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Maximum Damage Battery Depletion Attack in
Mobile Sensor Networks

M.H.R. Khouzani, Saswati Sarkar

Abstract—Developing reliable security measures against out-
breaks of malware will facilitate the proliferation of wireless
sensing technologies. The first step toward this goal is to investi-
gate potential attack strategies and the extent of damage theycan
incur. The malware at each infective node may seek to contact
more susceptible nodes by amplifying the transmission range
and the media scanning rate and thereby accelerate its spread.
This may however lead to (a) easier detection of the malware
and thus more effective counter-measure by the network, and
(b) faster depletion of the battery which may in turn thwart
further spread of the infection and/or exploitation of that node.
We assume the viewpoint of the malware and cast the problem of
dynamically selecting the transmission range and media access
rate of the infective nodes as an optimal control problem. We
utilize Pontryagin’s maximum principle to find an optimum
solution, and prove that the maximum damage can be attained
using simple three-phase bang-bang strategies.

I. I NTRODUCTION

A. Motivation and Overture

Wireless sensor networks consisting of mobile nodes are
envisioned to facilitate a diverse set of applications ranging
from environment monitoring to emergency search-and-rescue
operations [1]. Such networks are however prone to the spread
of self-replicating malicious codes known as malware. The
malware can be used to initiate different forms of attacks
ranging from the less intrusive eavesdropping of the sensed
data to the more virulent disruption of node functions such
as relaying and establishing end-to-end routes (e.g., sinkhole
attacks [2]), or even destroying the integrity of the in transit
sensed data, as in unauthorized access and session hijacking
attacks [3], [4]. Malware can moreover deplete the energy
reserves of the sensor nodes and render them dysfunctional
either deliberately or as a result of aggressive media access
attempts in attempt to infect others. The economic viability
of the investments on the sensing infrastructure is therefore
contingent on the design of effective security countermeasures.

The first step in devising efficient countermeasures is to
anticipate the hazards and understand the threats the attacks
pose, before they are launched [5]. Specific attacks such as the
wormhole [6], sinkhole [2], and Sybil [7], that utilize vulner-
abilities in the routing protocols in a wireless sensor network,
and their counter-measures, had been investigated proactively.
We pursue the complementary but closely related goals of
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Fig. 1. State transitions:S, I, R,D respectively represent susceptible,
infective, recovered, dead states. Here,u(t) is product of the transmission
range and media scanning rate of infectives at timet. The parametersβ, ρ
and functionsB(·), Q(·) will be defined in Section II-A.

(i) quantifying fundamental limits on the damages that the
attackers can inflict on the network by intelligently choosing
their actions, and (ii) identifying the optimal actions that inflict
the maximum damage. Such quantification is motivated by the
fact that while attackers can pose serious threats by exploiting
the fundamental limitations of wireless sensor networks, such
as limited energy, unreliable communication, constant changes
in topology owing to mobility [8], their capabilities may well
be limited by the above as well since they rely on the same
network for propagating the malware.

Malware spreads during data or control message transmis-
sion from nodes that are infected (infectives) to those that
are vulnerable, but not yet infected (susceptibles). Counter-
measures can be launched by installing security patches that
either heal the infectives orimmunize the susceptibles by
removing the malware and rectifying the underlying vulnera-
bility. Nodes that have been immunized or healed are robust
against future attacks and denoted asrecovered. A node that
has lost its battery reserve, is denoted asdead, since it can
not function any longer. Depending on whether the malware
drains an infective’s battery before the infective fetchesa
patch, its state changes to dead or recovered. Susceptibles
either become infectives or recovered depending on whether
they communicate with infectives before installing the patches.
Figure 1 illustrates the state transitions.

The attack seeks to infect and kill as many nodes as
possible, use the malware in the infectives to disrupt the hosts
as well as the network functions while being cognisant of the
countermeasures [9].

B. A decision problem of the attacker

One of the most critical resources in a mobile sensor
network is the energy reserves of the nodes. An important
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decision of the malware pertains to its optimal use of the
available energy of the infective nodes. The infectives, atany
given time, can accelerate the rate of spread of the malware
by increasing their contact rates with susceptibles by selecting
higher transmission gains and media scanning rates. Such
a choice, however, (a) can lead to easier detection of the
malware, prompting the nodes to fetch appropriate patches
sooner, and (b) depletes the infectives’ energy reserves faster
which in turn limits the spread of the infection and also
their other malicious activities such as eavesdropping, traffic
destruction,etc. Even if the malware’s goal is to render the
nodes dysfunctional, early loss of infectives due to their battery
depletion may thwart the spread of the malware. The challenge
then is to determine the dynamically1 changing instantaneous
transmission gain and/or media access rate of the infectives
that maximize the overall damage inflicted by the malware.

C. Contributions

First, we construct a mathematical framework which co-
gently models the effect of the decisions of the attackers
on the state dynamics and their resulting trade-offs through
a combination of epidemic models and damage functions
(sec.II). Specifically, we assume that the damage inflicted
by the malware is a cumulative function increasing in the
number of infected and dead sensors. We assume the viewpoint
of the malware, which seeks to maximize the damage by
dynamically selecting the energy usages of its hosts while
assuming full knowledge of the network parameters and the
counter-measures. The maximum value of the damage function
then quantifies the fundamental limits on the efficacy of the
malware. The damage maximization problem is cast as an
optimal control problem which can be solved numerically by
applying Pontryagin’s maximum principle [10] (sec.III).

Second, we seek to determine whether the optimal strategies
are simple enough to be pursued by the malware while
using resource constrained wireless devices. Our results have
negative connotations from the counter-measures point of
view, as we show that an attacker can inflict the maximum
damage by using simple decisions. Specifically, if it seeks
to maximize an aggregate over time of the fraction of the
infective and the dead nodes but is not concerned about their
final tallies, the transmission range and media scanning rate
have the following simple structure: until a certain time, the
malware uses the maximum power to aggressively spread
itself, and subsequently it ceases its media access activities
altogether and enters an energy-saving mode while furtively
performing its malicious activities like eavesdropping, an-
alyzing sensed data, sabotaging routes, changing data,etc.
(theorem 1, sec. IV). Thus, the attack consists of an initialblitz
phase and a subsequentstealthphase. If, on the other hand,
the malware seeks also to increase the final tally of the dead
nodes, then a finalslaughterphase follows the initialblitz and
intermediatestealth phases. In the final slaughter phase, the
malware resumes, at the maximum power, the media access

1A dynamic strategy allows the decision variables to vary withtime,
whereas a static strategy chooses their values att = 0 and does not change
them subsequently.

activities of the infected nodes, seeking primarily to killthem
by depleting their residual energy reserves. In optimal control
terminology [10], we have proved that the optimal strategy has
a bang-bangstructure, that is, at any given time, the optimum
power usage is either at its minimum or maximum possible
values; also it has at most two jumps between them. Optimality
of this simple strategy for this nontrivial problem is surprising.
Finally, our numerical computations reveal that the attacker
can inflict substantially higher damage by dynamically, rather
than statically, choosing the infectives’ transmission range and
media scanning rates, and the attack is robust to errors in
estimation of the network parameters (sec. V).

D. Related Works

Energy constraints in attacks on mobile wireless networks
have been considered in [11]–[17]. Now, [15]–[17] consider
only detection policies based on the anomalous battery con-
sumption behavior due to the activities of a new malware.
Next, [13] describes a vulnerability in MMS services in
cellular networks that enables an attacker to drain the device
batteries, and [14] proposes battery depletion through reduc-
tion of sleep cycles of sensors. We focus on managing, rather
than merely depleting, the device batteries for maximizingthe
overall damage inflicted on the network which is fostered both
by the spread of the infection and the battery depletion. The
closest to our work are [11] and [12] which propose strategies
for utilizing the infectives’ available energy so as to increase
the spread of the malware; [11] proposes heuristics which do
not provide any damage guarantee, whereas [12] focuses on
the static (as opposed to dynamic) optimum choice of the mal-
ware’s parameters. Also, [12] considers a S-I-S system where
each node is either infected or susceptible and the infection
(healing, resp.) rate of a susceptible (infective, resp.) does not
change with time. We consider a S-I-R-D system allowing
for susceptible, infected, dead and recovered nodes, and the
infection (recovery, resp.) rate of a susceptible (infective or
susceptible, resp.) dynamically evolves in accordance with the
number of infectives (attacker’s control, resp.).

Most of the existing work on dynamic control of parameters
of the network (e.g., [18]) or the malware (e.g., [19]) propose
heuristic dynamic policies in different contexts, and evaluate
them using simulations. For example, [19] introduces heuristic
strategies for dynamically adjusting the transmission power of
attacker nodes in wireless networks. We instead obtain attack
policies that provably attain the maximum possible damage,
and characterize the damage they inflict.

Interestingly, tools from the optimal control theory such as
the Pontryagin’s maximum principle have seen limited used
in context of network security - [20] and our previous works
[21]–[24] constitute notable exceptions. [20] formulatesthe
trade-off for optimal treatment of the infective nodes in wired
networks, but does not establish any structural property of
the optimal policy. In [21], we propose to slow down the
spread of malware by reducing the reception gain of nodes
and attain desired tradeoffs between security risks and network
quality of service through the dynamic optimal control of
the reception gain. In [23], [24], we obtain optimal patching
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strategies that attain desired tradeoffs between securityrisks
and bandwidth consumption in patch dissemination. In [22],
we have considered the transmission range of the infectives
and the rate of killing as two independentparameters of the
malware, and have optimized them to inflict the maximum
damage. The malware chooses the transmission range subject
to a power budget which ensures that every infective’s battery
lasts the entire duration of interest, and kills an infective by
executing a code that damages its hardware. In contrast, here
we allow the death rate of the infectives to increase with
increase in energy consumed in media access. Also, aggressive
media access exposes an anomaly and leads to earlier detection
of the malware and therefore faster recovery of the nodes.

II. SYSTEM MODEL

A. Dynamics of State Evolution

Let the total number of nodes in the network beN . Let the
number of susceptible, infective, recovered and dead nodesat
time t be denoted bynS(t), nI(t), nR(t) andnD(t), respec-
tively, and the corresponding fractions beS(t) = nS(t)/N,
I(t) = nI(t)/N, R(t) = nR(t)/N, and D(t) = nD(t)/N
(Table I) respectively. Then,S(t) + I(t) + R(t) +D(t) = 1.

S(t) fraction of the susceptible nodes
I(t) fraction of the infective nodes
R(t) fraction of the recovered nodes
D(t) fraction of the dead nodes

TABLE I
L IST OF NOTATIONS OF MEASURES.

At the time of the outbreak of the infection, that is at time
zero, some but not all nodes are infected:0 < I(0) = I0 < 1.
For simplicity, letR(0) = D(0) = 0. Thus,S(0) = 1− I0.

We now model the dynamics of infection propagation using
epidemic models based on the classic Kermack-Mckendrick
model [25]. Experiments as well as network simulations have
validated that such models provide an acceptable representa-
tion for the spread of malware in mobile wireless networks
(see e.g. [26]–[28]) - we independently validate them in
Section V. Nodes are roaming in a vast 2-D region of areaA
with an average velocityv. An infective spreads the malware
to a susceptible while transmitting data or control messages
to it. An infective transmits a message to a susceptible with
a given probability whenever the two are incontact, that is,
the susceptible is in the transmission range of the infective.
This probability is a linear function of the rate at which the
infective scans the media in search of susceptibles nearby,
and the proportionality constant is determined by the message
collision probabilityη1 which depends on the medium access
protocol used and also on the node density (N/A). When
the communication range of the nodes is small compared
to A (which is usually the case in multihop networks),η1
is essentially determined by the node density (N/A). We
assume that the time between consecutive contacts of a specific
pair of nodes isexponentiallydistributed with a rate that is
linearly dependent on the communication range of the nodes
and the proportionality constantη2 depends only onv and

A.2 Specifically, η2 ∝ 1
A . Let u(t) be the product of the

infective’s transmission range and its media scanning rateat
time t. Then, the malware is transmitted between a given
infective-susceptible pair as per an exponential random process
whose rate at any given timet is β̂u(t), whereβ̂ = η1η2. The
malware regulates the spread of the infection by controlling
u(t) through appropriate choice of its transmission gain and
media scanning rate.

The security patches are installed at an infective (suscepti-
ble, respectively) after exponentially distributed random times
starting from when it is infected (t = 0, respectively). The
delays account for the time required in detection of infection,
and fetching the appropriate patch, etc. We denote the im-
munization and healing rates respectively byQ(u) andB(u).
A larger transmission range and a higher scanning rate leads
to faster detection of the malware [15], [31], and therefore
increases the overall recovery rate. Thus,Q(·) andB(·) are
non-decreasing functions ofu. We assume thatQ(x) > 0 if
x > 0. In practice, the advantage of easier detection starts to
saturate with increase inu, thus bothB(·) andQ(·) are likely
to be concave, though we allow them to be convex as well3.
We assume thatQ(·) andB(·) are differentiable functions ofu,
and alsoQ(0) = B(0) = 0, i.e., no spreading/battery drainage
attempts of the malware results in zero recovery rate, though
we relax this latter assumption in Remark 2. Finally, we allow
Q(·), B(·) to be different functions as different patches may be
required for immunization and healing, as the former involves
only rectification of the vulnerability that the malware exploits,
whereas the latter involves the removal of the malware as
well. For instance, while StackGuard programs [32] immunize
the susceptibles by removing the buffer overflow vulnerability
that the SQL-Slammer malware [33] exploits, specialized
patches [34] are required to remove the malware from (and
thereby heal) the infectives.

Nodes have random amounts of initial (i.e., att = 0 when
the attack starts) energy reserves. The energy consumption
during normal operations (i.e., when a node is susceptible or
recovered) is negligible as compared to that in media access
of the infectives - the former is therefore assumed to be
zero.4 The energy depletion time of an infective’s battery
will therefore be random with a distribution that depends
on its media access activities - we assume this time to be
exponentially distributed with rateρu(t) at time t. Here, ρ
is a positive coefficient. Note that the exponential assumption
has been made for convenience of analysis. Also, the depletion
rate must be an increasing function ofu, we assume it to be
a linear function, sinceu can not be large in order to avoid
interference. Since the malware might not know the remaining
energy, the selectedu(t) at a given node at a givent is not a
function of its (or others’) residual energies.

2Under mobility models such as random waypoint or random direction [29],
Groeneveltet al. [30] have shown this to be the case when the communication
range of the nodes is small compared toA and v is large. Numerical
computations [30] reveal that these assumptions can be largely relaxed.

3The detection may also be affected by the fraction of infectednodes, which
can be incorporated by allowingQ(·), B(·) to be functions of bothu andI.

4The formulations presented in Sections II and III easily extend when this
assumption is relaxed, by allowing a transition from the susceptible state to
the dead state (fig. 1).
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Following the conditions assumed for the model, the number
of nodes of each type evolves according to a pure jump
Markov chain with state vector(S(t), I(t), D(t), R(t)). Since
for all t, S(t) + I(t) + D(t) + R(t) = 1, the state of the
Markov chain is three dimensional. Let

β = lim
N→∞

Nβ̂. (1)

Let β > 0. Now5, using the results of [35], it can be shown
that, asN grows,S(t), I(t) andD(t) converge to the solution
of the following system of differential equations:6

Ṡ(t) = −βu(t)I(t)S(t)−Q(u(t))S(t), (2a)

İ(t) = βu(t)I(t)S(t)−B(u(t))I(t)− ρu(t)I(t), (2b)

Ḋ(t) = ρu(t)I(t), (2c)

with S(0) = 1− I0, I(0) = I0, D(0) = 0, (2d)

and also satisfy the following constraints at allt:

0 ≤ S(t), I(t), D(t) andS(t) + I(t) +D(t) ≤ 1. (3)

The convergence is in the following sense:

∀ ǫ > 0 ∀ t > 0, lim
N→∞

Pr{sup
τ≤t

|
nS(τ)

N
− S(τ)| > ǫ} = 0

and likewise forI(t) andD(t).
Henceforth, wherever not ambiguous we drop the depen-

dence ofS(t), I(t), D(t), u(t) on t and make it implicit. Fig. 1
illustrates the transitions between different states of nodes.

B. Maximum Damage Attack

We consider a malware that seeks to inflict the maximum
possible damage in a time window[0, T ] of its choice. It
benefits over time from the dead and the infected hosts. Recall
that it can use the infectives to eavesdrop, analyze, alter or
destroy data sensed or relayed by the hosts. It also benefits
by inflicting a large death-toll by the end of the desired time
window. These motivate the following damage function:

J =

∫ T

0

{κII(t) + κDD(t)} dt+KII(T ) +KDD(T ). (4)

whereκI > 0 andκD,KI ,KD ≥ 0.
The malware seeks to maximize the damage function by

appropriately regulatingu(t), the product of the transmission
range and the scanning rate of the infectives.7 When sensors
are moving fast and no sensor has any information about the
location of others, each sensor is equally likely to meet any
other sensor in future irrespective of the past.8 Therefore, at

5Sinceβ̂ = η1η2, andη1 depends only on the node density, andη2 ∝
1

A
,

the limit β exists as long as the limiting node densitylimN→∞ N/A exists.
6Variables with dot marks (e.g.,̇S(t)) represent their time derivatives (e.g.,

time derivative ofS(t)) and the prime signs (e.g.,Q′(u)) designate their
derivatives with respect to their argument (e.g.,u).

7The attacker does not control any other parameter such as the susceptible’s
reception gain, node mobilities,etc.

8This assumption can be analytically established when the inter-contact
times between sensors are independent and exponentially distributed.

any given time the optimal control will be the same for all
infectives. The choice ofu(t) is subject to:

0 ≤ u(t) ≤ umax. (5)

The above bounds arise from the physical constraints of the
transmitters and also for ensuring that the interference among
simultaneous transmissions remain limited.

Any piecewise continuous functionu : [0, T ] → R such that
the left and right hand limits exist and that satisfies (5) belongs
to the control regiondenoted byΩ. Now, for anyu(·) ∈ Ω,
the state constraints in (3) are satisfied throughout[0, T ].

Lemma 1. For any u(·) ∈ Ω, the state functions(S, I,D) :
[0, T ] → R

3 that satisfy(2), also satisfy(3). Moreover,S(t) ≥
(1 − I0)e

−C1t > 0, I(t) ≥ I0e
−C2t > 0 for t ∈ [0, T ] and

some finiteC1, C2.

Thus, we ignore (3) henceforth. The following proof reveals
thatC1 = βumax +Q(umax) andC2 = ρumax +B(umax).

Proof: According to (2),S, I,D are differentiable, and
therefore, continuous functions of time. Note that att = 0,
by assumption we have0 < I = I0 < 1, and also0 < S =
1 − I0 < 1. Hence, from the continuity ofS, I, it follows
that S > 0 and I > 0 in an interval starting fromt = 0.
SinceD(0) = 0 and Ḋ ≥ 0 in this interval, it follows that
D ≥ 0 in this interval. Next,S + I + D = 1 at t = 0,
however, by summing equations (2a), (2b) and (2c) we have
d
dt (S+ I+D) ≤ 0, and henceS+ I+D ≤ 1 throughout this
interval. Now, if the lemma is not true, from the continuity of
S, I,D, eitherS = 0 or I = 0 or D < 0 or S + I +D > 1
at somet < T . Then there exists a timet∗ such thatS >
0, I > 0, D ≥ 0, S + I + D ≤ 1 in [0, t∗) and S(t∗) = 0
or I(t∗) = 0 or D(t∗) < 0 or S(t∗) + I(t∗) + D(t∗) > 1.
Note thatD(t∗) ≥ 0 and S(t∗) + I(t∗) + D(t∗) ≤ 1 from
the continuity ofS, I,D. For 0 < t < t∗, from (2a) we have
Ṡ ≥ −C1S, whereC1 = (βumax +Q(umax)) . Thus S ≥
S(0)e−C1t, for all 0 ≤ t < t∗ and therefore, due to continuity
of S, S(t∗) > 0. Similarly, for 0 < t < t∗ from (2b) we have
İ ≥ −C2I, whereC2 = ρumax + B(umax). Thus I(t∗) > 0
as well. The result follows from this contradiction.

Once the controlu(·) is selected, the system state vector
(S(·), I(·), D(·)) can be obtained as a solution to (2). The state
and control functions pair((S(·), I(·), D(·)), u(·)) is called an
admissible pairandu(·) is called anadmissible controlif (i)
u(·) is in Ω, and (ii) the pair satisfies (2). If for an admissible
pair ((S, I,D), u),

J(u) ≥ J(u) for any admissible control(u)

then((S, I,D), u) is called anoptimal solutionandu is called
an optimal controlof the problem.

In order to obtain fundamental bounds on the efficacy of
the malware, we assume that it computes its optimal control
assuming full knowledge of the network parameters, such as
β, ρ, initial fractionI0 of the infectives and the countermeasure
functions (Q(.), B(.)), which do not change in[0, T ]. The
damage can only be equal or lower otherwise.
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III. M ALWARE ’ S OPTIMAL CONTROL

We now present a framework using which the malware
can determine itsoptimal control function u(·) and also
compute the maximum value of the damage function. The
main challenge in computing the optimal control is that the
differential equations (2) can be solvedprovided the control
is known. But, sinceΩ consists of an uncountably infinite
number of such controls, an exhaustive search onΩ is ruled
out. This dilemma may however be elegantly resolved using
Pontryagin’s maximum principlewhich we apply next.

We start with by clarifying a notation:u (and other functions
without an underline) represents the optimal control (and func-
tions corresponding to it) whereasu represents an admissible
control. Let((S, I,D), u) be an optimal solution. Consider the
HamiltonianH, and theco-stateor adjoint functionsλ1(t) to
λ3(t) defined as follows:

H := κII + κDD + (λ2 − λ1)βuIS − λ1Q(u)S

−λ2B(u)I + (λ3 − λ2)ρuI (6)

λ̇1 = −
∂H

∂S
= −(λ2 − λ1)βuI + λ1Q(u)

λ̇2 = −
∂H

∂I
= −κI − (λ2 − λ1)βuS + λ2B(u)− (λ3 − λ2)ρu

λ̇3 = −
∂H

∂D
= −κD

(7)

along with the final (ortransversality) conditions:

λ1(T ) = 0, λ2(T ) = KI , λ3(T ) = KD. (8)

Then according to Pontryagin’s maximum principle ( [10,
P.111 theorem 3.14]), there exists continuous and piecewise
differentiable co-state functionsλ1, λ2 and λ3 that at every
point t ∈ [0, T ] whereu(t) is continuous, satisfy (7), (8), and
we have at eacht :

u(t) ∈ arg max
u(t)∈Ω

H(~λ(t), (S(t), I(t), D(t)), u(t)). (9)

Let

ϕ(x) := (λ2 − λ1)βxIS − λ1Q(x)S − λ2B(x)I

+(λ3 − λ2)ρxI. (10)

Note that for eachx ϕ(x) is a continuous function of time.
Maximizing the Hamiltonian as per (9), we obtain:

ϕ(u(t)) ≥ ϕ(u(t)) ∀ t, ∀ admissibleu.

Sinceu = 0 is admissible,ϕ(u(t)) ≥ 0 at eacht. Following
lemma 2, which will come later,λ1, λ2 ≥ 0. Thus:

• concaveQ,B ⇒ ϕ(x) is convex inx at eacht;
• convexQ,B ⇒ ϕ(x) is concave inx at eacht.

We start from the first case, i.e., concaveQ andB, which is
when the sensitivity of the detection, which is equal to the
(partial) derivative ofQ and B with u, reduces with more
intense media access activity of the malware (more aggressive
scanning rates, larger transmission powers). Then, at eacht,

ϕ(x) is convex inx, and its maxima forx ∈ [0, umax] must
occur atx = 0 or x = umax. Hence:

u(t) =

{

0, if ϕ(umax) < 0 at t

umax, if ϕ(umax) > 0 at t.
(11)

If either Q(·) or B(·) is strictly concave,ϕ(x) is strictly
convex inx at eacht, andu(t) ∈ {0, umax} at eacht.

If bothQ andB are convex, then, at eacht, ϕ(x) is concave
in x, and its maxima forx ∈ [0, umax] must occur either at
x = 0, or x = umax, or atx such thatϕ′(x) = 0. Let

ψ := (λ2 − λ1)βIS + (λ3 − λ2)ρI, (12)

C(x) := λ1Q(x) + λ2B(x).

Then:

u(t) =











0, if ψ ≤ C ′(0) at t,

C ′−1(ψ) if C ′(0) < ψ ≤ C ′(umax) at t,

umax, if C ′(umax) < ψ at t,

(13)

whereC ′(x) := ∂
∂xC(x) = λ1Q

′(x) + λ2B
′(x).

Combining (2), (7), (8) and (11) (or (13), depending on the
concavity ofQ andB), we obtain a system of (non-linear)
differential equations with boundary values that involve only
the stateS, I,D and co-stateλ1, λ2, λ3 functions (and not
the controlu). S, I,D, λ1, λ2, λ3 can therefore be obtained
using standard numerical procedures that solve differential
equations [36]. Now, the optimal controlu can be obtained
using the above solutions in (11) (or (13), accordingly).

IV. STRUCTURAL PROPERTIES OF OPTIMUMu

We show that for concaveQ(·), B(·), the optimalu(·) is a
bang-bangfunction of time, that is, at any given time, it is
either at its minimum or maximum possible values,0, umax

respectively (theorem 1). Moreover, the number of jumps it
exhibits between the extreme values is at most two.

We first state the lemma that we will use extensively
hereafter. We appealed to it in section III (after eq. (10)).

Lemma 2. For t ∈ [0, T ) we haveλ1 ≥ 0, λ3 ≥ 0 and
(λ2 − λ1) > 0.

Thus, also,λ2 > 0. The lemma is consistent with the
shadow reward interpretation of co-state functions: shadow re-
wards associated with susceptible, infective and dead nodes are
positive from the malware’s point of view. Also, the infectives
fetch at least as much shadow reward as the susceptibles.

Proof: Referring to (8),λ3(T ) = KD ≥ 0, and at any
t at which u is continuous,λ̇3 = −κD ≤ 0. Also, u and
λ3 are piecewise continuous and continuous functions of time
respectively. Hence, (e.g. by integration)λ3 ≥ 0.

Next, let there exist an interval[t1, T ) over which (λ2 −
λ1) ≥ 0. Then, we show thatλ1 ≥ 0 for t ∈ [t1, T ). Referring
to (7), over this interval, at anyt at which u is continuous,
we have:λ̇1 ≤ Q(umax)λ1. Therefore, from the continuity
of λ1, over this interval,λ1(t) ≥ λ1(T )e

Q(umax)(t−T ). The
result follows sinceλ1(T ) = 0. The entire lemma therefore
follows if we show that(λ2 − λ1) > 0 for t ∈ [0, T ), which
we now set to do.
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Step-1. We show that for someδ > 0, λ2(t)− λ1(t) > 0
for t ∈ [T−δ, T ). Following (8),λ2(T ) = (λ2(T )−λ1(T )) =
KI ≥ 0. If KI > 0, the above holds due to continuity of
λ2−λ1. If KI = 0 andκI > 0, it follows because9 (λ̇2(T−)−
λ̇1(T

−)) = −κI − ρu(T )KD < 0.
Step-2. Let λ2 − λ1 ≤ 0 at somet ∈ [0, T ). Then there

existst∗ such that

for t∗ < t < T : λ2(t) > λ1(t), andλ2(t
∗) = λ1(t

∗). (14)

Thus,λ1 ≥ 0 for t ∈ [t∗, T ).

(λ̇2(t
∗+)− λ̇1(t

∗+)) = −κI −
ϕ(u)

I
− λ1

Q(u)S

I
− λ1Q(u).

(15)

Recall thatϕ(u) ≥ 0. Thus, asκI > 0, it follows from
lemma 1 thatλ̇2(t∗+) − λ̇1(t

∗+) < 0. Sinceu is piecewise
continuous,λ2(t) − λ1(t) is differentiable in(t∗, t∗ + δ) for
someδ > 0. Thus, λ̇2(t) − λ̇1(t) < 0 for all t ∈ (t∗, t∗ + δ)
for some δ > 0. Referring to (14) and the continuity of
λ2(t)−λ1(t), this contradicts the Mean value theorem. There-
fore, λ2 − λ1 > 0 for all [0, T ).

We consider concaveQ and B functions in this section.
From (11), at anyt at whichu is continuous,

ϕ̇(umax)

I
= B(umax)κI + κIρumax − κDρumax

−SβκIumax −Q(u)Sβλ2umax

+Q(umax)Sβλ2u−B(u)λ3ρumax

+B(umax)λ3ρu+B(u)Sβλ1umax

−B(umax)Sβλ1u.

If both Q,B are linear, then

Q(umax)u−Q(u)umax ≡ 0, andB(umax)u−B(u)umax ≡ 0.

The above also holds if eitherQ or B is strictly concave as
thenu(t) ∈ {0, umax} at eacht. Thus, at anyt at whichu is
continuous,

ϕ̇(umax)

I
= κI(B(umax) + ρumax − Sβumax)− κDρumax.

(16)

From (2), lemma 1 and sinceS is a continuous function,S
is also a non-increasing function of time. Hence, asκI >
0, ϕ̇(umax)

I is a non-decreasing function of time, ignoring its
values at the (finite number of) discontinuity points ofu. Also,
S is constant in any interval in whicḣϕ(umax) = 0. Thus,
from (2) and lemma 1 and sinceQ(x) 6= 0 if x 6= 0, u = 0
in any such interval except at the discontinuity points ofu.

Also, from (10),

ϕ(umax)|T = KIβumaxI(T )S(T )−B(umax)KII(T )

+(KD −KI)ρumaxI(T ).
(17)

We are now ready to prove the following theorem:

Theorem 1. Let Q andB be concave. Then for any optimal
u, there existst1, t2 such that0 ≤ t1 ≤ t2 ≤ T, and

9f(t+
0
) , limt↓t0 f(t) andf(t−

0
) , limt↑t0 f(t).

• u(t) = umax for 0 ≤ t < t1 (blitz phase);
• u(t) = 0 for t1 < t < t2 (stealth phase);
• u(t) = umax for t2 < t ≤ T (slaughter phase).

If KI = KD = 0, t2 = T , i.e., the slaughter phase does not
exist.

Proof: (a) First, in any interval in whichϕ(umax) = 0,
ϕ̇(umax) = 0, and henceu = 0 except at the discontinuity
points ofu. (b) Next, consider an interval in whichϕ(umax) ≤

0. Since ϕ̇(umax)
I is non-decreasing (ignoring finite number of

points), and sinceI > 0 (from lemma 1) either the interval
can be divided in (i) two subintervals such thatϕ(umax) = 0
in one, andϕ(umax) < 0 in the other, (ii) or three subintervals
such thatϕ(umax) < 0 in the intermediate andϕ(umax) = 0 in
the boundary ones. Now, from (a) and (11),u = 0 throughout
the interval (except at its discontinuity points) in both cases.

Now, first let ϕ(umax)|T ≤ 0. From (17), this case, for
example, arises whenKI = KD = 0. Again, arguing as in (b),
if ϕ(umax)|t′ > 0, for somet′ ∈ (0, T ), thenϕ(umax)|t > 0
for all t < t′. The lemma now follows from (b) and (11), with
t2 = T and t1 = inf{t : ϕ(umax)|t′ ≤ 0 ∀ t′ ≥ t}. Next,
let ϕ(umax)|T > 0. Let t2 = inf{t : ϕ(umax)|t′ > 0 ∀ t′ >
t}. If t2 = 0, the lemma follows from (11), witht1 = 0.
Otherwise,ϕ(umax)|t2 = 0. The lemma now follows arguing
as in the previous case for[0, t2] rather than[0, T ], and with
t1 = inf{t ≤ t2 : ϕ(umax)|t′ ≤ 0 ∀ t′ ∈ [t, t2]}.

Thus, the malware’s activity can be divided into (at most)
three distinct phases: an initialblitz, an intermediatestealth
and a finalslaughterphase. In the blitz phase, infectives use
the maximum power to spread the infection as aggressively as
possible. During this period, owing to the higher initial number
of susceptibles the benefit of using the maximum power for
spreading the infection prevails over its harms (higher risk of
detection and battery-drainage of the infectives). Subsequently,
that is, after a desired number of infectives have been amassed,
and the number of susceptibles diminished accordingly, the
infectives operate in the stealth mode, altogether ceasingthe
spreading effort, but instead furtively performing other mali-
cious activities such as eavesdropping, analyzing and altering
the sensed data, sabotaging routes,etc. The spreading effort
is eschewed during this period as it merely results in easier
detection and early depletion of the infective nodes’ batteries
rather than substantially enhancing the infection level owing to
the depletion of the susceptibles in the earlier phase. Finally,
the media access activities are resumed with the maximum
power in theslaughterphase, but this time the primary goal
is to kill the infectives by depleting their batteries. If however
the malware does not gain from enhancing the final tally of
the infective and dead nodes, i.e.,KI = KD = 0, then the
final slaughter phase is eliminated.

Remark 1. The simplicity of the optimum attack strategies is
conducive to their implementation using resource constrained
devices. Before the attack is launched, the attacker estimates
the network parameters (e.g.,β, ρ,Q(·), B(·)), the damage
coefficients (κI ,KI , κD,KD) and the initial fraction of in-
fectivesI0 before the immunization and healing would start.
Using the above, it computes the jump pointst1, t2 by solving
a system of differential equations, as described in the last
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paragraph of Section III. Note that existing efficient numerical
algorithms [36] can solve differential equations very fast, and
the computation time is constant in that it does not depend
on the number of nodes. The jump points are subsequently
incorporated in the code of the malware. The infected devices
can execute the attack strategies without any further global
coordination or information exchange.

Theorem 2. For concaveQ,B, if κD ≥ γκI andKD ≥ γKI ,
where γ = (1 +B(umax)/ρumax), the optimalu is umax

throughout[0, T ].

Proof: Using the conditions in the theorem, it follows
from (16) and (17) thaṫϕ < 0 at anyt at whichu is continuous
andϕ(umax)|T > 0. This is becauseI, S > 0 (from lemma 1)
andβ, κI > 0. Sinceu andϕ(umax) are respectively piecewise
continuous and continuous functions of time,ϕ(umax) > 0 at
all t. The theorem follows from (11).

When KD ≫ KI and κD ≫ κI , the malware gains
significantly more from dead nodes than from infectives.
Nevertheless, choosingu = umax facilitates detection of the
malware leading to faster immunization of the susceptibles
and depletes infectives’ batteries faster. Both the above may
slow down the spread of the infection and thereby reduce the
number of dead nodes. The optimality of this extreme choice
is therefore somewhat surprising.

Remark 2. So far, we assumed thatQ(0) = B(0) = 0. This
is the case when detection based on media access activity
of the infectives is crucial in the countermeasures. Using
similar analysis, we can generalize theorem 1 to allow for
Q(0) > 0, i.e., when even without any media access activity
of the malware, susceptibles are immunized. Theorem 2 can
also be generalized to the case in whichQ(0) > 0 and
B(u) = constant≤ Q(0), i.e., the healing is not affected
by the media access activity of the malware. The latter
assumption (B ≤ Q(0)) usually holds in practice as fetching
more complex, and frequently larger, security patches required
for healing incurs larger delays.

V. NUMERICAL COMPUTATIONS

Epidemic models have been validated for mobile wireless
networks through experiments as well as network simula-
tions (see e.g. [26], [27]). Nevertheless, we start with by
independently validating these models using simulations for
a mobile wireless network under two different classes of
contact processes: (i) exponential (ii) truncated power-law.
The inter-contact times between each pair of nodes have been
shown to be exponentially distributed under mobility models
such as random waypoint and random direction [30]. On the
other hand, the inter-contact times have truncated power-law
distributions under the mobility pattern reported in [37] based
on measurements on human mobility during INFOCOM 2005.
Note that each pair is equally likely to contact in the former,
as assumed in Section II-A (this assumption is referred to as
homogeneous mixing in the sequel). Power law distributions
however arise from mobility patterns under which a pair of
nodes that has been in contact in the recent past is more
likely to be in contact at present as compared to a pair that

has been in contact long ago: the mixing is not therefore
homogeneous. The attacker’s optimal control functionu(·)
is calculated using the optimal control framework proposed
in the paper10, and with T = 4 hours, β = 4.46, ρ =
0.8920, Q(u) = 0.1115, B(u) = 0.115π, π ∈ {0, 1}, κI =
40,KD = 50, κD = 0,KI = 0. We considerQ(u), B(u) to
be constants for simplicity. The value ofβ = 4.46 is selected
to match the expected value of the inter-contact times reported
in [37]. We focus on the two extreme values ofπ : π ∈ {0, 1}.
Note that if π = 0 security patches can only immunize the
susceptibles, but ifπ = 1 they heal the infectives as well.
Under the simulated contact processes, the damage is obtained
by integratingκII(t) between0 andT and addingKDD(T )
to the output of the integration, whereI(t), D(t) are the state
processes observed in the simulations andu(t) is the optimal
control function calculated above.

We first describe the results for the exponential contact
process withN nodes. As explained in Section II-A, each pair
of infective-susceptible nodes contact as per an exponential
process with ratêβ, where referring to (1),̂β = β/N. Note that
homogeneous mixing holds for exponential contact processes,
and as discussed in Section II-A, results in [35] predict that
as N → ∞, the sample paths under exponential contact
process will coincide with the solutions of the epidemiological
differential equations ((2)). However, fig. 2(a) reveals that even
for a finite N (e.g.,N = 500) the simulated state fractions
(S(t), I(t), R(t), D(t)), averaged over 100 runs, closely match
the values predicted by the epidemic model. Also, fig. 2(b)
shows that the average damages obtained over100 simulation
runs closely match those predicted by the epidemic model for
different values ofI0, and the standard deviation decreases
with increase inN .

We next describe the results for the truncated power-
law contact process (with parameterα = 0.4 and trun-
cated between 2 minutes and 24 hours) in a network with
N = 41 reported in [37] (based on the measurements on
human mobility during INFOCOM 2005) that does not satisfy
the homogeneous mixing assumption. The epidemiological
differential equations useβ = 4.46 so that1/β equals the
expected value of the inter-contact times between any pair
of nodes under the truncated power-law distribution. As fig.3
shows, the aggregate damage, averaged over 100 runs, follows
similar trends as under the epidemic representations, despite
the mixing not being homogeneous andN being small.

We next investigate, using the epidemiological differential
equations, the nature of the optimal dynamic attack policies
and the damage they inflict for different values of network and
attack parameters. We also compare the efficacy of the optimal
dynamic and static controls. In a static policy, in contrastto
a dynamic policy, the value ofu(t) is fixed throughout the
period of the attack. The optimal static policy is computed
by selecting the above fixed value as the one that maximizes
the damage among choices in the interval[0, 1]. We useρ =
0.0892 and the damage function in (4) withκI = 10, κD =
0, KI = 0 KD = 50 and T = 40. We consider concave

10We use a commercial software PROPTR©launched by Tomlab Optimiza-
tion Inc, (http://tomopt.com/tomlab/ for MATLABR©) for this purpose.
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Fig. 2. The top two figures compare the simulated (averaged over100 runs) and the calculated (from the epidemic model) state trajectories for a network of
N = 500 nodes, and the bottom two figures compare the simulated and calculated damages for different values ofN . The inter-contact times are exponentially
distributed. In all the figures the dashed and the solid linesrespectively represent the calculated values and the simulation results. The error-bars represent the
standard deviations. The dashed and solid lines mostly overlap, and the deviations diminish asN increases.
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Fig. 3. Comparison of the simulated (averaged over 100 runs) damages and calculated (from the epidemic model) damages under power-law distributed
inter-contact times for different value ofI0.

Q,B, i.e.,Q(u) = 0.0446 + 0.0223u andB(u) = 0.0446π +
0.0223u, with π ∈ {0, 1}, except for fig. 5(a) and 5(b) where
Q,B are strictly convex:Q(u) = 0.0446 + 0.0223u3/2 and
B(u) = 0.0446π + 0.0223u3/2.

In fig. 4(a) and 4(b), we have depicted both the optimal
controls and the fraction of infectives as functions of time
for different values ofβ. In figures 4(c) and 4(d), we have
depicted the above for different values ofI0. Note that for
π = 1, unlike for π = 0, the level of infection drops during
the interval ofu = 0, asB(0) > 0 in the former case. Also, for
bothπ ∈ {0, 1}, the evolution of the level of infection indicate
that the initialu = umax phase is primarily aimed at the spread
of the malware and the finalu = umax phase chiefly increases
the final tally of the dead. Fig. 4(c) and 4(d) reveal that the
initial phase is shorter for higherI0, however, the final killing
phase is less affected by varyingI0. The optimum control
have two jumps in all the above, even forπ = 1 andB(·) 6=
constant. Recall that the structure of the optimal control in
the latter case, as also whenB,Q are strictly convex, is not
predicted by any of our theorems and their generalizations,
namely Remark2. As fig. 5(a) and 5(b) reveal, the optimal
controls for strictly convexB andQ, are similar to those for
concaveQ andB (fig. 4(a) and 4(b)) except that the transitions
between different phases are continuous rather than abrupt.

Fig. 6 and Fig. 7 show that the optimal dynamic attack
policy yields higher damages than the optimal static choiceof
u. The differences are significant forπ = 0.

We have so far assumed that the malware computed the
optimum attack strategies assuming full knowledge of the
network parameters. However, an attacker may only have a
rough estimate of the values of the parameters. Here, we
investigate the impact of this inaccuracy on the efficacy of

the attack. First, we derive the optimal dynamic and static
controls assuming certain values for network parameters. Then
we apply the same (dynamic and static, resp.) policies to a
network in which the real value of one parameter (e.g.,β) is
different from the assumed value. Then we plot the amount
of reduction in the total damage due to applying these sub-
optimal policies as a function of the assumed (i.e., estimated)
value of the parameter in question. The reduction is the differ-
ence between the damages inflicted by the sub-optimal policy
(the dynamic and static optimal control calculated based on
the inaccurate estimate of the parameter under consideration)
and the optimal (dynamic) policy for the accurate value of
that parameter. As fig. 8(a) shows, the damage reduction due
to inaccurate estimation ofβ is insignificant for the dynamic
policy. Also, the dynamic policy calculated based on the
inaccurate estimate inflicts significantly higher damages than
the static policy calculated using the same estimate - thus the
dynamic policy retains its advantage over the static even in
presence of estimation errors. Similar calculations for varying
Q and B suggest the same behavior (figures 8(b) and 8(c)
respectively). Optimal dynamic policies are therefore robust
to errors in the estimation of the parameters of the network -
yet another negative result from the defence point of view.

VI. CONCLUSION

We showed that attackers can inflict the maximum possible
damage by executing simple dynamic media access strategies.
These dynamic strategies are robust to the inaccurate estima-
tion of the network parameters and inflict higher damages than
the best static policies. The attackers are therefore likely to
prefer dynamic choices, and hence countermeasures should
be designed to adequately defend against them.
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Fig. 7. Comparison of the damages for optimal dynamic and static policies for differentI0, π. Hereβ = 0.446.

The deterministic epidemic models considered in the paper
are guaranteed to accurately model the spread of the malware
only when the network has a large number of nodes and the
nodes mix homogeneously. Most current wireless networks
have a large number of nodes. Homogeneous mixing does not
however hold in some networks: a node may only be in contact
with a proper subset of nodes, e.g., when the nodes are moving
slowly or moving in clusters, and the locality of infection plays
a significant role in such networks since the infection may
spread based on the contact list of the infectives. Designing the
maximum damage attacks when either of these assumptions is
relaxed remains open.

We have so far considered attacks with only one kind
of malware and also that patching renders a node immune.
Karyotis et. al. [38] have analyzed attacks where different
kinds of malwares are seeking to simultaneously infect the
nodes, and the patching against one kind of malware does not
provide immunity against others - nodes may therefore return
to susceptible states after recovery. They have however con-
sidered only static choice of malwares’ parameters and only
two networks states: susceptible and infected. Generalization
of the framework proposed in the paper so as to characterize
the maximum damage attacks under dynamic optimal control
of the malwares’ parameters in presence of multiple malwares
and multiple network states (susceptible, infected, recovered,
dead) constitutes an interesting direction for future research.

An interesting direction for future research is to develop
attack strategies that are provably robust to errors in estimation
of the parameters of the epidemiological differential equation
(β, ρ, I0, B(·), Q(·)), e.g., a control function that minimizes
the maximum damage over a range of values of the parame-
ters and certain classes of functionsB(·), Q(·). Formulating
stochastic optimal control problems that consider the above
parameters as random variables and lend to the maximum
damage attack strategies that seamlessly adapt to their dynamic
fluctuations also remain open.

We have so far evaluated the efficacy of the attack through
simulations and numerical computations; evaluation through
implementation in a sensor network testbed in presence of a
variety of existing defense schemes remains open.
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Fig. 4. Optimal controls and the corresponding levels of infection for different
β, I0, π. In figs (a) and (b),I0 = 0.1, and in figs (b), (c),β = 0.446. In
each, the plots that are always below0.4 representI(·). In figs (a), (b) ((c),
(d), resp.) the higher infection levels are for the largerβ’s (I0’s, resp.).
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