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Abstract—Epidemic models based on nonlinear differential epidemic. Note that a contact may entail physical proximity
equations have been extensively applied in a variety of syshs as in the case of MANETS, or may represent an opportunity
as diverse as infectious outbreaks, marketing, diffusionfabeliefs, of infiltration. as in the case of server-client networks.rie

etc., to the dissemination of messages in MANET or p2p . S .
networks. Control of such systems is achieved at the cost of as malicious self-replicating codes, can disrupt the nérma

consuming the resources. We construct a unifying framework functionalities of the hosts, steal their private inforioat
that models the interactions of the control and the elementsn and/or use them to eavesdrop on other nodes. The worm

systems with epidemic behavior. Specifically, we considemon- can also render the host dysfunctional, e.g. by delibgratel
replicative and replicative dissemination of messages in a network: draining its battery as in the case of Cabir worm [5] in a

a pre-determined set of disseminators distribute the mesges in lul twork b fi . de thatii
the former, whereas the disseminator set continually growsn the ~ C€!lular NEWork, or by executing a pernicious coae 1ac

latter as the nodes that receive the patch become dissemimas irretri_eVable critical hardW_are or software damage say é}Y_ r
themselves. In both cases, the desired trade-offs can be aitted fleshing the BIOS corrupting the bootstrap program required
by activating at any given time only fractions of disseminabrs  to initialize the OS [6]. Such dysfunctional nodes are nefer
and selecting their dissemination rates. We formulate the laove to asdead. Software patches cammunize susceptible nodes
trade-offs as optimal control problems that seek to minimiz a - ) . . .

general aggregate cost function which cogently depends oroth ~ 292iNst future attacks, by rectifying their underlying nert-

the states and the overall resource consumption. We prove & ability, or heal the infectives and render them robust against
the dynamic control strategies have simple structures: (1)t is future attacks. Nodes which have been immunized or healed
never optimal to activate a partial fraction of the dissemirators are denoted asecovered. Such patches can be distributed by
(all or none) (2) when the resource consumption cost is coned,  yopile agents and/or downloaded from designated servers,

the distribution rate of the activated nodes are bang-bang vth at s .
most one jump from the maximum to the minimum value. When but patch distribution consumes both energy and bandwidth

the resource consumption cost is convex, the above traniti is ~ (Critical in wireless networks), and thereby incurs a cbstt t
strict but continuous. We compare the efficacy and robustnesof depends on both the number of active agents/servers and the

different dispatch models and also those of the optimum dymaic  transmission rates they use. The incident of Welchia [7]¢ctvh
and static controls using numerical computations. was designed as a counter-worm to defeat Blaster, demon-
l. INTRODUCTION strated how unrestrained spread of security patches caednhd
create substantial network traffic and rapidly destabiézen
€he well-provisioned network of Internet. This adverseeeff
f application of countermeasures is likely to be aggravate
wireless networks, where due to inherent properties such
as interference, intermittent links, limited battestc., the
r82ource limitations are more stringent.
The security patches can be distributed inca-replicative
replicative manner (fig.1). In the former, a number of
bile or stationary) agents, referred todasseminators, are

a) Motivation: Epidemic behavior emerges whenev
interactions among a large number of individual entitidecif
the overall evolution of the encompassing system. Mathiem
cal models based on nonlinear differential equations haea b
developed and applied in a variety of systems as diverse
infectious outbreaks [1] and information diffusion in a ham
society [2], to the dissemination of messages in MANET [3(;r
or p2p networks [4]. What a resource manager of such syste

|sft|nterestet(_1| In '? to Co?tr(l)l. the evolut|0tns ?f]: th(ej.sta';eslseM pre-loaded with the patch, and other nodes receive it from
often, exertion of a control Incurs a cost, either directyt them. In the replicative model, the receptors, i.e., thevered

control may consume restricted resources, or indirectlyt aShodes, in addition, become disseminators of the securishpa

may introduce adverse side effects. Much work has been dofg <o\ es - hence the disseminategicate. The replicative
in modeling and validating the epidemic models, relat've%ethod immunizes nodes more rapidly, as it has a growing

less, however, is known about optimal control of such SySten), ,mber of disseminators, but at the expense of consuming

This constitutes the focus (.)f this paper. . . increasingly larger amounts of limited underlying res@stc
D-‘/”ar.“'c optimal controll is of paramount Importance in t.h%hus the choice between the two, and the differences im thei
networking context. One important example is in counteri ' ’

the spread of a malware in a MANET, a wireline p2p, or

cI|Ient-sclear|veer r;etw?rk. tW(;rmts gpfead frot_nglecnve dnodeshto source consumption in distribution of countermeasureisoth
vuineraple but not yet intected, 1.6USCEPUDIE NOAES, WNeN .0 ags, dynamic optimal control of the fraction of aafid

such a pair communicates, or as we will refer to, Whe&sseminators and the distribution rates of activated sodae

they contact. Hence, spread of malware behaves as Pe @#Himize the overall cost and thereby attain desired traffte-
The contributions of MHR. Khouzani and S. Sarkar are supgbtiirough between r_‘etwork security a”?' resc_)urce cor]sumpthn.
grants NSF-CNS-0914955, NSF-CNS-0915203, NSF-CNS-(BL56 A special case of the epidemic evolution in fig.1 also

"ntrols are not a priori clear. The overall system cost ddpe
8n (i) the number of infectives and dead nodes, and (ii) the re



captures propagation of messages in Delay Tolerant Neswoikfectives and recovered may convert susceptibles (the-und
(DTNSs). A server may seek to broadcast a message to as maiahed) to their respective groups whenever the respectirs p
nodes as possible, before a deadline, by employing minineaintact, e.g., through social communications - the dispatc
resources such as energy and bandwidth. In this case, sustiegrefore replicative. It is also possible that some infest
tibles are the nodes that are yet to receive the messageh@ndtin not be healed as both companies may offer long-term
recovered are the ones which have received it. Dissemmatimontracts. The overall cost for companlyis similar, except
of the message may either be performed in non-replicativetbat it is now decreasing (hence the revenue is increasing) i
replicative manner. Infectives and dead nodes are abséhisin the number of recovered, as only recovered are subscribed to
problem. The overall ‘cost’ is (i) decreasing in the numbesompanyA in this case.
of recovered (i.e., recipient) nodes, and is (ii) incregsim b) Contributions and Road-map: First, we formulate the
the transmission rates of the activated disseminatorsin\gaminimization of the aggregate cost associated with epidemi
dynamic optimal control can be utilized to resolve a problegtate evolution as an optimal control problem. The costeepr
of practical importance in the context of networking. sents a trade-off between desirability/harmfulness ofstiage
The epidemiological evolution has natural analogues in tiae@d the cost of consuming resources in order to manage the
spread of a contagious disease in a human society, with 8iate. We demonstrate the extent of generality of our model
caveat that the inoculation and healing processes are ntiough different examples. We consider both replicativeé a
replicative. The cost is aggregation of infective and dedwpn-replicative dispatch scenarios and minimize the dvera
individuals and the overall human-hour of trained staff. [8fosts by dynamically selecting the activation of the dissem
Application of the optimal control of epidemiological ewsl nators and their distribution rates. We develop a framework
tion in social context is, however, not restricted to thetaom for solving this non-linear optimal control problem using
ment of contagious diseases. Another noteworthy problemRentryagin’s Maximum Principle [9], [10].
dynamic management of advertising resources in adoption ofNext, in both non-replicative and replicative settings, we
a new technology. We discuss two practical examples whiphove that the optimal policies have the following simple
we refer to asReclamation and Rivalry cases, respectively. structure: when the resource consumption cost is concave,
First, consider a simple scenario where (at least inifiallyntil a certain time, all disseminators are activated aray th
most individuals in a society are subscribed to a specifilistribute patches at the maximum possible rate, and subse-
technology through incumbent company A (e.g., Comcast fquently no disseminator is activated until the end of theéesys
cable TV in Philadelphia) - they are the susceptibles. A nesperation period §5llI-A and IV-A). Optimality of a bang-
technology/company B (e.g., DTV) aims to capture the markdtang control (that is the property that it assumes only eithe
They win over some customers, who constitute the conveits minimum or maximum possible values at any given time)
(infectives). Social exchanges (contacts) between iiviest and quantifying the maximum possible number of jumps to
and susceptibles (converts and subscribers) may conwert lle one are despite the facts that the network state evolutions
latter. CompanyA seeks to regain the share of the marketio not constitute monotonic functions of time, involve non-
by recapturing (healing) the infectives and re-confirmiimg-( linear dynamics, the cost functions are not assumed to be
munizing) the susceptibles, say via offering lucrativedgon linear and the control (activation fraction, transmissiate) is
term contracts (patches) - the resulting pledged subgsriba two-dimensional function. When the resource consumption
constitute the recovered. New contracts are long-termlaunsl t cost is convex, the optimal activation fraction functionsha
the recovered are immune to further change in subscriptidghe same structure. The optimal transmission rate fun¢tien
The reclamation occurs through the efforts of advertisigimilar behavior except that its potential transition frane
agents (disseminators) who communicate to the infectimds amaximum to minimum values is strict, but continuous rather
susceptibles through tele-marketing, e-marketing angiod  than abrupt. The generality of the model allows for a unified
of mouth. The disseminators may either be from an initiallpotheoretical framework for optimizing a sundry of problenis o
(non-replicative dispatch), or may include the recoveredas practical importance in networking. Moreover, the simipfic
as well, e.g. by offering pledged subscribers additionalise of the structure of the optimal controls makes them amenable
discounts through referral rewardsg¢. (replicative dispatch). to implementation in practice.
There is however no “death” in this setting. The overall ttos Finally, using numerical evaluation, we assess the raativ
for companyA is (i) increasing in the number of infectives, agfficacy of the replicative and non-replicative dispatchd an
they are the only lost subscribers 4o and is (ii) increasing in static and dynamic optimal control§\(). We demonstrate
the number of active agents and the amount of discounts thagt in general, optimal dynamic controls incur signifidant
offer in order to make the contracts appealing. Thus, optimawer aggregate costs than optimum static controls in both
(dynamic) control of activating agents and selecting distto replicative and non-replicative settings. Also, in presen
rates maximizes the net profit for compary where profit of dynamic optimal control, replicative dispatch of seturi
equals the income generated through subscription minus giches incurs substantially lower aggregate costs than no
cost incurred in marketing/advertising over time. replicative dispatch.

For the second case (Rivalry), suppose that both competing c) Related Literature: Optimal control has been ex-
companies enter the market for a new technology at aroutredhsively used to find the best deployment of resources in
the same time. Now, susceptibles are those who are yettrtmating infectious epidemics [11], [12], advertising amdr-
choose either, infectives encompass those who have chi®seketing [10], [13], [14] and recently in securing communioat
(the rival), and recovered are those who have choteBoth networks against malware outbreaks [15]-[17]. An extexsiv



overview of the existing work is beyond the scope of thievel. In particular, we use terms such iafectives, suscep-

article. In what follows, we mention and differentiate fromibles, recovered, dead and disseminating, immunization and

some of the most related works. healing. Later, in§lI-C, we motivate the model by instantiating
Optimal control in treatment of infectious epidemics igach of these terms in the different settings discussedein th

mostly applied to systems where only vaccination or heahtroduction §I-A).

ing/quarantining is present, the cost is linear in the tnesit

rate and there is no mortality among infectives [11], [12]A. Dynamics of Non-Replicative Dispatch

In contrast, our system integrates both vaccination andt hea A system consists oN entities, and at time, a number

ing/quarantining, the cost of treatment is any general aeac %I ns (), n1(t),ne(t) and np(t) of them are respectively

or convex function, and it depends on both infective and . . d
. : In.infective, susceptible recovered and dead state. Let the
the deceased as well. Moreover, there is no equivalent of

replicative immunity in the case of infectious diseases. comresponding fractmgs be(t) = ns(t)/N, I(E) N ?I(t)/”N’
Also, our work generalizes the existing treatment of modeg(t) = ng(t)/N, and D(t) = ”D(t)/N'. Thus, for all ¢,
is advertising and marketing [10], [13], [14] which mostgre > () T4 (1) + £(t) + D(t) = 1.A pre-determined set of entities,
sider only either public advertisement or word-of-mouth a eferred to as disseminators are pre-loaded with the peiche
vertisement with linear benefits, and optimizations aretipos hat immunize andfor heal. These dlssemlnator_s constitute
with respect to the steady state behaviour of the markéteratan Ro frf?‘Ct'On of the the total populatiod, that is, their
than the transitional patterns, which is the salient feamfr ”.“mbef IsN R, where0 < Ro < 1. We assume that the
the diffusion of new technologies. Q|ssem|nators can not be mfeqted and hence they are rexbver
In the context of security in communication networks, [1 ight from the beginning. At time = 0, let 0 < 5(0) < 1,
investigates a different counter-measure: that of redoatif ©, = 1(0) = Ip < 1, 0 < R(0) = Ro < 1, D(0) = 0. Thus,
reception gain of wireless nodes for slowing down the spregcgo.) = 1—1Ip— Ro. When infectives do not exisfp = 0. No
of malware in wireless networks. Our work differs from [16 ntity Is aware (.)f the sState of other entities, except they th
in that we consider (i) both replicative and non-replicativ now who th_e d|§s¢m|nators are. Lo :
patching, (ii) more general network state evolution dyremi. A s_uscepuble Is infected whenever It IS In contact W'th an
in that the counter-measure involves both immunization affective. We assume homogeneous mixing, that is, an infec-
healing, moreover the worm may cause mortality, and (iigtcoll€ IS €qually likely to contact with any other entity andtiwi
functions which are only assumed to be either concave %"le same inter-meeting d_elay distribution. Hence an iiviect
convex and therefore more general than quadratic functidRE€tS with each susceptible at the same rateJsaye later
in [16]. Also unlike [16] we do not use any linearization off@tially relax this assumption using simulatioi¥). At any
the system which can be very poor in the context of epidenfilYen ¢, there arens(i)n;(t) infective-susceptible potential
behaviour. Investigation of optimal solutions in our cotte Pairs: Susceptibles are therefore transformed to infestat
thus require different analytical arguments. [15] consideate fns(t)n(t). o
only a one-dimensional control of bandwidth. That model is_The system manager controls the resources consumed in dis-
thus not suitable for capturing the cost related to the totéiPution of thepatches by dynamically activating a fraction of
consumed energy, which is more critical than bandwidth fhe disseminators, as well as determining the distributates
DTN networks. Moreover, the cost function does not includ®f the activated disseminators. Let the fraction of aceuat
the benefit of recovered, which is essential for application disseminators at timebee(t), and each transmits at raigt).
marketing or DTN settings. The Q|ssem|nators dIStl’Ibut(? their patphgs to mfectmdssms-
Optimal forwarding of packets emanating from a singl€eptibles upon contact, which has similar connotationsas f
source in a delay tolerant energy-constrained wirelesgorkt the spread of infection. The patches immunize the susdegtib
is studied in [18], [19] and it is shown that optimal strateg@nd thus susceptibles recover at ratgt) N Rong(t)u(t) at
follows a threshold-based structure. [18], [19] analytjca eacht. Clearly,
rely on some simplifying assumptions that will make them
as special cases in our context. Specifically, [18] consider
only networks that use two-hop routing, and therefore, t
resulting dynamics of the number dfcovered (i.e. nodes that

have received the packet) follows our non-replicative nhod : L
with no infective or dead. Also, [19] investigatesr@notonic &lan for. susceptlblgg. We capture.the above possibility by
t[roducmg a coefficient < 7 < 1. # = 0 occurs when

epidemic model, which arises when none of the nodes tﬂ% patch is completely unable to heal the infectives and

have received a desired packet lose it, which is mapped tony immunizes the susceptibles, whereas= 1 represents
special case of our replicative case with no infective ordde hF other extreme scenario whe}e a patch can equally well
S

Our model, uniike those two works, considers a general ¢ immunize and heal susceptibles and infectives. If the patch
function that involves a general reward for number of remipi . e P ' P
heals an infective, its state changes to recovered, oteeniti

nodes and any (concave-linear-or convex) power functiod, 8continues to remain an infective. Thus, the infectives veco
is therefore, a generalization of works in [18], [19]. : '

at rater 3N Roe(t)u(t)n;(t) at eacht.
Il. SYSTEM MODEL Each infectivedies at rated, whered > 0, and the overall
We first present the state evolution and formulate the cafgath rate isin;(t) at eacht. Note thats = 0 corresponds
minimization goal as an optimal control problem at an alostrato systems without death. L& := limy .o NS and 3, :=

0<e(®) <1, 0<u(t) <1 ateacht. (1)

hﬁ1e last upper bound follows by normalization @f
The efficacy of the patch may be lower for infectives



a with initial constraints:I(0) = Iy, R(0) = Ry, S(0) =1 —
In— Ry, and as beford) < Iy < 1,0 < Ry < 1, Ip+ Ry < 1.
PreultoS Also similarly,0 < S(t), I(t), R(t) andS(t)+I(t)+R(t) < 1.
nBreuRyl If 6 =0, the latter holds as an equality.
The following lemma, which we prove in [20], shows that
GW the state constraints in both non-replicative and replieat
5T models hold for any control-pair that satisfies (1) - thussth
constraints can be ignored henceforth, i.e., we can deal wit
optimal control problems with no state constraints.
e lemma 1: (A) In non-replicative case, for any control func-
tion pair (¢(.),u(.)) that satisfies (1),((S(t),1(t),D(t))),
Fig. 1. State transitions for non-replicative case. The only diffee Satisfies the state constraints for the non-replicativee ¢as
in the replicative case is that transition rates frémo R is at rate the [0, 7] interval, i.e.,0 < S(t),I(¢), D(t) andS(¢t) + I(t) +
BieuRS and fromI to R at rater$1euRI instead. D(t) < 1. Moreover, (i) S(t) > 0 for all ¢ € [0,77, (ii) if
Iy > 0,1(t) >0forallt €[0,T], and (iii) if § > 0, D(t) > 0
. for all ¢ € [0, 7.
limy_,o N3 are limits of the respective R.HSIf the total (B) Similarly, in the replicative case, for any control fiion
number of entities i) is large, then [21, p.1])S(t), I(t) pair(e(.),u(.)) that satisfies (1)((S(t),I(t), R(t))), satisfies
and D(t) converge to the solution of the following system othe state constraints for this case, i.@.< S(t),I(t), R(t)

differential equations: and S(t) + I(t) + R(t) < 1 in the [0,T] interval. Moreover,
: (i) R(t),S(t) > 0foralltel0,T], (i) if Iy >0,I(t)>0
5(t) = =Bol(1)5(t) — frRoe(t)u(t)S(1) (22) for all ¢ & [0, 7], and (i) it & = 0, $(t) + I(t) + R(t) = 1.
i(t) = Bol (1)S(t) — m Roe(tyu(t)I(t) - 61(t)  (2b) N »
D(t) = 61(t) (2¢) C. Motivation of the models and Instantiation

o ) ) In the introduction section §l), we described the moti-
with initial constraints: 1(0) = limy .. n7(0)/N = Io, vations for the models presented in previous section throug
0 < 5(0) < 1-1Iy, D(0) = 0, and which also satisfy gitferent examples from which interpretation of each of the
the following constraints at ali: 0 < S(t),I(¢), D(t) and  corresponding states is straightforward. Here, and we axfe m
S(t) + I(t) + D(t) < 1. Thus, (S(.), I(.), D(.)) constitutes comments on the nature of interactions in each examplet. Firs
the system state function ar(d(.),u(.)) constitutes the (2- thing to point out is that, except for the case of infectioiss d
dimensional) control functioA Henceforth, wherever not am-gaase, replicative and non-replicative scenarios are dtte.
biguous, we drop the dependence oand make it implicit.  Network Security: In a client-server based, p2p or cellular
Fig.1 illustrates the transitions between different statd network, node A contacts (i.e., communicates with) node
nodes and the notations used. B if A knows the (ID or) address of B, and have the
: P : right permissions or infiltrates it. The homogeneous mixing
B. Dynam|csF)f Rephcatwe Dispatch assumption can represent worm propagation in 3G and 4G

In the replicative model, all recovered nodes become digellular networks (peer-to-peer, resp.) where infectiabites
seminators, and hence the fraction of disseminators groggers, resp.) try to infect randomly and uniformly genedat
to R(t) at timet, whereas in the non-replicative model, thg|Ds or) addresses. Note that in any such mobile to mobile
fraction of disseminators continue to & at all times. The communication, irrespective of the locations of the maile
dynamics in (2) hence needs to be modified. First, singgere are two wireless communications between accessspoint
S(t) + I(t) + R(t) + D(t) = 1 at any given time, we can and mobiles and the rest of the communications are through
represent the system using any three of the above statesthi backbone network where the delays and congestions are
the non-replicative case we chog(), I(t), D(t)), whereas relatively limited. Similarly, peers communicate throutite
in the replicative case we adoff(¢), I(¢), (t)) instead. The packbone network where delays are limited. Thus, in both
specific choices make the analyses more convenient in eaghy and cellular networks, the inter-meeting times have the
case. same distribution irrespective of the location of the pairs

R In a MANET, a contact occurs only when two nodes move
S(t)__ﬂol(t)s(t)_ﬁle(t)u(t)R(t)S(t) (32) into communication range of each other. Under mobility
I(t) = Bol(t)S(t) — mPre(t)u(t)R(t)I(t) — 6I(t)  (3b) models such as random waypoint or random direction model
R(t) = Bie(Mut)R(t)S(t) + mhre(tu(t)R()I(t) (3c) (explained in [22]), Groenevett al. [23] has established the
homogeneous mixing property for such contact processes in

it can be shown that these limits exist as long as the nodeit;densa highly mobile network. Security patches are diStribUtgd b

limpy_, oo N/A exists for largeN [20]. . mobile or stationary agents (in MANETS) or base stations
2Throughout the paper, variables with dot marks (e9¢t)) will represent  (in AP and cellular networks) or a set of central servers
their time derivatives (e.g., time derivative S1t)). (in wired networks). In replicative case, each recipiersoal

SFormally, if we further assume the inter-meeting times aqeoaentially - ; ]
distributed, then from mean field approximations [21, pf} > 0V ¢ > forwards the security patch to nodes it contacts in futuree T

0, limy o0 Psup, <, |25 — S(r)| > e} = 0, and likewise for/(t) ~rates of contacts are determined by system specific paresnete
and D(t). - such as address scanning rates of infectives, communmicatio



rates, mobility, communication rangesc. The worm may Infective and dead (dysfunctional) nodes incur accumudati
completely prevent the download or installation of the pataosts to the network as well (representedfbgndg functions
in an infective node. This case correspondsrte 0. respectively). Alsox; and xp respectively represent the
Delay Tolerant Networks (DTNs): Contact occurs when (scaled) cost per infective and dead node at the end of the
two nodes roam into communication range of each other. Theretwork operation (i.e., tim&). In this case,L(R) = 0 and
is no infective or dead nodes. This can be modeled by setting = 0.
Iy = Do = 0 in our system dynamics equations. Delay Tolerant Networks (DTNs): Similarly, activation
Marketing-Reclamation/Rivalry: There is no dead stateand transmission of disseminators consume power, which is
in these cases. Here, contacts constitute social interectiespecially critical in energy constrained DTNs. Here, ¢her
such as meetings, phone communications or email exchangas. no infective ot dead nodes and henfes g = 0 (also
The non-replicative case arises when only agents of tke = xp = 0). There is reward associated with increasing
incumbent/rival attempt to persuade the customers, while the total number of nodes which have received a copy of
the replicative mode, each convert/subscriber adverfiges the disseminated message. Also, the sooner the message is
the service through word of mouth as is incentivised bgisseminated, the better, hence the integratioh(dt(t)) over
referral-based rewards/discounts.= 0 represents the casetime (note that the negative sign convert the minimization
in which customers are also pledged to the competitor aptbblem to a maximization one). [24, appendix-A] directly
cannot be claimed by the incumbent/rival. Intermediateesl relates the integral over time of the fraction of recoveredas
of = corresponds to different resistance (inertia) of custemep the probability that a message is delivered to a sink leefor
to switch. deadlineT'. Hence theTminimum delay problem is transferred
_— . to maximization of [ R(t)dt, which corresponds to the
D. The Objective Function special case of Iinea%%x) (:)—a: in our setting (glso ref. [18],
We seek to minimize the overall cost in a time window19)). If T, as in [18], [19], [24], represents the deadline before
[0,T], whereT is a parameter of choice. At any given timahe disseminated message reaches a (set of) destinatibefs)
t, the system incurs costs at the ratesfdff(t)), g (D(t)) kg = 0. If however, the objective is broadcasting a message
and benefit at the rate df (R(t)) where f(.),g(.), L(.) are by timeT to many nodes, themy represents the scaled benefit
non-decreasing and differentiable functions such that§g®)L per node which has received the message at filne
f(0) = g(0) = L(0) = 0. In addition, each activated dis- Marketing-Reclamation: The optimizer in this case is the
seminator charges, or consumes resources at the:(at€)) incumbentwho incurs a cost dt Here,g, L = 0, as infectives
at timet since it uses a distribution rate oft), ande(t)Ro  are the only group of customers who are not subscribed to the
fraction of the nodes are the activated disseminators & tifficumbent. That is, the incumbent incurs a cost only through
t. Here,h(z) is a twice-differentiable and increasing functionnfectives, since their converting away results in recarcif
in  such thath(0) = 0 andh(x) > 0 whenz > 0. Note that revenue (cessation of their subscription fee) over timds Th
the assumptions offi(.), g(.), ~(.) are mild and natural, and |oss is captured by integration ¢ 1) over time. Among the
a large class of functions satisfy them. The aggregate ®ystidividuals who are contacted, only those who are persuaded
cost therefore is by the offers will switch back. The cost for advertisement,
T captured by integration of the term involvinhg.), is associated
J = / fU(t)+g(D(t) — L(R(t)) + e(t)Roh (u(t)) dt  with the amount of discount offers and rewards provided to
0 lure the customers back. The incumbent seeks to minimize
+r1l(T) + kpD(T) = krR(T).  jts overall loss due to the entrance of the competitor, by
(4) dynamically determining the fraction of the individuals avh
ReplacingR, with R(t) in (4) gives the overall cost for should be selected for a special offer and how much discount

the replicative case, as here, activated disseminatorisnat tShould be provided, which in turn determines the efficacy

¢ constitutes(t)R(t) (instead of=(t)Ry) fraction of the total Of the switch to the incumbent. Herep = rp = rr = 0.

nodes. For both cases, at least one of the funcfiopor . Marketing-Rivalry: The optimization here, is from the

convex function ofu. model, hence, similar to the reclamation cages 0. However,

Problem Statement The system seeks to minimize the/ = 0 instead ofL, since only recovered are those customers
aggregate cost in (4) by appropriately regulatirg), u(.) at who subscribe to the company of the optimizer (susceptibles
all ¢ subject to (1), when the states evol&) as per (2) for @ré not subscribed to either). The revenue comes from the
non-replicative, andg) as per (3) for replicative dispatch, ancpubscription fee of the recovered nodes, and is represented
satisfy the respective initial state conditions. through integration of thé&(R) function over time. The cost

Here we briefly motivate the cost model for each of odpr advertisement is similar to the Reclamation case. Here,
different settings. Our cost model in (4) (and its repligati 1 = #p = fir = 0.
counterpart) is general enough to capture all of the cases.

Network Security: In communication networksach acti-
vated disseminator consumes power and/or bandwidth at rateWe apply Pontryagin’'s Maximum Principle to obtain a
h (u(t)) at timet for transmission of patches. The total numberamework for solving the optimal control problem as posed
of activated disseminators at tintels respectivelyNe(t)Ry, in Problem Statements\j and B). Let ((S, I, D), (e,u)) be
and Ne(t)R(t) for non-replicative and replicative dispatchan optimal solution to the problem posed in problem state-

IIl. OPTIMAL NON-REPLICATIVE DISPATCH



ment @) in the previous section, consider tRHamiltonian H,
and correspondingo-state or adjoint functionsAg(t), Az (¢)
and \p(t), defined as follows:
H = f(I)+ g(D) = L(R) + eRoh(u) + (Ar = As)Bo S
—B1RoeursS — wh1 Roculrl + ()\D — /\])51.

®)
whereR=1-S5—-1-D.
. OH p
Ag = 35 = —L'(R) — (A1 — As)Bol + f1Roculs
. OH
A\ = —r = —L'(R) — f'(I) = (A\r — As)BoS + mf1 Roculs
— (Ap = A1)d
=20 _ iRy
Ap = —=5 = =L'(R) = g'(D). (6)

along with thetransversality conditions:
As(T):IiR, )\](T)Zli]—f—IiR, /\D(T):IQD-FFLR. (7)

From (8), for each admissible contr@d, «) and for allt €
[0, 71,

e(t) (h (u(t)) = p(u(t)) < e(t) (b (u(t)) - p(tu(t))

= (e(t),u(t)) € arg min z (h(y) — (t)y). (12)

x€[0,1]
y€[0,1]

Since (e, u) = (0,0) is an admissible control, we have for

alo<t<T:
e(h(u) — pu) < 0. (13)

Note that whenever either or ¢ is zero, irrespective of the
other,eu = 0, and sinceh(0) = 0, eh(u) = 0. Thus, the state
dynamics and the instantaneous cost incurred do not depend
on the value of the other control function at these epochs.
Thus, whenever one control function assumes a zero value,
we can, WLoG, choose zero value for the other.

Next, consider & at which the minimizer of. (y) — ¢y in

Then according to Pontryagin’s Maximum Principle (e.g,, [¥ € [0, 1] is unique. If this unique minimizer &, thens = u =
P. 109, Theorem 3.14]), there exist continuous and pieeewiatt. In order to show this, we only need to show that 0

continuously differentiable co-state functiong, Ao and \s,
that at every point € [0...7T] wheree andu is continuous,
satisfy (6) and (7). Also,

min  H(X,(S,1,D), (g, u)).

8
&,u admissible ( )

(e,u) € arg

A. Sructure of the Optimal Non-replicative Dispatch

att. Otherwise, if at, u > 0, thene > 0 at¢, andh(u)—pu >
h(0) — 0 = 0. This contradicts (22). If this unique minimizer
is positive, then at, min,cp 1] (2 (y) — ¢y) < 0, and thus
from (12),e = 1 and v equals this unique minimizer. Thus,
at any¢ at which the minimizer of. (y) — oy in y € [0,1] is
unique,e = 1 if and only if > 0, ande = 0, otherwise.

For establishing the structure of optimal we separately

We establish that the two-dimensional optimal controls @bnsider the cases of concave and strictly confvex

patching in the non-replicative case have simple strusture
Theorem 1. In the problem statement}, for either one
of the following two cases: (i)fL = 0 and f(.) is convex,
(i) 6 = 0, an optimal control(¢(.),«(.)) has the following
simple structure:
1) When h(.) is concave,3 ¢t; € [0...T] such that
(@ u(t) =1for0 < t < 1, and (b)u(t) = 0 for
ti<t<T.
2) Whenh(.) is strictly convex3 tg,t1, 0 <tp <t; <T
such that (au(t) =1 on0 < ¢ < tg, (b) u(t) strictly
and continually decreases an< t < t1, and (C)u(t) =
Oont; <t<T.
In both cases, for all € (0,T), except possibly fot = ¢;
whenh(.) is strictly concaveg(¢) = 1 if and only if u(¢) > 0,
ande(t) = 0 otherwise.

Proof: Let functiony(t) be defined as follows:

= 51(/\55-‘1- 7T/\]I) (9)

1) h(.) concave: When h(.) is concave (i.e.h” < 0), at
each time, h(x)—(t)z is a concave function of, and thus,
for any timet such thatp(t) # h(1), the unique minimum is
either atx = 0 or x = 1. Then,

0, o) <h(1)

1, o(t) > h(1). (14)

e(t)u(t) = {

Following lemma 2, there can be at most @ra whichp(t) =
h(1) in [0,T]. Moreover, lemma 2 implies that if su¢texists,
sayty, thenp(t) > h(1) for t € [0,¢1), ande(t) < h(1) for
t € (t1,T]. The theorem follows from (14).

2) h(.) strictly convex: Sinceh(.) is strictly convex (i.e.,
R > 0), the minimizer ofh (y) — ¢(t)y in y € [0, 1] is unique
irrespective oft. Thus,e(¢) = 1 if and only if u(t) > 0,
ande(t) = 0, otherwise. Whem(.) is strictly convex (i.e.,
" > 0), (12) implies that, if 2 (Roh (z) — ¢(t)z)|,—, = 0

r=

at ay € [0,1], thenu(t) = y, elseu(t) € {0,1}. Then,

©(.) is thus a continuous function of time, which according

to (7) has the following final value:
o(T) = pr(krS(T) + krI(T) + K1 1(T)).

Also, as we prove irglll-B:
lemma 2: (t) is a strictly decreasing function offor ¢ €
[0,T).
We can rewrite the Hamiltonian in (5) as:
H = f(I) + g(D) — L(R) + (A1 — As)BolS
+(Ap — A1)0I + eRo(h(u) — pu).

(10)

(11)

07 ' S ROh/(O)
w={ WLE), Ro(0) < ¢ < Roh/(1)  (15)
1, Rob'(1) < .

Thus, from continuity ofp and?’, u is continuous at alt €
[0, T]. Sinceh(.) is strictly convexp’(.) is a strictly increasing
function - hence)’(0) < h’(1). Thus, following lemma 2,
there existty,t1, 0 < to < t; < T, such thatp > h'(1) on
0<t<ty h(0) <p <h'(l)onty <t<ty, andy < h'(0)
ont; <t <T. The theorem follows from (15). ]



B. Proof of lemma 2 A. Structure of the Optimal Replicative Dispatch

Proof: The state and co-state functions, and hencegshe Theorem 2: Consider an optimal contrdk(.), u(.)) to the
function, are differentiable at each timec [0,7") at which problem posed in problem statemeBiThe same structural
the (e,u) function is continuous. Sincée, ) is piecewise properties as in Theorem 1 (i.e., for the non-replicativeega
continuous, the lemma follows if we can show thatis also holds here.
negative at each such Noting that3; > 0, at each such  The above results are somewhat surprising in that the acti-
t €[0,T) we have: vation fractione(.) is completely specified by(.), and hence

. 1 d . ' . ~ the two-dimensional control is reduced to a one-dimensiona
Y _ - —p = MAgS + AgS + A I +mA I solution. The practical implication is that the activatesheme
fr o dt is all or none, and it is not optimal to activate a portion of
= —A1BoIS + mAsBolS — wf'(I)I —nApdl  the dispatchers. Wheh(.) is strictly concave, the optimum
—L'(R)(S +7I) = —(A\; — A\s)mBoIS — (1 — m)A\;BpIS  transmission range, a_nd hence the entire soluti_or_1, is b_ang-
—mApdI — wf' ()T — L'(R)(S + 7I) and has at most one jump froindown to0, and it is optimal
(16) to pa’;ch as aggressively as p055|ble_ early on (as soon as the
infection is detected and the patch is produced) and halt the
The right hand side is negative at eaob [0,7) sincel, S > patching after a certain time. Whéx.) is strictly convexg(.)
0 at allz € [0,7] (lemma 1-A),5, > 0, § > 0,0 < = < 1 continues to be bang-bang and has at most one jump from
and f’(z), L' (z) > 0 for all z (since f(.) and L(.) are non- down to0, butu(.) has a strict but continuous descentito

decreasing functions), and because: In the rest of the subsection, we prove Theorem 2.
lemma 3: For all0 <t < T, we haveAp > 0, A\; > 0, Proof: Considerp as defined in the following:

and(A; — Ag) > 0.

We prove lemma 3 in our tech. report [20]. ¢ = (As — Ar)P1RS — (A1 — Ar)mB1RI

Now from (20) and referring to (17), for each admissible

IV. OPTIMAL REPLICATIVE DISPATCH control (¢, u), and for allt € [0, 77,

Similar to the non-replicative case, we define the Hamilto-

hian as: e(t) (R(t)h (u(t)) — p(t)u(t)) < e(t) (R (u(t)) — u(t)e(t))
H = f(I) + g(D) - L(R) + ERh(u) + (/\1 - )\s)ﬁQIS . " are min o B
~(As = Ar)B1euRS — (Ar — Ap)mfreuRl — Afaf(.l ) = (e(t)ult) € 5 2 (RO (y) = o(t)y).  (21)

Since(e,u) = (0,0) is an admissible control, we have for

hereD = 1—(S+I1+R). The system of co-state differential
w (S+I+E) y ! Balo<t<T:

equations is as:

SH e(Rh(u) — ou) < 0. (22)
As oS Ar = As)Bol + (s = Ar)freult +9'(D) The optimality of thes(¢) as stated in Theorem 2 follows
. oH by similar argument following (13). We prove the structure
Ar=—gr =/ (1) = (A1 = A9)BoS+ (Ar = Ap)mhreult o | separately for the cases of strictly concave and strictly
+ A8+ ¢'(D) convexh(.), using the following lemma, which we prove in
: OH §IV-B.
Ar = =55 = (As = Ar)BreuS + (Ar = Ar)mbieul —eh(u)  lemma 4: Lety(t) = %. Then,(t) is a strictly decreas-
+4¢ (D) + L'(R). ing function of¢ for ¢ € [0, 7).

(18) 1) h(.) concave: Since h(.) is concave (i.e.h” < 0)
. N and R > 0 by lemma 1-B, noy € (0,1) attains
and the transversality conditions as: minyep,1] (Rh (y) — @y) . Thus, if at timet, ¢ — Rh(1) <0,
B B B theny = 0 is the unique minimizer ofRh (y) — ¢y in
As(T) =0,A1(T) = b1, Ap(T) = —K. (19) y € [0,1]. Thus,e = v = 0 at any such time. Ib—Rh(1) > 0,
y = 1 is this unique minimizer. Thug, = v = 1 at any such

Then, according to Pontryagin’s Maximum Principle ( [gpme. Thus:

P. 109, theorem 3.14]), there exist continuous and piese-wi

continuous functionas(t) to Ar(¢) that satisfy (18) and (19)

at anyt at which (¢(t),u(t)) is continuous, and the optimal (e,u) = (0,0) ¢ —RR(1)<0 (23)

(e,u) satisfies: U 1(,1), ¢ —Rh(1) >0

(e,u) € arg (é’ﬂ)fgégissibleff(/\a (5,1, D), (g,w)).  (20) Using lemma 4, we conclude that/R = h(1) at at most

one time epoch if0,7T), sayt;, ande/R > h(1) in (0,¢)

The above framework can be used for numerically compuwnd, if sucht; exists, thenp/R < h(1) in (¢t1,T). The
ing the optimum control and the minimum aggregate cost. theorem follows from (23).



2) h(.) grictly convex: Sinceh(.) is strictly convex (i.e.,
R’ > 0), the minimizer of R(¢)h (y) — ¢(t)y in y € [0,1] is
unique irrespective of Thus,e(¢) = 1 if and only if u(t) > 0,

The last inequality follows from (22), lemma 1-B and since
£ > 0,7 > 0. The lemma follows since the right hand side
is negative at eache [0,7). [ |

and e(t) = 0, otherwise. Thus, we only need to prove the

requisite properties ofi. This minimizer, and hence, is:

0, £ < n'(0)
WH), R(0) < § < H() (24)
1, p'(1) < %.

Now, sincey, R, i’/ are continuoush’ is strictly increasing,
R > 0atallt € [0,T], u is continuous at alt € [0,7].
R(t) >0 atallt € [0,T] by lemma 1-B, and/(z) > 0 for
all z. The proof follows if we can show that < 0, when
P'(0) < £ < B/(R). Now, for 1/(0) < £ < I/(R), we have

d (g
O N 16 ),
u="h (}_3) =4 = hi’(u)
According to lemma 4, this is negative. ]

B. Proof of lemma 4

Proof: We prove this lemma using lemma 5 which we

state next, but prove in our tech. report [20].

lemma 5: For all0 < ¢t < T, we have(\; — Ag) > 0,
(As = Ag) >0 and i <0.

Since(e, u) is piecewise continuous arid.) is continuous
eu,eh(u) are piecewise continuous as well. Thus, from
tinuity of ¢, R, we need to show that < 0 at anyt € [0,7T)
at which (¢, u) is piecewise continuous. Now, at sucht,a

p = ()\5 — ).\R)ﬂlRS + ()\[ — /.\R)TrﬁlRI
—l—()\s — )\R)BIRS + ()\[ — /\R)WﬁlRI
+(\s — Ar)B1RS + (\1 — Ar)wB1RI

—mB1BoRISAR — B1BoRISAT

+B81BoRISAR + 1o RIS As — Fﬁlf/(I)RI + w81 RISAR

—L'(R)RB:1(S + 7I) + eRh(u)B1(S + 1)

— +89B1RIS\s and re-arrangement

= —fof1(1 = m)RIS(As — Ar) — BoS1RIS(A1 — As)
—7B1f (I)RI 4 w1 RIOAR

—L'(R)RB:1(S + 7I) + eRh(u)B1(S + 1)

= {negative term + e Rh(u)B1(S + 7).
(25)

The expressions denoted frsegative ternp is negative at each

t € [0,T) owing to lemma 5 and sincéy, 51 > 0,6 > 0,0 <
m < 1 by assumption and, I, R > 0 by lemma 1-B. At any
sucht,

d ¢. ¢—<2R
(5)= I

V() = — (5 = (26)
_ {negative ter + eRh(u)B: (S + 7I) — RS
B R
_ {negative term + ¢ (Rh(u) — @u) 41 (S + 7I)
B R
negative term 27)

- R

V. NUMERICAL COMPUTATIONS

First, with the intention of illustrating the theorems, we
depict the optimal controls for the general case, i.e., when
all of the states exist, and the cost is in the general form.
The parameters used are stated in the caption of the fig.2. The
figures on the right side are related to a condate) function
and and the ones on the right figures are according to a convex
h(u) (for both replicative and non-replicative cases).

™=0 =1

Stat. Rep.

50 Stat. Rep.
Stat.

Non-Rep.
o on-Rep.
-50 - Dyn.
Non-Rep.

—100

Dyn.
Non-Rep.

J (overall cost)

Dyn. Rep.
-100

Dyn. Rep.
0.2

0.1 0.2 0.3 0.1

n n

0.3

Fig. 3: Comparison of costs for four policies for variofis Dynamic
replicative policy achieves the best performance amorgstfaour.

' The parameters used (except for the parameter in the htalzaxis)
COMYre the same as in fig.2

Next, we have depicted a comparison of the aggregate costs
that is incurred as a result of applying each of these four
different policies: optimal replicative dispatch, optinreon-
replicative dispatch, best static replicative dispatastistatic
non-replicative dispatch. The aim is to explore the efficaty
the replicative dispatch over the non-replicative dispaad
dynamic control over static control. For the static pokgie
the control assumes a fixed value throughout the interval of
[0...T]. We have then varied this fixed value and selected
the one that leads to the least cost (hence, the 'best $tatic’
For different values ofy, as we can see in fig.3, under each
dispatch model, the optimal dynamic control will incur lawe
aggregate cost than the best static control. This is because
the set of feasible solutions for a dynamic control is a stric
superset of that for a static control - the former can always
choose the immunization rate function as a constant, wherea
the latter can never vary the immunization rate as a function
of time. The difference is more emphasized for the case of
replicative dispatch where optimal dynamic policy achgeve
50 to 100% better cost values compared to the best static
policies. Also, the optimal dynamic replicative dispatoburs
lower aggregate cost than its non-replicative counterparte
the replicative dispatch can emulate non-replicative: cae
always activate only a fraction of the dispatchers in the
replicative setting so that it equals the number of active
dispatchers in non-replicative case.

In the end, we illustrate the robustness of dynamic poli-
cies. A practical issue in implementing the dynamic polices
in this paper is that the parameters of the system are not
always accurately known, and only rough estimate is aviailab
Therefore, it is important to investigate the sensitivifytloe
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B=0.15,Io = 0.2, Ro = 0.25, Dy = 0, T = 60, f(I) = 5I,

g(D) = 10D, L(R) = 5R. For concavei(u) (fig.2(a)) we have usebl(u) = 10u, and for convexa(u) (fig.2(b)) we have usel(u) = 10u?.
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Fig. 5: Robustness of dynamic policy. The parameters used 319
the same as in the caption of fig.2 (except for the variableh@n t
horizontal axis, and thaR, = 0.2). The increase in the overall cost,[11]
as a result of 50% inaccuracy in the estimation of the valud,of

and 3 is less than 5%. [12]

13
efficacy of the defense to these inaccuracies. Let's say tr[1at
the initial fraction of the infective nodes is estimated t® b14]
I, = 0.15, however with potential inaccuracy of 50%. We[
apply the dynamic and static policies that are calculategda [15]
on this estimation to systems in which the actual values were
off from this estimate (up to 50%), assuming other paransetgfg;
are fixed. Then we depict the increase in the total cost due
to applying these sub-optimal policies, that is, the cosemvh [17]
the sub-optimal policy (the dynamic and static optimal coint
calculated based on the inaccurate estinfgte: 0.15) minus [18]
the cost when the actual optimal dynamic policy for th
accurate value of; is applied. As fig.4 shows, the increas
in the total damage for the optimal dynamic policy due to
inaccurate estimation of, is significantly low, showing the [20]
robustness of the non-replicative dynamic policies wigpect
to erroneous estimation dfy. Similar behaviour is observed[21]
for estimation of3 and replicative policy [20].
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