
Change Management in Enterprise IT Systems:
Process Modeling and Capacity-optimal Scheduling

Praveen K. Muthusamy∗, Koushik Kar∗, Sambit Sahu†, Prashant Pradhan† and Saswati Sarkar‡
∗Rensselaer Polytechnic Institute †IBM TJ Watson Research ‡University of Pennsylvania

Troy, NY 12180, USA Hawthorne, NY 10532, USA Philadelphia, PA 19104, USA
Email: {muthup,kark}@rpi.edu Email: {sambits,ppradhan}@us.ibm.com Email: swati@seas.upenn.edu

Abstract—We provide a formal model for the Change Man-
agement process for Enterprise IT systems, and develop change
scheduling algorithms that seek to attain the “change capacity” of
the system. The change management process handles critical up-
dates in the system that often use overlapping sets of servers, re-
sulting in scheduling conflicts between the corresponding change
classes. Furthermore, applications are typically associated with
certain permissible downtime windows, which impose constraints
on the timing of the change executions. Scheduling of changes for
such systems represent a complex dynamic optimization question.
In a limiting fluid regime, where changes are assumed non-

atomic, we develop a scheduling policy that provably attains the
change capacity of the system. We then propose and evaluate
an atomic approximation of the optimal fluid scheduling policy,
which is well suited for application to a real change management
system. Simulation results demonstrate that the expected change
execution delay and the capacity attained by the approximate
policy is close to the best attainable values, when unavoidable
capacity losses due to fragmentation effects are taken into account
and is significantly better than a randomized scheduling policy.

I. INTRODUCTION
The management of today’s Enterprise Information Tech-

nology (IT) eco-system is a very complex and challenging
task due to (i) large number of subsystems involved, such
as servers, network storage, firewalls, routers, (ii) interac-
tions across multiple resources and domains, (iii) complex
dependencies among applications stacks and IT resources,
and (iv) Stringent downtime requirements as many of these
applications are required to be available on a 24 × 7 basis.
The two major management tasks in this context are: (i)
Problem management – or handling of problem diagnosis
and root cause analysis, and (ii) Change management – or
timely implementation of updates to software stacks running
on network devices, servers and storage.
The most critical component of the change management

task is change scheduling. Our study is among the first ones
to formally define the change scheduling process using math-
ematical foundations and analyze it to understand and propose
improvements accounting for the practical constraints imposed
in an Enterprise IT system. More precisely, we consider
the problem of efficient management of a set of application
changes under possible scheduling conflicts between them, and
constraints on the change execution times. A change typically
refers to a software update that must be implemented on a
set of servers that depend on the specific application that the
change is associated with. Scheduling conflicts among changes
may be present, however, due to dependencies among applica-
tions and IT resources, availability of change executors (i.e.,

service specialists with appropriate skill sets) and additional
constraints imposed due to service-level agreements. More-
over, each change must be implemented without interruption,
and has an estimated time for completion, during which the
application (and all other applications that use any server being
updated) is unavailable to clients.
The key contribution of the paper lies in the novel quan-

titative formalization of the change scheduling process under
very general and realistic assumptions and the characterization
of the capacity-optimal change scheduling policy, albeit in
the fluid regime. Our change scheduling objective is to attain
the change capacity of the system, which represents (in loose
terms) the ability to sustain the maximal set of change requests
that can be scheduled by the system. (The notion of change
capacity is defined precisely later in the paper.) Due to the
atomic (i.e., indivisible) nature of the changes, and the asyn-
chronous nature of the timing constraints on change execution
times, the capacity-optimal change scheduling question in its
generalized form is a very complex dynamic optimization
problem. To obtain key insights to this difficult problem,
and develop and motivate efficient approximate solutions,
we analyze the scheduling question under an idealized fluid
assumption, where changes are assumed to be non-atomic (or
arbitrarily divisible). In this fluid system, we obtain a policy
that is provably optimal in terms of change capacity. We
then propose and study a approximate scheduling policy that
tries to mimic the fluid system as closely as possible, while
preserving the indivisibility of the changes. From a practical
perspective, the excellent performance of the proposed atomic
change scheduling algorithm (developed as an approximation
to the capacity-optimal fluid scheduling algorithm) both in
terms of attained capacity and expected delay, suggests that
change management process based on this scheduling policy
can be very effective in improving the performance of IT
services that must be available to clients 24 × 7.

II. CHANGE SCHEDULING CONSTRAINTS
In this section, we briefly motivate the critical constraints

on the change scheduling policy, which will be used later in
the mathematical formulation. In the rest of the paper, we
will associate changes with specific applications: our notion
of an “application” is however very generic, and may stand
for a user level process, a kernel level process, a database
or protocol. Change implementation for any such application
requires exclusive use of the “servers” that implement the
application.

2

(a)

(b)

Fig. 1. Application conflict graph with change queues: (a) The sets of
servers used by applications a1, a2, a3, a4 are {s1}, {s1, s2}, {s2}, {s3}
respectively; the dotted lines between applications indicate derived application
conflicts; (b) The corresponding queuing architecture as needed by our
algorithm, when executors e1, e2 can execute {a1, a2, a3} and {a3, a4},
respectively.

Scheduling Conflicts: A scheduling conflict is said to exist
between two changes if they can not be scheduled at the same
time. Such conflicts typically arise due to the overlap in the
resources on which they are to be implemented. Applications
often use common server(s), thereby resulting in conflicts
between the changes of those applications.
Timing Constraints: As discussed earlier, there can be con-
straints on when an application can be down (“application
downtime”), to minimize the effect of the application down-
time on the overall client base. Note that scheduling of an
application change on a set of servers not only results in the
unavailability of the application during the period the change
is scheduled, but also that of all other applications that use
any of the servers on which the change is implemented. As a
result, an application change must be scheduled at a time that
corresponds to a permissible downtime of that application, as
well as all other “conflicting” applications.

III. MODELING AND FORMULATION
A. System Model
Let N denote the set of applications that we consider, and

let S be the set of all servers used by the applications. The
set of servers used by application i ∈ N is represented by
Si ⊆ S. Two applications are said to be in conflict with each
other if they use any common server, i.e., Si ∩ Sj %= φ. Let
Ni ⊂ N denote the conflict set of application i, i.e., the
set of applications (not including i itself) that conflict with
application i ∈ N . Application change requests arrive at the
change management/scheduling system according to a (typi-
cally unpredictable) random process. The goal of the change
management system is to schedule these changes efficiently,
in an online manner, without using any a priori knowledge
of future change requests. Each change k is associated with
a unique application, denoted by N(k). A change k requires
a finite time to be executed; although this time may not be
known exactly in advance, it can be estimated, and these
estimates can be used in making the scheduling decisions.
Two changes k and k′ are said to conflict with each other
if the corresponding applications, N(k) and N(k′), are in
conflict with each other. Two conflicting changes cannot be
scheduled at the same time. Since an application conflicts with
itself (by default), two changes of the same application can
not be scheduled together. The conflicts between applications
can be conveniently modeled as a conflict graph G = (V, L),
where each vertex of the graph corresponds to an application
(|V | = |N |), and an (undirected) edge exists between two

vertices in G if they conflict with each other. Clearly, for a
set of changes that can be scheduled at the same time, the
corresponding applications constitute an independent set in G.
The definition of the scheduling conflicts between changes

in our case, as described above, can be motivated as follows.
Any change implementation/execution requires updating the
servers that are used by the corresponding application. In other
words, even though any one server may be used only for a part
of the time over which a change is implemented, we assume
that all servers in Si are unavailable for any other purpose (in-
cluding implementing other changes) during the entire period
of time during which a change of application i is implemented.
This implies that scheduling of conflicting changes can not
be “pipelined” across different servers to improve efficiency.
From this assumption, it follows that it is sufficient to consider
the change scheduling question in the context of the logical
application-topology instead of the physical server-topology.
Thus, in the rest of this paper, we would consider and address
the change scheduling question at this logical level (using the
application-level conflict graph topology like the one shown
in Figure 1(a)), without concerning ourselves directly with the
servers on which these changes are physically implemented.
Each change is associated with timing constraints on when

they can be executed, derived from allowed downtimes of
the applications, as discussed next. We associate with an
application i ∈ N a set of allowed downtimes ∆̃i =
{(s1

i , t
1
i), (s

2
i , t

2
i), . . .} (where sm

i < tmi < sm+1
i , for all m).

Typically, ∆̃i will be a periodic pattern repeated on a daily or
weekly basis (e.g., 2am to 4am every day), although periodic-
ity of ∆̃i is not required by our solution approach or analysis.
Note that scheduling a change of application i also affects
applications in its conflict set Ai, which are using servers in Si

(that remain unavailable during this change implementation).
Therefore scheduling of a change of application i must also
take into account the allowed downtimes of the applications in
Ai. The permissible time set for (changes of) application i, i.e.,
times at which a change of application i can be in execution,
is thus represented as ∆i = ∆̃i ∩i′∈Ni

∆̃i′ . With slight abuse
of notation, we will also represent the permissible time set as
a binary time-function∆i(·), where ∆i(t) = 1 if t falls within
an interval in the permissible time set, and 0 otherwise.
Our change management system is also associated set of

change executors E, where Ei ⊆ E represents the set
of executors that are capable of implementing changes of
application i ∈ N . In general, some executors may be capable
of executing changes of multiple applications, while some
changes can be implemented by multiple executors. In view of
this, the change scheduling question also involves finding an
assignment between applications and executors. The applica-
tions and executors being modeled as the two vertex sets of a
bipartite graph, where an edge (i, j), i ∈ N, j ∈ E, represents
the fact that changes of application i can be executed by
executor j. Therefore, the set of changes scheduled at any
time must correspond to a matching in the bipartite graph.

B. Capacity Region and Capacity-optimal Scheduling

The notion of capacity-optimal scheduling is based on the
notion of a capacity region, which we define first. These

3

notions are derived from [2], focused on throughput(capacity)-
optimal scheduling in constrained queuing systems. For any
application i, the change arrival process is random in nature,
and has mean ρi, that represents the average “amount” of
changes arriving per unit time. Since each change is associated
with an execution time, the amount of changes arriving in
any time interval equals the sum of the execution times of all
changes arriving in that interval. Therefore, since (amount of)
change arrivals are measured in units of time, the average rate
of change arrivals for any application i, ρi, is a dimensionless
positive real number. Let #ρ = (ρi, i ∈ N) denote the
vector of average change arrival rates. A change management
(scheduling) system is said to be stable for a change arrival
rate vector #ρ under a scheduling policy ψ, if the backlog of
all queues (or queue-lengths, measured in units of time) in the
system at all times t remains upper bounded by a constant that
is independent of t, when the change arrival rate vector is #ρ and
ψ is used as the scheduling policy. In such a case, scheduling
policy ψ is said to stabilize the system for arrival rate vector #ρ.
The capacity region of the system, denoted by Λ, is the set of
all arrival rate vectors for which the system can be stabilized
by some scheduling policy. Moreover, a rate vector outside the
capacity region is not attainable, since all scheduling policies
would lead to unbounded queues in the system for that arrival
rate vector. Analytical characterization of the capacity region
of the system can be found in the technical report [4]. A
scheduling policy is said to be capacity-optimal if it stabilizes
the change management system for all arrival rate vectors that
are strictly within (i.e, interior of) the capacity region Λ.

IV. CHANGE SCHEDULING ALGORITHMS AND ANALYSIS
In this section, we first outline the optimal scheduling policy

under the idealistic assumption that changes can be “broken
up” arbitrarily. We provide a proof of capacity-optimality in
this “fluid” regime, and use it to motivate a practical schedul-
ing policy that respects change indivisibility, but is designed
to closely approximate the fluid scheduling policy. There is
a large body of work on the application of these optimality
notions and Lyapunov techniques to wireless networks [3],
[1]. In [1], the authors consider the scheduling question for
multichannel wireless networks, but, the conflict constraints
and mapping functions cannot be arbitrary unlike our model.
In [3], the authors do not consider timing constraints.

A. Optimal Scheduling in a Fluid System
In the idealized fluid system, we assume that it is possible

to schedule part of a change while keeping on hold the rest for
later; in other words, changes are assumed to be non-atomic
or arbitrarily divisible. Note that this fluid limit approximates
the real scenario when the change execution times are much
smaller than the duration of the permissible time windows of
the applications, and allows us to neglect the capacity loss due
to “fragmentation” effects. Loss due to fragmentation occurs,
for example, when the permissible time window sizes are not
a multiple of the change execution times. For example, if all
the permissible time windows are 10 hours each, and each
change takes 4 hours to execute, at least (2/10) = 20% of
the change capacity of the system must be lost due to the
atomic (indivisible) nature of the changes; this is referred

to as “fragmentation loss”. Therefore, the capacity-optimality
results we derive using the fluid model holds in this limiting
regime where fragmentation losses are absent. Thus the result
we derive in this context also holds exactly in the special case
of a slotted time system where all changes execution times are
of unit duration (one slot), and the permissible time windows
are slot-aligned and occupy an integral number of slots.
The change scheduling policy consists of two components

that can be executed in parallel: (i) change queueing policy,
and (ii) change selection policy. The queuing architecture in-
volves executor-based queuing of changes at each application,
i.e., an application i maintains Ei change queues, one for each
executor that can schedule the changes of that application. Our
queuing policy dictates that a change of application i is queued
at one of the Ei queues immediately upon arrival. A queue for
executor j at application i contains changes of i that will be
executed by executor j. Let Qij(t) denote the backlog of the
queue for executor j at application i, at time t, representing
the time it would take to schedule the changes backlogged in
the queue. Under the fluid assumption, changes remaining in
the queue can be fractional, and therefore, Qij is in general a
real positive number. In our change queuing policy, incoming
changes of application i are buffered at the queue j with the
smallest value of the backlog, among all |Ei| queues of that
application, i.e j = arg minj′∈Ei

Qij′(t).
We now describe the change selection process of the change

scheduling policy. The change schedule is re-computed each
time any of the timing constraints change, i.e., the schedule re-
computation is performed when the permissible time window
function ∆i(t) changes (from 1 to 0, or 0 to 1), for any
application i. Let τ1, τ2, . . . , τm, . . . denote the successive
time instants at which any of the timing constraints of the
system change. Then at any τm, the Capacity-optimal Fluid
Scheduling (CFS) algorithm schedules a set of non-conflicting
queues such that they maximize the sum of the queue backlogs.
A schedule computed at τk will remain in effect from τm to
τm+1, irrespective of change arrivals during this interval. At
τm+1, a new schedule is recomputed taking in account the
new timing constraints and the updated backlog values. Let
Um be a collection of all sets of queues that are schedulable
during (τm, τm+1]. In other words, each element U ∈ Um must
satisfy the following two conditions: (i) all queues in U must
be non-conflicting, i.e., for any two queues (i, j), (i′, j′) ∈ U
(where j ∈ Ei and j′ ∈ Ei′), i %= i′, j %= j′, and i′ /∈ Ai

(or equivalently i /∈ Ai′); (ii) the permissible time window of
the corresponding applications must cover (τm, τm+1], i.e., for
each queue (i, j) in U , ∆i(t) must be 1 for all t ∈ (τm, τm+1].
Then the CFS policy corresponds to picking a schedule U∗

m

at τm, where U∗
m is defined as follows:

U∗
m = arg max

U∈Um

∑

(i,j)∈U

Qij(τm). (1)

Note that computing U∗ corresponds to finding a maximum
weighted independent set in the queue conflict graph, with
the backlog Qij as the queue (node) weights. Our scheduling
policy is very intuitive, as it attempts to give preference to
queues with larger backlogs in selecting the changes to be
executed. Figure 1(b) shows the queuing architecture for the

4

system shown in Figure 1(a), and there are two executors
e1 and e2, which can execute applications {a1, a2, a3} and
{a3, a4}, respectively. Since changes of application a3 can be
executed by both e1 and e2, it maintains two queues.
Capacity-optimal Fluid Scheduling (CFS)
Change Queuing: For any application i ∈ N , buffer each
incoming change of i at the queue (among all |Ei| queues
of application i) that has the smallest backlog.
Change Scheduling: At each τm, m ≥ 0, do the following:
1) Remove from consideration all queues of applications

i which cannot be scheduled during (τm, τm+1], i.e.,
∆i(t) = 0 for t ∈ (τm, τm+1].

2) Construct an extended conflict graph G′ on the remain-
ing queues, such that a conflict between any two queues
(i, j) and (i′, j′) exists iff, either applications i and i′

are the same or conflict with each other, or j = j′.
3) For each remaining queue (i, j), associate a weight equal
to its backlog Qij .

4) Compute the maximum weighted independent set in
G′, with the queue backlog values as the node (queue)
weights, as in (1). Let U∗

m denote this independent set.
5) Use U∗

m as the change schedule during (τm, τm+1].

B. Capacity Analysis
The above scheduling policy can be shown to attain the

maximum change capacity of the fluid system, as we formally
state below. Although not necessary for stability, for simplicity
of analysis we assume that the arriving changes only enter
the queues at time instants τ1, τ2, Our theoretical result
also requires certain weak assumptions on the evolution of the
permissible time windows and the change arrival processes.
For any application i, the permissible and non-permissible
time windows occur at a minimum granularity of δ (δ > 0),
bounded in length, and follow the strong law of large numbers
(see [4]). We require that the amount of change arrivals of
any application over any permissible or non-permissible time
window is upper bounded, and the change arrival processes
satisfy the strong law of large numbers (see [4]). Under these
assumptions, we can show the following result.
Theorem 1: The scheduling policy CFS stabilizes the sys-

tem for all change arrival rate vectors #ρ ∈ Int(Λ).
[4] provides the complete proof of Theorem 1. Theorem 1

states that CFS stabilizes the system for all arrival rate vectors
that are strictly within the capacity region, or in other words,
CFS is capacity-optimal.

C. Scheduling with Indivisible Changes
In practice, execution of changes must be done atomically,

i.e., once started, a change must be executed to finish without
interruption. Next we present an approximation to the optimal
fluid scheduling algorithm, CFS, that respects the indivisibility
of the changes. The resulting algorithm, which we call a-
CFS, attempts to schedule changes on an one-by-one basis
so as to myopically mimic CFS as closely as possible. More
specifically, the algorithm a-CFS works as follows. a-CFS
maintains the same queueing architecture, and uses the same
queuing policy on change arrivals as CFS. a-CFS runs CFS on
the side, and keeps track of how much service time each of
the queues (i, j) have received under both CFS and a-CFS. In

its change selection policy, any time a scheduling opportunity
is available, a-CFS gives preference to the queue(s) whose
service (under a-CFS) is lagging the most from the service
received by it under CFS (ties are broken arbitrarily). The
scheduler also ensures that the change selected is such that
its execution can be completed before the current permissible
time window for the corresponding application closes. Note
that a scheduling opportunity arises (i.e., a-CFS needs to select
change(s) to be scheduled) only when one of the following
events happen (i) An executor becomes available due to the
completion of a change it was handling, (ii) The timing con-
straints change (i.e., the current time t corresponds to one of
τ1, τ2, . . .), (iii) a change arrival occurs in a queue associated
with an executor who is currently idle. Also note that in any
scheduling opportunity, a-CFS may end up scheduling zero,
one or more changes. In any scheduling opportunity, we ensure
that the resulting schedule is maximal, by iteratively running
its change selection policy until no more changes can currently
be scheduled without violating the conflict constraints on the
queues or the timing constraints on the applications.
The a-CFS algorithm is detailed below. Here, Wij(t) and

Ŵij respectively denote the service provided to queue (i, j) by
CFS and a-CFS, respectively, until time t. The change queuing
policy in a-CFS remains the same as in CFS, so we only
describe the change scheduling policy below.
Approximate CFS (a-CFS)

• Simulate the CFS algorithm.
• At each scheduling opportunity, do the following:

1) Remove from consideration all queues (i) which
are currently in schedule or conflict with a queue
currently in schedule, or (ii) whose permissible time
set does not include the current time t, or (iii) whose
head-of-line change cannot be executed before its
current permissible time window closes.

2) For each remaining queue (i, j), calculate the lag
value Lij as Lij(t) = Wij(t) − Ŵij(t).

3) Until schedule is maximal, iteratively add eligible
queues to the schedule, in decreasing order of
lag, while ensuring that the added queue does not
conflict with any queue already in the schedule.

Computing the maximum weighted independent set, as
required by CFS (and therefore by a-CFS as well) does not
pose a serious limitation in Enterprise IT systems, since the
number of change classes (applications) and executors are
typically small. Executor availability constraints can also be
easily incorporated into our formulation and solution.

V. SIMULATION EVALUATION
In this section, we evaluate the performance of CFS and

a-CFS algorithms, in terms of metrics like change capacity
and expected change delay. The performance difference of
a-CFS from that of CFS originates from two factors which
make a-CFS non-optimal: (i) a-CFS performs scheduling one
(or a few) changes at a time, and (ii) capacity loss due
to fragmentation. To understand the effect of (i) and (ii)
separately, we compare CFS and a-CFS with an algorithm
where the non-optimality is only due to (i), but not (ii), since
capacity loss due to fragmentation is avoided. This algorithm,

5

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

90

100

Change arrival rate

Av
er

ag
e

ch
an

ge
 d

el
ay

CFS
i−CFS
a−CFS
RAND

(a)

0.001 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50

60

70

80

90

100

Change arrival rate

Av
er

ag
e

ch
an

ge
 d

el
ay

CFS
i−CFS
a−CFS
RAND

(b)

Fig. 2. a) Change delay comparison without timing constraints, b) Change delay comparison with
timing constraints.

0.5 0.75 1
0.05

0.055

0.06

0.065

0.07

0.075

0.08

Exectuor cross training degree

Ch
an

ge
 c

ap
ac

ity

CFS
i−CFS
a−CFS
RAND

Fig. 3. Effect of executor cross-training degree on
change capacity.

which we call i-CFS (or incremental CFS), schedules changes
one-by-one as in a-CFS, but breaks up changes when the
current permissible time window of the application closes.
We also compare these algorithms with a baseline random-
ized algorithm, RAND. RAND works like a-CFS expect that
when a scheduling opportunity becomes available, the change
selection is done at random from the set of available changes.
Comparison with RAND is intended to show the importance
of picking changes based on lag values.
Simulations were carried out in the system with 4 appli-

cations shown in Figure 1. There are 2 possible maximal
independent sets: {a1, a3, a4} and {a2, a4}. Note that the
mapping between the applications and executors is varied from
that specified when we study the effect of executor cross-
training on the performance. In our simulation setup, changes
arrive in a continuous manner, according to a poisson process.
The execution time of the changes arriving at a1, a2, a3, a4 are
1, 2, 3, and 4 hours, respectively. For the simulations where
we study the effect of timing constraints, the position of the
permissible window during a day is chosen at random, for
each application. The duration of the time window is set to
either 8 or 10 hours. All delay results shown are obtained by
averaging over at least 100, 000 hours to ensure steady state.
We first plot the average change delay as the rate of change

arrivals is increased, in the baseline case when there are no
timing constraints on the applications (i.e., the applications
can be scheduled anytime), as shown in Figure 2(a). The
change delay increases smoothly as the arrival rate increases,
till the change capacity is reached. We observe that while
all the algorithms perform similarly at low values of the
change arrival rate, the average change delay curves for
the different algorithms show divergence as the arrival rate
increases. However, note that performance of i-CFS and a-CFS
are very close to each other – this is expected since there are
no capacity losses due to fragmentation in this case. These
two algorithms also perform very close to the optimal fluid
scheduling algorithm, CFS. Figure 2(b) shows similar results,
but for the case with timing constraints. The permissible
time windows chosen for the applications a1, a2, a3, a4 were
{0−8}, {2−10}, {4−12}, {6−16} respectively. In this case,
note that i-CFS again performs very close to CFS. Thus per-
forming change scheduling incrementally (one-by-one) based
on lag values does not lead to significant degradation in
performance compared to the optimal fluid policy, in absence
of capacity losses due to fragmentation. The effectiveness of

doing scheduling based on the lag values is demonstrated by
the fact that a-CFS performs significantly better than RAND in
terms of delay at high loads, and the change capacity attained.
Note that the difference in the attained capacity that we see
between a-CFS and CFS or i-CFS is due to capacity loss due
to fragmentation effect. Figures 2(a) and 2(b) also show that
the change capacity attained in the system (i.e., the value at
which the delay “blows up”) by i-CFS is very close to that
of CFS. The capacity attained by a-CFS is lower than CFS
and i-CFS due to fragmentation losses, but significantly better
than that of RAND.
Figure 3 shows the change capacity attained, as the executor

cross-training degree increases, while all other parameters
remain fixed. The cross-training degree is computed as the
average number of applications that an executor is capable of
handling. The x-axis shows the cross-training degree expressed
as a fraction of the maximum value (which is 4, since there
are 4 applications in system). The comparative performance of
the algorithms is similar to that observed earlier. We observe
that the attained capacity improves as the cross-training degree
increases, as we intuitively expect. However, the marginal
benefits of cross-training show “diminishing returns”, demon-
strating that a moderate degree of cross-training provides an
efficient way of attaining close-to-optimal performance.
The change capacity characterization that we provide, can

be useful in answering system provisioning questions, such
as the number of executors or the degree of executor cross-
training required to attain a certain change capacity. Finally,
note that in this work we do not explicitly attempt to minimize
the expected change delay (which is a related but different, and
possibly more complex, optimization question that remains
open). However, capacity-optimal algorithms can be expected
to result in low delays at high load, which is what we observe
in our simulations when we compare the performance results
of the a-CFS and RAND algorithms.

REFERENCES
[1] K. Kar, X. Luo and S. Sarkar, “Throughput-optimal Scheduling in

Multichannel Access Point Networks under Infrequent Channel Mea-
surements”, Proc. IEEE Infocom 2007, Anchorage, AK, May 2007.

[2] L. Tassiulas and A. Ephremides, “Stability properties of queueing
systems and scheduling policies for maximum throughput in multihop
radio networks”, IEEE Trans on Automatic Control, 37(12),1992.

[3] L. Tassiulas, P. Bhattacharya, “Allocation of interdependent resources
for maximum throughput,” Stochastic Models, Vol. 16, No. 1, 2000.

[4] P. Kumar et al., “Change Management in Network Services: Pro-
cess Modeling and Capacity-optimal Scheduling”, Technical Report,
www.ecse.rpi.edu/∼koushik/TechRep-ChangeSched.pdf.

