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Abstract

Epidemic models based on nonlinear differential equationshave been extensively applied in a variety

of systems as diverse as infectious outbreaks, marketing, diffusion of beliefs, etc., to the dissemination

of messages in MANET or p2p networks. Control of such systemsis achieved at the cost of consuming

the resources. We construct a unifying framework that models the interactions of the control and the

elements in systems with epidemic behaviour. Specifically,we considernon-replicative and replicative

dissemination of messages in a network: a pre-determined set of disseminators distribute the messages

in the former, whereas the disseminator set continually grows in the latter as the nodes that receive

the patch become disseminators themselves. In both cases, the desired trade-offs can be attained by

activating at any given time only fractions of disseminators and selecting their dissemination rates. We

formulate the above trade-offs as optimal control problemsthat seek to minimize a general aggregate

cost function which cogently depends on both the states and the overall resource consumption. We

prove that the dynamic control strategies have simple structures: (1) it is never optimal to activate a
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partial fraction of the disseminators (all or none) (2) whenthe resource consumption cost is concave,

the distribution rate of the activated nodes are bang-bang with at most one jump from the maximum to

the minimum value. When the resource consumption cost is convex, the above transition is strict but

continuous. We compare the efficacy and robustness of different dispatch models and also those of the

optimum dynamic and static controls using numerical computations.

I. I NTRODUCTION

a) Motivation: Epidemic behaviour emerges whenever interactions among a large number

of entities affect the overall evolution of the encompassing system. Mathematical models based

on nonlinear differential equations have been developed and applied in a variety of systems

as diverse as infectious outbreaks [1] and information diffusion in a human society [2], to the

dissemination of messages in MANET [3] or p2p networks [4]. What a resource manager of

such systems is interested in is to control the evolutions ofthe states. Most often, exertion of a

control incurs a cost, either directly as the control may consume restricted resources, or indirectly

as it may introduce adverse side effects. Much work has been done in modeling and validating

the epidemic models, relatively less, however, is known about optimal control of such systems.

This constitutes the focus of this paper.

Dynamic optimal control is of paramount importance in the networking context. One important

example is in countering the spread of a malware in a MANET, a wireline p2p, or a client-server

network. Worms spread frominfective nodes to vulnerable but not yet infected, i.e.susceptible

nodes, when such a pair communicates, or as we will refer to, when they contact. Hence, spread

of malware behaves as per an epidemic. Note that a contact mayentail physical proximity,

as in the case of MANETs, or may represent an opportunity of infiltration, as in the case

of server-client networks. Worms, as malicious self-replicating codes, can disrupt the normal



functionalities of the hosts, steal their private information, and/or use them to eavesdrop on

other nodes. The worm can also render the host dysfunctional, e.g. by deliberately draining its

battery as in the case of Cabir worm [5] in a cellular network, or by executing a pernicious

code that incurs irretrievable critical hardware or software damage say by re-fleshing the BIOS

corruptin gthe bootstrap program required to initialize the OS [6]. Such dysfunctional nodes are

referred to asdead. Software patches canimmunize susceptible nodes against future attacks, by

rectifying their underlying vulnerability, orheal the infectives and render them robust against

future attacks. Nodes which have been immunized or healed are denoted asrecovered. Such

patches can be distributed by mobile agents and/or downloaded from designated servers, but patch

distribution consumes both energy and bandwidth (criticalin wireless networks), and thereby

incurs a cost that depends on both the number of active agents/servers and the transmission rates

they use. The incident of Welchia [7], which was designed as acounter-worm to defeat Blaster,

demonstrated how unrestrained spread of security patches can indeed create substantial network

traffic and rapidly destabilize even the well-provisioned network of Internet. This adverse effect

of application of countermeasures is likely to be aggravated in wireless networks, where due

to inherent properties such as interference, intermittentlinks, limited battery,etc., the resource

limitations are more stringent.

The security patches can be distributed in anon-replicative or replicative manner (fig.1). In the

former, a number of (mobile or stationary) agents, referredto asdisseminators, are pre-loaded

with the patch, and other nodes receive it from them. In the replicative model, the receptors,

i.e., the recovered nodes, in addition, become disseminators of the security patch themselves -

hence the disseminatorsreplicate. The replicative method immunizes nodes more rapidly, as it

has a growing number of disseminators, but at the expense of consuming increasingly larger



amounts of limited underlying resources. Thus, the choice between the two, and the differences

in their controls are not a priori clear. The overall system cost depends on (i) the number of

infectives and dead nodes, and (ii) the resource consumption in distribution of countermeasures.

In both scenarios, dynamic optimal control of the fraction of activated disseminators and the

distribution rates of activated nodes can minimize the overall cost and thereby attain desired

trade-offs between network security and resource consumption.

A special case of the epidemic evolution in fig.1 also captures propagation of messages in

Delay Tolerant Networks (DTNs). A server may seek to broadcast a message to as many nodes

as possible, before a deadline, by employing minimal resources such as energy and bandwidth.

In this case, susceptibles are the nodes that are yet to receive the message, and the recovered

are the ones which have received it. Dissemination of the message may either be performed

in non-replicative or replicative manner. Infectives and dead nodes are absent in this problem.

The overall ‘cost’ is (i) decreasing in the number of recovered (i.e., recipient) nodes, and is

(ii) increasing in the transmission rates of the activated disseminators. Again, dynamic optimal

control can be utilized to resolve a problem of practical importance in the context of networking.

The epidemiological evolution has natural analogues in thespread of a contagious disease in

a human society, with the caveat that the inoculation and healing processes are non-replicative.

The cost is aggregation of infective and dead individuals and the overall human-hour of trained

staff [8]. Application of the optimal control of epidemiological evolution in social context is,

however, not restricted to the containment of contagious diseases. Another noteworthy problem

is dynamic management of advertising resources in adoptionof a new technology. We discuss

two practical examples which we refer to asReclamation andRivalry cases, respectively. First,

consider a simple scenario where (at least initially) most individuals in a society are subscribed to



a specific technology through incumbent company A (e.g., Comcast for cable TV in Philadelphia)

- they are the susceptibles. A new technology/company B (e.g., DTV) aims to capture the

market. They win over some customers, who constitute the converts (infectives). Social exchanges

(contacts) between infectives and susceptibles (convertsand subscribers) may convert the latter.

CompanyA seeks to regain the share of the market, by recapturing (healing) the infectives

and re-confirming (immunizing) the susceptibles, say via offering lucrative long-term contracts

(patches) - the resulting pledged subscribers constitute the recovered. New contracts are long-

term and thus the recovered are immune to further change in subscription. The reclamation occurs

through the efforts of advertising agents (disseminators)who communicate to the infectives and

susceptibles through tele-marketing, e-marketing and/orword of mouth. The disseminators may

either be from an initial pool (non-replicative dispatch),or may include the recovered nodes as

well, e.g. by offering pledged subscribers additional service discounts through referral rewards,

etc. (replicative dispatch). There is however no “death” in thissetting. The overall ‘cost’ for

companyA is (i) increasing in the number of infectives, as they are theonly lost subscribers to

A, and is (ii) increasing in the number of active agents and theamount of discounts they offer in

order to make the contracts appealing. Thus, optimal (dynamic) control of activating agents and

selecting discount rates maximizes the net profit for company A, where profit equals the income

generated through subscription minus the cost incurred in marketing/advertising over time.

For the second case (Rivalry), suppose that both competing companies enter the market for

a new technology at around the same time. Now, susceptibles are those who are yet to choose

either, infectives encompass those who have chosenB (the rival), and recovered are those who

have chosenA. Both infectives and recovered may convert susceptibles (theundecided) to their

respective groups whenever the respective pairs contact, e.g., through social communications -



the dispatch is therefore replicative. It is also possible that some infectives can not be healed

as both companies may offer long-term contracts. The overall cost for companyA is similar,

except that it is now decreasing (hence the revenue is increasing) in the number of recovered,

as only recovered are subscribed to companyA in this case.

b) Contributions and Road-map: First, we formulate the minimization of the aggregate

cost associated with epidemic state evolution as an optimalcontrol problem. The cost represents

a trade-off between desirability/harmfulness of the stateand the cost of consuming resources

in order to manage the state. We demonstrate the extent of generality of our model through

different examples. We consider both replicative and non-replicative dispatch scenarios and

minimize the overall costs by dynamically selecting the activation of the disseminators and their

distribution rates. We develop a framework for solving thisnon-linear optimal control problem

using Pontryagin’s Maximum Principle [9], [10].

Next, in both non-replicative and replicative settings, weprove that the optimal policies have

the following simple structure: when the resource consumption cost is concave, until a certain

time, all disseminators are activated and they distribute patches at the maximum possible rate, and

subsequently no disseminator is activated until the end of the system operation period (§§III-A

and IV-A). Optimality of a bang-bang control (that is the property that it assumes only either

its minimum or maximum possible values at any given time) andquantifying the maximum

possible number of jumps to beone are despite the facts that the network state evolutions do not

constitute monotonic functions of time, involve non-linear dynamics, the cost functions are not

assumed to be linear and the control (activation fraction, transmission rate) is a two-dimensional

function. When the resource consumption cost is convex, the optimal activation fraction function

has the same structure. The optimal transmission rate function has similar behaviour except that



its potential transition from the maximum to minimum valuesis strict, but continuous rather than

abrupt. The generality of the model allows for a unified theoretical framework for optimizing a

sundry of problems of practical importance in diverse scenarios. Moreover, the simplicity of the

structure of the optimal controls makes them amenable to implementation in practice.

Finally, using numerical evaluation, we assess the relative efficacy of the replicative and

non-replicative dispatch and static and dynamic optimal controls (§V). We demonstrate that in

general, optimal dynamic controls incur significantly lower aggregate costs than optimum static

controls in both replicative and non-replicative settings. Also, in presence of dynamic optimal

control, replicative dispatch of security patches incurs substantially lower aggregate costs than

non-replicative dispatch.

c) Related Literature: Optimal control has been extensively used to find the best deployment

of resources in treating infectious epidemics [11], [12], advertising and marketing [10], [13],

[14] and recently in securing communication networks against malware outbreaks [15]–[17]. An

extensive overview of the existing work is beyond the scope of this article. In what follows, we

mention and differentiate from some of the most related works.

Optimal control in treatment of infectious epidemics is mostly applied to systems where only

vaccination or healing/quarantining is present, the cost is linear in the treatment rate and there

is no mortality among infectives [11], [12]. In contrast, our system integrates both vaccination

and healing/quarantining, the cost of treatment is any general concave or convex function, and

it depends on both infective and the deceased as well. Moreover, there is no equivalent of

replicative immunity in the case of infectious diseases.

Also, our work generalizes the existing treatment of modelsis advertising and marketing [10],

[13], [14] which mostly consider only either public advertisement or word-of-mouth advertise-



ment with linear benefits, and optimizations are mostly withrespect to the steady state behaviour

of the market, rather than the transitional patterns, whichis the salient feature of the diffusion

of new technologies. We consider a nonlinear system and general cost functions, and consider

the transients of the evolution of the states as well.

In the context of security in communication networks, [17] investigates a different counter-

measure: that of reduction of reception gain of wireless nodes for slowing down the spread

of malware in wireless networks. [16] considers the trade-off between the infection spread and

the patching cost in an epidemic. Our work differs from [16] in that we consider (i) both

replicative and non-replicative patching, (ii) more general network state evolution dynamics

in that the counter-measure involves both immunization andhealing, moreover the worm may

cause mortality, and (iii) cost functions which are only assumed to be either concave or convex

and therefore more general than quadratic functions in [16]. Also unlike [16] we do not use

any linearization of the system which can be very poor in the context of epidemic behaviour.

Investigation of optimal solutions in our context thus requires different analytical arguments.

[15] considers only a one-dimensional control of bandwidth. That model is thus not suitable for

capturing the cost related to the total consumed energy, which is more critical than bandwidth

in DTN networks. Moreover, the cost function does not include the benefit of recovered, which

is essential for application in marketing or DTN settings.

Optimal forwarding of packets emanating from a single source in a delay tolerant energy-

constrained wireless network is studied in [18], [19] and itis shown that optimal strategy follows

a threshold-based structure. [18], [19] analytically relyon some simplifying assumptions that

will make them as special cases in our context. Specifically,[18] considers only networks that

use two-hop routing, and therefore, the resulting dynamicsof the number ofrecovered (i.e. nodes



that have received the packet) follows our non-replicativemodel with no infective or dead. Also,

[19] investigates amonotonic epidemic model, which arises when none of the nodes that have

received a desired packet lose it, which is mapped to a special case of our replicative case with

no infective or dead. Our model, unlike those two works, considers a general cost function that

involves a general reward for the number of recipient nodes and any (concave-linear-or convex)

power function, and is therefore, a generalization of worksin [18], [19].

II. SYSTEM MODEL

We first present the state evolution and formulate the cost minimization goal as an optimal

control problem at an abstract level. In particular, we use terms such asinfectives, susceptibles,

recovered, dead and disseminating, immunization and healing. Later, in§II-C, we motivate the

model by instantiating each of these terms in the different settings discussed in the introduction

(§I-A).

A. Dynamics of Non-Replicative Dispatch

A system consists ofN entities, and at timet, a number ofnS(t), nI(t), nR(t) andnD(t) of

them are respectively ininfective, susceptible, recovered anddead state. Let the corresponding

fractions beS(t) = nS(t)/N, I(t) = nI(t)/N, R(t) = nR(t)/N, andD(t) = nD(t)/N. Thus, for

all t, S(t)+I(t)+R(t)+D(t) = 1. A pre-determined set of entities, referred to as disseminators

are pre-loaded with the patches that immunize and/or heal. These disseminators constitute an

R0 fraction of the the total populationN , that is, their number isNR0 where0 < R0 < 1. We

assume that the disseminators can not be infected and hence they are recovered right from the

beginning. At timet = 0, let 0 ≤ S(0) < 1, 0 ≤ I(0) = I0 ≤ 1, 0 < R(0) = R0 ≤ 1, D(0) = 0.



Thus,S(0) = 1− I0 −R0. When infectives do not exist,I0 = 0. No entity is aware of the state

of other entities, except that they know who the disseminators are.

A susceptible is infected whenever it is in contact with an infective. We assume homogeneous

mixing, that is, an infective is equally likely to contact with any other entity and with the same

inter-meeting delay distribution. Hence an infective meets with each susceptible at the same

rate, sayβ̂. We later partially relax this assumption using simulations(§V). At any given t,

there arenS(t)nI(t) infective-susceptible potential pairs. Susceptibles aretherefore transformed

to infectives at ratêβnS(t)nI(t).

The system manager controls the resources consumed in distribution of thepatches by dy-

namically activating a fraction of the disseminators, as well as determining the patch distribution

rates of the activated disseminators. Let the fraction of activated disseminators at timet be ε(t),

and each transmits a patch at rateu(t). The disseminators distribute their patches to infectives

and susceptibles upon contact, which has similar connotations as for the spread of infection. The

patches immunize the susceptibles, and thus susceptibles recover at ratẽβε(t)NR0nS(t)u(t) at

eacht. Clearly,

0 ≤ ε(t) ≤ 1, 0 ≤ u(t) ≤ 1 at eacht. (1)

The last upper bound follows by normalization ofβ̃.

The efficacy of the patch may be lower for infectives than for susceptibles. We capture the

above possibility by introducing a coefficient0 ≤ π ≤ 1: π = 0 occurs when the patch is

completely unable to heal the infectives and only immunizesthe susceptibles, whereasπ = 1

represents the other extreme scenario where a patch can equally well immunize and heal sus-

ceptibles and infectives. If the patch heals an infective, its state changes to recovered, otherwise,

it continues to remain an infective. Thus, the infectives recover at rateπβ̃NR0ε(t)u(t)nI(t) at



eacht.

Each infectivedies at rateδ, whereδ ≥ 0, and the overall death rate isδnI(t) at eacht.

Note that δ = 0 corresponds to systems without death. Letβ0 := limN→∞Nβ̂ and β1 :=

limN→∞Nβ̃ > 0 are limits of the respective R.H.S.1 If the total number of entities (N ) is

large, thenS(t), I(t) andD(t) converge to the solution of the following system of differential

equations:2

Ṡ(t) = −β0I(t)S(t)− β1R0ε(t)u(t)S(t) (2a)

İ(t) = β0I(t)S(t)− πβ1R0ε(t)u(t)I(t)− δI(t) (2b)

Ḋ(t) = δI(t) (2c)

with initial constraints:

I(0) = lim
N→∞

nI(0)/N = I0, 0 < S(0) < 1− I0, D(0) = 0, (3)

and which also satisfy the following constraints at allt:

0 ≤ S(t), I(t), D(t) and S(t) + I(t) +D(t) ≤ 1. (4)

Thus, (S(.), I(.), D(.)) constitutes the system state function and(ε(.), u(.)) constitutes the (2-

1These limits exist as long as the node densitylimN→∞N/A exists for largeN . To see an example, [20] shows that the

rate of inter-meeting timeŝβ and β̃ are inversely proportional toA: the total 2-D area on which the nodes roam, where the

proportional coefficient is a function of the transmission range, average relative speed and the mobility model of the nodes.

Hence,N × β̂, e.g., hasN/A multiplied by some constants, which are not functions ofN . Hence taking the limit, as long as

N/A, i.e., the node density, exists,β0 is well-defined.

2Throughout the paper, variables with dot marks (e.g.,Ṡ(t)) will represent their time derivatives (e.g., time derivative ofS(t)).
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Fig. 1: State transitions for non-replicative case. The only difference in the replicative case is that transition rates

from S to R is at rateβ1εuRS and fromI to R at rateπβ1εuRI instead.

dimensional) control function.3 For the case ofI0 = 0, the infectives stay at zero, thus WLoG, we

assumeβ0 = π = δ = 0. If I0 > 0, we assumeβ0 > 0. Henceforth, wherever not ambiguous, we

drop the dependence ont and make it implicit. Fig.1 illustrates the transitions between different

states of nodes and the notations used.

B. Dynamics of Replicative Dispatch

In the replicative model, all recovered nodes become disseminators, and hence the fraction

of disseminators grows toR(t) at time t, whereas in the non-replicative model, the fraction of

3Formally, under some technical assumptions, specifically, if the inter-contact times and the killing delays are exponentially

distributed, then the evolution of the system is governed by a continuous time Markov chain. Then according to the results

of [21, p.1], the convergence is in the following sense:

∀ ǫ > 0 ∀ t > 0, lim
N→∞

Pr{sup
τ≤t

|
nS(τ)

N
− S(τ)| > ǫ} = 0,

and likewise forI(t) andD(t). The exponential distribution of time between consecutive contacts of a specific pair of nodes

in mobile wireless networks is established by Groeneveltet al. in [20] for a number of mobility models such as the random

waypoint and random direction model [22]. In addition, epidemic modelssimilar to (2) and (5) have been validated through

experiments as well as network simulations to provide an acceptable representation of the spread of malware and messages in

networks (see e.g. [23]).



disseminators continue to beR0 at all times. The dynamics in (2) hence needs to be modified.

First, sinceS(t) + I(t) +R(t) +D(t) = 1 at any given time, we can represent the system using

any three of the above states. In the non-replicative case wechose(S(t), I(t), D(t)), whereas in

the replicative case we adopt(S(t), I(t), R(t)) instead. The specific choices make the analyses

more convenient in each case.

Ṡ(t) = −β0I(t)S(t)− β1ε(t)u(t)R(t)S(t) (5a)

İ(t) = β0I(t)S(t)− πβ1ε(t)u(t)R(t)I(t)− δI(t) (5b)

Ṙ(t) = β1ε(t)u(t)R(t)S(t) + πβ1ε(t)u(t)R(t)I(t) (5c)

with initial constraints:I(0) = I0, R(0) = R0, S(0) = 1 − I0 − R0, and as before,0 ≤ I0 ≤

1, 0 < R0 < 1, I0 + R0 < 1. Also similarly, 0 ≤ S(t), I(t), R(t) andS(t) + I(t) + R(t) ≤ 1.If

δ = 0, the latter holds as an equality.

The following lemma, which we prove next, shows that the state constraints in both non-

replicative and replicative models hold for any control-pair that satisfies (1), thus these constraints

can be ignored henceforth, i.e., we can deal with optimal control problems with no state

constraints.

lemma 1: (A) In non-replicative case, for any control function pair(ε(.), u(.)) that satisfies

(1), ((S(t), I(t), D(t))) , satisfies the state constraints for the non-replicative case in the [0, T ]

interval, i.e.,0 ≤ S(t), I(t), D(t) andS(t) + I(t) + D(t) ≤ 1. Moreover, (i)S(t) > 0 for all

t ∈ [0, T ], (ii) if I0 > 0, I(t) > 0 for all t ∈ [0, T ], and (iii) if δ > 0, D(t) > 0 for all t ∈ [0, T ].

(B) Similarly, in the replicative case, for any control function pair (ε(.), u(.)) that satisfies (1),

((S(t), I(t), R(t))) , satisfies the state constraints for this case, i.e.,0 ≤ S(t), I(t), R(t) and

S(t) + I(t) + R(t) ≤ 1 in the [0, T ] interval. Moreover, (i) R(t), S(t) > 0 for all t ∈ [0, T ],



(ii) if I0 > 0, I(t) > 0 for all t ∈ [0, T ], and (iii) if δ = 0, S(t) + I(t) +R(t) = 1.

Proof: We provide the proof for the non-replicative case. The prooffor the replicative case

follows almost identically.

We first consider the case ofI0 > 0. The case ofI0 = 0 is discussed in the end. Also for now,

assumeδ > 0. Since0 < I0 + R0 < 1, I0, R0 > 0 the initial conditions in (3) ensure that all

constraints (4) are strictly met att = 0, except thatD(0) = 0. The lemma follows if we show that

all constraints in (4) are strictly satisfied in(0, T ]. All S(.), I(.) andD(.), resulting from (2) are

continuous functions of time. Thus, sinceS(0), I(0) > 0 andS(0)+ I(0)+D(0) = 1−R0 < 1,

there exists an interval(0, t0) of nonzero length on which bothS(t) andI(t) are strictly positive

and S(t) + I(t) + D(t) < 1. Hence, from (2) and (3),Ḋ(t) > 0 in [0, t0). Thus, from (3),

D(t) > 0 in (0, t0). Therefore, (4) is strictly satisfied in[0, t0).

Now, suppose that the constraints in (4) are not strictly satisfied in (0, T ]. Then, there exists

a time t1 which is the first time aftert = 0 at which, at least one of the constraints in (4)

becomes active. That is, we have (i)S(t1) = 0 OR (ii) I(t1) = 0 OR (iii) D(t1) = 0 OR

(iv) S(t1) + I(t1) + D(t1) = 1 AND throughout (0, t1), we have0 < S(t), I(t), D(t) and

S(t) + I(t) + D(t) < 1. Thus, for 0 ≤ t < t1 from (1), (2), (3) and sinceR0 < 1, we

have Ṡ(t) ≥ −(β0 + β1)S(t). Hence,S(t) ≥ S(0)e−(β0+β1)t for all 0 ≤ t < t1. SinceS(.)

is continuous,S(t1) ≥ S(0)e−(β0+β1)t0 . Similarly, we can show thatI(t1) ≥ I(0)e−(β1+δ)t0 .

Thus, sinceS(0) > 0, I(0) > 0, (i) and (ii) are ruled out. Next, from (2),̇D(t) > 0 in (0, t1).

Thus, from the continuity ofD(.) and sinceD(t) > 0 in (0, t1), (iii) is ruled out. Again,

d
dt
(S(t) + I(t) +D(t)) ≤ 0 in (0, t1). Thus, from the continuity ofS(.), I(.), D(.) and since

S(t)+I(t)+D(t) < 1 in (0, t1), (iv) is ruled out as well. This negates the existence oft1. Thus,

by contradiction, the constraints in (4) are strictly satisfied in (0, T ].



If, on the other hand,δ = 0, from (2) and (3),D(t) = 0 for all t ∈ [0, T ]. Using similar

arguments we can show thatS(t), I(t) > 0 andS(t) + I(t) < 1 for all t ∈ [0, T ]. The lemma

follows.

Now consider the case ofI0 = 0. In this case, we haveI(t) = D(t) = 0 for all t ∈ [0, T ].

0 < S0 < 1, thus the constraintS > 0 andS + I + R < 1 are strictly met att = 0. SinceS

is continuous in time, there exists an interval(0, t0) of nonzero length on whichS(t) is strictly

positive andS(t)+I(t)+D(t) = S(t) < 1. Now, suppose there exists a timet1 which is the first

time aftert = 0 at whichS(t) = 0 ORS(t) = 1 AND throughout(0, t1), we have0 < S(t) < 1.

Thus, for0 ≤ t < t1 from (1), (2), (3) and sinceR0 < 1, we haveṠ(t) ≥ −β1S(t), which implies

S(t) ≥ S(0)e−β1t for all 0 ≤ t < t1. SinceS(.) is continuous,S(t1) ≥ S(0)e−β1t0 > 0. Also,

Ṡ(t) < 0 in (0, t1), thus, from the continuity ofS(t) and sinceS(t) < 1 in (0, t1), S(t1) < 1.

Therefore,t1 could not exist. Thus, by contradiction,0 < S(t) < 1 in (0, T ].

C. Motivation of the models and Instantiation

In the introduction section (§I), we described the motivations for the models presented inpre-

vious section through different examples from which interpretation of each of the corresponding

states is straightforward. Here, and we add more comments onthe nature of interactions in

each example. First thing to point out is that, except for thecase of infectious disease, both the

replicative and non-replicative scenarios are conceivable.

Network Security: In a client-server based, p2p or cellular network, node A contacts (i.e.,

communicates with) node B if A knows the (ID or) address of B, and have the right permissions

or infiltrates it. The homogeneous mixing assumption can represent worm propagation in 3G

and 4G cellular networks (peer-to-peer, resp.) where infective mobiles (peers, resp.) try to

infect randomly and uniformly generated (IDs or) addresses. Note that in any such mobile



to mobile communication, irrespective of the locations of the mobiles, there are two wireless

communications between access points and mobiles and the rest of the communications are

through the backbone network where the delays and congestions are relatively limited. Similarly,

peers communicate through the backbone network where delays are limited. Thus, in both

p2p and cellular networks, the inter-meeting times have thesame distribution irrespective of

the location of the pairs. In a MANET, a contact occurs only when two nodes move into

communication range of each other. Under mobility models such as random waypoint or random

direction model (explained in [22]), Groeneveltet al. [20] has established the homogeneous

mixing property for such contact processes in a highly mobile network. Security patches are

distributed by mobile or stationary agents (in MANETs) or base stations (in AP and cellular

networks) or a set of central servers (in wired networks). Inreplicative case, each recipient also

forwards the security patch to nodes it contacts in future. The rates of contacts are determined

by system specific parameters such as address scanning ratesof infectives, communication

rates, mobility, communication rangesetc. The worm may completely prevent the download

or installation of the patch in an infective node. This case corresponds toπ = 0.

Delay Tolerant Networks (DTNs): Contact occurs when two nodes roam into communication

range of each other. There is no infective or dead nodes. Thiscan be modeled by settingI0 =

D0 = π = β0 = δ = 0 in our system dynamics equations.

Marketing-Reclamation/Rivalry: There is no dead state in these cases, which correspond to

δ = 0. Here, contacts constitute social interactions such as meetings, phone communications or

email exchanges. The non-replicative case arises when onlyagents of the incumbent/rival attempt

to persuade the customers, while in the replicative mode, each convert/subscriber advertises for

the service through word of mouth as is incentivised by referral-based rewards/discounts.π = 0



represents the case in which customers are also pledged to the competitor and cannot be claimed

by the incumbent/rival. Intermediate values ofπ corresponds to different resistance (inertia) of

customers to switch.

D. The Objective Function

We seek to minimize the overall cost in a time window[0, T ], whereT is a parameter of

choice. At any given timet, the system incurs costs at the rates off (I(t)), g (D(t)) and benefit

at the rate ofL (R(t)) wheref(.), g(.), L(.) are non-decreasing and differentiable functions such

that (WLoG) f(0) = g(0) = L(0) = 0. We assumef ′(x) > 0 for all x ≥ 0. In addition, each

activated disseminator charges, or consumes resources at the rateh (u(t)) at timet since it uses

a distribution rate ofu(t), and ε(t)R0 fraction of the nodes are the activated disseminators at

time t. Here,h(x) is a twice-differentiable and increasing function inx such thath(0) = 0 and

h(x) > 0 whenx > 0. Note that the assumptions onf(.), g(.), h(.) are mild and natural, and a

large class of functions satisfy them. The aggregate systemcost therefore is

J =

∫ T

0

f (I(t)) + g (D(t))− L (R(t)) + ε(t)R0h (u(t)) dt

+κII(T ) + κDD(T )− κRR(T ). (6)

ReplacingR0 with R(t) in (6) gives the overall cost for the replicative case, as here, activated

disseminators at timet constituteε(t)R(t) (instead ofε(t)R0) fraction of the total nodes. For

both cases, at least one of the functionf, g or L is not the null function, andh is either a

concave, linear or a convex function ofu.

Problem Statement: The system seeks to minimize the aggregate cost in (6) by appropriately

regulatingε(.), u(.) at all t subject to (1), when the states evolve(A) as per (2) for non-replicative,

and (B) as per (5) for replicative dispatch, and satisfy the respective initial state conditions.



Note that we use open loop policies, which are control policies that they directly depend on

time, as opposed to the states of the system (closed-loop policies). However, since we have

mean-field convergence (for large enoughN ), the system is deterministic and open loop policies

perform as well as closed-loop policies.

Here we briefly motivate the cost model for each of our different settings. Our cost model

in (6) (and its replicative counterpart) is general enough to capture all of the cases.

Network Security: In communication networks,each activated disseminator consumes power

and/or bandwidth at rateh (u(t)) at time t for transmission of patches. The total number of

activated disseminators at timet is respectivelyNε(t)R0 andNε(t)R(t) for non-replicative and

replicative dispatch. Infective and dead (dysfunctional)nodes incur accumulative costs to the

network as well (represented byf and g functions respectively). AlsoκI andκD respectively

represent the (scaled) cost per infective and dead node at the end of the network operation (i.e.,

time T ). In this case,L(R) ≡ 0 andκR = 0.

Delay Tolerant Networks (DTNs): Similarly, activation and transmission of disseminators

consume power, which is especially critical in energy constrained DTNs. Here, there are no

infective or dead nodes and hence,f = g ≡ 0 (alsoκI = κD = 0). There is reward associated

with increasing the total number of nodes which have received a copy of the disseminated mes-

sage. Also, the sooner the message is disseminated, the better, hence the integration ofL(R(t))

over time (note that the negative sign convert the minimization problem to a maximization one).

[24, appendix-A] directly relates the integral over time ofthe fraction of recovered nodes to the

probability that a message is delivered to a sink before deadline T . Hence the minimum delay

problem is transferred to maximization of
∫ T

0
R(t) dt, which corresponds to the special case of

linear L(x) = −x in our setting (also ref. [18], [19]). IfT , as in [18], [19], [24], represents



the deadline before the disseminated message reaches a (setof) destination(s), thenκR = 0. If

however, the objective is broadcasting a message by timeT to many nodes, thenκR represents

the scaled benefit per node which has received the message at time T .

Marketing-Reclamation: The optimizer in this case is the incumbent who incurs a cost of

J . Here,g, L ≡ 0, as infectives are the only group of customers who are not subscribed to the

incumbent. That is, the incumbent incurs a cost only throughinfectives, since their converting

away results in reduction of revenue (cessation of their subscription fee) over time. This loss

is captured by integration off(I) over time. Among the individuals who are contacted, only

those who are persuaded by the offers will switch back. The cost for advertisement, captured

by integration of the term involvingh(.), is associated with the amount of discount offers and

rewards provided to lure the customers back. The incumbent seeks to minimize its overall loss

due to the entrance of the competitor, by dynamically determining the fraction of the individuals

who should be selected for a special offer and how much discount should be provided, which

in turn determines the efficacyu of the switch to the incumbent. Here,κD = κR = κI = 0.

Marketing-Rivalry: The optimization here, is from the viewpoint of one of the rivals. There

is no dead state in this model, hence, similar to the reclamation case,g ≡ 0. However,f ≡ 0

instead ofL, since only recovered are those customers who subscribe to the company of the

optimizer (susceptibles are not subscribed to either). Therevenue comes from the subscription

fee of the recovered nodes, and is represented through integration of theL(R) function over

time. The cost for advertisement is similar to the Reclamation case. Here,κI = κD = κR = 0.

III. O PTIMAL NON-REPLICATIVE DISPATCH

We apply Pontryagin’s Maximum Principle to obtain a framework for solving the optimal

control problem as posed in Problem Statements (A) and (B). Let ((S, I,D), (ε, u)) be an optimal



solution to the problem posed in problem statement (A) in the previous section, consider the

Hamiltonian H, and correspondingco-state or adjoint functionsλS(t), λI(t) andλD(t), defined

as follows:

H = f(I) + g(D)− L(R) + εR0h(u) + (λI − λS)β0IS

−β1R0εuλSS − πβ1R0εuλII + (λD − λI)δI.

(7)

whereR = 1− S − I −D.

λ̇S = −
∂H

∂S
= −L′(R)− (λI − λS)β0I + β1R0εuλS

λ̇I = −
∂H

∂I
= −L′(R)− f ′(I)− (λI − λS)β0S + πβ1R0εuλI

− (λD − λI)δ

λ̇D = −
∂H

∂D
= −L′(R)− g′(D). (8)

along with thetransversality conditions:

λS(T ) = κR, λI(T ) = κI + κR, λD(T ) = κD + κR. (9)

Then according to Pontryagin’s Maximum Principle (e.g., [9, P. 109, Theorem 3.14]), there exist

continuous and piecewise continuously differentiable co-state functionsλS, λI and λD, that at

every pointt ∈ [0 . . . T ] whereε andu is continuous, satisfy (8) and (9). Also,

(ε, u) ∈ arg min
ε,u admissible

H(~λ, (S, I,D), (ε, u)). (10)

A. Structure of the Optimal Non-replicative Dispatch

We establish that the two-dimensional optimal controls of patching in the non-replicative case

have simple structures:



Theorem 1: In the problem statement (A), for either one of the following two cases: (i)L ≡ 0,

β0 > 0 andf(.) is convex, (ii)δ = 0 andL 6≡ 0, an optimal control(ε(.), u(.)) has the following

simple structure:

1) When h(.) is concave,∃ t1 ∈ [0 . . . T ] such that (a)u(t) = 1 for 0 < t < t1, and

(b) u(t) = 0 for t1 < t < T.

2) Whenh(.) is strictly convex,∃ t0, t1, 0 ≤ t0 ≤ t1 ≤ T such that (a)u(t) = 1 on0 < t ≤ t0,

(b) u(t) strictly and continually decreases ont0 < t < t1, and (c)u(t) = 0 on t1 ≤ t ≤ T.

In both cases, for allt ∈ (0, T ), except possibly fort = t1 whenh(.) is strictly concave,ε(t) = 1

if and only if u(t) > 0, andε(t) = 0 otherwise.

The above results are somewhat surprising in that the activation fraction ε(.) is completely

specified byu(.), and hence the two-dimensional control is reduced to a one-dimensional solution.

The practical implication is that the activation scheme isall or none, and it is not optimal to

activate a portion of the dispatchers. Whenh(.) is strictly concave, the optimum transmission

range, and hence the entire solution, is bang-bang and has atmost one jump from1 down to

0, and it is optimal to patch as aggressively as possible earlyon (as soon as the infection is

detected and the patch is produced) and halt the patching after a certain time. Whenh(.) is

strictly convex,ε(.) continues to be bang-bang and has at most one jump from1 down to0, but

u(.) has a strict but continuous descent to0.

Proof: Let functionϕ(t) be defined as follows:

ϕ := β1(λSS + πλII) (11)

ϕ(.) is thus a continuous function of time, which according to (9)has the following final value:

ϕ(T ) = β1(κRS(T ) + πκRI(T ) + πκII(T )). (12)



Also, as we prove in§III-B:

lemma 2: ϕ(t) is a strictly decreasing function oft for t ∈ [0, T ).

We can rewrite the Hamiltonian in (7) as:

H = f(I) + g(D)− L(R) + (λI − λS)β0IS

+(λD − λI)δI + εR0(h(u)− ϕu). (13)

From (10), for each admissible control(ε, u) and for all t ∈ [0, T ],

ε(t) (h (u(t))− ϕ(t)u(t)) ≤ ε(t) (h (u(t))− ϕ(t)u(t))

=⇒ (ε(t), u(t)) ∈ arg min
x∈[0,1]

y∈[0,1]

x (h (y)− ϕ(t)y) . (14)

Since(ε, u) ≡ (0, 0) is an admissible control, we have for all0 ≤ t ≤ T :

ε(h(u)− ϕu) ≤ 0. (15)

Note that whenever eitheru or ε is zero, irrespective of the other,εu = 0, and sinceh(0) = 0,

εh(u) = 0. Thus, the state dynamics and the instantaneous cost incurred do not depend on the

value of the other control function at these epochs. Thus, whenever one control function assumes

a zero value, we can, WLoG, choose zero value for the other.

Next, consider at at which the minimizer ofh (y)−ϕy in y ∈ [0, 1] is unique. If this unique

minimizer is0, thenε = u = 0 at t. In order to show this, we only need to show thatu = 0 at t.

Otherwise, if att, u > 0, thenε > 0 at t, andh(u)−ϕu > h(0)−ϕ0 = 0. This contradicts (24).

If this unique minimizer is positive, then att, miny∈[0,1] (h (y)− ϕy) < 0, and thus from (14),

ε = 1 andu equals this unique minimizer. Thus, at anyt at which the minimizer ofh (y)− ϕy

in y ∈ [0, 1] is unique,u equals this unique minimizer, andε = 1 if and only if u > 0, and

ε = 0 otherwise.



For establishing the structure of optimalu, we separately consider the cases of concave and

strictly convexh(.).

1) h(.) concave: When h(.) is concave (i.e.,h′′ ≤ 0), at each timet, h(x) − ϕ(t)x is a

concave function ofx, and thus, for any timet such thatϕ(t) 6= h(1), the unique minimum is

either atx = 0 or x = 1. Then,

ε(t)u(t) =



















0, ϕ(t) < h(1)

1, ϕ(t) > h(1).

(16)

Following lemma 2, there can be at most onet at which ϕ(t) = h(1) in [0, T ]. Moreover,

lemma 2 implies that if sucht exists, sayt1, thenϕ(t) > h(1) for t ∈ [0, t1), andϕ(t) < h(1)

for t ∈ (t1, T ]. The theorem follows from (16).

2) h(.) strictly convex: Sinceh(.) is strictly convex (i.e.,h′′ > 0), the minimizer ofh (y)−

ϕ(t)y in y ∈ [0, 1] is unique irrespective oft. Thus, ε(t) = 1 if and only if u(t) > 0,

and ε(t) = 0, otherwise. Whenh(.) is strictly convex (i.e.,h′′ > 0), (14) implies that, if

∂
∂x

(R0h (x)− ϕ(t)x)|x=y = 0 at ay ∈ [0, 1], thenu(t) = y, elseu(t) ∈ {0, 1}. Then,

u =







































0, ϕ ≤ R0h
′(0)

h′−1( ϕ

R0
), R0h

′(0) < ϕ ≤ R0h
′(1)

1, R0h
′(1) < ϕ.

(17)

Thus, from continuity ofϕ andh′, u is continuous at allt ∈ [0, T ]. Sinceh(.) is strictly convex,

h′(.) is a strictly increasing function - hence,h′(0) < h′(1). Thus, following lemma 2, there

exist t0, t1, 0 ≤ t0 ≤ t1 ≤ T , such thatϕ > R0h
′(1) on 0 < t ≤ t0, R0h

′(0) < ϕ ≤ R0h
′(1) on

t0 < t < t1, andϕ ≤ R0h
′(0) on t1 ≤ t ≤ T. The theorem follows from (17).



B. Proof of lemma 2

Proof: The state and co-state functions, and hence theϕ function, are continuous at each

time t ∈ [0, T ) and differentiable at each time at which the(ε, u) function is continuous. Since

(ε, u) is piecewise continuous, the lemma follows if we can show that ϕ̇ is negative at each such

t. Noting thatβ1 > 0, at each sucht ∈ [0, T ) we have:

ϕ̇

β1
=

1

β1

d

dt
ϕ = λ̇SS + λSṠ + πλ̇II + πλI İ

= −λIβ0IS + πλSβ0IS − πf ′(I)I − πλDδI

−L′(R)(S + πI) = −(λI − λS)πβ0IS − (1− π)λIβ0IS

−πλDδI − πf ′(I)I − L′(R)(S + πI) (18)

The right hand side is negative at eacht ∈ [0, T ) sinceI, S > 0 at all t ∈ [0, T ] (lemma 1-A),

β0 > 0, δ ≥ 0, 0 ≤ π ≤ 1 andf ′(x), L′(x) ≥ 0 for all x (sincef(.) andL(.) are non-decreasing

functions), and because:

lemma 3: For all 0 ≤ t < T, we haveλD ≥ 0, λI > 0, and (λI − λS) > 0.

We prove lemma 3 in Appendix A.

IV. OPTIMAL REPLICATIVE DISPATCH

Similar to the non-replicative case, we define the Hamiltonian as:

H = f(I) + g(D)− L(R) + εRh(u) + (λI − λS)β0IS

−(λS − λR)β1εuRS − (λI − λR)πβ1εuRI − λIδI.

(19)



whereD = 1− (S + I +R). The system of co-state differential equations is as:

λ̇S = −
∂H

∂S
= −(λI − λS)β0I + (λS − λR)β1εuR + g′(D)

λ̇I = −
∂H

∂I
= −f ′(I)− (λI − λS)β0S + (λI − λR)πβ1εuR

+ λIδ + g′(D)

λ̇R = −
∂H

∂R
= (λS − λR)β1εuS + (λI − λR)πβ1εuI − εh(u)

+ g′(D) + L′(R).

(20)

and the transversality conditions as:

λS(T ) = 0, λI(T ) = κI , λR(T ) = −κR. (21)

Then, according to Pontryagin’s Maximum Principle ( [9, P. 109, theorem 3.14]), there exist

continuous and piece-wise continuous functionsλS(t) to λR(t) that satisfy (20) and (21) at any

t at which (ε(t), u(t)) is continuous, and the optimal(ε, u) satisfies:

(ε, u) ∈ arg min
(ε,u) admissible

H(~λ, (S, I,D), (ε, u)). (22)

The above framework can be used for numerically computing the optimum control and the

minimum aggregate cost.

A. Structure of the Optimal Replicative Dispatch

Theorem 2: Consider an optimal control(ε(.), u(.)) to the problem posed in problem state-

mentB. The same structural properties as in Theorem 1 (i.e., for the non-replicative case) also

holds here.

In the rest of the subsection, we prove Theorem 2.

Proof: Considerϕ as defined in the following:

ϕ := (λS − λR)β1RS + (λI − λR)πβ1RI



Now from (22) and referring to (19), for each admissible control (ε, u), and for all t ∈ [0, T ],

ε(t) (R(t)h (u(t))− ϕ(t)u(t)) ≤ ε(t) (R(t)h (u(t))− u(t)ϕ(t))

=⇒ (ε(t), u(t)) ∈ arg min
x∈[0,1]

y∈[0,1]

x (R(t)h (y)− ϕ(t)y) . (23)

Since(ε, u) ≡ (0, 0) is an admissible control, we have for all0 ≤ t ≤ T :

ε(Rh(u)− ϕu) ≤ 0. (24)

The optimality of theε(t) as stated in Theorem 2 follows by similar argument following(15).

We prove the structure ofu separately for the cases of concave and strictly convexh(.), using

the following lemma, which we prove in§IV-B.

lemma 4: Let ψ(t) = ϕ(t)
R(t)

. Then,ψ(t) is a strictly decreasing function oft for t ∈ [0, T ).

1) h(.) concave: Sinceh(.) is concave (i.e.,h′′ < 0) andR > 0 by lemma 1-B, noy ∈ (0, 1)

attainsminy∈[0,1] (Rh (y)− ϕy) unlessϕ = Rh(1). Thus, if at timet, ϕ−Rh(1) < 0, theny = 0

is the unique minimizer ofRh (y) − ϕy in y ∈ [0, 1]. Thus, ε = u = 0 at any such time. If

ϕ−Rh(1) > 0, y = 1 is this unique minimizer. Thus,ε = u = 1 at any such time. Thus:

(ε, u) =



















(0, 0) ϕ−Rh(1) < 0

(1, 1), ϕ−Rh(1) > 0

(25)

Using lemma 4, we conclude thatϕ/R = h(1) at at most one time epoch in(0, T ), say t1,

and if sucht1 exists,ϕ/R > h(1) in (0, t1) andϕ/R < h(1) in (t1, T ). The theorem follows

from (25).

2) h(.) strictly convex: Sinceh(.) is strictly convex (i.e.,h′′ > 0), the minimizer ofR(t)h (y)−

ϕ(t)y in y ∈ [0, 1] is unique irrespective oft. Thus,ε(t) = 1 if and only if u(t) > 0, andε(t) = 0,



otherwise. Thus, we only need to prove the requisite properties ofu. This minimizer, and hence

u, is:






































0, ϕ

R
≤ h′(0)

h′−1( ϕ
R
), h′(0) < ϕ

R
≤ h′(1)

1, h′(1) < ϕ

R
.

(26)

Now, sinceϕ,R, h′ are continuous,h′ is strictly increasing,R > 0 at all t ∈ [0, T ], u is continuous

at all t ∈ [0, T ]. R(t) > 0 at all t ∈ [0, T ] by lemma 1-B, andh′(x) ≥ 0 for all x. During the

interval on whichh′(0) <
ϕ

R
≤ h′(1), ε = 1 and henceu̇ exists. The proof follows if we can

show thatu̇ < 0, whenh′(0) < ϕ

R
≤ h′(R). Now, for h′(0) < ϕ

R
≤ h′(R), we have

u = h′−1(
ϕ

R
) ⇒ u̇ =

d
dt
( ϕ
R
)

h′′(u)

According to lemma 4, this is negative.

B. Proof of lemma 4

Proof: We prove this lemma using lemma 5 which we state next and provein Appendix B.

lemma 5: For all 0 ≤ t < T, we have(λI − λS) > 0, (λS − λR) > 0 andλR ≤ 0.

(proof in Appendix B)

From continuity ofϕ,R, we need to show thaṫψ < 0 at any t ∈ [0, T ) at which (ε, u) is

continuous. Now, at such at,

ϕ̇ = (λ̇S − λ̇R)β1RS + (λ̇I − λ̇R)πβ1RI

+(λS − λR)β1ṘS + (λI − λR)πβ1ṘI

+(λS − λR)β1RṠ + (λI − λR)πβ1Rİ

= −πβ1β0RISλR − β1β0RISλI



+β1β0RISλR + πβ1β0RISλS − πβ1f
′(I)RI + πβ1RIδλR

−L′(R)Rβ1(S + πI) + εRh(u)β1(S + πI)

→ ±β0β1RISλS and re-arrangement→

= −β0β1(1− π)RIS(λS − λR)− β0β1RIS(λI − λS)

−πβ1f
′(I)RI + πβ1RIδλR

−L′(R)Rβ1(S + πI) + εRh(u)β1(S + πI)

= {negative term}+ εRh(u)β1(S + πI). (27)

The expressions denoted as{negative term} is negative at eacht ∈ [0, T ) owing to lemma 5 and

sinceβ1 > 0, and eitherβ0I(t) > 0 or L 6≡ 0, δ ≥ 0, 0 ≤ π ≤ 1 by assumption andS, I, R > 0

by lemma 1-B. At any sucht,

ψ̇(t) =
d

dt
(
ϕ

R
) =

ϕ̇− ϕ

R
Ṙ

R
(28)

=
{negative term}+ εRh(u)β1(S + πI)− Ṙ ϕ

R

R

=
{negative term}+ ε (Rh(u)− ϕu) β1(S + πI)

R

≤
negative term

R
(29)

The last inequality follows from (24), lemma 1-B and sinceβ1 > 0, π ≥ 0. The lemma follows

since the right hand side is negative at eacht ∈ [0, T ).

V. NUMERICAL COMPUTATIONS

First, with the intention of illustrating the theorems, we depict the optimal controls for the

general case, i.e., when all of the states exist, and the costis in the general form. The parameters

used are stated in the caption of fig.2. The figures on the rightside are related to a concaveh(u)
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Fig. 2: Illustration of the theorems. The common parameters areδ = 0.01, β = 0.15, I0 = 0.2, R0 = 0.25, D0 = 0,

T = 60, f(I) = 5I, g(D) = 10D, L(R) = 5R. For concaveh(u) (fig.2(a)) we have usedh(u) = 10u, and for

convexh(u) (fig.2(b)) we have usedh(u) = 10u2.

function and the ones on the right figures are according to a convex h(u) (for both replicative

and non-replicative cases).

Next, we have depicted a comparison of the aggregate costs that is incurred as a result of

applying each of these four different policies: optimal replicative dispatch, optimal non-replicative

dispatch, best static replicative dispatch, best static non-replicative dispatch. The aim is to explore

the efficacy of the replicative dispatch over the non-replicative dispatch and dynamic control over
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Fig. 3: Comparison of costs for four policies for variousI0. Dynamic replicative policy achieves the best performance

amongst the four. The parameters used (except for the parameter in the horizontal axis) are the same as in fig.2

static control. For the static policies, the control assumes a fixed value throughout the interval

of [0 . . . T ]. We have then varied this fixed value and selected the one that leads to the least cost

(hence, the ’best static’). For different values ofI0, as we can see in fig.3, under each dispatch

model, the optimal dynamic control will incur lower aggregate cost than the best static control.

This is because the set of feasible solutions for a dynamic control is a strict superset of that for

a static control - the former can always choose the immunization rate function as a constant,

whereas the latter can never vary the immunization rate as a function of time. The difference

is more emphasized for the case of replicative dispatch where optimal dynamic policy achieves

50 to 100% better cost values compared to the best static policies. Also, the optimal dynamic

replicative dispatch incurs lower aggregate cost than its non-replicative counterpart, since the

replicative dispatch can emulate non-replicative: one canalways activate only a fraction of the

dispatchers in the replicative setting so that it equals thenumber of active dispatchers in the

non-replicative case.

In the end, we illustrate the robustness of dynamic policies. A practical issue in implementing

the dynamic polices in this paper is that the parameters of the system are not always accurately
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Fig. 4: InaccurateI0, Non-replicative.
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Fig. 8: Robustness of dynamic policy with respect to erroneous estmations ofI0, β for both replicative and non-

replicative policies, and forπ = 0 andπ = 1.

known, and only rough estimate is available. Therefore, it is important to investigate the sen-

sitivity of the efficacy of the defense to these inaccuracies. Let’s say that the initial fraction of

the infective nodes is estimated to beI0 = 0.15, however with potential inaccuracy of 50%. We

apply the dynamic and static policies that are calculated based on this estimation to systems in

which the actual values were off from this estimate (up to 50%), assuming other parameters are

fixed. Then we depict the increase in the total cost due to applying these sub-optimal policies,

that is, the cost when the sub-optimal policy (the dynamic and static optimal control calculated

based on the inaccurate estimateI0 = 0.15) minus the cost when the actual optimal dynamic

policy for the accurate value ofI0 is applied. As fig.4 shows, the increase in the total damage



for the optimal dynamic policy due to inaccurate estimationof I0 is significantly low, showing

the robustness of the non-replicative dynamic policies with respect to erroneous estimation of

I0. Similar behaviour is observed for estimation ofβ and replicative policy (fig.5 through 7).
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APPENDIX A: PROOF OF LEMMA 3

Statement: For the non-replicative case, for all0 ≤ t < T, we haveλD ≥ 0, λI > 0, and

(λI − λS) > 0.

Proof: First, we note thatλD(T ) = κD + κR ≥ 0 and at anyt ∈ [0, T ] at which (ǫ, u)

is continuous,λ̇D(t) = −g′(D(t)) − L′(R(t)) ≤ 0. Thus, since(ε, u) is piecewise continuous,

λD(t) ≥ 0 for all 0 ≤ t ≤ T. For proving the other two inequalities, we first state two simple

real analysis properties which we prove in Appendices C and Drespectively.



Property 1: Let ψ(t) be a continuous and piecewise differentiable function oft. Let ψ(t1) = L

andψ(t) > L for all t ∈ (t1 . . . t0]. Then4 ψ̇(t+1 ) ≥ 0.

Property 2: For any convex and differentiable function,υ(x), which is 0 at x = 0, υ′(x)x−

υ(x) ≥ 0 for all x ≥ 0.

In the rest of the proof for simplicity, we consider the case in which κI = κD = κR = 0.

We proceed in the following two steps:

Step-1. λI(T ) = 0 and (λI(T ) − λS(T )) = 0. λ̇I(T ) = (λ̇I(T ) − λ̇S(T )) = −L′(R(T )) −

f ′(I(T )) < 0. Therefore,λI(t) and (λI(t)− λS(t)) are positive in an open interval of nonzero

length ending atT.

Step-2. Proof by contradiction. Lett∗ ≥ 0 be the last time beforeT at which (at least) one of

the other two inequality constraints is active, i.e.,

λI(t) > 0, (λI(t)− λS(t)) > 0 for t∗ < t < T ,

and λI(t
∗) = 0 OR λI(t

∗)− λS(t
∗) = 0

First, suppose thatλI(t∗) = 0 and thus(λI(t∗)− λS(t
∗)) ≥ 0. Now,

lim
t↓t∗

λ̇I(t) = −L′(R)− f ′(I)− (λI − λS)β0S − λDδ [∵(8)] (30)

we thus observe thatlimt↓t∗
d
dt
λI(t) < 0. This contradicts Property 1 for functionλI(t). Hence,

λI(t
∗) > 0. Now let λI(t∗)− λS(t

∗) = 0. Then, from (8),

lim
t↓t∗

(

λ̇I(t)− λ̇S(t)
)

=

−f ′(I) + πβ1R0εuλI − (λD − λI)δ − β1R0εuλS [∵(8)]

= −f ′(I)− (1− π)β1R0εuλI − (λD − λI)δ (31)

4For a general functionψ(x), the notationsψ(x+0 ) andψ(x−0 ) are defined aslimx↓x0
f(x) and limx↑x0

ψ(x), respectively.



For the case ofδ = 0, since we showedλI(t∗) > 0, the remaining terms are negative, which

contradicts Property 1 for the functionλI−λS, and hence negates the existence oft∗ and lemma

follows. For the case ofδ > 0 we need a more elaborate argument, as follows. The system is

autonomous, i.e., the Hamiltonian and the constraints on the control (1) do not have an explicit

dependency on the independent variablet. Thus, [25, P.236]

H(S(t), I(t), D(t), (ε(t), u(t)), λS(t), λI(t), λD(t)) ≡ constant (32)

Thus, from (9) and recalling that for the case ofδ > 0, we assumedL(R) ≡ 0, we have:

H = H(T ) = f(I(T )) + g(D(T )) + ε(T )R0h(u(T )).

Also, Ḋ = δI ≥ 0, and g(.) is a non-decreasing function, thusg(D(T )) ≥ g(D(t)) for all

t ∈ [0 . . . T ]. Hence:

H − g(D(t)) ≥ f(I(T )) +R0ε(T )h(u(T )) > 0. (33)

The positivity follows since according to lemma 1-A and the assumptions onf, h: (i) I(T ) > 0

and hencef(I(T )) > 0 and (ii) R0ε(T )h(u(T )) ≥ 0.

Therefore:

lim
t↓t∗

(

λ̇I(t)− λ̇S(t)
)

=

= −f ′(I) + πβ1R0εuλI − (λD − λI)δ − β1R0εuλS

−
H

I
+
f(I)

I
+
g(D)

I
−
L(R)

I

+
εR0

I
(h(u)− ϕu) + (λD − λI)δ [∵(13)]

=
1

I
[f(I)− f ′(I)I]−

H − g(D)

I

−(1− π)β1R0εuλI +
εR0

I
(h(u)− ϕu) (34)



From the supposition ont∗ and continuity ofλI(t), λI(t∗+) ≥ 0. Recall that for the case ofδ > 0,

we assumedf to be aconvex increasing function. Now,f(I)−f ′(I)I ≤ 0 following Property 2,

sincef(x) is convex andf(0) = 0 and I > 0 at all t by lemma 1-A. Thus, from lemma 1-A

and (1), (24) and (33), and sinceπ ≤ 1, β1, R0 > 0, we observe thatlimt↓t∗
d
dt
(λI − λS) < 0.

This again contradicts Property 1 for functionλI − λS and lemma follows.

APPENDIX B: PROOF OF LEMMA 5

Statement: For the replicative case, for all0 ≤ t < T, we have(λI−λS) > 0, (λS−λR) > 0

andλR ≤ 0.

Proof: First, from (20) and lemma 1-B, at eacht at which (ε, u) is continuous,

λ̇R(t) =
ε(ϕu−Rh(u))

R
+ g′(D(t)) + L′(R(t)) (35)

Hence, from lemma 1-B, (24) and sinceg(.) andL(.) are non-decreasing functions,λ̇R ≥ 0 for

all 0 ≤ t ≤ T. Thus, by piecewise continuity ofε, u and the continuity ofh, λR(t) ≤ 0 for all

0 ≤ t ≤ T.

We prove the other two inequalities as follows:

Step-1. This step is identical toStep-1 in the proof of lemma 3.

Step-2. Proof by contradiction. Lett∗ ≥ 0 be the last time beforeT at which (at least) one of

the other two inequalities is violated, i.e.,

(λI − λS)(t) > 0, (λS − λR)(t) > 0, for t∗ < t < T ,

and (λI − λS)(t
∗) = 0 OR (λS − λR)(t

∗) = 0.



First, suppose thatλI(t∗) = λS(t
∗). Now, similar to the derivation for (31), using (20) we obtain:

lim
t↓t∗

(

λ̇I(t)− λ̇S(t)
)

=

−f ′(I) + (λI − λR)πβ1εuR + δλI − (λS − λR)β1εuR

= −f ′(I)− (λS − λR)β1εuR(1− π) + δλI (36)

For the case ofδ = 0, we have−f ′(I) < 0 as was the assumption onf , and−(λS −λR) ≤ 0

following the definition oft∗. For the case ofδ > 0, noting that the corresponding assumptions

are convexf(.) andL ≡ 0, we can write:

lim
t↓t∗

(

λ̇I(t)− λ̇S(t)
)

=

= −f ′(I)− (λS − λR)β1εuR(1− π) + δλI

−
H

I
+
f(I)

I
+
g(D)

I
+
ε

I
(Rh(u)− ϕu)− δλI

=
1

I
[f(I)− f ′(I)I] +

ε

I
(Rh(u)− ϕu)

−
H − g(D)

I
− (λS − λR)(β1 − πβ1)εuR.

We can show, (i)[f(I)−f ′(I)I] ≤ 0 using Property 2, and (ii) analogous to (33),H−g(D) > 0

at all t. Also, from the definition oft∗, (λS − λR)(t
∗+) ≥ 0. Now, sinceβ1 > 0, π ≤ 1,

from lemma 1-B, and (24),limt↓t∗

(

λ̇I(t)− λ̇S(t)
)

< 0. This contradicts Property 1. Hence,

(λI(t
∗)− λS(t

∗)) > 0.

Now, let λS(t∗) = λR(t
∗). Thus, from (20), (35) and (11):

lim
t↓t∗

(

λ̇S(t)− λ̇R(t)
)

= −(λI − λS)β0I − ε
ϕu−Rh(u)

R
− L′(R)

From (24), lemma 1-B, and sinceβ0 > 0, and since we show that(λI(t∗) − λS(t
∗)) > 0,

limt↓t∗

(

λ̇S(t)− λ̇R(t)
)

< 0. This contradicts Property 1, and thereby negates the existence of

t∗. The lemma follows.



APPENDIX C: PROOF OFPROPERTY1.

Proof: Proof by contradiction. Suppose that Property 1 did not hold, thus

ψ(t1) = L, ψ̇(t+1 ) < 0

⇒∃δ1 ∈ (0 . . . t0 − t1) such thatψ̇(t) < 0 ∀t ∈ (t1, t1 + δ).

However, by integratingψ̇ from t1 to t1 + δ, we obtainψ(t1 + δ) < L. This contradicts the

assumption thatψ(t) > L for all t1 < t < t0.

APPENDIX D: PROOF OFPROPERTY2.

Proof: Defineξ(x) = υ′(x)x− υ(x). Clearly, ξ(0) = 0. Also,

ξ′(x) = υ′′(x)x+ υ′(x)− υ′(x) = υ′′(x)x.

The convexity ofυ(.) implies thatξ′(x) ≥ 0 for all x ≥ 0. Thus, sinceξ(0) = 0, ξ(x) ≥ 0 at

all x ≥ 0. The property follows.


