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Abstract—Developing reliable security measures against out-
breaks of malware will facilitate the proliferation of wireless
sensing technologies. The first step toward this goal is to investi- Qu)S /
gate potential attack strategies and the extent of damage thegan
incur. The malware at each infective node may seek to contact B(u)!
more susceptible nodes by amplifying the transmission range

and the media scanning rate and thereby accelerate its spread. BulS

This may however lead to (a) easier detection of the malware pul
and thus more effective counter-measure by the network, and \
(b) faster depletion of the battery which may in turn thwart

further spread of the infection and/or exploitation of that node.
We assume the viewpoint of the malware and cast the problem of
dynamically selecting the transmission range and media access

rate of the infective nodes as an optimal control problem. We Fig. 1.  State transitionsS, I, R, D respectively represent susceptible,
utilize Pontryagin’s maximum principle to find an optimum infective, recovered, dead states. Hemgt) is product of the transmission
solution, and prove that the maximum damage can be attained range and media scanning rate of infectives at tim&he parameters, p
using simple three-phase bang-bang strategies. and functionsB(-), Q(-) will be defined in Section II-A.

|. INTRODUCTION (i) quantifying fundamental limits on the damages that the
attackers can inflict on the network by intelligently chawmgi
their actions, and (ii) identifying the optimal actions tialict
Wireless sensor networks consisting of mobile nodes ai& maximum damage. Such quantification is motivated by the
envisioned to facilitate a diverse set of applications mamg fact that while attackers can pose serious threats by dijoi
from environment monitoring to emergency search-anduesahe fundamental limitations of wireless sensor networkishs
operations [1]. Such networks are however prone to the dpress limited energy, unreliable communication, constanhgka
of self-replicating malicious codes known as malware. Tha topology owing to mobility [8], their capabilities may We
malware can be used to initiate different forms of attackse limited by the above as well since they rely on the same
ranging from the less intrusive eavesdropping of the sensestwork for propagating the malware.
data to the more virulent disruption of node functions such Malware spreads during data or control message transmis-
as relaying and establishing end-to-end routes (e.g.hselek sion from nodes that are infecteihfective$ to those that
attacks [2]), or even destroying the integrity of the in 8@@n are vulnerable, but not yet infectedusceptibles Counter-
sensed data, as in unauthorized access and session tgjackieasures can be launched by installing security patchés tha
attacks [3], [4]. Malware can moreover deplete the energyther heal the infectives orimmunize the susceptibles by
reserves of the sensor nodes and render them dysfunctiam@hoving the malware and rectifying the underlying vulrera
either deliberately or as a result of aggressive media accedlity. Nodes that have been immunized or healed are robust
attempts in attempt to infect others. The economic vigbilitagainst future attacks and denotedrasovered A node that
of the investments on the sensing infrastructure is theeefthas lost its battery reserve, is denoteddasd since it can
contingent on the design of effective security countermezss not function any longer. Depending on whether the malware
The first step in devising efficient countermeasures is tisains an infective’s battery before the infective fetclees
anticipate the hazards and understand the threats thé&sattagatch, its state changes to dead or recovered. Susceptibles
pose, before they are launched [5]. Specific attacks sudieaseither become infectives or recovered depending on whether
wormhole [6], sinkhole [2], and Sybil [7], that utilize vidn- they communicate with infectives before installing thechas.
abilities in the routing protocols in a wireless sensor meky Figure 1 illustrates the state transitions.
and their counter-measures, had been investigated prelgcti The attack seeks to infect and kill as many nodes as
We pursue the complementary but closely related goals pdssible, use the malware in the infectives to disrupt thetsho

as well as the network functions while being cognisant of the
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decision of the malware pertains to its optimal use of thectivities of the infected nodes, seeking primarily to kilem
available energy of the infective nodes. The infectivesarat by depleting their residual energy reserves. In optimatrobn
given time, can accelerate the rate of spread of the malwaeeminology [10], we have proved that the optimal strategyg h
by increasing their contact rates with susceptibles byctialg a bang-bangstructure, that is, at any given time, the optimum
higher transmission gains and media scanning rates. Sydwer usage is either at its minimum or maximum possible
a choice, however, (a) can lead to easier detection of tha&lues; also it has at most two jumps between them. Optiynalit
malware, prompting the nodes to fetch appropriate patchefsthis simple strategy for this nontrivial problem is susprg.
sooner, and (b) depletes the infectives’ energy resensatsrfaFinally, our numerical computations reveal that the agack
which in turn limits the spread of the infection and alsean inflict substantially higher damage by dynamicallyheat
their other malicious activities such as eavesdroppiraffitr than statically, choosing the infectives’ transmissiomgeand
destruction,etc. Even if the malware’s goal is to render themedia scanning rates, and the attack is robust to errors in
nodes dysfunctional, early loss of infectives due to thaitdyy estimation of the network parameters (sec. V).
depletion may thwart the spread of the malware. The chadleng
then is to determine the dynamicdilghanging instantaneous
transmission gain and/or media access rate of the infactiv%‘ Related Works
that maximize the overall damage inflicted by the malware. Energy constraints in attacks on mobile wireless networks
have been considered in [11]-[17]. Now, [15]-[17] consider
only detection policies based on the anomalous battery con-
sumption behavior due to the activities of a new malware.
First, we construct a mathematical framework which cqqext, [13] describes a vulnerability in MMS services in
gently models the effect of the decisions of the attackegg|lular networks that enables an attacker to drain theceevi
on the state dynamiCS and their resulting trade-offs tHﬂOUgatteriGS, and []_4] proposes battery depietion througho’.ed
a combination of epidemic models and damage functiofign of sleep cycles of sensors. We focus on managing, rather
(sec.ll). Specifically, we assume that the damage inflictgfan merely depleting, the device batteries for maximiziey
by the malware is a cumulative function increasing in thgyerall damage inflicted on the network which is fosterechbot
number of infected and dead sensors. We assume the viewpgipthe spread of the infection and the battery depletion. The
of the malware, which seeks to maximize the damage Rypsest to our work are [11] and [12] which propose strategie
dynamically selecting the energy usages of its hosts whiigr utilizing the infectives’ available energy so as to iease
assuming full knowledge of the network parameters and the spread of the malware; [11] proposes heuristics which do
counter-measures. The maximum value of the damage fUnCtm provide any damage guarantee, whereas [12] focuses on
then quantifies the fundamental limits on the eiﬁcacy of th_ﬁe static (a_s Opposed to dynamic) optimum choice of the mal-
malware. The damage maximization problem is cast as @@re’'s parameters. Also, [12] considers a S-I-S systemavher
optimal control problem which can be solved numerically b¥ach node is either infected or susceptible and the infectio
applying Pontryagin's maximum principle [10] (sec.lll).  (healing, resp.) rate of a susceptible (infective, respasthot
Second, we seek to determine whether the optimal strategi@@nge with time. We consider a S-I-R-D system allowing
are simple enough to be pursued by the malware whilgr susceptible, infected, dead and recovered nodes, and th
using resource constrained wireless devices. Our resa¥s hinfection (recovery, resp.) rate of a susceptible (infector
negative connotations from the counter-measures point sﬁisceptible, resp.) dynamically evolves in accordanck thig
VieW, as we show that an attacker can inflict the maXimUﬁhmber of infectives (attacker’s control, resp_)_
damage by using simple decisions. Specifically, if it seeksjpst of the existing work on dynamic control of parameters
to maximize an aggregate over time of the fraction of thef the network (e.g., [18]) or the malware (e.g., [19]) prspo
infective and the dead nodes but is not concerned about theiristic dynamic policies in different contexts, and e
final tallies, the transmission range and media scannirg rgkem using simulations. For example, [19] introduces Istiari
ha.Ve the fOiiOWing Simpie structure: Untii a Certain timbet Strategies for dynamica”y adjusting the transmissionw
malware uses the maximum power to aggressively spreggacker nodes in wireless networks. We instead obtaiclatta
itself, and subsequently it ceases its media access &Hivipyglicies that provably attain the maximum possible damage,
altogether and enters an energy-saving mode while fuytiveing characterize the damage they inflict.
performing its malicious activities like eavesdropping)- a Interestingly, tools from the optimal control theory such a
alyzing sensed data, sabotaging routes, changing @&a, the Pontryagin’s maximum principle have seen limited used
(theorem 1, sec. IV). Thus, the attack consists of an irtié¢ i, context of network security - [20] and our previous works
phase and a subsequestealthphase. If, on the other hand,[21]_[24] constitute notable exceptions. [20] formulatbe
the malware seeks also to increase the final tally of the deggye-off for optimal treatment of the infective nodes irred
nodes, then a finalaughterphase follows the initiablitz and networks, but does not establish any structural property of
intermediatestealthphases. In the final slaughter phase, thge optimal policy. In [21], we propose to slow down the

malware resumes, at the maximum power, the media accggfead of malware by reducing the reception gain of nodes
1 . - _ ) and attain desired tradeoffs between security risks ansarnlet
A dynamic strategy allows the decision variables to vary withe,

whereas a static strategy chooses their valugs=at0 and does not change quality of .SerViC_e through the dynamic .optimlal control _Of
them subsequently. the reception gain. In [23], [24], we obtain optimal patchin
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strategies that attain desired tradeoffs between secuskg A.%> Specifically, ny o i. Let u(¢t) be the product of the
and bandwidth consumption in patch dissemination. In [24hfective’s transmission range and its media scanning ahte
we have considered the transmission range of the infectiveése ¢. Then, the malware is transmitted between a given
and the rate of killing as two independgpérameters of the infective-susceptible pair as per an exponential rand@ogss
malware, and have optimized them to inflict the maximumwhose rate at any given times Bu(t), where = 1. The
damage. The malware chooses the transmission range subjeaiivare regulates the spread of the infection by contllin
to a power budget which ensures that every infective’s batteu(t) through appropriate choice of its transmission gain and
lasts the entire duration of interest, and kills an infextiy media scanning rate.
executing a code that damages its hardware. In contrasf, herThe security patches are installed at an infective (suscept
we allow the death rate of the infectives to increase withle, respectively) after exponentially distributed ramdtmes
increase in energy consumed in media access. Also, aggresstarting from when it is infectedt (= 0, respectively). The
media access exposes an anomaly and leads to earlier detecielays account for the time required in detection of infatti
of the malware and therefore faster recovery of the nodes.and fetching the appropriate patch, etc. We denote the im-
munization and healing rates respectively@®yu) and B(u).
Il. SYSTEM MODEL A larger transmission range and a higher scanning rate leads
A. Dynamics of State Evolution Fo faster detection of the malware [15], [31], and therefore
increases the overall recovery rate. Th@g;) and B(-) are

Let the total number (_)ffnoo_les in the net\évorkdb:;a LG(‘;[ thz non-decreasing functions of We assume thaf(z) > 0 if
qumber of susceptible, infective, recovered and dead na €% >0.1n practice, the advantage of easier detection starts to
time ¢ be denoted by.s(t),n;(t),ng(t) andnp(t), respec-

. ; ¢ saturate with increase im, thus bothB(-) andQ(-) are likely
tively, and the corresponding fractions I5&t) = ns(t)/N, 15 pe concave, though we allow them to be convex aswell
I(t) = ni(t)/N, R(t) = ng(t)/N, and D(t) = np(t)/N \ye assume thap(-) and B(-) are differentiable functions af,
(Table 1) respectively. Then§(¢) + I(t) + R(t) + D(t) = 1. 44 alsoQ(0) = B(0) = 0, i.e., no spreading/battery drainage
attempts of the malware results in zero recovery rate, thoug

S(t) | fraction of the susceptible nodes . S .
1(¢) | fraction of the infective nodes we relax this latter assumption in Remark 2. Finally, wewllo
R(t) | fraction of the recovered nodes Q(-), B(-) to be different functions as different patches may be
D(t) | fraction of the dead nodes required for immunization and healing, as the former ingslv
TABLE | only rectification of the vulnerability that the malware &igs,
LIST OF NOTATIONS OF MEASURES whereas the latter involves the removal of the malware as

well. For instance, while StackGuard programs [32] immaniz
the susceptibles by removing the buffer overflow vulnerghbil
At the time of the outbreak of the infection, that is at tim¢hat the SQL-Slammer malware [33] exploits, specialized
zero, some but not all nodes are infected I(0) =1, < 1. patches [34] are required to remove the malware from (and
For simplicity, let R(0) = D(0) = 0. Thus,S(0) =1 — I,. thereby heal) the infectives.

We now model the dynamics of infection propagation using Nodes have random amounts of initial (i.e.,tat 0 when
epidemic models based on the classic Kermack-Mckendrithe attack starts) energy reserves. The energy consumption
model [25]. Experiments as well as network simulations hawiring normal operations (i.e., when a node is susceptible o
validated that such models provide an acceptable repeesemngécovered) is negligible as compared to that in media access
tion for the spread of malware in mobile wireless networksf the infectives - the former is therefore assumed to be
(see e.g. [26]-[28]) - we independently validate them ipero? The energy depletion time of an infective’s battery
Section V. Nodes are roaming in a vast 2-D region of ateawill therefore be random with a distribution that depends
with an average velocity. An infective spreads the malwareon its media access activities - we assume this time to be
to a susceptible while transmitting data or control messagexponentially distributed with ratpu(t) at time ¢t. Here, p
to it. An infective transmits a message to a susceptible wikk a positive coefficient. Note that the exponential assionpt
a given probability whenever the two are @ontact that is, has been made for convenience of analysis. Also, the depleti
the susceptible is in the transmission range of the infectivate must be an increasing function @f we assume it to be
This probability is a linear function of the rate at which the linear function, since: can not be large in order to avoid
infective scans the media in search of susceptibles nearipyerference. Since the malware might not know the remginin
and the proportionality constant is determined by the nugEssanergy, the selected(¢) at a given node at a givenis not a
collision probabilityr; which depends on the medium accesfiunction of its (or others’) residual energies.
protocol used and also on the node density/4). When
the communication range of the nodes is small ComparedUnder mobility models such as random waypoint or random doe¢29],
to 4 (which is usually the case in mulihop networks), e Vel aL X0l aue shoun s o be the case when e conmuncator
is essentially determined by the node densify/{l). We computations [30] reveal that these assumptions can be yargjeixed.
assume that the time between consecutive contacts of dispeci®The detection may also be affected by the fraction of infentaes, which

pair of nodes isexponentiallydistributed with a rate that is ¢an be incorporated by allowing(-), 5() to be functions of bothu and /.
4The formulations presented in Sections Il and Il easily edtevhen this

linearly depende_nt Orl the communication range of the noa%%umption is relaxed, by allowing a transition from the spsble state to
and the proportionality constanmp depends only oy and the dead state (fig. 1).



Following the conditions assumed for the model, the numbany given time the optimal control will be the same for all
of nodes of each type evolves according to a pure junipfectives. The choice ofi(t) is subject to:

Markov chain with state vectdiS(¢), I(t), D(t), R(t)). Since

for all t, S(t) + I(t) + D(t) + R(t) = 1, the state of the

Markov chain is three dimensional. Let
B= lim NS.

N—o0

@)

Let 5 > 0. Now?, using the results of [35], it can be shown

that, asV grows,S(t), I(t) andD(t) converge to the solution
of the following system of differential equatiofis:

S(t) = —Bu(t)I()S(t) — Q(u(1)S(2), (2a)
i(t) = Bu(t)I(H)S() — Bu(®)I(t) - pu()I(t), (2b)
D(t) = pu(t)I(t), (20)
with S(0) =1 — Iy, I(0) = Iy, D(0) =0, (2d)

and also satisfy the following constraints at all
0<S(t),I(t),D(t)andS(t) +I(t) +D(t) <1. (3)

The convergence is in the following sense:

Ve>0Vt>D0, mPr{sup\nST(T)—S(T)|>e}:O

li
N—o0 T<t

and likewise forI(t) and D(t).

0 < ult) < Unmax- ®)

The above bounds arise from the physical constraints of the
transmitters and also for ensuring that the interferencengm
simultaneous transmissions remain limited.

Any piecewise continuous functian: [0,7] — R such that

the left and right hand limits exist and that satisfies (5phgb

to the control regiondenoted by2. Now, for anyu(-) € Q,

the state constraints in (3) are satisfied througHoLT).

Lemma 1. For any u(-) € €, the state function$sS, I, D) :
[0, T] — R? that satisfy(2), also satisfy(3). Moreover,S(t) >
(1 — Ip)e=1t > 0, I(t) > Ipe=“2t > 0 for t € [0,T] and
some finiteC1, Cs.

Thus, we ignore (3) henceforth. The following proof reveals

that Cl = 5umax + Q(umax) and CQ = PUmax + B(umax)~
Proof: According to (2),5,1, D are differentiable, and

therefore, continuous functions of time. Note thattat 0,

by assumption we have < I = I, < 1, and also0 < S =

1 — Iy < 1. Hence, from the continuity of, I, it follows

that S > 0 and I > 0 in an interval starting fromt = 0.

Since D(0) = 0 and D > 0 in this interval, it follows that

D > 0 in this interval. Next,S +1 + D = 1 at¢ = 0,

Henceforth, wherever not ambiguous we drop the depetPwever, by summing equations (2a), (2b) and (2c) we have

dence ofS(t), I(t), D(t),u(t) ont and make it implicit. Fig. 1
illustrates the transitions between different states afeso

B. Maximum Damage Attack

4 (S+1+D) <0, and henceS + I+ D < 1 throughout this
interval. Now, if the lemma is not true, from the continuitfy o
S,I,D, eitherS=0o0orI=0orD<0orS+I1I+D>1
at somet < T. Then there exists a timg such thatS >
0,I >0,D>0,S+1+D<1in]0,¢t*)andS(t*) =0

We consider a malware that seeks to inflict the maximuor I(¢t*) = 0 or D(¢*) < 0 or S(¢t*) + I(t*) + D(t*) > 1.

possible damage in a time windof9, 7] of its choice. It

Note thatD(t*) > 0 and S(t*) + I(t*) + D(t*) < 1 from

benefits over time from the dead and the infected hosts. Re¢he continuity ofS, I, D. For 0 <t < t*, from (2a) we have
that it can use the infectives to eavesdrop, analyze, atter® > —C1.S, where C1 = (Bumax + Q(Umax)). Thus S >
destroy data sensed or relayed by the hosts. It also benefitg)e ', for all 0 < ¢ < ¢* and therefore, due to continuity
by inflicting a large death-toll by the end of the desired timef S, S(t*) > 0. Similarly, for 0 < ¢ < ¢t* from (2b) we have

window. These motivate the following damage function:
T
J = / {kiI(t)+ kpD(t)}dt + K;I(T) + KpD(T). (4)
0

wherexk; > 0 andkp, K7, Kp > 0.

I > —Cyl, whereCy = ptmax + Bltmax). ThusI(t*) > 0

as well. The result follows from this contradiction. [ |
Once the control(-) is selected, the system state vector

(S(+),I(-), D(-)) can be obtained as a solution to (2). The state

and control functions paif(S(-), I(-), D(+)),u(-)) is called an

The malware seeks to maximize the damage function Bgimissible pairandu(-) is called anadmissible controlf (i)
appropriately regulating(t), the product of the transmissionu(-) is in £, and (i) the pair satisfies (2). If for an admissible

range and the scanning rate of the infectiVa&hen sensors

pair ((S,I, D), u),

are moving fast and no sensor has any information about the

location of others, each sensor is equally likely to meet any

other sensor in future irrespective of the phdtherefore, at

5Since8 = 172, andn; depends only on the node density, apdo %,
the limit 3 exists as long as the limiting node dendlityy o N/ A exists.

SVariables with dot marks (e.gS‘(t)) represent their time derivatives (e.g.,

time derivative ofS(t)) and the prime signs (e.gQ’(u)) designate their
derivatives with respect to their argument (e«).,

"The attacker does not control any other parameter such assbesible’s
reception gain, node mobilitiegtc.

8This assumption can be analytically established when ther-odntact
times between sensors are independent and exponentiatijpatied.

J(u) > J(u) for any admissible controu)
then((S, I, D),u) is called amoptimal solutionandw is called
an optimal controlof the problem.

In order to obtain fundamental bounds on the efficacy of
the malware, we assume that it computes its optimal control
assuming full knowledge of the network parameters, such as
B, p, initial fraction I, of the infectives and the countermeasure
functions (.), B(.)), which do not change if0,T]. The
damage can only be equal or lower otherwise.



[1l. M ALWARE’S OPTIMAL CONTROL ©(x) is convex inz, and its maxima forr € [0, tumyax] Must

. . occur atz = 0 Or © = upmax. Hence:
We now present a framework using which the malware max

can determine itsoptimal control function w(-) and also 0, if (tumax) <0 att

compute the maximum value of the damage function. The u(t) = (11)

main challenge in computing the optimal control is that the

differential equations (2) can be solvgdovidedthe control If either Q(-) or B(:) is strictly concavep(x) is strictly

is known. But, since2 consists of an uncountably infiniteconvex inz at eacht, andu(t) € {0, umax} at eacht.

number of such controls, an exhaustive searchois ruled If both Q and B are convex, then, at ea¢hy(z) is concave

out. This dilemma may however be elegantly resolved usifiy z, and its maxima forc € [0, umax] Must occur either at

Pontryagin’s maximum principlevhich we apply next. x =0, Or x = umax, OF atz such thaty’(z) = 0. Let

We start with by clarifying a notation: (and other functions o

without an underline) represents the optimal control (amtf Vo= (e = MBI+ (As = do)ol, (12)

tions corresponding to it) whereasrepresents an admissible C(z) MQ(z) + A2 B(x).

control. Let((S, I, D), u) be an optimal solution. Consider ther,qp,.

Hamiltonian H, and theco-stateor adjoint functionsA; (¢) to

As(t) defined as follows: 0, it ¢ <C"(0) att,

u(t) = C" () if C'(0) <9 < C'(umax) att, (13)
Umax, if C'(umax) < att,

Umax if @(umax) >0 att.

H = HII+I<:DD+()\2—Al)ﬁuIS—)\lQ(u)S
—)\QB(U)I + ()\3 — )\g)pul (6)
whereC'(z) := 2C(z) = M Q'(x) + N2 B/ ().

xr

. OH Combining (2), (7), (8) and (11) (or (13), depending on the

M=—5g = —(A2 = A)ful + M Q(u) concavity of Q and B), we obtain a system of (non-linear)
. 0OH differential equations with boundary values that involudyo

Az = Tor T M T (A2 = A)uS + Ao Bu) = (As = Aa)pu o stateS, I, D and co-state\;, A2, A3 functions (and not

S — _37H — the controlu). S, I, D, A, A2, A3 can therefore be obtained
3 oD P using standard numerical procedures that solve diffeaknti

) equations [36]. Now, the optimal contral can be obtained
along with the final (ottransversality conditions: using the above solutions in (11) (or (13), accordingly).
M(T)=0, X(T)=Kr, M(T)=Kp. (8) IV. STRUCTURAL PROPERTIES OF OPTIMUMu

Then according to Pontryagin's maximum principle ( [10, We show that for concave)(-), 5(-), the optimalu(-) is a

P.111 theorem 3.14]), there exists continuous and pieeewR@ng-bangfunction of time, that is, at any given time, it is
differentiable co-state functions;, \» and \; that at every ©ither atits minimum or maximum possible valuéstimax

point ¢ € [0, T] wherew(t) is continuous, satisfy (7), (8), andrespectively (theorem 1). Moreover, the number of jumps it
we have at each: exhibits between the extreme values is at most two.

We first state the lemma that we will use extensively
u(t) € arg max H(X(t),(S(t),1(t), D(t)),u(t)). (9) hereafter. We appealed to it in section Ill (after eq. (10)).

u(t)eQ
Lemma 2. For t € [0,7) we haveA; > 0,A3 > 0 and
Let (A2 — A1) > 0.
o) := (A —A\1)BzIS — M Q(x)S — Moy B(z)I Thus, also,A2 > 0. The lemma is consistent with the

+(X3 — Ag)pzl. (10) shadow reward interpretation of co-state functions: shaeoe
wards associated with susceptible, infective and deadshade
Note that for eachr () is a continuous function of time. positive from the malware’s point of view. Also, the infeets
Maximizing the Hamiltonian as per (9), we obtain: fetch at least as much shadow reward as the susceptibles.
Proof: Referring to (8),A\3(T) = Kp > 0, and at any
t at whichu is continuous,j\g = —kp < 0. Also, v and
A3 are piecewise continuous and continuous functions of time
respectively. Hence, (e.g. by integratioky > 0.
) ] Next, let there exist an interval,,T) over which (\y —
« concaveQ, B = ¢(x) is convex inz at eacht; A1) > 0. Then, we show thak; > 0 for t € [t;,T)). Referring
« convex@, B = ¢(x) is concave inz at eacht. to (7), over this interval, at any at which« is continuous,
We start from the first case, i.e., concageand B, which is we have:\; < Q(umax)N1. Therefore, from the continuity
when the sensitivity of the detection, which is equal to thef \;, over this interval,\;(t) > A (T)e@mez)(t=T) The
(partial) derivative of@) and B with w, reduces with more result follows since\; (7)) = 0. The entire lemma therefore
intense media access activity of the malware (more aggeesdollows if we show that(A2 — A1) > 0 for ¢ € [0,7T), which
scanning rates, larger transmission powers). Then, at €ackve now set to do.

p(u(t)) > e(u(t)) vV t, v admissibleu.

Sinceu = 0 is admissiblep(u(t)) > 0 at eacht. Following
lemma 2, which will come later\;, A\ > 0. Thus:



Step-1. We show that for somé > 0, A\2(t) — A\ (¢) > 0 o u(t) = umax for 0 <t < t; (blitz phasg;
fort € [T—6,T). Following (8),A2(T) = (A(T)— M (T)) = o u(t) =0 for t; <t <ty (stealth phage
Kr > 0. If K; > 0, the above holds due to continuity of e u(t) = umax for to <t < T (slaughter phage
A2—A1. If Ky =0andk; > 0, it follows becaust(\2(T7)—~ If K; = Kp =0, t, =T, i.e., the slaughter phase does not
)\1(T_)) = —KJ — pu(T)KD < 0. exist.
Step-2. Let Ay — A\; < 0 at somet € [0,T). Then there

existst* such that Proof: (a) First, in any interval in whicho(umax) = 0,

H(umax) = 0, and hencew = 0 except at the discontinuity
for t* <t <T: X(t) > M (t), and Xo(t*) = A\ (¢*). (14) points ofu. (b) Next, consider an interval in whigh(umax) <
0. Since@ is non-decreasing (ignoring finite number of
points), and sincd > 0 (from lemma 1) either the interval
o . p(u Q(u)S can be divided in (i) two subintervals such thatu,.x) = 0
(Mo (t77) = M (")) = —rs — (] = At (]) —MQ). one, andp(umax) < 0 in the other, (ii) or thr2§ subir)ltervals
(15)  such thatp(umay) < 0in the intermediate ang(tuyax) = 0 in
the boundary ones. Now, from (a) and (1i)—= 0 throughout
lemma 1 that)(g(t*+) — X (t*+) < 0. Sincew is piecewise the inter\{al (except at its discontinuity points) ip botlses.
continuous Ay (t) — A1 (¢) is differentiable in(t*,* + &) for Now, first let ¢(umax)|r < 0. From (17), this case, for
somes > 0. Thus,Xg(t) _ Xl(t) <0 forall t € (t*,t* + 9) example, arises wheli; = Kp = 0. Again, arguing as in (b),

for someé > 0. Referring to (14) and the continuity of if ‘p(“ma"”f' > 0, for somet” € (0,T), then p(umax)l: > 0.
Xa(t)— Ay (£), this contradicts the Mean value theorem. Therd9" @ll < #'. The lemma now follows from (b) and (11), with
fore, A — Ay > 0 for all [0, 7). m 2 =Tandt; = inf{t : p(umax)le < 0V ¢" >t} Next,

— 3 . !
We consider concavé) and B functions in this section. '€t ‘pf(“maX)'T >h0. ILet t2 p 1|r|1f{t 'f@(uma")lt' > a\f r>
From (11), at anyt at whichw is continuous, t}. | tz = 0, the lemma follows from (11), witft; = 0.
Otherwise,p(umax)|t, = 0. The lemma now follows arguing

Thus,\; >0 for ¢ € [¢t*,T).

Recall thatp(u) > 0. Thus, asky > 0, it follows from

@ (Umax) = B(tmax)K1 + K1 Ptmax — KppU as in the previous case f, ¢;] rather than0, T, and with
T max VL 1 Plmax D Plimax ty = nf{t < to: Q(tmax)|er <OV ¢ € [t ta]}. n
=SBk rUumax — Q(u)SBA2Umax Thus, the malware’s activity can be divided into (at most)
+Q (Umax ) SBA2u — B(u)A3ptimax three distinct phases: an initiélitz, an intermediatestealth
4B (tmax) A3pu + B(u)SBA Urmax and a finalslaughterphase. In the blitz phase, infectives use

— Bluma) SBA U the maximum power to spread the infection as aggressively as

max L possible. During this period, owing to the higher initiahmper

If both @, B are linear, then of susceptibles the benefit of using the maximum power for
spreading the infection prevails over its harms (highet of

Q(Umax)t — Q(w)tmax = 0, and B(umax)u — B(u)umax = 0. detection and battery-drainage of the infectives). Subbsety,

that is, after a desired number of infectives have been adass

and the number of susceptibles diminished accordingly, the

infectives operate in the stealth mode, altogether ceasiag

The above also holds if eith&p or B is strictly concave as
thenu(t) € {0, umax} at eacht. Thus, at anyt at whichu is

continuous, _ . . . .
) spreading effort, but instead furtively performing othealim
<P(u}nax) = k1 (B(tmax) + Pimax — SBumax) — KDPUmax. ~ CIOUS activities such as eavesdropping, analyzing andrajte

the sensed data, sabotaging routss, The spreading effort
(a6) . ! . : : . .
is eschewed during this period as it merely results in easier

From (2), lemma 1 and sinc& is a continuous functiony detection and early depletion of the infective nodes’ Ivitte

is also a non-increasing function of time. Hence,x@s> rather than substantially enhancing the infection levehgwo

0, W is a non-decreasing function of time, ignoring itshe depletion of the susceptibles in the earlier phase.llina

values at the (finite number of) discontinuity pointsuofAlso, the media access activities are resumed with the maximum

S is constant in any interval in whicly(umax) = 0. Thus, power in theslaughterphase, but this time the primary goal

from (2) and lemma 1 and sin@@(x) # 0 if z # 0, w = 0 is to kill the infectives by depleting their batteries. Ifvnever

in any such interval except at the discontinuity points:of the malware does not gain from enhancing the final tally of
Also, from (10), the infective and dead nodes, i.&; = Kp = 0, then the

final slaughter phase is eliminated.
P(tma) [T = K1 Bt (T)S(T) — Bltma) K1 1(T) ghter p
H(Kp — K1) ptmax(T). Remark 1. The simplicity of the optimum attack strategies is
e (17) conducive to their implementation using resource consed
devices. Before the attack is launched, the attacker estgna

We are now ready to prove the following theorem: the network parameters (e.g3, p,Q(-), B(-)), the damage
Theorem 1. Let Q and B be concave. Then for any optimalCoefficients 1, K7, xp, Kp) and the initial fraction of in-
u, there existg, ¢, such thatd < t; < ¢, < T, and fectivesl, before the immunization and healing would start.

Using the above, it computes the jump poihtss by solving
Of(td) £ limy g, £() and f(ty) £ limygy, f(2). a system of differential equations, as described in the last



paragraph of Section Ill. Note that existing efficient nuicer has been in contact long ago: the mixing is not therefore
algorithms [36] can solve differential equations very famhd homogeneous. The attacker's optimal control functian)
the computation time is constant in that it does not depeisl calculated using the optimal control framework proposed
on the number of nodes. The jump points are subsequerntlythe papel®, and with T = 4 hours3 = 4.46,p =
incorporated in the code of the malware. The infected device.8920, Q(u) = 0.1115, B(u) = 0.1157, 7 € {0,1},k; =
can execute the attack strategies without any further dlob#0, Kp = 50,xp = 0, K; = 0. We considerQ(u), B(u) to
coordination or information exchange. be constants for simplicity. The value 6f= 4.46 is selected
to match the expected value of the inter-contact times tegor
in [37]. We focus on the two extreme valuesmof = € {0,1}.
Note that if ¥ = 0 security patches can only immunize the
susceptibles, but ift = 1 they heal the infectives as well.
Proof: Using the conditions in the theorem, it followsUnder the simulated contact processes, the damage is ethtain
from (16) and (17) thap < 0 at anyt at whichu is continuous by integratingx;I(t) between) andT and addingK » D(T)
andp(umax)|T > 0. This is becausé, S > 0 (from lemma 1) to the output of the integration, whefét), D(t) are the state
andg, k; > 0. Sinceu andp(umax) are respectively piecewiseprocesses observed in the simulations afy is the optimal
continuous and continuous functions of tim&u.,.,) > 0 at control function calculated above.
all t. The theorem follows from (11). u We first describe the results for the exponential contact
When Kp > K; and kp > &k, the malware gains process withV nodes. As explained in Section II-A, each pair
significantly more from dead nodes than from infectivesf infective-susceptible nodes contact as per an expalenti
Nevertheless, choosing = u,.x facilitates detection of the process with rat@, where referring to (1)3 = 8/N. Note that
malware leading to faster immunization of the susceptibl@®mogeneous mixing holds for exponential contact prosgsse
and depletes infectives’ batteries faster. Both the abosg mand as discussed in Section II-A, results in [35] predict tha
slow down the spread of the infection and thereby reduce the N — oo, the sample paths under exponential contact
number of dead nodes. The optimality of this extreme choigeocess will coincide with the solutions of the epidemiddad)
is therefore somewhat surprising. differential equations ((2)). However, fig. 2(a) revealatteven

Remark 2. So far, we assumed th&(0) = B(0) = 0. This for a finite N (e.g., N = 500) the simulated state fractions

is the case when detection based on media access acti}(/iff‘gw’j(t)’R(t)’D(t))’ averaged over 100 runs, closely match

of the infectives is crucial in the countermeasures. Using,‘0 Vzlgﬁ; fggtcgerg Zy dt;];ae%'g%n;;r?;céd&e:.lﬁlo’lgt%nz(b)
similar analysis, we can generalize theorem 1 to allow fo W verag g ! imutat

Q(0) > 0, i.e., when even without any media access activityns closely match those predicted by the epidemic model for

of the malware, susceptibles are immunized. Theorem 2 c(ﬁ erent values oflp, and the standard deviation decreases

also be generalized to the case in whi¢0) > 0 and with increase mN..

B(u) = constant< Q(0), i.e., the healing is not affected We next describe the results for the truncated power-
by the media access activity of the malware. The Iatt)e"’?W got:'taCt pro;:ess_: (with pzrazrzert]e[ . O 4 and trulg- ith
assumption B < Q(0)) usually holds in practice as fetching©at€d between 2 minutes an ours) in a network wit

more complex, and frequently larger, security patchesirequ h = 41 riﬁprt(;d .in [37] (based on th?} mgasurement§ on
for healing incurs larger delays. uman mobility during INFOCOM 2005) that does not satisfy

the homogeneous mixing assumption. The epidemiological
differential equations us@ = 4.46 so that1/8 equals the
expected value of the inter-contact times between any pair
Epidemic models have been validated for mobile wirelesg nodes under the truncated power-law distribution. As3ig.
networks through experiments as well as network simulghows, the aggregate damage, averaged over 100 runs,gollow
tions (see e.g. [26], [27]). Nevertheless, we start with bymilar trends as under the epidemic representations,itdesp
independently validating these models using simulatians fthe mixing not being homogeneous aidbeing small.
a mobile wireless network under two different classes of \we next investigate, using the epidemiological differanti
contact processes: (i) exponential (ii) truncated powei-l equations, the nature of the optimal dynamic attack pdaicie
The inter-contact times between each pair of nodes have begg the damage they inflict for different values of networkl an
shown to be exponentially distributed under mobility medehttack parameters. We also compare the efficacy of the optima
such as random waypoint and random direction [30]. On thgnamic and static controls. In a static policy, in contrtast
other hand, the inter-contact times have truncated poswer-lg dynamic policy, the value of(t) is fixed throughout the
distributions under the mobility pattern reported in [3&Bkd period of the attack. The optimal static policy is computed
on measurements on human mobility during INFOCOM 200py selecting the above fixed value as the one that maximizes
Note that each pair is equally likely to contact in the formethe damage among choices in the interiall]. We usep =
as assumed in Section II-A (this assumption is referred to §$892 and the damage function in (4) with; = 10, kp =

homogeneous mixing in the sequel). Power law distributi0|@§ K; =0 Kp =50 andT = 40. We consider concave
however arise from mobility patterns under which a pair of

r_10des that _has been in contact in the recent past iS. MOy yse a commercial software PROPIRUNched by Tomlab Optimiza-
likely to be in contact at present as compared to a pair th@h Inc, (http://tomopt.com/tomlab/ for MATLA®) for this purpose.

Theorem 2. For concave, B, if kp > vk and Kp > vK7,
where v = (14 B(umax)/PUmax), the optimalu IS uyax
throughout|0, 7).

V. NUMERICAL COMPUTATIONS
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Fig. 2. The top two figures compare the simulated (averagedI®@runs) and the calculated (from the epidemic model) stajectories for a network of
N = 500 nodes, and the bottom two figures compare the simulated anadlateld damages for different values 8t The inter-contact times are exponentially
distributed. In all the figures the dashed and the solid Inespectively represent the calculated values and the diomleesults. The error-bars represent the
standard deviations. The dashed and solid lines mostly ayveand the deviations diminish &é increases.
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Fig. 3. Comparison of the simulated (averaged over 100 runsindas and calculated (from the epidemic model) damages underfaw distributed
inter-contact times for different value df).

Q, B, i.e.,Q(u) = 0.0446 + 0.0223w and B(u) = 0.04467 + the attack. First, we derive the optimal dynamic and static
0.0223u, with 7 € {0, 1}, except for fig. 5(a) and 5(b) wherecontrols assuming certain values for network parametdrsnT
Q, B are strictly convex:Q(u) = 0.0446 + 0.0223u*>/? and we apply the same (dynamic and static, resp.) policies to a
B(u) = 0.04467 + 0.0223u3/2. network in which the real value of one parameter (e&).is

In fig. 4(a) and 4(b), we have depicted both the optimalifferent from the assumed value. Then we plot the amount
controls and the fraction of infectives as functions of timef reduction in the total damage due to applying these sub-
for different values ofS. In figures 4(c) and 4(d), we haveoptimal policies as a function of the assumed (i.e., estutjat
depicted the above for different values ff. Note that for Vvalue of the parameter in question. The reduction is thewdiff
7 = 1, unlike for = = 0, the level of infection drops during €nce between the damages inflicted by the sub-optimal policy
the interval ofu = 0, asB(0) > 0 in the former case. Also, for (the dynamic and static optimal control calculated based on
both7 € {0,1}, the evolution of the level of infection indicatethe inaccurate estimate of the parameter under consideyati
that the initialu = u,., phase is primarily aimed at the spreadnd the optimal (dynamic) policy for the accurate value of
of the malware and the final = u.,. phase chiefly increasesthat parameter. As fig. 8(a) shows, the damage reduction due
the final tally of the dead. Fig. 4(c) and 4(d) reveal that th@ inaccurate estimation of is insignificant for the dynamic
initial phase is shorter for highdp, however, the final killing policy. Also, the dynamic policy calculated based on the
phase is less affected by varying. The optimum control inaccurate estimate inflicts significantly higher damadpes t
have two jumps in all the above, even for= 1 and B(-) # the static policy calculated using the same estimate - theis t
constant. Recall that the structure of the optimal contnol dynamic policy retains its advantage over the static even in
the latter case, as also whéh Q are strictly convex, is not presence of estimation errors. Similar calculations foyivey
predicted by any of our theorems and their generalizatiodg, and B suggest the same behavior (figures 8(b) and 8(c)
namely Remark2. As fig. 5(a) and 5(b) reveal, the optimalrespectively). Optimal dynamic policies are thereforeustb
controls for strictly convexB and @, are similar to those for to errors in the estimation of the parameters of the network -
concave andB (fig. 4(a) and 4(b)) except that the transitionyet another negative result from the defence point of view.
between different phases are continuous rather than abrupt

Fig. 6 and Fig. 7 show that the optimal dynamic attack VI. CONCLUSION
policy yields higher damages than the optimal static chofce  We showed that attackers can inflict the maximum possible
u. The differences are significant far= 0. damage by executing simple dynamic media access strategies

We have so far assumed that the malware computed fhigese dynamic strategies are robust to the inaccurateastim
optimum attack strategies assuming full knowledge of th@n of the network parameters and inflict higher damages tha
network parameters. However, an attacker may only havehe best static policies. The attackers are thereforeylikel
rough estimate of the values of the parameters. Here, wefer dynamic choices, and hence countermeasures should
investigate the impact of this inaccuracy on the efficacy e designed to adequately defend against them.
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