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Abstract

Epidemic models based on nonlinear differential equati@ve been extensively applied in a variety
of systems as diverse as infectious outbreaks, marketifigsidn of beliefs, etc., to the dissemination
of messages in MANET or p2p networks. Control of such systesnashieved at the cost of consuming
the resources. We construct a unifying framework that nwotle interactions of the control and the
elements in systems with epidemic behaviour. Specificalty,considemon-replicative and replicative
dissemination of messages in a network: a pre-determinedf sksseminators distribute the messages
in the former, whereas the disseminator set continuallyvgrin the latter as the nodes that receive
the patch become disseminators themselves. In both cémeslesired trade-offs can be attained by
activating at any given time only fractions of disseminatand selecting their dissemination rates. We
formulate the above trade-offs as optimal control probléha seek to minimize a general aggregate
cost function which cogently depends on both the states hadoverall resource consumption. We

prove that the dynamic control strategies have simple ttres: (1) it is never optimal to activate a
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partial fraction of the disseminators (all or none) (2) whka resource consumption cost is concave,
the distribution rate of the activated nodes are bang-badtigat most one jump from the maximum to
the minimum value. When the resource consumption cost isespriie above transition is strict but
continuous. We compare the efficacy and robustness of eiffetispatch models and also those of the

optimum dynamic and static controls using numerical comiporns.

I. INTRODUCTION

a) Motivation: Epidemic behaviour emerges whenever interactions amoagga humber
of entities affect the overall evolution of the encompagsgstem. Mathematical models based
on nonlinear differential equations have been developet applied in a variety of systems
as diverse as infectious outbreaks [1] and informationudifin in a human society [2], to the
dissemination of messages in MANET [3] or p2p networks [4].atva resource manager of
such systems is interested in is to control the evolutionthefstates. Most often, exertion of a
control incurs a cost, either directly as the control maystwne restricted resources, or indirectly
as it may introduce adverse side effects. Much work has beere th modeling and validating
the epidemic models, relatively less, however, is knownualoptimal control of such systems.
This constitutes the focus of this paper.

Dynamic optimal control is of paramount importance in thewmeking context. One important
example is in countering the spread of a malware in a MANET raline p2p, or a client-server
network. Worms spread fronmfective nodes to vulnerable but not yet infected, isasceptible
nodes, when such a pair communicates, or as we will refer tenvithey contact. Hence, spread
of malware behaves as per an epidemic. Note that a contactemiayl physical proximity,
as in the case of MANETSs, or may represent an opportunity oftration, as in the case

of server-client networks. Worms, as malicious self-regding codes, can disrupt the normal



functionalities of the hosts, steal their private inforraaf and/or use them to eavesdrop on
other nodes. The worm can also render the host dysfunctierml by deliberately draining its
battery as in the case of Cabir worm [5] in a cellular netwonk by executing a pernicious
code that incurs irretrievable critical hardware or sofevdamage say by re-fleshing the BIOS
corruptin gthe bootstrap program required to initialize @S [6]. Such dysfunctional nodes are
referred to aglead. Software patches cammunize susceptible nodes against future attacks, by
rectifying their underlying vulnerability, oheal the infectives and render them robust against
future attacks. Nodes which have been immunized or healedl@noted asecovered. Such
patches can be distributed by mobile agents and/or dowetbxdm designated servers, but patch
distribution consumes both energy and bandwidth (critinalvireless networks), and thereby
incurs a cost that depends on both the number of active dgentsrs and the transmission rates
they use. The incident of Welchia [7], which was designed asumter-worm to defeat Blaster,
demonstrated how unrestrained spread of security pateresmdeed create substantial network
traffic and rapidly destabilize even the well-provisionedwork of Internet. This adverse effect
of application of countermeasures is likely to be aggravatewireless networks, where due
to inherent properties such as interference, intermitieiks, limited battery.etc., the resource
limitations are more stringent.

The security patches can be distributed imoa-replicative or replicative manner (fig.1). In the
former, a number of (mobile or stationary) agents, refeteedsdisseminators, are pre-loaded
with the patch, and other nodes receive it from them. In thdicative model, the receptors,
i.e., the recovered nodes, in addition, become dissemmatiothe security patch themselves -
hence the disseminatorsplicate. The replicative method immunizes nodes more rapidly, as it

has a growing number of disseminators, but at the expensersfuming increasingly larger



amounts of limited underlying resources. Thus, the cho&tevéen the two, and the differences
in their controls are not a priori clear. The overall systenstcdepends on (i) the number of
infectives and dead nodes, and (ii) the resource consumptidistribution of countermeasures.
In both scenarios, dynamic optimal control of the fractidnaotivated disseminators and the
distribution rates of activated nodes can minimize the alVerost and thereby attain desired
trade-offs between network security and resource consampt

A special case of the epidemic evolution in fig.1 also captymopagation of messages in
Delay Tolerant Networks (DTNSs). A server may seek to broatlaamessage to as many nodes
as possible, before a deadline, by employing minimal ressusuch as energy and bandwidth.
In this case, susceptibles are the nodes that are yet toveettes message, and the recovered
are the ones which have received it. Dissemination of thesagges may either be performed
in non-replicative or replicative manner. Infectives arehd nodes are absent in this problem.
The overall ‘cost’ is (i) decreasing in the number of recedk(i.e., recipient) nodes, and is
(i) increasing in the transmission rates of the activatesgeminators. Again, dynamic optimal
control can be utilized to resolve a problem of practical am@nce in the context of networking.

The epidemiological evolution has natural analogues insgiread of a contagious disease in
a human society, with the caveat that the inoculation andifgeprocesses are non-replicative.
The cost is aggregation of infective and dead individual$ twe overall human-hour of trained
staff [8]. Application of the optimal control of epidemia@ial evolution in social context is,
however, not restricted to the containment of contagiogsaties. Another noteworthy problem
is dynamic management of advertising resources in adoptian new technology. We discuss
two practical examples which we refer to Beclamation and Rivalry cases, respectively. First,

consider a simple scenario where (at least initially) modividuals in a society are subscribed to



a specific technology through incumbent company A (e.g., Gaitrfor cable TV in Philadelphia)
- they are the susceptibles. A new technology/company B.,(8@V) aims to capture the
market. They win over some customers, who constitute theerta(infectives). Social exchanges
(contacts) between infectives and susceptibles (conaedssubscribers) may convert the latter.
Company A seeks to regain the share of the market, by recapturingifiggahe infectives
and re-confirming (immunizing) the susceptibles, say vierofg lucrative long-term contracts
(patches) - the resulting pledged subscribers constihgerécovered. New contracts are long-
term and thus the recovered are immune to further changéataption. The reclamation occurs
through the efforts of advertising agents (disseminatet®) communicate to the infectives and
susceptibles through tele-marketing, e-marketing anatvd of mouth. The disseminators may
either be from an initial pool (non-replicative dispatcby,may include the recovered nodes as
well, e.g. by offering pledged subscribers additional merdiscounts through referral rewards,
etc. (replicative dispatch). There is however no “death” in thetting. The overall ‘cost’ for
companyA is (i) increasing in the number of infectives, as they aredhly lost subscribers to
A, and is (ii) increasing in the number of active agents andatheunt of discounts they offer in
order to make the contracts appealing. Thus, optimal (dyejarontrol of activating agents and
selecting discount rates maximizes the net profit for comp&nwhere profit equals the income
generated through subscription minus the cost incurredarketing/advertising over time.

For the second case (Rivalry), suppose that both competimpaoies enter the market for
a new technology at around the same time. Now, susceptibdethase who are yet to choose
either, infectives encompass those who have chdséthe rival), and recovered are those who
have chosem. Both infectives and recovered may convert susceptiblesuicecided) to their

respective groups whenever the respective pairs contagct,terough social communications -



the dispatch is therefore replicative. It is also possibiat some infectives can not be healed
as both companies may offer long-term contracts. The dveost for companyA is similar,
except that it is now decreasing (hence the revenue is isiogain the number of recovered,
as only recovered are subscribed to compani this case.

b) Contributions and Road-map: First, we formulate the minimization of the aggregate
cost associated with epidemic state evolution as an optioraiol problem. The cost represents
a trade-off between desirability/harmfulness of the statd the cost of consuming resources
in order to manage the state. We demonstrate the extent @raay of our model through
different examples. We consider both replicative and repiicative dispatch scenarios and
minimize the overall costs by dynamically selecting thevation of the disseminators and their
distribution rates. We develop a framework for solving than-linear optimal control problem
using Pontryagin’s Maximum Principle [9], [10].

Next, in both non-replicative and replicative settings, prveve that the optimal policies have
the following simple structure: when the resource consionptost is concave, until a certain
time, all disseminators are activated and they distribatelhes at the maximum possible rate, and
subsequently no disseminator is activated until the endh@fsystem operation periods(lI-A
and IV-A). Optimality of a bang-bang control (that is the peoty that it assumes only either
its minimum or maximum possible values at any given time) godntifying the maximum
possible number of jumps to lome are despite the facts that the network state evolutions to no
constitute monotonic functions of time, involve non-linelynamics, the cost functions are not
assumed to be linear and the control (activation fracti@ngmission rate) is a two-dimensional
function. When the resource consumption cost is convex, piienal activation fraction function

has the same structure. The optimal transmission rateiumbas similar behaviour except that



its potential transition from the maximum to minimum valugstrict, but continuous rather than
abrupt. The generality of the model allows for a unified tietioal framework for optimizing a

sundry of problems of practical importance in diverse saesaMoreover, the simplicity of the

structure of the optimal controls makes them amenable tdeim@ntation in practice.

Finally, using numerical evaluation, we assess the r&agfficacy of the replicative and
non-replicative dispatch and static and dynamic optimaltrmds V). We demonstrate that in
general, optimal dynamic controls incur significantly loveggregate costs than optimum static
controls in both replicative and non-replicative settingtso, in presence of dynamic optimal
control, replicative dispatch of security patches incurbssantially lower aggregate costs than
non-replicative dispatch.

c) Related Literature: Optimal control has been extensively used to find the bedoge@nt
of resources in treating infectious epidemics [11], [13yextising and marketing [10], [13],
[14] and recently in securing communication networks agfamalware outbreaks [15]-[17]. An
extensive overview of the existing work is beyond the scaipthis article. In what follows, we
mention and differentiate from some of the most related work

Optimal control in treatment of infectious epidemics is thogapplied to systems where only
vaccination or healing/quarantining is present, the codinear in the treatment rate and there
is no mortality among infectives [11], [12]. In contrast,raystem integrates both vaccination
and healing/quarantining, the cost of treatment is any ig¢m®ncave or convex function, and
it depends on both infective and the deceased as well. Mergdiere is no equivalent of
replicative immunity in the case of infectious diseases.

Also, our work generalizes the existing treatment of modetdvertising and marketing [10],

[13], [14] which mostly consider only either public advegment or word-of-mouth advertise-



ment with linear benefits, and optimizations are mostly wabpect to the steady state behaviour
of the market, rather than the transitional patterns, wiscthe salient feature of the diffusion
of new technologies. We consider a nonlinear system andrgleoest functions, and consider
the transients of the evolution of the states as well.

In the context of security in communication networks, [1@}astigates a different counter-
measure: that of reduction of reception gain of wirelessesofibr slowing down the spread
of malware in wireless networks. [16] considers the trafidsetween the infection spread and
the patching cost in an epidemic. Our work differs from [16] that we consider (i) both
replicative and non-replicative patching, (i) more gextemetwork state evolution dynamics
in that the counter-measure involves both immunization laealing, moreover the worm may
cause mortality, and (iii) cost functions which are onlyuaeed to be either concave or convex
and therefore more general than quadratic functions in. [AGo unlike [16] we do not use
any linearization of the system which can be very poor in tbetext of epidemic behaviour.
Investigation of optimal solutions in our context thus riegs different analytical arguments.
[15] considers only a one-dimensional control of bandwidthat model is thus not suitable for
capturing the cost related to the total consumed energy;hwisi more critical than bandwidth
in DTN networks. Moreover, the cost function does not inelude benefit of recovered, which
is essential for application in marketing or DTN settings.

Optimal forwarding of packets emanating from a single seurca delay tolerant energy-
constrained wireless network is studied in [18], [19] anid hown that optimal strategy follows
a threshold-based structure. [18], [19] analytically rely some simplifying assumptions that
will make them as special cases in our context. SpecificglB] considers only networks that

use two-hop routing, and therefore, the resulting dynamii¢cee number ofecovered (i.e. nodes



that have received the packet) follows our non-replicatnglel with no infective or dead. Also,
[19] investigates anonotonic epidemic model, which arises when none of the nodes that have
received a desired packet lose it, which is mapped to a dpmasae of our replicative case with
no infective or dead. Our model, unlike those two works, @ers a general cost function that
involves a general reward for the number of recipient nodesamy (concave-linear-or convex)

power function, and is therefore, a generalization of warkglL8], [19].

II. SYSTEM MODEL

We first present the state evolution and formulate the costmmzation goal as an optimal
control problem at an abstract level. In particular, we @ens such agfectives, susceptibles,
recovered, dead and disseminating, immunization and healing. Later, in§ll-C, we motivate the

model by instantiating each of these terms in the differettirgys discussed in the introduction

(81-A).

A. Dynamics of Non-Replicative Dispatch

A system consists oV entities, and at time, a number ofng(t), n;(t),ng(t) andnp(t) of
them are respectively imfective, susceptible, recovered anddead state. Let the corresponding
fractions beS(t) = ng(t)/N, I(t) = n;(t)/N, R(t) = ng(t)/N, andD(t) = np(t)/N. Thus, for
all¢, S(t)+1(t)+ R(t)+ D(t) = 1. A pre-determined set of entities, referred to as disserinat
are pre-loaded with the patches that immunize and/or hdssd disseminators constitute an
R, fraction of the the total populatio®V, that is, their number iV R, where0 < Ry < 1. We
assume that the disseminators can not be infected and hesgearte recovered right from the

beginning. At timet =0, let0 < S(0) < 1,0<1(0) =1, < 1,0 < R(0) = Ry < 1, D(0) = 0.



Thus, S(0) = 1 — I, — Ro. When infectives do not exisf, = 0. No entity is aware of the state
of other entities, except that they know who the dissemisahoe.

A susceptible is infected whenever it is in contact with dedtive. We assume homogeneous
mixing, that is, an infective is equally likely to contactttviany other entity and with the same
inter-meeting delay distribution. Hence an infective rsewith each susceptible at the same
rate, say3. We later partially relax this assumption using simulatigfg). At any givent,
there areng(t)n;(t) infective-susceptible potential pairs. Susceptiblestheeefore transformed
to infectives at ratedng(t)n;(t).

The system manager controls the resources consumed irbuligtn of the patches by dy-
namically activating a fraction of the disseminators, al a® determining the patch distribution
rates of the activated disseminators. Let the fraction t¥aed disseminators at timebe <(¢),
and each transmits a patch at rafe). The disseminators distribute their patches to infectives
and susceptibles upon contact, which has similar conwooiatks for the spread of infection. The
patches immunize the susceptibles, and thus susceptiatesar at ratgie(t) N Rong(t)u(t) at
eacht. Clearly,

0<e(t)<1, 0<u(t) <1 ateacht. (1)

The last upper bound follows by normalization @f

The efficacy of the patch may be lower for infectives than fasceptibles. We capture the
above possibility by introducing a coefficiefit< 7 < 1: # = 0 occurs when the patch is
completely unable to heal the infectives and only immunithes susceptibles, whereas= 1
represents the other extreme scenario where a patch callyegeli immunize and heal sus-
ceptibles and infectives. If the patch heals an infectiigesiate changes to recovered, otherwise,

it continues to remain an infective. Thus, the infectivesoker at rater 3N Roe(t)u(t)n;(t) at



eacht.

Each infectivedies at rated, wherej > 0, and the overall death rate #:;(¢) at eacht.
Note thaté = 0 corresponds to systems without death. I5gt:= limy o NA and B =
limy_e N3 > 0 are limits of the respective R.HISIf the total number of entities\) is

large, thenS(t), I(t) and D(t) converge to the solution of the following system of diffetieh

equations:
S(t) = =Bol (t)S(t) — BiRoe(t)u(t)S(1) (2a)
I(t) = BoI (t)S(t) — wBi Roe(t)u(t)I(t) — 81(t) (2b)
D(t) = 61(t) (2¢)

with initial constraints:

1(0) = lim n;(0)/N =1, 0<S(0)<1—1I,, D(0)=0, 3)

N—oo

and which also satisfy the following constraints atall
0<5S(t),I(t),D(t) and S(t)+ I(t)+ D(t) < 1. 4)
Thus, (S(.), 1(.), D(.)) constitutes the system state function ga¢l), «(.)) constitutes the (2-

These limits exist as long as the node densityy .., N/A exists for largeN. To see an example, [20] shows that the
rate of inter-meeting timeg and 3 are inversely proportional tai: the total 2-D area on which the nodes roam, where the
proportional coefficient is a function of the transmission range, a@eeralative speed and the mobility model of the nodes.
Hence,N x 3, e.g., hasV/A multiplied by some constants, which are not functions\afHence taking the limit, as long as

N/A, i.e., the node density, exist§y is well-defined.

2Throughout the paper, variables with dot marks (5gt)) will represent their time derivatives (e.g., time derivativeSgt)).



7TB1€URO]

BleuRoS

Q=

Wy

Fig. 1: State transitions for non-replicative case. The only diffee in the replicative case is that transition rates

from S to R is at rateg,euRS and fromI to R at rater5;cuRI instead.

dimensional) control functiof For the case of, = 0, the infectives stay at zero, thus WL0G, we
assumes, =7 =9 = 0. If I, > 0, we assumej, > 0. Henceforth, wherever not ambiguous, we
drop the dependence @rand make it implicit. Fig.1 illustrates the transitionsweeén different

states of nodes and the notations used.

B. Dynamics of Replicative Dispatch

In the replicative model, all recovered nodes become dissdors, and hence the fraction

of disseminators grows t&(t) at timet, whereas in the non-replicative model, the fraction of

3Formally, under some technical assumptions, specifically, if the intiacbtimes and the killing delays are exponentially
distributed, then the evolution of the system is governed by a continuous tiamkoM chain. Then according to the results

of [21, p.1], the convergence is in the following sense:

Ve>0Vt>0, lim Pr{sup|n57(7—)—5(7')\>e}:0,
N — oo <t N

and likewise forI(t) and D(t). The exponential distribution of time between consecutive contacts ogcifisppair of nodes

in mobile wireless networks is established by Groenegehl. in [20] for a number of mobility models such as the random
waypoint and random direction model [22]. In addition, epidemic modgtslar to (2) and (5) have been validated through
experiments as well as network simulations to provide an acceptableseepaton of the spread of malware and messages in

networks (see e.g. [23]).



disseminators continue to big, at all times. The dynamics in (2) hence needs to be modified.
First, sinceS(t) + I(t)+ R(t)+ D(t) = 1 at any given time, we can represent the system using
any three of the above states. In the non-replicative casehase(S(t), I(t), D(t)), whereas in

the replicative case we adop$(¢), I(¢), R(t)) instead. The specific choices make the analyses

more convenient in each case.

S(t) = —Bol(t)S(t) — Bie(t)u(t)R(t)S(t) (5a)
[(t) = Bl (1)S(t) — mhre(t)u(t) R (L) — 51(1) (5b)
R(t) = Bre(tyu(t)R(t)S(t) + mBie(t)u(t) R(t)1(t) (5¢)

with initial constraints:/(0) = Iy, R(0) = Ry, S(0) =1 — Iy — Ry, and as before) < I, <
1,0 < Ry < 1, Iy + Ry < 1. Also similarly, 0 < S(t), I(t), R(t) and S(t) + I(t) + R(t) < 1.If
0 = 0, the latter holds as an equality.

The following lemma, which we prove next, shows that theestainstraints in both non-
replicative and replicative models hold for any controirplat satisfies (1), thus these constraints
can be ignored henceforth, i.e., we can deal with optimaltrobrproblems with no state
constraints.

lemma 1: (A) In non-replicative case, for any control function p&ir(.), «(.)) that satisfies
(1), ((S(t),1(t),D(t))), satisfies the state constraints for the non-replicative dgaghe [0, 7’|
interval, i.e.,0 < S(t),I(t), D(t) and S(t) + I(t) + D(t) < 1. Moreover, (i) S(t) > 0 for all
t €10,7Y, (i) if Iy >0, I(t) > 0 for all t € [0, 7], and (iii) if 6 > 0, D(¢t) > 0 for all ¢ € [0, T].
(B) Similarly, in the replicative case, for any control fuioct pair (¢(.), u(.)) that satisfies (1),
((S(t),1(t),R(t))), satisfies the state constraints for this case, les S(¢),I(¢), R(t) and

S(t)+ 1(t) + R(t) < 1 in the [0, 7] interval. Moreover, (i) R(t),S(t) > 0 for all ¢t € [0,T],



(i) if Iy >0, I(t) >0 for all t € [0,7], and (iii) if 6 =0, S(¢t) + I(t) + R(t) = 1.
Proof: We provide the proof for the non-replicative case. The prfoofthe replicative case
follows almost identically.

We first consider the case &f > 0. The case ofy, = 0 is discussed in the end. Also for now,
assume) > 0. Since0 < Iy + Ry < 1, Iy, Ry > 0 the initial conditions in (3) ensure that all
constraints (4) are strictly met at= 0, except thatD(0) = 0. The lemma follows if we show that
all constraints in (4) are strictly satisfied (a, 7. All S(.), I(.) and D(.), resulting from (2) are
continuous functions of time. Thus, sinsg0), 7(0) > 0 and.S(0)+1(0)+ D(0) =1— Ry < 1,
there exists an intervdD, t,) of nonzero length on which bothi(¢) and () are strictly positive
and S(t) + I(t) + D(t) < 1. Hence, from (2) and (3)D(t) > 0 in [0,%,). Thus, from (3),
D(t) > 0in (0,ty). Therefore, (4) is strictly satisfied iif), t).

Now, suppose that the constraints in (4) are not strictlisBadl in (0, 7). Then, there exists
a time ¢t; which is the first time aftet = 0 at which, at least one of the constraints in (4)
becomes active. That is, we have §)t;) = 0 OR (ii) I(¢;) = 0 OR (iii) D(t;) = 0 OR
(iv) S(t1) + I(t1) + D(t;) = 1 AND throughout (0,¢,), we have0 < S(t),1(t), D(t) and
S(t) + I(t) + D(t) < 1. Thus, for0 < ¢t < t; from (1), (2), (3) and since?, < 1, we
have S(t) > —(By + $1)S(t). Hence,S(t) > S(0)e~(%otAt for all 0 < t < t;. Since S(.)
is continuous,S(t;) > S(0)e~(Fo+hto Similarly, we can show thaf(t;) > I(0)e"(F1+9,
Thus, sinceS(0) > 0, 1(0) > 0, (i) and (ii) are ruled out. Next, from (2)(t) > 0 in (0, ;).
Thus, from the continuity ofD(.) and sinceD(t) > 0 in (0,¢;), (iii) is ruled out. Again,
L (S(t)+I(t)+ D(t)) < 0in (0,¢). Thus, from the continuity of5(.), 1(.), D(.) and since
S(t)+1(t)+D(t) < 1in (0,ty), (iv) is ruled out as well. This negates the existence, ofrhus,

by contradiction, the constraints in (4) are strictly d&$in (0,7].



If, on the other handy = 0, from (2) and (3),D(¢t) = 0 for all ¢ € [0,7T]. Using similar
arguments we can show thatt), I(t) > 0 and S(t) + I(t) < 1 for all ¢ € [0,7]. The lemma
follows.

Now consider the case dfy = 0. In this case, we havé(t) = D(t) = 0 for all ¢t € [0,T].
0 < Sy < 1, thus the constraint > 0 andS + I + R < 1 are strictly met at = 0. Since S
is continuous in time, there exists an interyalt,) of nonzero length on whicl¥(¢) is strictly
positive andS(t)+1(t)+ D(t) = S(t) < 1. Now, suppose there exists a tityewhich is the first
time aftert = 0 at whichS(¢) = 0 OR S(¢) = 1 AND throughout(0, ¢,), we have0 < S(¢) < 1.
Thus, for0 < ¢ < ¢, from (1), (2), (3) and sinc&, < 1, we haveS(t) > —£,5(t), which implies
S(t) > S(0)e= "t for all 0 < t < t;. Since S(.) is continuous,S(t;) > S(0)e~ P > 0. Also,
S(t) < 0in (0,t,), thus, from the continuity o5(¢) and sinceS(t) < 1 in (0,t,), S(t;) < 1.

Therefore,t; could not exist. Thus, by contradictiof,< S(t) < 1 in (0,7]. u

C. Motivation of the models and Instantiation

In the introduction sectiorg(), we described the motivations for the models presentquten
vious section through different examples from which intetation of each of the corresponding
states is straightforward. Here, and we add more commenth@mature of interactions in
each example. First thing to point out is that, except foradase of infectious disease, both the
replicative and non-replicative scenarios are conceaabl

Network Security: In a client-server based, p2p or cellular network, node Atacts (i.e.,
communicates with) node B if A knows the (ID or) address of Bj have the right permissions
or infiltrates it. The homogeneous mixing assumption camesgnt worm propagation in 3G
and 4G cellular networks (peer-to-peer, resp.) where fivieamobiles (peers, resp.) try to

infect randomly and uniformly generated (IDs or) addres$éste that in any such mobile



to mobile communication, irrespective of the locations loé mobiles, there are two wireless
communications between access points and mobiles and sheofrehe communications are
through the backbone network where the delays and congesdi@ relatively limited. Similarly,
peers communicate through the backbone network where sleley limited. Thus, in both
p2p and cellular networks, the inter-meeting times havesdmme distribution irrespective of
the location of the pairs. In a MANET, a contact occurs onlyewhwo nodes move into
communication range of each other. Under mobility modethsas random waypoint or random
direction model (explained in [22]), Groenevelt al. [20] has established the homogeneous
mixing property for such contact processes in a highly neobiétwork. Security patches are
distributed by mobile or stationary agents (in MANETS) oséastations (in AP and cellular
networks) or a set of central servers (in wired networksyejplicative case, each recipient also
forwards the security patch to nodes it contacts in fututee Tates of contacts are determined
by system specific parameters such as address scanningofabefectives, communication
rates, mobility, communication rangetc. The worm may completely prevent the download
or installation of the patch in an infective node. This casgesponds tor = 0.

Delay Tolerant Networks (DTNSs): Contact occurs when two nodes roam into communication
range of each other. There is no infective or dead nodes. Cidnsbe modeled by setting =
Dy =m = [y =9 =0 in our system dynamics equations.

Marketing-Reclamation/Rivalry: There is no dead state in these cases, which correspond to
0 = 0. Here, contacts constitute social interactions such agimgse phone communications or
email exchanges. The non-replicative case arises wheragelyts of the incumbent/rival attempt
to persuade the customers, while in the replicative modgh eanvert/subscriber advertises for

the service through word of mouth as is incentivised by rafdrased rewards/discounts = 0



represents the case in which customers are also pledged tmthpetitor and cannot be claimed
by the incumbent/rival. Intermediate valuesmoicorresponds to different resistance (inertia) of

customers to switch.

D. The Objective Function

We seek to minimize the overall cost in a time wind@w7|, whereT' is a parameter of
choice. At any given time, the system incurs costs at the ratesf¢f(¢)), g (D(t)) and benefit
at the rate of_. (R(t)) wheref(.), g(.), L(.) are non-decreasing and differentiable functions such
that (WLoG) f(0) = ¢g(0) = L(0) = 0. We assumef’(z) > 0 for all z > 0. In addition, each
activated disseminator charges, or consumes resourcke edteh (u(t)) at timet since it uses
a distribution rate ofu(t), ands(t) Ry fraction of the nodes are the activated disseminators at
time t. Here,h(z) is a twice-differentiable and increasing functionairsuch that(0) = 0 and
h(z) > 0 whenz > 0. Note that the assumptions ¢fit.), ¢(.), 2(.) are mild and natural, and a

large class of functions satisfy them. The aggregate systesntherefore is

J = /0 fU@)+9(D(t) — L(R(t) + (t)Roh (u(?)) dt
4k I(T) + kpD(T) — KkrR(T). (6)

ReplacingR, with R(t) in (6) gives the overall cost for the replicative case, ag hactivated
disseminators at time constitutec(¢)R(t) (instead ofe(t)R,) fraction of the total nodes. For
both cases, at least one of the functibng or L is not the null function, and: is either a
concave, linear or a convex function of

Problem Statement: The system seeks to minimize the aggregate cost in (6) byoppately

regulatings(.), u(.) at allt subject to (1), when the states evo(¥d as per (2) for non-replicative,

and B) as per (5) for replicative dispatch, and satisfy the regpeanitial state conditions.



Note that we use open loop policies, which are control petichat they directly depend on
time, as opposed to the states of the system (closed-loapig®)l However, since we have
mean-field convergence (for large enoulyl, the system is deterministic and open loop policies
perform as well as closed-loop policies.

Here we briefly motivate the cost model for each of our différgettings. Our cost model
in (6) (and its replicative counterpart) is general enougleapture all of the cases.

Network Security: In communication network®ach activated disseminator consumes power
and/or bandwidth at raté (u(¢)) at time ¢ for transmission of patches. The total number of
activated disseminators at times respectivelyNe(t) Ry and Ne(t)R(t) for non-replicative and
replicative dispatch. Infective and dead (dysfunctiomaljles incur accumulative costs to the
network as well (represented kfyand g functions respectively). Alsa; and xp respectively
represent the (scaled) cost per infective and dead node a&nith of the network operation (i.e.,
time 7). In this caseL(R) =0 andrxp = 0.

Delay Tolerant Networks (DTNs): Similarly, activation and transmission of disseminators
consume power, which is especially critical in energy caised DTNs. Here, there are no
infective or dead nodes and henge= g = 0 (alsox; = kp = 0). There is reward associated
with increasing the total number of nodes which have receaveopy of the disseminated mes-
sage. Also, the sooner the message is disseminated, tleg, bethce the integration df( R(¢))
over time (note that the negative sign convert the mininoraproblem to a maximization one).
[24, appendix-A] directly relates the integral over timetloé fraction of recovered nodes to the
probability that a message is delivered to a sink before ldead'. Hence the minimum delay
problem is transferred to maximization ¢f R(t) dt, which corresponds to the special case of

linear L(x) = —x in our setting (also ref. [18], [19]). IT, as in [18], [19], [24], represents



the deadline before the disseminated message reachesdd)(destination(s), themy = 0. If
however, the objective is broadcasting a message by Tin@ many nodes, thery represents
the scaled benefit per node which has received the messaigeedt .t

Marketing-Reclamation: The optimizer in this case is the incumbent who incurs a cbst o
J. Here,g, L = 0, as infectives are the only group of customers who are notcsibes! to the
incumbent. That is, the incumbent incurs a cost only thromdgctives, since their converting
away results in reduction of revenue (cessation of theisaution fee) over time. This loss
is captured by integration of (1) over time. Among the individuals who are contacted, only
those who are persuaded by the offers will switch back. Tt fmr advertisement, captured
by integration of the term involving(.), is associated with the amount of discount offers and
rewards provided to lure the customers back. The incumbmezkssto minimize its overall loss
due to the entrance of the competitor, by dynamically det@ng the fraction of the individuals
who should be selected for a special offer and how much digcsiwould be provided, which
in turn determines the efficaay of the switch to the incumbent. Herep = kg = k7 = 0.

Marketing-Rivalry: The optimization here, is from the viewpoint of one of theatss There
is no dead state in this model, hence, similar to the recliamatase,g = 0. However, f = 0
instead ofL, since only recovered are those customers who subscribestodimpany of the
optimizer (susceptibles are not subscribed to either). rfEenue comes from the subscription
fee of the recovered nodes, and is represented throughratitay of the L(R) function over

time. The cost for advertisement is similar to the Reclanmatiase. Heres; = kp = kr = 0.

I11. OPTIMAL NON-REPLICATIVE DISPATCH

We apply Pontryagin’s Maximum Principle to obtain a framekvéor solving the optimal

control problem as posed in Problem Statemef)sand B8). Let ((S, I, D), (¢, u)) be an optimal



solution to the problem posed in problem statemeit i the previous section, consider the
Hamiltonian H, and correspondingo-state or adjoint functionsAs(t), A;(t) andAp(t), defined
as follows:

H = f(I) + g(D) — L(R) + eRoh(u) + (A\; — A\s) B0l S

(7)
—51R08U>\Ss — Wﬁ1R0€U)\[I + ()\D — )\[)(5[
whereR=1—-S5S—-1—-D.
: OH ,
As = ~35 —L'(R) — (A1 — Ag)Bol + BiRosulsg
\ OH ! /
)\] = _W = —L (R) — f (I) — ()\[ — As)ﬁos + 7T51R0€U)\[
— (Ap — A1)d
\ aH ! !
AD——a—D—_L (R) —g'(D). (8)
along with thetransversality conditions:
As(T) = KR, )\](T) =Ky + KRR, )\D(T) = Kp + KR- (9)

Then according to Pontryagin’s Maximum Principle (e.g,,F9109, Theorem 3.14]), there exist
continuous and piecewise continuously differentiablestade functions\g, A; and \p, that at

every pointt € [0...7] wheree andu is continuous, satisfy (8) and (9). Also,

(e,u) €arg  min  H(X,(S,1,D), (g, u)). (10)

£,u admissible

A. Structure of the Optimal Non-replicative Dispatch

We establish that the two-dimensional optimal controlsatthing in the non-replicative case

have simple structures:



Theorem 1: In the problem statemenAl], for either one of the following two cases: {i)= 0,
Bo > 0andf(.) is convex, (ii)0 = 0 and L # 0, an optimal controls(.),u(.)) has the following
simple structure:
1) Whenh(.) is concave,3 t; € [0...T] such that (au(t) = 1 for 0 < ¢t < t¢;, and
(b) u(t)=0fort; <t <T.
2) Whenh(.) is strictly convexd tg,t1, 0 < t, < t; < T suchthat (a)(t) = 10on0 < t < 1y,
(b) u(t) strictly and continually decreases en< ¢ < t;, and (C)u(t) =0ont; <t <T.
In both cases, for all € (0,7"), except possibly fot = t; whenh(.) is strictly concaves(t) = 1
if and only if u(t) > 0, ande(t) = 0 otherwise.
The above results are somewhat surprising in that the &#otivdraction ¢(.) is completely
specified byu(.), and hence the two-dimensional control is reduced to a @mertsional solution.
The practical implication is that the activation schemalisor none, and it is not optimal to
activate a portion of the dispatchers. Whief) is strictly concave, the optimum transmission
range, and hence the entire solution, is bang-bang and hassitone jump froml down to
0, and it is optimal to patch as aggressively as possible earlyas soon as the infection is
detected and the patch is produced) and halt the patchieg aftertain time. When(.) is
strictly convex,s(.) continues to be bang-bang and has at most one jump frdown to0, but
u(.) has a strict but continuous descentoto

Proof: Let function¢(t) be defined as follows:
0= P1(AsS + A (12)
©(.) is thus a continuous function of time, which according tol{8¥ the following final value:

QO(T) = ﬁl(K,RS(T) + W/QR[(T) + WH[I(T)). (12)



Also, as we prove irglll-B:
lemma 2: (t) is a strictly decreasing function offor ¢t € [0, 7).

We can rewrite the Hamiltonian in (7) as:
H = f([) + g(D) — L(R) + ()\[ — )\5)6015
+(Ap — A1) + eRy(h(u) — pu). (13)

From (10), for each admissible contr@l, ) and for allt € [0, T],

e(t) (h (u(t)) = p(t)u(t)) < (t) (h (u(t)) = p(t)ult))

— (c(0), u(t)) € arg min (b (y) — $(1)y). (14)
y€(0,1]

Since (e, u) = (0,0) is an admissible control, we have for allkK ¢t < 7' :
e(h(u) = pu) <0. (15)

Note that whenever eitheror ¢ is zero, irrespective of the othery = 0, and sinceh(0) = 0,
eh(u) = 0. Thus, the state dynamics and the instantaneous cost éacdo not depend on the
value of the other control function at these epochs. Thugneter one control function assumes
a zero value, we can, WLoG, choose zero value for the other.

Next, consider & at which the minimizer of. (y) — ¢y in y € [0, 1] is unique. If this unique
minimizer is0, thene = v = 0 at¢. In order to show this, we only need to show that 0 att.
Otherwise, if att, u > 0, thene > 0 att¢, andh(u) —¢u > h(0) — 0 = 0. This contradicts (24).

If this unique minimizer is positive, then &t min,cjo1; (h (y) — ¢y) < 0, and thus from (14),
¢ = 1 andu equals this unique minimizer. Thus, at ahgt which the minimizer of. (y) — ¢y
in y € [0,1] is unique,u equals this unique minimizer, and= 1 if and only if « > 0, and

e = 0 otherwise.



For establishing the structure of optimal we separately consider the cases of concave and
strictly convexh(.).

1) h(.) concave: When h(.) is concave (i.e.h” < 0), at each timet, h(x) — p(t)x is a
concave function of:, and thus, for any time such thatp(¢) # h(1), the unique minimum is

either atz =0 or x = 1. Then,

0, @(t) <h(1)
S(Du(t) = (16)

1, o(t) > h(1).
Following lemma 2, there can be at most ohat which ¢(t) = h(1) in [0,7]. Moreover,
lemma 2 implies that if such exists, sayt;, thenp(t) > h(1) for t € [0,t1), andp(t) < h(1)
for t € (t1,T]. The theorem follows from (16).
2) h(.) strictly convex: Sinceh(.) is strictly convex (i.e.x” > 0), the minimizer ofh (y) —
o(t)y in y € [0,1] is unique irrespective of. Thus, (t) = 1 if and only if u(t) > 0,
and ¢(t) = 0, otherwise. Whem(.) is strictly convex (i.e.,n” > 0), (14) implies that, if

Z (Roh (z) — ¢(t)z)|,_, = 0 at ay € [0, 1], thenu(t) = y, elseu(t) € {0,1}. Then,

.

07 2 S ROh,(O)
U= NRNE), Rol(0) < ¢ < Rol/(1) (17)
1, Roh/(l) < .

\

Thus, from continuity ofp and?’, u is continuous at alt € [0, 7. Sinceh(.) is strictly convex,
R'(.) is a strictly increasing function - hencg;(0) < A’(1). Thus, following lemma 2, there
existto, t1, 0 <ty < t; < T, such thatp > Roh'(1) on 0 < t < ty, Roh/(0) < ¢ < Roh'(1) on

to <t <ty, andp < Roh'(0) onty <t <T. The theorem follows from (17). [ ]



B. Proof of lemma 2

Proof: The state and co-state functions, and hencegttienction, are continuous at each
time ¢t € [0,7) and differentiable at each time at which tfew) function is continuous. Since
(e,u) is piecewise continuous, the lemma follows if we can show ¢hs negative at each such
t. Noting that3; > 0, at each such € [0,7") we have:

o 1d

5— = FESO: }\55+A55+7T}\11+W)\1j
1 1

— N\ BolS + wAgBoIS — wf ()] — wApdl
—L'(R)(S+7I)=—(\r — As)mBolS — (1 — m)A1 501 S
—7Apdl — 7 f' (DI — L'(R)(S + 1) (18)
The right hand side is negative at each [0,7) sincel,S > 0 at allt € [0,7] (lemma 1-A),
Bo>0,0>0,0<7m<1landf (z),L(x)>0forall z (sincef(.) andL(.) are non-decreasing
functions), and because:

lemma 3: For all0 <t < T, we haveAp > 0, A\; > 0, and(\; — \g) > 0.

We prove lemma 3 in Appendix A.

|
V. OPTIMAL REPLICATIVE DISPATCH
Similar to the non-replicative case, we define the Hamifioras:
H=f(I)+g(D)— L(R) 4+ cRh(u) + (A — Ag)BolS
(19)

_()\S - )\R)BleuRS - ()\[ - /\R)7r615uRI — )\[6]



whereD =1 — (S + I + R). The system of co-state differential equations is as:

As = _g_g[ = —(A\r = As)Bol + (As — Ar)frieuR + ¢'(D)
. H
i, = _%_I — FU(I) = (A = A8)BoS + (A — A)fheuR
+ A0+ ¢'(D) (20)
. OH
)\R = —@ = ()\S — )\R)ﬂleuS + ()\[ — )\R)ﬂ'ﬂ1€u1 — €h(u)

+4¢' (D) + L'(R).

and the transversality conditions as:
)\S(T) = 07 )\I<T> = Kk, )\R(T) = —KR. (21)

Then, according to Pontryagin’s Maximum Principle ( [9, BP91theorem 3.14]), there exist
continuous and piece-wise continuous functiosét) to Ag(¢) that satisfy (20) and (21) at any

t at which (¢(¢), u(t)) is continuous, and the optimé&t, «) satisfies:

(c,u) €arg min  H(X,(S,1,D), (g, ). (22)

(g,u) admissible
The above framework can be used for numerically computimgagtimum control and the

minimum aggregate cost.

A. Structure of the Optimal Replicative Dispatch

Theorem 2: Consider an optimal contrdk(.),u(.)) to the problem posed in problem state-

mentB. The same structural properties as in Theorem 1 (i.e., ®mtn-replicative case) also

holds here.
In the rest of the subsection, we prove Theorem 2.

Proof: Considery as defined in the following:

Y = ()\S - )\R)ﬁlRS + ()\[ - )\R)WﬁlRI



Now from (22) and referring to (19), for each admissible coints, ), and for allt € [0, T,
e(t) (R(D)h (u(t)) — p(t)u(t)) < et) (R(E)h (u(t)) — u(t)e(t))

= (e(t),u(t)) € arg min & (R (y) — ¢(t)y) . (23)
y€[0,1]

Since(e,u) = (0,0) is an admissible control, we have for allK ¢t < T :
e(Rh(u) — pu) < 0. (24)

The optimality of the=(¢) as stated in Theorem 2 follows by similar argument follow{th§).
We prove the structure af separately for the cases of concave and strictly corye) using
the following lemma, which we prove iglV-B.

lemma 4: Let ¢(t) = %. Then,(t) is a strictly decreasing function effor ¢ € [0, 7).

1) h(.) concave: Sinceh(.) is concave (i.e.h” < 0) andR > 0 by lemma 1-B, nay € (0,1)
attainsmin,cp 1 (Rh (y) — y) unlessp = Rh(1). Thus, if at timet, ¢ — Rh(1) < 0, theny =0
is the unique minimizer ofRh (y) — ¢y in y € [0,1]. Thus,e = v = 0 at any such time. If

¢ — Rh(1) > 0, y = 1 is this uniqgue minimizer. Thug, = v = 1 at any such time. Thus:

(0,0) ¢ — Rh(1) <0
(e,u) = (25)

(1,1), ¢—Rh(1)>0
Using lemma 4, we conclude that/ R = h(1) at at most one time epoch i, 7), sayt,
and if sucht, exists,o/R > h(1) in (0,t;) andp/R < h(1) in (t;,7). The theorem follows
from (25).
2) h(.) strictly convex: Sinceh(.) is strictly convex (i.e.i” > 0), the minimizer ofR(t)h (y)—

e(t)y iny € [0, 1] is unique irrespective af Thus,z(t) = 1 if and only if u(t) > 0, ande(t) = 0,



otherwise. Thus, we only need to prove the requisite prageedf«. This minimizer, and hence

u, Is: )
0, 7 < 1'(0)
WU L), W(0) < £ < K(1) (26)
1, W(1) < £.

\

Now, sincep, R, h’ are continuous}’ is strictly increasingR > 0 atallt € [0, T, v is continuous

atallt € [0,7]. R(t) >0 atallt € [0,7] by lemma 1-B, andi/(xz) > 0 for all . During the

interval on which?/(0) < % < K(1), e = 1 and hencei exists. The proof follows if we can

show thati < 0, whenh’(0) < £ < h/(R). Now, for 1'(0) < £ < I/(R), we have
i(ﬁ)
— hl—l f Y, — dt\R
U (R) =1 B ()
According to lemma 4, this is negative. |

B. Proof of lemma 4

Proof: We prove this lemma using lemma 5 which we state next and pro¥g@pendix B.
lemma 5: Forall0 <t < T, we have(A\; — Ag) >0, (As — Ag) > 0 and\p < 0.
(proof in Appendix B)
From continuity ofp, R, we need to show that < 0 at anyt € [0,7) at which (¢, u) is

continuous. Now, at such i
¢ = (As — \r)BIRS + (\; — Ag)m BRI
+(As — Ar)BiRS + (A1 — A\g)mB RI
+(As — Ap)BiRS + (A — Ap)wBi RI

= —WﬁlﬁoRISAR - ﬁlBOR[S)\I



+B1BoRISAR + 7B BoRISAs — 7B, f'(I)RI + 7B RIS,
—L'(R)RB1(S + wI) + eRh(u) By (S + 1)
— 6,51 RIS)\s and re-arrangement
= —foSi(1 = m)RIS(As — Ar) — BoBLRIS(Ar — As)
—7B1f'(I)RI + 7B RISAR
—L'(R)RG1(S + wI) + eRh(u)f1(S + wI)

= {negative term + e Rh(u)f1 (S + 7). (27)

The expressions denoted fsegative term is negative at eache [0,7) owing to lemma 5 and

since3; > 0, and either5,I(t) >0 or L #0, 6 > 0,0 <7 <1 by assumption an®, I, R > 0

by lemma 1-B. At any such,

. d 5o gR
00 = G = 29)
B {negative termh + cRh(u)[1(S + 7I) — R%
- R
_ {negative term + ¢ (Rh(u) — pu) /(S + )
N R
negative term 9

- R
The last inequality follows from (24), lemma 1-B and singe> 0,7 > 0. The lemma follows

since the right hand side is negative at eaeh|0,T). u

V. NUMERICAL COMPUTATIONS

First, with the intention of illustrating the theorems, wepttt the optimal controls for the
general case, i.e., when all of the states exist, and thaxosthe general form. The parameters

used are stated in the caption of fig.2. The figures on the sigletare related to a concakéu)
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Fig. 2: lllustration of the theorems. The common parametersiate).01, 5 = 0.15, Iy = 0.2, Ry = 0.25, Dy = 0,
T =60, f(I) =5I, g(D) = 10D, L(R) = 5R. For concaveh(u) (fig.2(a)) we have used(u) = 10u, and for

convexh(u) (fig.2(b)) we have used(u) = 10u?.

function and the ones on the right figures are according tonsecoh(u) (for both replicative

and non-replicative cases).

Next, we have depicted a comparison of the aggregate castdsthincurred as a result of
applying each of these four different policies: optimalliegtive dispatch, optimal non-replicative
dispatch, best static replicative dispatch, best statcneplicative dispatch. The aim is to explore

the efficacy of the replicative dispatch over the non-rgpie dispatch and dynamic control over
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Fig. 3: Comparison of costs for four policies for variofis Dynamic replicative policy achieves the best performance

amongst the four. The parameters used (except for the ptaaimehe horizontal axis) are the same as in fig.2

static control. For the static policies, the control asssiadixed value throughout the interval
of [0...T]. We have then varied this fixed value and selected the onedhds Ito the least cost
(hence, the 'best static’). For different valuesigf as we can see in fig.3, under each dispatch
model, the optimal dynamic control will incur lower aggrégaost than the best static control.
This is because the set of feasible solutions for a dynamtrabis a strict superset of that for
a static control - the former can always choose the immuioizatate function as a constant,
whereas the latter can never vary the immunization rate asetibn of time. The difference
is more emphasized for the case of replicative dispatch evbptimal dynamic policy achieves
50 to 100% better cost values compared to the best staticigmliAlso, the optimal dynamic
replicative dispatch incurs lower aggregate cost than ats-neplicative counterpart, since the
replicative dispatch can emulate non-replicative: one alarays activate only a fraction of the
dispatchers in the replicative setting so that it equalsrthenber of active dispatchers in the
non-replicative case.

In the end, we illustrate the robustness of dynamic poliddepractical issue in implementing

the dynamic polices in this paper is that the parameterseofjistem are not always accurately
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Fig. 8: Robustness of dynamic policy with respect to erroneous agins of I, 3 for both replicative and non-

replicative policies, and for = 0 andw = 1.

known, and only rough estimate is available. Therefores itmportant to investigate the sen-
sitivity of the efficacy of the defense to these inaccuradiet’s say that the initial fraction of
the infective nodes is estimated to he= 0.15, however with potential inaccuracy of 50%. We
apply the dynamic and static policies that are calculatesdhan this estimation to systems in
which the actual values were off from this estimate (up to p#suming other parameters are
fixed. Then we depict the increase in the total cost due toyagpthese sub-optimal policies,
that is, the cost when the sub-optimal policy (the dynamid static optimal control calculated
based on the inaccurate estimdie= 0.15) minus the cost when the actual optimal dynamic

policy for the accurate value of, is applied. As fig.4 shows, the increase in the total damage



for the optimal dynamic policy due to inaccurate estimatnbr/, is significantly low, showing
the robustness of the non-replicative dynamic policieh wéispect to erroneous estimation of

Iy. Similar behaviour is observed for estimation®fand replicative policy (fig.5 through 7).
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APPENDIXA: PROOF OF LEMMA 3

Satement: For the non-replicative case, for @l< ¢t < T, we have\p > 0, A\; > 0, and
— )\S) > 0.

Proof: First, we note that\,(7") = kp + kg > 0 and at anyt € [0,7] at which (e, u)

is continuous \p(t) = —¢'(D(t)) — L'(R(t)) < 0. Thus, since(c,u) is piecewise continuous,

Ap(t) > 0 for all 0 <t < T. For proving the other two inequalities, we first state two fgian

real analysis properties which we prove in Appendices C anddpectively.



Property 1: Let(t) be a continuous and piecewise differentiable function et (t;) = L
andy(t) > L for all t € (t, ... to]. Therf ¥(t]) > 0.
Property 2: For any convex and differentiable function(z), which is0 atz = 0, v/'(z)z —
v(z) >0 for all x > 0.
In the rest of the proof for simplicity, we consider the casevhichx; = kp = kg = 0.
We proceed in the following two steps:
Step-1. A/(T) = 0 and (A(T) — As(T)) = 0. A(T) = (A(T) = As(T)) = —L'(R(T)) —
f'(I(T)) < 0. Therefore,\;(t) and (A\;(t) — A\s(t)) are positive in an open interval of nonzero
length ending afl".
Step-2.  Proof by contradiction. Let* > 0 be the last time beforg” at which (at least) one of
the other two inequality constraints is active, i.e.,
Ar(t) >0, (Ar(t) —As(t)) >0 fort" <t<T,
and A\ (t") =0 OR X\(t") — Xs(t") =0
First, suppose that;(t*) = 0 and thus(\;(t*) — As(t*)) > 0. Now,
lim Ar(t) = —L'(R) = f'(I) = (\r = As)foS — A [(8)] (30)
we thus observe thdim, ;- 4 \;(¢) < 0. This contradicts Property 1 for functiok (¢). Hence,

Ar(t*) > 0. Now let A;(t*) — Ag(t*) = 0. Then, from (8),

tim (A() = As(®)) =

—f/(I) + WﬁlRQEU)\[ — ()\D — )\[)(5 — 51R0€u)\s [(8)]

= —f'(I) = (1 — m)B1 Rocur; — (Ap — A\1)d (31)

“For a general functiony(z), the notations)(zJ) and+(z, ) are defined adim, ., f(z) andlimg ., (), respectively.



For the case ob = 0, since we showed(t*) > 0, the remaining terms are negative, which
contradicts Property 1 for the function — \g, and hence negates the existencé*and lemma
follows. For the case of > 0 we need a more elaborate argument, as follows. The system is
autonomous, i.e., the Hamiltonian and the constraints on the contrpld. not have an explicit

dependency on the independent variabl&hus, [25, P.236]
H(S(t),1(t),D(t), (e(t),u(t)), As(t), \1(t), Ap(t)) = constant (32)
Thus, from (9) and recalling that for the casedof 0, we assumed.(R) = 0, we have:
H = H(T) = f(I(T)) + g(D(T)) + &(T) Roh(u(T)).

Also, D = I > 0, and g(.) is a non-decreasing function, thy$D(T)) > ¢(D(t)) for all

t €[0...7T]. Hence:
H —g(D(t)) = f(I(T)) + Roe(T)h(u(T)) > 0. (33)

The positivity follows since according to lemma 1-A and tleswmptions ory, h: (i) I(T) > 0
and hencef(1(T")) > 0 and (ii) Roe(T)h(u(T)) > 0.

Therefore:

lim (Af(t) - As(t)) -

tt

= —f'(I) + 7B1Rocur; — (Ap — A\1)d — 1 Roculs

o f{)  g(D) L(R)
TP T T

—(1 — 7)p1Rocul; + #(h(u) — pu) (34)



From the supposition otf and continuity of\;(¢), A;(¢**) > 0. Recall that for the case of> 0,
we assumed to be aconvex increasing function. Nowf (1) — /(1)1 < 0 following Property 2,
since f(x) is convex andf(0) = 0 and/ > 0 at all t by lemma 1-A. Thus, from lemma 1-A
and (1), (24) and (33), and sinee< 1, 51, Ry > 0, we observe thalim, ;- %(/\1 —As) < 0.

This again contradicts Property 1 for function — A\g and lemma follows. [ ]

APPENDIXB: PROOF OF LEMMA S

Satement: For the replicative case, for dll< ¢t < T', we have(A\;—Ag) > 0, (As—Ag) >0
and \p < 0.
Proof: First, from (20) and lemma 1-B, at ea¢hat which (¢, u) is continuous,

_ clpu— Rh(w)

I +9'(D(t)) + L'(R(1)) (35)

Ar(t)

Hence, from lemma 1-B, (24) and sing¢) and L(.) are non-decreasing functions; > 0 for
all 0 <t < T. Thus, by piecewise continuity of, « and the continuity of., Ag(t) < 0 for all
0<t<T.

We prove the other two inequalities as follows:
Step-1. This step is identical t&tep-1 in the proof of lemma 3.
Step-2.  Proof by contradiction. Let* > 0 be the last time beforé” at which (at least) one of

the other two inequalities is violated, i.e.,
(Ar—As)(t) >0, (As—Ag)(t) >0, fort" <t <T,

and ()\] — As)(t*) =0 OR ()\S — )\R)(t*) =0.



First, suppose that;(t*) = As(t*). Now, similar to the derivation for (31), using (20) we obtain
(010 -
—f,(]) + (/\[ — )\R)WﬁlﬁfuR + 5/\] — ()\S — /\R)ﬁleuR
=—f'(I) — (As — Ar)freuR(1 — ) + 6, (36)

For the case of = 0, we have—f'(I) < 0 as was the assumption gin and—(As — Ag) < 0
following the definition oft*. For the case o0d > 0, noting that the corresponding assumptions

are convexf(.) and L = 0, we can write:
lim (Az(t) - As(t)) =

= —f(I) = (As = Ar)BruR(L = 7) + 5A;

H . J()  gD) <
—7 + T + T + j(Rh(U) - (10“) —0As
= S~ (D] + S (Rh(w) ~ gu)

—H%g(D) ~ (g — AR)(Br — 7B)euR.

We can show, (iJf(7)— f'(I)I] < 0 using Property 2, and (ii) analogous to (38),—g(D) > 0
at all t. Also, from the definition oft*, (A¢ — Ag)(t*") > 0. Now, since; > 0,7 < 1,
from lemma 1-B, and (24)limy, ;- <}\I(t) — }\s(t)) < 0. This contradicts Property 1. Hence,
(Ar(t") — As(t7)) > 0.

Now, let Ag(t*) = Ag(t*). Thus, from (20), (35) and (11):

ou — Rh(u)

lim (As(t) - AR(t)) = —(\r = As)fl — e

ling — L'(R)
From (24), lemma 1-B, and sinc&, > 0, and since we show that\;(t*) — \s(t*)) > 0,
limy g <)\S(t) - }\R(t)> < 0. This contradicts Property 1, and thereby negates the existef

t*. The lemma follows. [ |



APPENDIXC: PROOF OFPROPERTY1.

Proof: Proof by contradiction. Suppose that Property 1 did not hitids
Y(t) =L, ¥(tf) <0
=30, € (0...ty —t;) such that(t) < 0 YVt € (ty,t1 +6).
However, by integrating) from ¢; to ¢; + 8, we obtainy(t; + 0) < L. This contradicts the

assumption that)(t) > L for all t; <t < t. [ ]

APPENDIXD: PROOF OFPROPERTYZ2.
Proof: Define{(x) = v'(z)x — v(z). Clearly, £(0) = 0. Also,
(x) =0"(x)x +'(x) —V'(z) =" (2)x.

The convexity ofv(.) implies that¢’(z) > 0 for all x > 0. Thus, since(0) = 0, {(z) > 0 at

all z > 0. The property follows. [ |



