection requests.

dynamicaly hange the parameters of iher iecive Mossh ™ Given th fleibiltythat softuare-based operatin prasi
their overall damage. However, in return, the network can aso it iS unreasonable to expect that new malware will demotestra
dynamically change its counter-measure parameters in ordeto  a fixed behavior over time. Instead, malware can dynamically
at_ta_in a robust _defense against the spread of malware while change its modus operandi in response to the dynamics of
minimally affecting the normal performance of the network. the network, in order to maximize the overall damage it

The infinite dimension of freedom introduced by variation ower . flicts. H . t th twork Iso d cal
time and antagonistic and strategic optimization of malwae and INflicts. However, in return, the network can also dynanijca

network against each other demand new attempts for modeling Change its counter-measure policy to more effectively sppo
and analysis. We develop a zero-sum dynamic game model andthe spread of the infection. The infinite dimension of fremdo

investigate the structural properties of the saddle-poinstrategies. introduced by variation over time and antagonistic optaniz
We specifically show that saddle-point strategies are simel oy of malware and network against each other demand
threshold-based policies and hence, a robust dynamic defse . . . .
is practicable. new attempts fo_r modeh_ng artd analysis of their strateglc
confrontation. This paper investigates such confrontatand
|. INTRODUCTION identifies maximum damage dynamic strategies of attack and
a) Motivation and Overture:New wireless technologies devises robust dynamic defense before such threats emerge.
with increasing communication and computation capaéditi b) Defense and Attack Decision ProblemSince the
transcend our mere person-to-person mobile communicatimedia in the wireless network is common and the channels
needs. Sensitive and critical applications are rapidietigped are unreliable, the bandwidth consumed for distribution of
and popularized, thanks to the software-based operationtloé security patches can itself disrupt the normal funétiibn
wireless devices. The added flexibility, however, comes at the network. Excessive quarantining through receptada r
a price: malware writers are expected to launch maliciousduction also deteriorates the quality of service (Qo8jHe
applications which threaten to compromise critical sdguri data traffic. Such quarantining can not usually discringnat
privacy and in case of e-health, vitality of the users. based on the identity of the transmitters, since the hosts
Worms spread during data or control message transmissapplying the reception rate control in general do not know
between nodes that are infectedf¢ctive$ and those that are which other nodes are infected; the reception rate itself ma
vulnerable, but not yet infectedisceptibles Worms can dis- however be judiciously selected. The network’s challenge n
rupt the normal functionalities of the hosts, steal theivgie is to achieve a guaranteed performance by selecting theninst
information, and use them to eavesdrop on other nodes. Tthaeous (a) rate of patching, and (b) reception rate thatljoi
worm can also render the host dysfunctional by deliberatatyinimize the overall damage due to (i) the subversive da@wi
draining its battery, or by executing a pernicious code thaf the malware that is capable of annihilating infectives,
incurs irretrievable critical hardware or software damagg., and (ii) the additional resource consumption and deteiimra
by re-fleshing the BIOS corrupting the bootstrap program ref QoS owing to the application of the countermeasures.
quired to initialize the OS [21]. We call these inoperatioglas The design must adapt over time remaining cognizant of
dead.Upon an outbreak of a new malware, anomaly detectidhe malware’s ability to dynamically optimize its spread in
techniques can be used to identify the presence of maliciaesponse to the network’s dynamic strategy.
activities and generate security patches [23] that can bigen The malware also faces an interesting tradeoff: shouldlit ki
distributed among the nodes on a transmission-upon-contiés host as soon as feasible after infecting it? While a quick
basis. Such patches eithermunize susceptible nodes againstannihilation of a host inflicts a high cost on the network tigh
future attacks, by rectifying their underlying vulneratyil or away by rendering it completely dysfunctional, it also sudit
heal the infectives of the infection and render them robushe use of that node in infecting the remaining susceptibles
against future attacks. Nodes that have been immunizedTdus, early mutilation of infective nodes may thwart theesqut
healed are denoted ascovered In the meanwhile, reducing of malware. Moreover, killing a node deprives the malware of
the communication rates in the network can quarantine tttee other malicious activities the node can be used for, such



as eavesdropping, stealing private information, etc. Bafe analytical tractability. Using simulations, we validateetfor-
of killing, on the other hand, is at the risk of losing thamulations when these assumptions are relax®f). (Our nu-
node through installation of security patches and recoeéry merical computations reveal that our robust dynamic defens
that node by the network. The annihilation strategy shousdrategy attains substantially lower value of the maximum
therefore depend on relative benefits for the malware and th@mage inflicted by the malware as compared to that for
damages for the network incurred by each of the above factdnsuristic static choice of defense parameters.
For instance, if the malware is primarily interested in btegp d) Related Works:Malware outbreaks in wireless net-
a node’s private information or eavesdropping on others,vitorks constitute an emerging research topic (e.g., [24]) Ep
ought to defer killing for some time, however, not too longlemic modeling based on the classic Kermack-Mckendrick
lest the node recovers. If on the other hand its primary goalmodel [5] has extensively been used to analyze the spread of
to degrade network functions by disabling as many nodes mslware in wired and cellular networks [3], [24], [28]c and
possible and as soon as possible, it ought to start the gkrugimore recently in wireless networks [19]. These works show,
as soon as it has infected a sizeable population of hosts. through simulations and matching with actual data, thatrwhe
A robustcounter-measure is one that seeks to minimize tiee number of nodes in a network is large, the deterministic
damage inflicted by the malware assuming that the malwapidemic models can successfully represent the dynamics of
chooses its strategy so as to maximize this damage with fille spread of the malware.
knowledge of the counter-measure. Due to the above trdde-of Dynamic control of parameters of the network or the worm
and since an optimal strategy of the malware depends on tieve been investigated in several papers [10]-[14], [22§SE
strategy of the network andice versa,determination of the papers, however, allow only one of the network or malware
robust strategies of either is non-trivial. This paper sgs to dynamically change their parameters, and assume that the
a method to answer these questions. other’s choice of parameters is not only static but also know
c) Contributions: First, we construct a mathematicato the opponent. In contrast, we consider a dynamic game
framework which cogently models the strategic confrontavhere the network chooses its patching and communication
tions between the malware and the network as a zero-suates dynamically so as to minimize the overall damage when
(minimax) dynamic gameg(lI-A) drawing from (i) existing the malware also intelligently varies its parameters, ifpec
epidemic models that have earlier been proposed and vadidatally, killing the infective nodes, over time so as to maxmi
for worm propagation in wireless network§ll¢A), and (i) this damage; also each player remains cognizant of the other
damage functions that we introduce to investigate the trag#ayer’s ability to optimally respond to the opponent’s es.
offs resulting from different decisions of the entities cemed Specifically, each player (say player A) selects its strateg
(§11-B). To the best of our knowledge, this is the first papewithout any knowledge of the others’ strategy but being
that combines epidemiological models with dynamic ganprepared for the eventuality in which the other (i.e., Bpstd
formulations for propagation of worms in wireless networksts strategy after learning A's strategy.
We are also able to prove the existence ofrtimist or saddle- Game theory has been used in the context of security in
point strategies of the network and the malwagd-f), and networks as it is apt to model the interactions of attackers
compute them{11-B). Existence of such strategies and als@and defenders, e.g. in [1], [7], [9], [17]. [17] presents ralsd
their computations are not clear a priori, since the stsaggg for the inference of the intents, objectives and strategfes
of each player is uncountably infinite and consists of fuori new attacker and apply it to a DDoS attack. In their work,
of time. however, the sets of actions of both the attack and the defens
We prove that the robust defense strategy has a simple finite, and structural property of Nash Equilibriums or
two-phased structuregl{l-C): (i) patch at the maximum saddle-points have not been obtained; the work focuses on
possible rate until a threshold time, and then stop patchittte modeling and numerical evaluations. Algorithmic imple
(i) choose the minimum possible reception rate (i.e., thmentations of (variations of) models in [17] are pursued in
maximum packet drop rate at the receivers) until a threshdRl, [7], etc. We apply dynamic zero-sum games to model the
time and subsequently revert to the normal reception rdte. Tstrategic confrontations of a malware and the defense in a
initial aggressive defense limits the spread of infectionl a wireless network, and delve into the structural properties
thereby the pool of nodes that can potentially be exploited the saddle-point strategies, when the attack and defense ca
killed; this guarantees an upper bound on the damage ifliciatelligently choose the annihilation, patching and reiep
irrespective of the malware’s choice of annihilation ratesates respectively. Thus, unlike most of the existing work,
Given its simple structure, the defense control can redsbly the defense operates also at the MAC and physical layers, as
implemented in resource constrained wireless devicesnFropposed to only at the routing or application layers. Indeed
a game-theoretical point of view, the structural results awe analyze not only the security risks (fraction of infeey
somewhat surprising given the non-linear dynamics of stalead nodes), but also the QoS degradations (packet drops)
evolutions and the non-monotonicity of the state functionand the lower layer bandwidth consumptions (in transmissio
and their proofs rely on non-standard techniques. of patches) associated with the tradeoffs. Also, the gyate
The game formulations, and in particular the epidemgets of each player is uncountably infinite since the stieseg
models, rely on some abstractions, that have been made dog functions of continuous time with continuous range® Th



differences in the contexts and the nature of choices reguironly with nodes that are within their transmission rariges
substantially different analytical approach. Our conttibns In fact, under mobility models such as the random waypoint
complement [1], which focuses on detecting the intrusion of the random direction model [2], Groenevet al. [6]
a worm that dynamically controls the intensity of its adsivi have mathematically proven the homogenous mixing assump-
but does not investigate subsequent defense. tion 3. In both scenarios3 depends only on the rates at
which the infectives scan for the susceptibles, node viéeci
transmission ranges, node densities, and uplink and dokvnli
communication rates (the last two for cellular networks).

A susceptible accepts a communication request with a prob-
ability u™N~ ()4, At any givent, there arens(t)n;(t) infective-

A susceptiblenode is a mobile wireless devicenhich is not SUSceptible pairs. Susceptibles are therefore transtbrioe
contaminated by the worm, but is prone to infection. A nod8fectives at ratefu”" (t)ns(t)n;(t). Infection propagation,
is infective if it is contaminated by the worm. An infective therefore, can be contained through appropriate regulatio

. . o N (4\5 .

spreads the worm to a susceptible while transmitting data ‘r " (t)° subject to:
control messages to it. The worm dali an infective host, i.e., 0<u <uNr(t) <uln
render it completely dysfunctional - such nodes are denoted i
dead A functional node that is immune to the worm is referre@he lower boundu); arises due to the minimum quality
to asrecovered of service (QoS) requirements for data traffic (since the

Nodes are roaming in a vast 2-D region of aréavith an acceptance probability is the same irrespective of whetieer
average velocitys. No node is aware of the state of othefequest arrives from another infective, susceptible, oove
nodes. Specifically, if a susceptible node knew a priori Whicered node). The upper boung,,, (which can be normalized
nodes are infective, then it would have just blacklistedrthi  to 1) provides the reception rate that nodes use for providing
is also difficult for the malware to constantly measure nekwothe desired QoS in absence of security considerations.
states given that a large number of nodes are roaming over &Ve now consider the dissemination of security patches in
large area, and given that the set of neighbors of the intexti the network. A pre-determined set of nodes, referred to as
are constantly changing owing to node mobility. dispatchers (e.g., BS for cellular and exit-points for glela

Let the total number of nodes in the network Ne Let the tolerant networks) are pre-loaded with the patches. Wenassu
number of susceptible, infective, recovered and dead nod@at the dispatchers can not be infected, and that ther® &g
at time ¢ be respectively denoted hys(t), n;(t),nz(t) and dispatchers where the network parametgris betweer) and
np(t), and the corresponding fractions I5t) = ng(t)/N, 1. Each node communicates with the dispatchers, and thereby
I(t) = ns(t)/N, R(t) = ng(t)/N, and D(t) = np(t)/N. fetchgs security patches, at an overall rﬁtZ@Roqu(t) at
Then, S(t) + I(t) + R(t) + D(t) = 1. At the time of the anytimet. The parametef depends on node density, mobility
outbreak of the infection, that is at time zero, some nod@grameters, allowable transmission rates etc., wher&ag)®
are infected0 < I(0) = I, < 1. For simplicity, we assume iS @ control function which can be used to regulate the
R(0) = D(0) = 0. Thus,S(0) = 1 — I. bandwidth consumed in propagation of patches - the higher

We now model the dynamics of the propagation of thipre value ofu®i(t), the _higher is the recovery rate but so is
infection as an epidemic model that has been validated fBi€¢ résource consumption in patch transmission. Clearly,

mobile ww_eless_ networks through experiments as \_/veII as 0 <uMi(t) <1 at eacht.
network simulations (see e.g. [4], [20]). A susceptible is
infected whenever it receives a message from an infectivethe node that receives the patch is a susceptible node, it
The epidemic models consider homogenous mixing (whidghstalls the patch and its state changes to recovered. If an
we later relax using simulations) where an infective is diguainfective receives the patch, the patch may fail to healrit, o
likely to initiate communication with each node, and hendiie worm may prevent its installation. We capture the above
each susceptible, say at rate This represents worm propa-possibility, by introducing a coefficierlt < 7 < 1: 7 = 0
gation in 3G and 4G cellular networks where infective mabileoccurs when the patch is completely unable to remove the
try to infect randomly and uniformly generated addresseteN
that in any such mobile to mobile communication irrespec_zlnfectives do not initiate connection with other nodes a®W¥Ns mobile
. f the | . f th bil h ' irel nodes roam a vast area which is much larger than their conuation
tive of t _e ‘?Cat'ons of the mobiles, .t ere are th wire e$§nges, and there is no backbone network and more often titaend-to-end
communications between access points and mobiles and ¢h@ectivity does not exist.
rest of the communications are through the backbone networﬁThe”fesult hasdbeenhprovenl when tf;e ﬁommyﬂicaﬁ%n fagge_eliflﬁdﬂ_es

. . P Small compare: to the total area of the region and no ecmyem IS
where the delay_s_and congestlons_are. ,relat_lvely limitece Tﬁjfﬁciently high. Numerical computations in [6] show thhetresult mostly
homogenous mixing can also be justified in delay toleragitend even when these assumptions are relaxed.

networks (DTN) where the infectives initiate communicatio “The subscript- representseaception.
5Superscript N designates control functions of thework, and M desig-
nates control functions of the atware.
1Similar state dynamics can be motivated for a p2p netwoik éay. [18]). 5The subscript denotes mmunization.

Il. SYSTEM MODEL

A. Dynamics of State Evolution

at eacht.



worm from infectives and only immunizes the susceptibles,
whereast = 1 represents the other extreme scenario where
a patch can equally well immunize and heal susceptibles and
infective node$ Now, if the patch heals an infective, its state
changes to recovered, else it continues to remain an iaéecti
The worm at an infective host kills the host with rate
proportional tou (¢) at a given timet; this is accomplished
by executing specific codes with a probability of choice. The
worm regulates the death process by appropriately choosing
uM(t) at eacht, subject to:

Fig. 1: State transitionsu™¥*(¢) andu™" (¢) are the control parameters of the
network whilew (¢) is the control parameter of the malware.

The upper bound arises due to processor constraints and the
resulting limitations on the maximum rate of execution aftsu
codes.

M
< Umax

0 <uM(t) at eacht.

tions andu (.) constitutes the malware’s control functt@n
Note that nodes usientical reception, patching and killing
rate functions irrespective of the states in their neighbods
since they do not know these states. Nevertheless, sinse the
rates are allowed to vary with time, they can be chosen in
accordance with how the network statesexpectedo evolve.
Henceforth, wherever not ambiguous, we drop the depen-
dence ort and make it implicit. Fig. 1 illustrates the transitions
between different states of nodes and the notations used.

Let, By := NG, 81 := NBRy,

Our discussions lead &ahe following system of differential
equations representing the dynamics of the system:
S(t) = —Bou™"I(1)S(t) — Bru™i () RoS(t) (1a)
I(t) = Bou™I(t)S(t) — mAu™ () RoI(t) — uM (t)I(t)
(1b)
(1c)

B. Defense and Attack objectives

- M
D(t) = u™ ()I(t) We first quantify the total damage inflicted by the malware

with initial constraints:

I(O)legn n](O)/N:IQ, S(O)Zl—lo, D(O)ZO

(2)

and also satisfy the following constraints at all
0<S(),I1(t),D(t) (3a)
S(t)+ I(t) + D(t) < 1. (3b)

Thus,
uN ()

(S(), I(.),
= (uM" (),

7In order to avoid immediate detection and blacklisting, itifectives may
choose not to refuse all connection requests from the dispet.

8The introduction of the set of differential equations systes the dynamics
of the system can be made rigorous if further technical apsions are made.

during the network operation intervid, T']. This damage is

due to the presence of infectives, the death of nodes, the
resources consumed for spreading the security patches, and
the QoS deterioration due to the reduction of reception. rate
Infectives can perform harmful activities over time, ethey

can (i) eavesdrop and analyze traffic that is generated or
relayed by the infected hosts, or the traffic that traverges i
the hosts’ vicinity, and (ii) alter or destroy the traffic tha

is generated or relayed by the infected hosts. Dead nodes

D(.)) constitute the system state functionsare inoperative and thus inflict a time-accumulative cost on
u™i(.)) constitutes the network control func-the network. The bandwidth overhead at tihelue to the

media scanning and transmission of the security packets by
the dispatchers i®,u™i (¢). Due to the reception rate control,
the susceptibles lose & — u™~(t) fraction of packets
transmitted by all nodes which degrades the overall QoS. We

Specifically, if (ns(t), ny (t), TLD(t)) constitutes a Continuous-Time Markov therefore consider the aggregate network damage atttiase

Chain (CTMC), then according to the results of [16],/¥sgrows, S(t), I(t)

and D(t) convergeto the solution of the the system of differential equatiol

in the following sense:

Ve>0Vt>0, lim Pr{sup|m—S(T)\ >e} =0
N —oo <t N

£ combination off (t), D(t), u™i(t), u™r(t).1*

Note that the damage function can be scaled so that one of
the coefficients may be chosen as unity: we choose the one
associated with the instantaneous bandwidth overheads, Thu

Likewise for I(t) and D(t). Note that the CTMC property entails assuming °Note that in the real systerfi(t), I(t), D(t) € {0,1/N,2/N,...,1},

that the inter-contact times are exponentially distridutéor DTN networks,

i.e., are discrete, but the solutions of the above difféaemquations are in

this property is shown for by Groenevett al. [6] under a number of mobility the continuum. The resulting error however reduces fasvaacreases, and
models such as random waypoint or random direction modeAlg), while  vanishes in the limiftV" — oo. Formally, from mean field approximations [16],
considering the limits 3o, 81 are limits of the respective R.H.S. Accordingv e > 0V ¢ > 0, limy_, 00 P{sup, > | nsz\(zﬂ —S(7)| > €} =0, and
to the results of [6]3, 3 are inversely proportional to the area of the roamingikewise for I(t) and D(t). Also, while considering the limitsgo, 31 are
region (A). Thus, the limitslimy _, o NS, limy_, o N3 exist as long as limits of the respective R.H.S. It can be shown that thesédiexist as long
the node densityimy_,~, N/A exists for largeN, and are also positive as the node densitliim y_, ., N/A exists for largeN, and are also positive

since the node densitymy o, N/A, 3,3 are all positive.
9Throughout the paper, variables with dot marks (eSgt)) will represent
their time derivatives (e.g., time derivative 5{t)).

since the node densitym _, o N/A, 3, 3 are all positive.
1\we adopt a linear structure for analytical tractabilitydasiso because
non-linear functions may be approximated by (piece-wis@ar versions.



the damage over the time horizét 77 is'?: functions, (5a), (5b) providé/™,UM. Also, we have,n =
T 3,m = 2, s = 1. Note that thef(.), h(.) functions in our
J(uN’uM) — / [krI(t) + kpD(t) + Rou™ () context depends on timeonly implicitly, that is through the
0 state and control functions. Also, the formulation does not
— kpu’NT) ()] dt + KpD(T), (4) capture any other constraints on the state functions, and in

KpD(T) relates to the final tally of the dead nodes. Thgu\;vzogée\}/\)/(tclér?;gzrntzzn\?aelgets c?fltthheer’ 0;’:':;9 _}Z';jg:nvn;ﬁjj
coefficients are all non-negative and represent the reIatig 9 '

importance of each corresponding term in the overall dar,na??emted byV, is the overall damage when the minimizing

e.g., if the worm gains the most by killing, and thereb ayer (N.) Is given the’ upperhand, i.e., SEIG(.:tS its- Styadepr
completely disabling nodes,, >> r;. Let ;> 0. 5, > 0. earning its opponent’s strategy. Mathematically:
The network seeks to choose its control veatd(.) so as V. = maxmin J[u, uM]
to minimize the above while the malware seeks to choose utt ult
its control u(.) so as to maximize the above, subject t&onversely, thaipper valueof the gameV’* is defined as

satisfying the state constraints (3) and ensuring that V* = min max J[u, uM]
N M ’
Ui < u™ (1) S uph, 0<uMi() <1, (58) oo

v v Thus,V, (V*, resp.) is the maximum (minimum, resp.) dam-

0 <u™ (1) < Uy (Sb) age that the malware (network, resp.) can inflict (incumpres

In §111, we model their interactions resulting from opposingdf the other plak]/*er hﬂ?{‘f the upper-hand. Al$6,< V*. A pair
objectives as a dynamic game. The formulation relies on tREStrategiegu™", u™"*) is called asaddle-pointf
following result (which we prove in Appendix-A) that allows JN* uMy < TN uMe) =V < TN, M)
us to ignore the state constraints without any loss of gdibhera N o

Lemma 1:Any pair of strategiesu™ (.), u (.)) that satisfy for any strategy.™ of the network and.™ of the malware,
the control constraints (5a), (5b), satisfy the state gairgs and thenV” is the value of the game, ard =V, = V*.

(3) and ensure thak(t) > 0, S(t) > 0 for all ¢ € [0, 7. Thus, if the network selects its saddle-point stratedy,
irrespective of the strategy of the malware, the damage it
I1l. N ETWORK-MALWARE DYNAMIC GAME incurs is at mos¥/, which is also the minimum damage that
A. Formulation the malware can inflict if it has the upper-hand. Thus, the

network’s saddle-point strategy is alsortbuststrategy, in the

Consider a system with two playerd (network) and N : ; ;
sense, that it minimizes the maximum possible damage it can

M (malware), specified by a system afdifferential equa-

tions [15, P.83]: incur. Conversely, the malware’s saddle point strategylss a
T its robust strategy, since it maximizes the minimum possibl
i(t) = f (t,x(t),uN (t),u™ () te€ [to, T, (6a) damage it can inflict. Also, the network’s and the malware’s
uWNeUN crR™, WM eUM R, (6b) saddle point strategies are their respective best respdnse
the other’s robust strategy.
and initial conditionz(ty) = z, and a damage function Theorem 1:The minimax game defined above has a saddle-

point pair of strategies.

T . . .
TP uF] = g(x(T)) +/ W, u? 1) d. (60) We prove this theorem in Appendix-C.

to B. A framework for computation of the saddle-point stragegi
wherez(t) is then-dimensional state vectoRlayer NV seeks  since the set of deterministic strategies of each player is
to m_|n|m|z]€z J by controlling the m dimensionalcontrol  yncountably-infinite, the saddle-point strategies andveidae
function w™(.), and player M seeks to .maﬁmlz%] by  of the game can not be computed using convex or linear
controlling the s-dimensional control function™(.).* The = programming. We now present a framework for numerical
game is therefore referred to as a dynamic two-player MIRIMBomputation of the saddle-point strategies.
game. The players’ payoffs, and the set of strategies &#aila pefine theHamiltonianfor a given policy pairu® , u) in

to them are calledules of the gameBoth players know the an arbitrary two-person minimax dynamic game as follows:
rules of the game and each player knows that its opponent N N Ny
knows the rule and ad infinituth Hu™,u™) = (A flz,u” u™ 8) + bz, u™  u™ )

In our context, (1) provides th¢(.) functions, the initial

e ) X where the state functions.) are those that correspond to the
conditions are provided by (2), (4) provides tlg¢.), i(.)

strategy paifu?,u™), and \, the co-state(or adjoinf) func-
tions, are continuous and piecewise differentiable fumstiof
12Note that(uliim — u¥r) inside the integral is replaced withu™- as P

m-uf,\i;mT does not depend on the evolution of the states or the controls time that SatISfy the foIIowmg system of differential egoas

3equivalently, if M attains a reward off, and N a reward of—J, and Wherever the Contr0|$UN, UM) are continuous:
M, N both seek to maximize their individual rewards - the gameefsrred 9
to as zero-sum since their rewards always surfi.to A= ——7—[(17 A t)

Heach player knows that each player knows that the opponentetc. x T



and the final value (transversality) condition constraints in (5), the saddle-point strategies are derase

N, 1 N,

~ 0(g(x)) Ne _ ) Umin if N >0, 1
A(T) = J(x) lo=e(r) B ulr o if YNt <0 (11)
In our context, Wi 0 if ¥ >0, 12)

1 if N <0

M Ny _

H(u ' ) - M ur]\r{ax if z/JM > 0.

kil + kpD +u™ Ry — k,uN" + (A\r — \g)Bou~" 1S vo= 0 if pM <0 (13)

N; N; M
AsPiRou™S = ArbpRou I+ (Ao = ArjuT Since N+, N )M are uniquely specified once the state
where again the state functiofiS(.), I(.), D(.)) are obtained and the co-state functions are known, the above relations
from (1) with (u™ (.),u*(.) as the control functions, and theeXpress the saddle-point strategies in terms of the state an
co-state functiongs(.), \;(.), Ap(.)) are obtained from the co-state functions. The strategies™(.),u"i(.),«"(.) can
following system of differential equations (withV (.), »*(.) be substituted by the above characterizations in (1) and (7)

as the control functions) resulting in a system df differential equations involving only
the state and the co-state functions. Using standard noaheri
; OH ; thods for solving differential equations, this system ba
ds=———==—Ar— A\ NeT 4 AsBiRou™:  (7a) M€ g 4 ' y
s gS (Ar s)Bou + Ashrfou (7a) solved (very fast) using the initial and final conditions,(2)
i H ; 8). The state and co-state functions obtained as solutions
Ar=—oz=—r1—(Ar—A NeS 4 A\ Bou™' R (8)-
! oI w1 = (A = As)Pou 16207 Ry will now provide they N+, i )™ functions, and thereby the
— (Ap = Ap)uM (7b) saddle-point strategies via (11), (12), (13). The resglsat of
. O 7 differential equations is non-linear and a close-form gofu
Ap = “ap P (70 is unknown. However, as we will show in the next section,

] ] - using novel techniques, even without access to the closed-
with the final conditions form solution, we can establish the type of behavior that the

saddle-point strategies exhibit.
As(T)=0, X\(T)=0, Ip(T)=Kp. (8)
C. Structural Properties of Saddle-Point Defense Strategy
Then, following [15, P.31], a necessary condition for the we establish that the saddle-point defense strategy has a
pair (u™,u") to be a saddle-point strategy pair is that for aimple threshold-based structure that ought to faciliitge
telo,17]: implementation in a localized manner in resource congthin
Ny ) N M wireless devices. Specifically, we prove that:
(u™,u™) € argminmaxH(a™, @) and  (98)  Theorem 2:For the saddle-point defense strategy(.)
N, N; H H
(u™,uM) e argIIgI‘c\lergliVnH(ﬂN,ﬂM), (9b) ZL< (j-ﬂ),stlLJCh(.t)r)]étt:here exists times;, to, 0 < t; < T, 0
uNr(t) = ulr for 0 < t < ty, andu™r(t) = ulNr . for

min norm

Henceforth, we denote the saddle point strategy pair as’ ho<t<T
(W (), uM (), and(S(.). 1(.), D()). As (), Ar(), Ap() as | vy =y N —
the corresponding state and co-state functions Hnds the ; (t) = 1for 0 <t <ty andu™(t) =0 fort, <t <
corresponding Hamiltonian. We now expre@gY(.), u(.))
in terms of (S(.),1(.),D(.)), (As(.), Ar(.),Ap(.)) using the
necessary conditions (9). Let

IN I

The overall strategy therefore has the following three
phases. In the initiabggressive defensphase, i.e., during
(0, min(¢,t2)), the susceptibles select the minimum possi-

YN = (\; — Ag)BolS — Ko ble reception rate, and the dispatchers transmit the patche
WVt = Ry — AsB1RoS — A1 B2Rol whenever they are in contact with any other node. Thus, the
WM = (Ap — A\)I guarantining is the most stringent, and the recovery magestira
during this phase. Then, in the interimatchful phase, i.e.,
Now, the Hamiltonian can be rewritten as: during (min(t1, t2), max(t1,t2)), one of the defense controls

subside while the other continues as beforetlf < t9,
H =kl +kpD +pNrulNr NN 4 pMyM_ (10)  then the reception rate control subsides (i.e., the suisbept
select their normal reception ratg,..). If, howevert; > t,,
Thus, the Hamiltonian is a separable function of differethen instead the dispatchers stop transmitting the patdhes
components of the defense contrélg"~(.),u™:(.)) and the t, = t,, there is no watchful period. Finally, in the terminal
attack controlu(.), that is, each of these appear in differrelaxedphase, i.e., ifmax(t,,t,), T), both defense controls
ent terms in the R.H.S of the above characterization. Nosybside, that is, the susceptibles select their normaptiece

from the necessary conditions in (9) subject to the contrate and the dispatchers do not transmit the patches. Thwus, t



QoS in data traffic is back to its normal value and the resource2) Strict monotonicity ofp™:(.):
consumption overhead due to patch transmission ends.

The durations of the phases (i.e., the values of the thresh- Vi = ﬁwm _
old times t;,t2) and which defense subsides in the in- ) ) ) ot )
terim watchful period, depend on the damage coefficients (A1 —As)BolS + (A1 — As)BolS + (Ar — As)BolS
k1, kD, KD, kr, k. FOr example, if the last two are very high ¢N o N
(relative to the first three}; and/ort, may turn out to be zero. N K1B2 + B2u™ Ap + BofrSu” (A — As)

If t4 = 0, then the susceptibles always select their normal

reception rate, and the system never quarantines theimrect The R.H.S is positive from lemma 2 and since> 0, 5y > 0.
Similarly, if ¢, = 0, the dispatchers never transmit patchebhus,: > 0 since3, > 0 andI(¢) > 0 at all¢ (lemma 1).
and hence there is no immunization, nor healing. Finallye no ]
that the defense strategy always chooses either the maximum

or the minimum values of the parameters except possibly i Structure results for the saddle point attack strategy
a set of measure zero (i.e., except possiblyiats). Such

strategies are referred to bang-bangn the control literature.  1n€ saddle-point attack has a simplest-amass, then
We conclude this sub-section by proving Theorem 2. slaughterstructure in the special case that the worm benefits

Proof: The continuity of )™+ (.),:™:(.) follows from from killing only through the final_ tally (_)f the dead (i._e.,
those of the co-state functions. From the final conditiorig> = 0), @nd the patches can only immunize the susceptibles,
on the co-state functions, i.e., (8%N"(T) = —k, < 0, but can not heal the infectives (i.¢d; = 0). Specifically:
YNi{(T) = Ry > 0. We show thatyN-(.) (¥V:(.), resp.) are Theorem 3:For the saddle-point attack strategy(.),
strictly decreasing (increasing, resp.) functions of tifieus, there exists a times, 0 < t; < T such thatu™(t) = 0
each has at most one zero-crossing poin{(inZ); denote fOr 0 <t <ts, andu™(t) = uif,, forts <t <T.
these ag1, t,. If vV (¢, resp.) has no zero crossing pointhus, the worm does not kill any infective during the initial
in (0,7), t; = 0 (t2 = 0, resp.). Thus, from the continuity of amass period of(0,¢;) when it uses them to spread the
the +(.) functions, and from their terminal values, ()" (.) infection; it slaughters them at the maximum rate subseitjuen
is negative in(t1,T) and positive in(0, 1), and (i) vV (.) is The intuition behind this structure is as follows. Once the
positive in(t,, T') and negative iff0, ¢, ). The theorem follows Wworm infects a host, it never loses it to the recovery pracess
from (11) and (12). and thus, since it benefits from killing a host only because

We prove the strict monotonicity af™* (), /Ni(.), using: this enhances the final tally of the dead, it ought to kill Bost

Lemma 2:As >0andX; > Ag, \p >0V t,0<t<T. towards the end and utilize them before. The proof follows.

The lemma is intuitive since the shadow prices (i.e., co- Proof: Note thaty*(T) = K;I(T) > 0 (because of
state variables) associated with the susceptibles anddetd lemma 1). Thus, as in the proof of Theorem 2, the result
ought to be positive, and also the shadow price associafetlows if we can show that)*(t) crosses zero at most
with the infectives ought to be at least as high as that assmce. We establish this slightly differently: we show tiyef
ciated with susceptibles. The proof (provided in Appen)x- is strictly positive at its zero-crossing point (as opposed
requires detailed analysis of the state and co-state €iffexl showing it for all ). But this is also sufficient to conclude

equations (1), (7) respectively, are less direct. M has at most one zero-crossing point.
1) Strict monotonicity of)™V*(.): We show that)™¥~(¢) is . . . .
strictly negativeat all ¢ € (0,7)%° M =I(Ap = A1) + IY™M =k — kp + 0™ (Ap = Ap)

e — ) oY — —BoApuNt + SBouNT(Ar — Ag) + TypM
ot

(/'\1 _ /'\s)ﬁoIS (O — )\s)BofS (O — )\s)ﬁoIS At a zero-crossing point of? . the last term vanishes. Now,
kp = B2 = 0, and the remaining terms are all non-negative

which after replacement and simplification yields because of (13) and lemma 2. The result follows siage- 0.
. |
Nr
v —rr —uM(Ap — Ag) = BiaruN + BogulNi = The saddle-point attack strategy may however be more
BolS involved when eithe3; > 0 or kp > 0. For example, fig. 2

—k1 — (Ap = ADuM — (A1 — As)u™ — (B1 — Ba)Au¥ depicts the saddle point strategies and the state evolirtion
—(\r — )\S)/BQUNi an ex.ample scenario Wheﬁﬁ; = 20, B2 = 0.109. The initial
. v infection is relatively high [y = 0.3) and the dispatchers
Frogy (13), lemma 2 and since; > 0, f1 > B2, u™(t) 2 gre relatively few Ry = 0.1). The malware starts killing the
0,u”(t) > 0 at all ¢, the right hand side is negative. The,qdes from the beginning, but around the time that the defens
result follows sincedy > 0 and S(t) > 0,1(t) > 0 at allt  gyrateqy relaxes the reception rate of the nodes to norhl, t
(lemma 1). malware stops the killing and infects the newly accessible
5partial derivative w.r.t time, only because of the deperdealso on the susceptible node;, boosting the-fractlon of the infectivd a
initial values for the states. Otherwisejs the only independent variable. ~ shortly, starts to kill them all again.
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Fig. 5: Saddle-point defense and attack strategies for the game
considered ingV. Here, x; = 10, kp = 20, k, = 10, K, = 15,

B1 = Po = 0.109, B2 = K; = Kp = 0, and initial fractions
Fig. 2: State evolution and saddle-point strategies. The paramete [0 = 0.1, Ro = 0.1, Do =0, andT = 4 hours.

the game are as follows:; = 10, kp = 20, k. = 10, Kk, = 15,

B2 = B1 = Bo = 0.109, K; = Kp = 0, and initial fractions

fo=0.3, Ro = 0.1, Do =0, andT = 4 hours. First, we consider a DTN withi1 nodes (the numbetl is

in accordance with the experiment reported in [8]), where
nodes communicate only when they move to communication
range of each other, i.e., when they meet. We allow the
The simple structure of the saddle-point defense strategirodes to move as per a uniform mobility model [6], with
as established in Theorem 2, are conducive to implementaerage speed = 15km/h and with communication range
tion in resource constrained wireless devices. The thtdsh60m, Defense and attack strategies are saddle-point strategies
times can be computed by a central unit that estimates wculated based on the estimatgdand 8; for eachl,. We
system parametersy, 51 and knows the damage coefficientgonsider different initial fraction of the infectives, sifically
k1,kp, Kb, Kkr, k;. This computation needs to be performed, € {0.01,0.02,0.05,0.10,0.15,0.20,0.25}.
once, (att = 0, i.e., when the central unit learns the presence Fig. 3(a) reveals that the average of the state fractions
of the worm in the system), and transmitted to all devicg(¢), I(t), D(t)) over 20 runs of the simulation closely match
via a secure broadcast. Since this is a one-time transmissigose predicted by the epidemic model differential equetio
such secure broadcasts can be afforded. The devices can gup-Moreover, Fig. 4(a) reveals that the average of the tota
sequently execute the robust strategies without cooridmatdamage over 20 runs of the simulation with the above parame-
any further among themselves or with the central unit.  ters, closely match those predicted by the epidemic motiel; a
Note thatt,, ¢ can be determined by solving a systenmbof as expected the damage increases with increage ®imilar
differential equations, as described §iil-B. Such systems trends and matches can be observed for random waypoint and
can be solved very fast due to the existence of efficierindom direction mobility models (defined in [6]). Such &os
numerical algorithms for solving differential equatioasd the match is expected since homogenous mixing holds for these
computation time is constant in that it does not depend on thidels [6]. We next consider the mobility pattern reported
number of nodesV. For example, we obtained computationn [8] (based on measurements on human mobility during
times of1 second using an 2.66 GHz Intel Xeon CPU X 5355nfocom 2005) that does not satisfy homogenous mixing. Here
Given that many mobile devices have computing capabiliti6iater-contact times are power-law distributed, which esis
and that this is a one time computation, it can even be exécugince nodes which have just met are more likely to meet in near
at each mobile device once they have estimated and/or Barfg&ure than those who had met a long time ago. Nevertheless,
Bo; b1, k1, 6D, KD, Kr, K. the average o020 runs shows that the overall damage follow
In practice, due to drifts in local clocks, different nodei w similar trends (fig. 4(b)) as under the epidemic represiamtsjt
increase (decrease, resp.) the reception (patching) raes with universally lower overall damages as compared with the
to normal values at different times instead of exactly;at>. calculated damage. This is intuitively because in the laick o
Our simulations presented in the next section reveal that thomogenous mixing, the infection tends to stay local and

IV. | SSUES RELATED TO IMPLEMENTATION

overall costs are robust to clock drifts. less frequently reaches new (susceptible) nodes, which has
a self-suppressing effect on the spread of the malware. This
V. PERFORMANCEEVALUATION phenomenon can be better seen in fig. 3(b).

Epidemic models have been validated for several mobileFinally, we consider a cellular network composed of 400
wireless networks through experiments as well as netwankdes and 8 base stations. Nodes follow uniform mobility and
simulations (see e.g. [4], [20]). Our simulations for sfieci are associated with the nearest base-station. Infectidesno
wireless networks such as DTNs and cellular networks alsy to transmit the malware to randomly chosen IDs (cell
show a close match, even in cases where homogenous mixiingne number) - the communication proceeds through the
assumption does not hold. Here, we compare the overadise stations serving the node-pair. The security patatees a
damages predicted by the epidemic differential equati@ps distributed by base stations to the mobiles via control okén
and obtained through simulations in three different sdesar The overall data (and control message) exchange bandwidth
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Fig. 4: Average of 20 different runs of the overall damage underr tlemipective saddle point strategies for DTNs of 41 and 12Raavith
homogenous mixing (uniform mobility model) in (a), DTNs il nodes with non-homogenous mixing (power-law inter{ingetimes)
in (b), and for a cellular network of 400 nodes and 8 BST's in Fg. 4(a) also shows that the match improves with increpsi.

of each base-station is divided equally among the assdciate s
nodes. Fig. 3(c) and 4(c) show an acceptable match between “ [ S
our simulation and the epidemic model both for states and mz:f""* """"""""""
game values in the case of a cellular network as well. S

We next evaluate the performance, i.e., the overall damage, gm’
when nodes’ clocks drift from the global clocks by different © 12
amounts, and hence they choose different threshold times s
(optimal threshold time + individual drift). We considereth o}
DTN setting with uniform mobility model, and clock drifts Max. Clock Drift (D)

which are statlstlcally_ |ndepen(_jent and uniformly digitér Fig. 6: Robustness of the saddle-point strategy with respect tkclo

between—A and A. Fig. 6 depicts the overall damage as @iy The increase in the overall cost is less thesn.

function of A averaged over 100 simulation runs. Note that

even forA as large ag’/2 (i.e., 50% inaccuracy in the value

of the threshold times) the increase in the overall damagesjigction of infective nodes (i.el, is betweer.1 to 0.6) when

less thard%. the other parameters are the same as those reported in the
At this step, using epidemic representations, we will assegaption of fig. 5. By best static, we mean the fixed reception

the advantage of considering a dynamic game and implete, as well as the fixed dissemination rate of patches are

menting saddle-point strategies as robust defense againshose that achieve the least damage among all possible fixed

dynamically optimizing malware. We now measure the gaghoices. Saddle-point defense strategies result 2208 to

between the maximum value of the incurred damage if thg0% reduction in the overall damage.

defense parameters, i.e.’~ and «"V, do not change with CONCLUSION

time, and that when saddle-point defense strategies ack use . . . .

. : : ; . We have investigated strategic confrontations of malware a
We will refer to the former as static strategies. Fig. 7 d&piCacy and network defense in mobile wireless networks thiloug
the maximum damages incurred by theststatic and dynamic dynamic choices of reception and patching rates (network’s
saddle-point defense strategies for different valuesefrittial actions) and annihilation rate of the infectives (malware’
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. . . . [22]
action). Using a dynamic game formulation, we prove that the

robust defense strategies have simple structures coreteiv
implementation in resource constrained wireless devioes.

performance evaluations based on simulations and nurherica
computations reveal that the performance (overall damadé
is robust to clock drifts at nodes and is significantly better

than when the reception and patching rates are fixed (i.

are not allowed to vary with time). The analysis is directe
towards capturing scenarios where neither the attack reor th
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APPENDIX-A: PROOF OFLEMMA 1

Statement: Any pair of strategiegu® (.), v (.)) that sat-
isfy the control constraints (5a), (5b), satisfy the stab@-c
straints (3) and ensure thdt(t) > 0, S(t) > 0 for all
t€0,T].

Proof: All S, I and D, resulting from (1) (and thus
any continuous functions of them) are continuous functions
of time. Sinced < [y < 1, the initial conditions in (2) ensure
that the state constraints > 0 and I > 0 are strictly met
att = 0. The continuity of S and I functions ensure that
there exists an interval of nonzero length starting at0 on
which bothS and! are strictly positive. Thus, from (1c) and
sinceu™(t) > 0, D > 0 in the above interval. Thus, since
D(0) =0, 0 < D in this interval as well. SinceZ (S + I +
D)|i—o = —B1uNi(0)RyS(0) — mp1uNi(0)RoI(0) < 0 and
S(0) + I(0) + D(0) = 1, there exists an interval aftér= 0
over which the constraint of(t) + I(t) + D(t) < 1 is met.

Now, suppose by contradiction thigt < 7" be the first time
aftert = 0 at which, at least one of the constraintdlof S, I
andS + I+ D < 1 becomes active, 06 < D becomes
violated right after it. That is, at,, we have (1)S = 0
OR (2) I 0OOR 3 S+1+D 1 OR (4) there
exists ane > 0 such thatD < 0 on (¢y...to + €); AND
throughout(0,¢y), we have0 < S,7 andS +1+ D < 1
and D > 0. Hence, for0 < ¢ < t; from (1a) we have
S > —pBoS — PRy Hence, S(t) > S(0)e(Pothrlo)t >
S(0)e~(Bothko)to for all 0 < t < t. Since S is contin-
uous, S(ty) > S(0)e~(PotBikolto  Similarly, we can show
that I(tg) > I(0)e~(PotmhiRolto Thys, sinceS(0) > 0,
I(0) > 0, neither (1) nor (2) could have happened. Also,
4(S+1+ D)= —puVi(t)RyS(t) — mpruNi(t)Rol(t) <
ﬁlRQS(O)G_(BO+'BlRO)tO _ WﬂlRol(O)e_(’BU"_ﬂ’BlRo)to < 0
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throughout[0. ..¢o]. Since S(0) + I(0) + D(0) = 1 we that this is sufficient for the condition in page 83 of [15] to
have (S + I 4+ D)|;=,, < 1, showing that (3) is impossible. hold.

Moreover, from (1c), and sincEty) > 0, and[ is continuous, (ii): the instantaneous pay-off functidr(t, z, u”’, «*) and the
there exists ar’ such thatD > 0 over (¢, ...to + €'). From terminal pay-off functiony(z(T')) are continuous in the states
continuity of D, D(tp) > 0. Thus,0 < D over(ty...tp+¢€'), and controls (page 84 of [15]).

dismissing the possibility of (4). This negates the existeaf (iii): the system functionf(t, z,u”, u*) is linear in controls.

to and the lemma follows. B the set defining controls are convex sets; and the instamiane
pay-off functionh(t, z,u”, u*) is linear in controls (page 91
APPENDIX-B: PROOF FORLEMMA 2 of [15]) -

Statement: A\g > 0andX\; > Ag, A\p >0V ¢,0<t<T.
Proof: SinceAp(T') = Kp > 0 (from (8)), and-£\p <
0, A\p > 0.
Now, for the rest, we argue in two steps.
Step 1: \g(T) =0 and A\ (T) = K; = 0, also:

A(T) = As(T) = M\ (T) = —k; — KpuM(T) <0

Therefore,3e > 0 s.t. on(T —€e...T) we havels > 0 and
()\[ — )\S) > 0.
Step 2: Proof by contradiction. Let be such that:

As >0,(A;—Ag) >0 on(r...T) &
)\5(7’)20 OR )\[(7’):)\5(7')

From the continuity of the co-state functiong);(7) —
As(7)) >0, and\g(7) > 0.

We first prove thafA; (1) —As (7)) > 0. Suppose not. Then,
Ar(7) = As(7). Thus:

}\1(7) — }\S(T) =
—K1 + )\]ﬁguNi — (Ap — )\])UM — AsﬁluNi =
—kr — Asu™N (81 — B2) — (Ap — Ap)uM

Here, (i) the first term is strictly negati¥& (i) the second term
is negative becausks(7) > 0 and 3, < (7 and (iii) the third
term is negative because of (13). Thug(r) — As(r) > 0.
But, then both\;(7) = As(7), and(A\; —Ag) > 0on(r...T)
can not happen. Thu$i;(7) — As(7)) > 0.

Now, suppose\s(7) = 0.

As(T) = —(Ar = As)BouN" 1|, < 0.

The last inequality follows sincé\;(7) — Ag(7)) > 0, Bo >
0, uMr > ulr > 0 and I(r) > 0 (lemma 1). This again

contradicts the assumptions thas(7) = 0 and As > 0 on
(r...T). Thus,As(7) # 0, and hence\g(7) > 0. [

APPENDIX-C: PROOF OFTHEOREM 1

Statement: The minimax game defined above has a saddle-
point pair of strategies.

Note that this theorem also implies the existence of the
value.

Proof: This theorem directly follows from theorem 2 in
page 91 of [15]. The necessary conditions of the theorem are
readily satisfied in our game. Namely:

(i): the system functiorf (¢, z,u*, u*) in this game is con-
tinuous in states and controls and is moreover bounded. Note

16Negative in this proof is distinguished from strictly neget



