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Abstract—In this paper, we design routing and scheduling
policies that optimize network throughput in energy-constrained
wireless ad-hoc networks where nodes are powered by renewable
energy sources. We take into account the fact that renewable
energy harvesting processes are unpredictable and stochastic in
nature – typically depending on environmental factors thatare
not known in advance. The routing and scheduling policies that
we propose do not require explicit knowledge of the statistics
of the energy harvesting or the traffic generation processes, and
are able to dynamically learn and adapt to time variations in
the physical and network environments, so as to deliver data
rates that are optimal in the long term. We obtain bounds on
the capacity of the energy storage devices at the individualnodes
that is minimally required for obtaining maximum throughpu t
in the network; we also compute what fraction of the throughput
region is attained when the energy storage capacity is less than
this limit.

I. I NTRODUCTION AND BACKGROUND

In recent years, there has been a significant amount of
interest – both in the academia and the industry – in developing
wireless systems and networks that are powered by renewable
energy sources like solar, wind, vibration etc. In fact, multi-
ple vendors, e.g. Meraki [1], Proxim Wireless [2], currently
provide wireless mesh nodes that can be attached to solar
panels. In addition to solar, energy harvested from the wind
through the use of micro-turbines [3], or from vibration of
infrastructure (like bridges and tall poles) [4] could potentially
be used for powering wireless nodes in the near future. Use
of renewable energy has advantages in terms of operation cost
and environment-friendliness, and in many cases may be the
only option available due to practical constraints. For wireless
adhoc or sensor networks deployed in an area that does not
have any existing infrastructure, reliance on renewable energy
sources become necessary. Examples include sensor networks
deployed in inaccessible environments for data collection.
Even if the wireless networking devices have continuous or
intermittent access to the power line, it is may be desirable
– to minimize cost and environmental hazards – to make the
best use of the renewable energy, and and draw energy from
non-renewable sources only when the amount of available
renewable energy is not enough. Indeed, it could be argued that
the true power of “wireless” networks could be realized only
when the wireless nodes would not require wired connectivity
to the power line, or rely on batteries which will eventually
run out. Not surprisingly, therefore, there has been several

recent studies on different aspects of network design, opera-
tion and optimization when the network nodes gather power
from renewable energy sources in the environment [5]–[10],
particularly in the context of sensor networks.

Powering networks using renewable energy comes with
significant design and optimization challenges. Firstly, the
rate of energy available from renewable sources is typically
small, implying that energy can become the major constraint
in all network operations. The rate of energy harvested from
renewable sources could range from the order of tens of
watts as with solar panels, to milli or micro watts as with
micro-turbines or vibration sensors. Indeed, the choice of
the renewable energy source would need to be determined
based on the application scenario, along with other practical
constraints. For example, a solar panel (with several square
feet of panel area) may be more appropriate for a WiFi access
point which consumes energy in watts to tens of watts. On
the other hand, a set of micro-turbines may be adequate
for a small sensor (like 2.4 GHz ZigBee mote) meant for
infrequent sensing and transmission of information, and may
be desirable from the perspectives of concealment and ease of
deployability (often important in sensor network applications).
In these scenarios, the energy harvesting rates will typically
be of the same order, just enough or even barely necessary, to
maintain the essential networking functions. Therefore, energy
usage must be carefully optimized in all network operations.
Secondly, the energy replenishment process is highly variable,
and is governed by random environmental factors that can
be neither controlled nor accurately predicted. For example,
while solar insolation is closely tied to the weather, predicting
how it will evolve at the exact wireless node location is in
general difficult. Wind speeds at specific locations are even
more unpredictable, both at hourly and daily time-scales.
Vibration energy may depend on unpredictable factors like
number of vehicles going on/past a bridge or a pole, as well
as wind speeds. In addition, the energy replenishment process
at a single wireless node, or across different nodes in the
network, are likely to show a significant degree of temporal
and spatial correlations, which are again difficult to estimate
in advance. These factors imply that to ensure that the network
remains operational at all times, energy-intensive network
functions must be optimized taking into account stochastic
variations in the energy renewal process at the different node
locations. This in general involves a combination of statistical



estimation or prediction of the energy replenishment process,
and stochastic optimization on network functions based on
such estimation/prediction. Thirdly, wireless nodes may be
subject to limitations in their energy storage capabilities, due to
limitations in the battery size for example. This is particularly
true for sensor networks, where the sensor devices (and hence
their batteries) may be constrained to be small in size. Energy
storage limitations impose additional complications on optimal
energy usage policies – intuitively, nodes with larger amount of
energy (or nodes whose energy storage unit is closer to being
full) at any time should be preferentially used for energy-
intensive network functions.

In this paper, we consider the questions of routing and
scheduling in general multi-hop wireless networks where
nodes are powered through random time-varying renewable
energy processes. We design joint routing and scheduling
algorithms that are stochastically optimal, in the sense that
they maximize end-to-end data throughput in the network.
In the algorithms we propose, the energy renewal process
estimation/prediction and the network function optimization
components are integrated together; thus our algorithms do
not need to know the energy replenishment rates, and can
dynamically learn and adapt to their variations. The solutions
and optimality results also admit a very general correlation
structure among the energy replenishment processes at the
different nodes in the network, which need not be known in
advance. Our algorithms do not require a priori knowledge
of the data traffic generation rates either, and achieve the
maximum throughput regionof the network that takes into
account both energy and and interference constraints in the
wireless network. In our analysis, both transmission and
reception energy costs are taken into consideration, and the
effect of limited energy storage at nodes is also explored.

More specifically, the novel contributions of this work are
as follows. We obtain integrated routing and transmission
scheduling policies that attain the maximum throughput region
in a renewable energy powered wireless multi-hop network.
We argue that energy storage limitations can affect the maxi-
mum network throughout attainable, and obtain bounds on the
capacity of the energy storage devices at the individual nodes
that is minimally required to attain maximum throughput.
Alternatively, our results can be used to compute what fraction
of the maximum throughput region can be attained when the
energy storage capacity is less than this limit. Our framework
and results are applicable to both wireless ad-hoc and sensor
networks, which we do not distinguish explicitly in our model.

The analysis techniques we use draw from those used in
[18], [20]–[22] for throughput-optimal routing and scheduling
in non energy-constrained networks. However, as we explain
later in the paper, these results do not directly extend to
renewable energy networks, due to the fact that unlike channel
availability, energy can be stored, thereby introducing depen-
dencies between the evolution of the packet and the energy
queues. We overcome this challenge by using two or more
(depending on whether reception energy is negligible or not)
packet queues per node/link (instead of using only one), anda

novel energy marking based packet forwarding control policy.
The additional complexity in the routing and scheduling policy
introduced due to renewable energy considerations requires
message exchanges that are local in nature – a nice feature
of our algorithm. Interestingly, we also show that the energy
storage requirements for attaining any desired fraction ofthe
network stability region can be upper bounded by a constant,
quite unlike similar requirements on packet buffering where
the bound grows with the network size.

While the question that we formulate and address in this
paper is novel, there are some related recent work in algorithm
design and performance optimization of renewable energy
networks that are worth mentioning and contrasting with.
The problem of adaptive sleep scheduling (node activation)in
renewable energy (rechargeable) sensor networks have been
considered in [11]–[13], which involves determining when
each node should be put to sleep to conserve energy for
optimal long-term performance. In contrast, we assume that
nodes are always powered on, but focus on communication
issues like packet routing and scheduling to optimize energy
usage. [14] develops transmission power and packet admission
control policies in this context, towards maximizing some
suitably defined long-term user satisfaction measure. [16]
considers the question of determining the sampling rates and
routes in a renewable energy sensor network. This work does
not take scheduling into account, and presents a deterministic
sub-gradient based algorithm for this purpose. In contrast,
we cast and prove the optimality of our joint scheduling
and routing policy in a stochastic optimization framework.
The online routing question in renewable energy networks
has been considered in [15] from a competitive analysis
perspective; the authors obtain a competitive ratio that is
logarithmic in the network size. In our work, we consider
both routing and scheduling, and obtain policies that attain the
maximum achievable throughput using stochastic optimization
techniques. Also, unlike these previous works, we considerthe
effect of small energy storage (typical of a large class of sensor
networks) on the optimality/performance results.

The paper is structured as follows. Section II describes
the system model. In Section III, we develop joint routing
and transmission scheduling policies that attain throughput-
optimality when both energy and capacity/interference con-
straints are taken into account. In Section V we consider the
effect of energy storage capacity limitations on the maximum
throughput attained in the network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-hop wireless network modeled as a
directed graphG = (V,E), where V and E respectively
denote the sets of nodes and links, and|V | = N, |E| = L.
A link exists from a nodeu to another nodev if and only
if v can receiveu’s signals. The link setE depends on
the transmission power levels of nodes and the propagation
conditions in different directions. LetIv, Ov be the sets of
links ending at and originating from any nodev, respectively.
The network hasM sessions, or end-to-end flows,1, . . . ,M .



Each session refers to a source(s)-destination(s) pair. Let M
be the set of all the sessions in the network.

We assume that time is slotted. We now describe the packet
arrival process for the sessions. LetAm(t) be the number of
packets that sessionm generates at its source node in interval
(t, t+ 1], m = 1, . . . ,M. We assume that the arrival process
{A1(.), . . . , AM (.)} is stationary, ergodic withE(Am(t)) =
λm, whereλm is referred to as thepacket arrival rateof
sessionm, andAm(t) ≤ γ for eachm, t for a constantγ.
The packets from different sessions are queues separately at
each node. The traffic generated for sessionm can be routed
to its destination (or sink) node via any route in the network,
and different packets may follow different routes depending
on network congestion and energy availabilities at different
nodes which also vary with time.

Next we describe the energy generation, storage and usage
processes at each node. LetEi(t) be the number of energy
units that nodei generates in interval(t, t+1], i = 1, . . . , N.
We assume that the energy arrival process{E1(.), . . . , EN (.)}
is stationary, ergodic withE(Ei(t)) = ei, whereei is referred
to as theenergy arrival rateof nodei. The energy arrivals at
different nodes may be correlated. Nodei can store at most
Bi units of energy, and generated energy is lost if the storage
is full. Node i consumesti (ri, resp.) units of energy when
it transmits (receives) a packet. LetCi(t) be the number of
energy units used up byi in interval (t, t+ 1], i = 1, . . . , N ,
andPi(t) be the number of energy units available at nodei
at time t. Thus, the energy queue,Pi(t) evolves as:

Pi(t+ 1) = min (Bi, Pi(t) + Ei(t)− Ci(t)) .

Definition 1: The packet arrival rate vector~λ and energy
arrival rate vector~e are M - and N -dimensional vectors of
the packet and energy arrival rates.

We now describe the packet transmission process, which
depends on the link scheduling. When a link is scheduled for
transmission, it transmits a packet, and energy is consumed
at its origin and end nodes. Depending on the wireless inter-
ference conditions, certain sets of links can not be scheduled
simultaneously. For instance, links(u1, v1) and (u2, v2) can
not be simultaneously scheduled ifv1 andu2 are close, orv2
andu1 are close, as it would cause interference at receiverv1
in the former case, and atv2 in the latter case.

Definition 2: A schedulable setof links is a subset of
its links such that all links in the subset can be scheduled
simultaneously. LetJ1, . . . , JK be the schedulable sets and
let ~J i be theL-dimensional indicator vector representing any
schedulable setJi. Let J = {J1, . . . , JK}. Any subset of a
schedulable set is also a schedulable set.

Definition 3: A routing and scheduling policyis an algo-
rithm that decides in each slot the subset of links that would
transmit packets in the slot and the sessions these packets
belong to. Clearly, a scheduling policy must designate sessions
at each node and subsequently, select an element ofJ in each
slot, and this element must be such that all links in it have
packets to transmit and the sources and sinks of the links in

it have the requisite amount of energy for packet transmission
and reception.

Every packet has a transmission time of one slot. Thus, if
a backlogged link is scheduled in a slot, it transmits a packet
in the slot. We assume that any packet arriving in a slot may
be transmitted in the next slot.

Let Dm
i (t) be the number of packets that linki transmits

from sessionm in interval(t, t+1], i = 1, . . . , N. Clearly the
transmissions depend on the scheduling policy. LetQmu(t)
be the number of packets of sessionm that are waiting for
transmission in nodeu at the beginning of slott. We assume
each packet queue has infinite storage. Note that the arrivals at
a node happen due to exogenous packet generation, and also
because of transmission on input links toi. Thus,

Qmi(t+ 1) = Qmi(t) +Am
i (t) +

∑

i∈Iu

Dm
i (t)−

∑

i∈Ou

Dm
i (t).

(1)
Definition 4: The network is said to bestable if

limT→∞

∑M
m=1

∑N
i=1

∑T
t=1 E (Qmi(t)) /T is finite.

Definition 5: The stability regionof a scheduling policy is
the set of packet and energy arrival rate vectors for which the
network is stable when the policy is used. A pair of packet and
energy arrival rate vectors(~λ,~e) is said to befeasibleif it is
in the stability region of some scheduling policy. Thenetwork
stability region is the set of all feasible pair of packet and
energy arrival rate vectors.

Our goal is to obtain a routing and scheduling policy
that stabilizes the network for any feasible pair of packet
and energy arrival rates. In a seminal work, Tassiulas and
Ephremides [18], have provided such a policy, that does not
require any knowledge of arrival rates, when nodes have
unlimited energy reserves. In this paper, we consider the
scenario where nodes not only have limited but also randomly
varying energy reserves which change (both increase and
decrease) with time. Given that energy reserves are limited, an
interesting question is whether availability of energy at anode
can be treated as availability of links, or rather availability of
nodes. As shown in [19], generalizations of the basic policy
in [18] stabilizes the network for any feasible pair of packet
arrival and link availability rates, even in presence of random
fluctuations in link availabilities that may arise due to random
fading, node mobility etc. But these results do not apply in
our context since energy can be stored (though in limited
quantity) unlike channel availability; specifically, if anenergy
unit is generated in a slot and not used immediately, it may be
possible to use it later, but if a link (or node) is up in a slot
and no packet is transmitted in it, the transmission opportunity
is irretrievably lost. As the following example illustrates, such
storage potential can substantially augment the stabilityregion.

Example 1:Consider the simple network with2 nodesu, v
both of which transmit packets to the same destination. All
nodes are within each other’s transmission range, and hence
either u or v, but not both, can transmit packets in a slot.
Consider correlated energy generation patterns where bothu, v
generate energy in odd slots and neither generates energy inan



even slot. The common destination generates energy in each
slot. If we consider energy availability like channel availability,
i.e., the generated energy must be used immediately after
generation and can not be stored for use in other slots, then the
nodes can transmit packets only in the odd slots. Thus, since
at most one node can transmit in a slot, an arrival rate vectoris
feasible only if thesumof the arrival rates at the nodes is less
than or equal to1/2. Now, assume thatv can store1 unit of
energy, and consider a schedule that allows nodeu to transmit
in odd slots andv to transmit in even slots. Any arrival rate
vector that has an arrival rate of at most1/2 for each node
is feasible. Thus, even limited storage increases the stability
region increases significantly (is doubled, intuitively).

Owing to the storage potential for energy, the system
dynamics is governed by the evolution the packet as well as
the energy queues, and the two evolutions are inter-dependent
as packet transmissions and receptions deplete the energy
queues and modify the packet queues. The challenge now is
to determine whether and how such a dependence will affect
the policy design. Note that the stability criterion however
explicitly depends only on the sizes of the packet queues.

Towards the above goal, we characterize the feasibility con-
ditions for arrival rate pairs. Clearly, the necessary conditions
for a pair (~λ,~e) to be feasible is that there exist fractions of
time ωm

J associated with the independent setsJ and session
m such that:

∑

J∈J

ωm
J (|J ∩Ov| − |J ∩ Iv|) = λm

v , ∀ v∈V
k∈M

, (2)

∑

J∈J
m∈M

ωm
J (tv|J ∩Ov|+ rv|J ∩ Iv|) ≤ ev, ∀ v ∈ V, (3)

∑

J∈J
m∈M

ωm
J ≤ 1; ωm

J ≥ 0, ∀ J∈J
m∈M

. (4)

We explain each condition. The two conditions in (4) ensure
that{ωm

J } are fractions of time. In the first condition,|J ∩Iv|
(|J ∩ Ov|) are the number of packets that enterv (leave
v, resp.) from (to, resp.) other nodes when the schedulable
setJ is scheduled. Thus,

∑

J∈J
ωm
J (|J ∩Ov| − |J ∩ Iv|) is

the difference between the output and input rates of packet
transmissions for sessionm at nodev (the input rate excludes
extraneous packet arrivals and considers only the inputs due
to transmission from other nodes). This must equal the sum
of the extraneous packet arrival rates of that session due to
flow balance. The left hand side of the second constraint
is the energy consumption rate at nodev which must be
upper bounded by the energy generation rateev. tv and rv
respectively denote the per-packet transmission and reception
energy consumption at nodev.

We will show that for large energy storage capacities the
above conditions also become sufficient as well, when the
equality and inequality in the first two conditions are replaced
by strict inequalities. Thus, we will consider packet and energy
arrival rate pairs that satisfy:

entry buffer exit buffer

energy 

storage

renewable energy 

generation

packet arrivals 

(exogenous or from 

previous hop)

energy 

matched 

packets

packet departures 

(on scheduling)
packet transfer (on 

energy availbility)

marked energy 

usage on packet 

transmission

Fig. 1. Packet buffering and energy marking at each node (fornegligible
reception energy cost, i.e.,rv = 0). If rv > 0, an intermediate buffer and
per-link exit buffers are needed (Section IV-B).

∑

J∈J

ωm
J (|J ∩Ov| − |J ∩ Iv|) ≥ λm

v + δ, ∀ v∈V
m∈M

(5)
∑

J∈J
m∈M

ωm
J (tv|J ∩Ov|+ rv|J ∩ Iv|) ≤ ev − ε, ∀ v ∈ V,

(6)

for some positiveδ andε fractions{ωm
J } that satisfy (4). Let

Λδ,ε be the set of such packet and energy arrival rate pairs.
We will seek to obtain routing and scheduling policies that
stabilize the system for any packet and energy arrival rate
in Λδ,ε for any δ, ε > 0, for large energy storage capacities
(Section III). Subsequently, we will quantify the reduction in
the network stability region as a function of the energy storage
capacity (Section V).

III. T HROUGHPUT-OPTIMAL ROUTING AND SCHEDULING

We first consider a network where all nodes need unit energy
per transmission (tv = 1), there is no energy cost for reception
(rv = 0), and each node has infinite energy storage capacity
(Bi = ∞). Under these idealized assumptions, we describe
a routing and scheduling policy that does not require any
knowledge of the packet and energy arrival rate vectors, and
prove that it stabilizes the network for any packet and energy
arrival rate inΛδ,ε for any positiveδ, ε. Later in this section, we
generalize the policy for scenarios where different nodes need
different amounts of energy for transmission and reception,
and the reception energy cost may be non-zero. The infinite
storage capacity restriction is relaxed in the next section.

A. Joint Routing-Scheduling Policy

The policy consists of two key steps.
a) Energy Marking:Each node consists of two (virtual)

buffers: entry bufferand exit buffer. As the name suggests,
the former stores packets of different sessions arriving from
the input links of the node and the extraneous packets of each
session generated at the node, different sessions in separate
queues. Available energy units at the node energy storage
are marked for consumption in transmission of packets at
the exit buffer. In each slot, consider nodes at which energy
buffer has at least one unit of unmarked energy. Calculate
the differences in the number of packets in each input queue
and its corresponding output queue and select the pair which
has the largest difference value of surplus in the input buffer,
provided that this value is strictly positive. Among such queues



(each corresponding to a unique session), one queue is selected
(say at random) from which one packet is transferred from
the entry buffer to the corresponding queue in the exit buffer.
Simultaneously,1 unit of energy in the energy buffer is marked
for this packet. The packet now awaits transmission in one of
the output links, and the marked energy unit will be used
for transmitting the packet whenever the transmission process
occurs. Fig. 1 illustrates this. The marking is of course a
logical step, and ensures that the node has enough energy to
transmit each packet in its exit buffer, and thus transmissions
can be scheduled from this buffer without considering energy
availability any further.

b) Packet Transmission:At a scheduled opportunity, a
node transmits packets from its exit buffer, according to
the following policy. LetQo

mu(t), Q
i
mu(t) denote the queue

lengths of sessionm at the exit and entry buffers at each
node u. The weight of each link(u, v) is the largest dif-
ference between the queue lengths at the exit buffer of
u and the entry buffer ofv amongst different sessions,
maxm

(

Qo
mu(t)−Qi

mv(t)
)

. The weight of a schedulable set
is the sum of the weights of the links in the set. At any slot,
the schedulable set with the maximum weight (and minimum
size amongst all those with the maximum weight) is found
and each link in that set transmits a packet.

Clearly, the energy marking step is localized and as a result
no node needs to know of other nodes’ energy availabilities.
The packet transmission step is in general a high complexity
procedure (corresponds to an maximum weight independent
set problem in general) due to the global nature of the inter-
ference constraints. For certain forms of “local” interference
constraints, it can be implemented or approximated in a
distributed manner, with low message complexity. See [17] and
references therein for a discussion of low message scheduling
algorithms with provable approximation guarantees.

The packet transmission step not only selects the sessions
and schedules links, but also selects routes for the packets
of a session by determining which links they would follow
in the immediate next step. The routing depends on both
congestion and energy availability in an implicit manner. For
example, if a nodeu is currently generating small amounts
of energy, the energy marking step will transfer packets to its
exit buffer only at a low rate, and thus the entry buffer foru
will build up. As a result, the weights of the incoming links
to u will be negative, and hence they will not be scheduled.
Thus,u appliesback-pressureon upstream nodes due to which
packets will not traverse along the paths throughu . Note
that the exit buffer and subsequently the entry buffer atu can
build up also because of traffic congestion downstream, which
will again lead to lesser use of the paths traversingu. Our
packet transmission step is very similar to the adaptive back-
pressure routing policy for congestion avoidance as proposed
by Tassiulaset. al. [18]. Our contribution is to show that back-
pressure can also be used to respond to fluctuations in energy
availabilities, through energy marking and maintenance oftwo
buffers at each node instead of one. Accordingly, we name
our policy asEnergy Back-pressure, and proceed to prove that

it attains the maximum possible throughput even when the
energy availabilities at nodes randomly vary, increasing due
to energy generation and subsequent storage, and decreasing
due to packet transmissions.

B. Stability Analysis

Theorem 1:If (~λ,~e) ∈ Λδ,ε for some positiveδ, ε, the
Energy Back-pressure policy stabilizes the network.

Proof: In this proof, we will consider~Q′(t) as the vector
of queue lengths of all sessions at both entry and exit buffers
of the nodes. Let also~A′(t), ~D′(t) be the vector of arrivals
and departures at both entry and exit buffers, considering
both arrivals from other nodes and external arrivals. For
simplicity of exposition and space limit reasons, we present the
proof when the energy arrival process (and the packet arrival
process) is temporally independent; energy arrivals (packet
arrivals) in different nodes at any slot may be correlated
though.

We consider a quadratic lyapunov function:V (~x) =
∑

i x
2
i ,

and investigate its conditional expected drift.

E[V ( ~Q′(t+ 1))− V ( ~Q′(t))| ~Q′(t)]

= 2E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)]

+E[
(

~A′(t)− ~D′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)]

≤ 2E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)]

+E[
(

~A′(t)
)T (

~A′(t)
)

| ~Q′(t)]

+E[
(

~D′(t)
)T (

~D′(t)
)

| ~Q′(t)]

= 2E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)]

+E[
∑

v,m

(

∑

u

Dm
uv(t) +Am

v (t)

)2

+
∑

u,m

(Fm
v (t))

2

+
∑

v,m

(Fm
v (t))

2
+
∑

v,m

(

∑

u

Dm
vu(t)

)2

| ~Q′(t)]

≤ 2E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)] + µ (7)

where µ is a constant bounded (loosely) by
(

(1 + γ)2 + 3
)

NM , as each of the terms(Fm
v (t))2

and
∑

u D
m
uv(t) and (

∑

u D
m
vu(t))

2 are bounded by unity (at
any t, they are either zero or one), andAm

v (t) is bounded by
γ, and the summation is over allv,m.

Let Fm
v (t) be the number of packets that have been trans-

ferred from queue of sessionm in the entry buffer to its
corresponding queue in the exit buffer at nodev in slot t.
Following our scheduling policy,Qi

mv(t) ≥ Qo
mv(t) for all

m, v, t. Recall thatFm
v (t) = 0 if Qi

mv(t) = Qo
mv(t).

E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)]



= −
∑

(u,v)∈E
m∈M

E[
(

Qo
mu(t)−Qi

mv(t)
)

Dm
(u,v)(t)|

~Q′(t)]

+
∑

v∈V
m∈M

E[Am
v (t)Qi

mv(t)|
~Q′(t)]

−
∑

v,m:Qi
mv

(t)>Qo
mv

(t)

E[Fm
v (t)

(

Qi
mv(t)−Qo

mv(t)
)

| ~Q′(t)]

≤ − max
J∈J
m∈M

∑

(u,v)∈J
m∈M

(

Qo
mu(t)−Qi

mv(t)
)

+
∑

v∈V
m∈M

λm
v Qi

mv(t)−
∑

v∈V

evαv(t) (8)

where for eachαv(t) := maxm∈M(Qi
mv(t) − Qo

mv(t)). The
last inequality follows from energy matching and the packet
transmission policy; and observing that irrespective of the size
of the energy and packet queues,1 unit of energy arrives
at nodev w.p. ev, and Fm

v (t) = 1 for the queue which
is a maximizer of(Qi

mv − Qo
mv) and v has at least1 unit

of unmatched energy (including new arrivals). (Note thatv
may have1 unit of energy owing to storage even when no
energy unit arrives.) We also use the fact that the energy arrival
process (and packet arrival process) is temporally independent
in this step. LetJOv = J ∩Ov, andJIv = J ∩ Iv.

max
J∈J
m∈M

∑

(u,v)∈J
m∈M

(

Qo
mu(t)−Qi

mv(t)
)

≥
∑

J∈J
m∈M

ωm
J

∑

(u,v)∈J

(

Qo
mu(t)−Qi

mv(t)
)

=
∑

v∈V
m∈M

(

∑

J∈J

ωm
J |JOv |Qo

mv(t)−
∑

J∈J

ωm
J |JIv |Qi

mv(t)

)

Now, from (8) and the above inequality, we obtain:

E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)]

≤ −
∑

v∈V
m∈M

{(
∑

J∈J

ωm
J |JOv |Qo

mv(t)−
∑

J∈J

ωm
J |JIv |Qi

mv(t))

−λm
v Qi

mv(t)} −
∑

v∈V

evαv(t)

= −
∑

v∈V
m∈M

{(
∑

J∈J

ωm
J |JOv |Qi

mv(t)−
∑

J∈J
m∈M

ωm
J |JIv |Qi

mv(t)

−λm
v Qi

mv(t))}

−
∑

v∈V

evαv(t) +
∑

v∈V
m∈M

∑

J∈J

ωm
J |JOv |

(

Qi
mv(t)−Qo

mv(t)
)

≤ −
∑

v∈V
m∈M

{(
∑

J∈J

ωm
J |JOv |Qi

mv(t)−
∑

J∈J
m∈M

ωm
J |JIv |Qi

mv(t)

−λm
v Qi

mv(t))}

−
∑

v∈V

(ev −
∑

J∈J
m∈M

ωm
J |JOv |)αv(t)

(9)

Since (~λ,~e) ∈ Λδ,ε, from (5),
∑

J∈J
ωm
J |JOv | −

∑

J∈J
ωm
J |JIv | − λm

v ≥ δ, for all v,m; and from (6),
(ev −

∑

J∈J
m∈M

ωm
J |JOv |) ≥ ε for all v. Also, following

our scheduling policy,Qi
mv(t) ≥ Qo

mv(t), ∀v, k and hence
αv(t) ≥ 0 ∀v, t. Therefore, (9) leads to:

E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

| ~Q′(t)] ≤ −δ
∑

v,m

Qi
mv(t) (10)

Thus, from (7), (10),

E[V ( ~Q′(t+1))−V ( ~Q′(t))| ~Q′(t)] ≤ µ−2δ
∑

v,m

Qi
mv(t). (11)

Then,E[V ( ~Q′(t+1))−V ( ~Q′(t))] ≤ µ−2δ
∑

v,mE[Qi
mv(t)].

Taking a telescopic sum from1 to T ,

E[V ( ~Q′(T ))− V ( ~Q′(1))] ≤ µT − 2δ

T
∑

t=1

∑

v,m

E[Qi
mv(t)].

Thus, 1
T

∑T
t=1

∑

v,m E[Qi
mv(t)] ≤ µ/2δ + V ( ~Q(1))/T. Re-

calling again that because of our scheduling policy,Qi
mv(t) ≥

Qo
mv(t) ∀v, k, we get limT→∞

1
T

∑T
t=1

∑

v,m E[Qmv(t)] ≤
2× µ/2δ = µ/δ.

IV. D ELAY BOUNDS

We bound the order of the delay achieved by our scheduling
policy. However, we make an additional assumption: we
assume the routes are preset for each sessions and are such
that there is no loop from any source to its destination.1

A. Upper Bound

Theorem 2:For λ ∈ Λδ,ε and under the no-loop routes
assumption stated above, the expected delay attained by our

policy is at most
((4 + 2γ)N + 3 + γ)

4δ
.

Proof: We now use the fact that, as we proved in
theorem 1, our scheduling policy stabilizes the network, and

1In the absence of this assumption, backpressure can lead to loops in the
low-load multihop scenarios, and despite the boundedness of the summation
of the queue lengths, no delay-bound is easy to achieve.



we investigate the drift anew. Now,

E[V ( ~Q′(t+ 1))− V ( ~Q′(t))]

= 2E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

]

+E[
(

~A′(t)− ~D′(t)
)T (

~A′(t)− ~D′(t)
)

]

= 2E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

]

+E[
∑

v,m

(

∑

u

Dm
uv(t) +Am

v (t)− Fm
v (t)

)2

+
∑

v,m

(

Fm
v (t)−

∑

u

Dm
vu(t)

)2

] (12)

We can bound the first term using (10):

2E[
(

~Q′(t)
)T (

~A′(t)− ~D′(t)
)

] ≤ −2δE
∑

v,m

Qi
mv(t) (13)

Now, let us investigate the other term:

E[
∑

v,m

(

∑

u

Dm
uv(t) +Am

v (t)− Fm
v (t)

)2

+
∑

v,m

(

Fm
v (t)−

∑

u

Dm
vu(t)

)2

]

≤ E[
∑

v,m

{

(

∑

u

Dm
uv(t)

)2

+ (Am
v (t))

2

+ 2

(

∑

u

Dm
uv(t)

)

Am
v (t)

+ (Fm
v (t))2 + (Fm

v (t))2 +

(

∑

u

Dm
vu(t)

)2

}

Note that in our scheduling policy, for allt,m, v, Fm
v (t) ∈

{0, 1}. Also,
∑

u D
m
u,v(t) ∈ {0, 1}. Likewise,

∑

u D
m
v,u(t) ∈

{0, 1}. Thus, the R.H.S in the above is:

= E[
∑

v,m

{

(

∑

u

Dm
uv(t)

)

+ (Am
v (t))

2
+ 2

(

∑

u

Dm
uv(t)

)

Am
v (t)

+ Fm
v (t) + Fm

v (t) +

(

∑

u

Dm
vu(t)

)

}

≤
∑

v,m

(

(4 + 2γ)E

(

∑

u

Dm
uv(t)

)

+ 3EAm
v (t) +E (Am

v (t))2
)

≤
∑

v,m

(

(4 + 2γ)

(

∑

w

λm
w

)

+ 3λm
v + γλm

v

)

≤ ((4 + 2γ)N + 3 + γ)
∑

v,m

λm
v (14)

where in the last two steps, we have used the fact that
EFm

v (t) = E(Am
v (t)+

∑

u D
m
uv(t)), and alsoE

∑

u D
m
vu(t) =

E(Am
v (t) +

∑

u D
m
uv(t)). Finally, noting that following the

assumption of fixed routes with no loops, we have:

E

(

∑

u

Dm
uv(t)

)

≤
∑

w

λm
w

Note also thatE (Am
v (t))

2
≤ γEAm

v = γλm
v simply because

(Am
v (t))

2
≤ γAm

v (t).
Note that since the network is stable, we have:

E (V (Q′(t+ 1))− V (Q′(t))) = 0

Hence, from (12) and (14), we obtain:

0 ≤ −2δE
∑

(u,v)∈J
m∈M

Qi
mv(t) + ((4 + 2γ)N + 3 + γ)

∑

v,m

λm
v

⇒ 2δE
∑

(u,v)∈J
m∈M

Qi
mv(t) ≤ ((4 + 2γ)N + 3 + γ)

∑

v,m

λm
v

⇒ 4δE
∑

(u,v)∈J
m∈M

Qmv(t) ≤ ((4 + 2γ)N + 3 + γ)
∑

v,m

λm
v

Hence

E

∑

(u,v)∈J
m∈M

Qmv(t) ≤
((4 + 2γ)N + 3 + γ)

∑

v,m λm
v

4δ
.

Since the expected delay (by Little’s law) is
(

E
∑

v,mQmv(t)
)

/
(

∑

v,m λm
v

)

, the result follows.

B. Generalizations

When nodes consume different amounts of energy for trans-
missions, i.e.,tv differs across nodes, a necessary condition
for transferring a packet to the exit buffer atv is thatv has at
leasttv amount of unmarked energy and such a transfer leads
to marking oftv energy units atv. With this small change in
policy, Theorem 1 holds and can be proved similarly.

When reception energy costrv is non-negligible, the packet
buffering policy has to be altered slightly, as we explain next.
In this case, a node not only can not transmit a packet if it
has no residual energy, it can not receive a packet either. The
energy-marking step in energy back-pressure policy need tobe
modified as follows. Each nodeu maintains one entry buffer
as before, but one intermediate buffer and|Ou| exit buffers,
one for each of its outgoing links. A packet is transferred from
the entry buffer to the intermediate buffer if (i)u has at least
tv units of unmarked energy (including new energy arrivals),
and (ii) the intermediate buffer atu has fewer packets than the
entry-buffer; an energy unit is marked for usage atu if a packet
is transferred. Thus, the intermediate buffer plays the role of
exit buffer in the earlier version. A packet is transferred from
the intermediate buffer to an exit buffer only if (a) the end-
node of the corresponding outgoing link has at leastrv units
of unmarked energy, and (b) the exit buffer has fewer packets
than the intermediate buffer. Thus, a packet is transferredto an



exit buffer only if the corresponding end-node has energy to
receive it, and then an energy unit is marked at this end-node.
Note that this step requires a node to communicate with its
next hop (unlike the case where only transmission energy cost
is considered), but such message exchange is still “local”.At
most1 packet is transferred to the exit buffers atu in any slot,
and the one that has the least number of packets among all exit
buffers that satisfy both (a) and (b) is selected. The scheduling
step does not change, except that the weight of each link(u, v)
is now the difference between the queue lengths at the exit
buffer of u corresponding tov (u will in general have several
exit buffers) and the entry buffer ofv. Theorem 1 continues to
hold – the proof, which is similar to the one presented earlier,
is omitted for brevity.

V. NEAR-OPTIMAL THROUGHPUT IN PRESENCE OF FINITE

ENERGY STORAGE

We now consider a network where nodes can store only
finite amount of energy. In particular, each nodev can store
B units of energy, and new energy that is generated while the
storage is full will be wasted if not utilized instantaneously.
For simplicity of exposition, we assume that there is only one
session in the network. Specifically, all nodes inted to deliver
their generated packets eventually to a single sink node. We
prove that any feasible arrival and energy rate pair inΛδ is
stabilized as long asB ≥ 4/δ, and describe a routing and
scheduling policy that attains this goal without requiringany
knowledge of the packet and energy arrival rate vectors. Note
thatδ represents the arrival slack, the “distance” of the arrival
rate vectors from the boundary of the stability region – thus,
storage requirements increase with arrival slack decreases. The
trend is of course anticipated, but our results quantify the
relation.

A. Policy Description

To motivate the development and significance of our result
in this context, let us start out examining the energy back-
pressure policy that uses infinite energy storage. Note that
whenever a packet is transferred to an exit buffer, an energy
unit is marked for its transmission and must be stored until
the packet is transmitted. We assumed that these buffers could
hold any number of packets, and thus the energy storage must
be infinite. Arguing this way, the size of these buffers couldbe
related to the amount of energy storage energy back-pressure
can use in a finite energy storage scenario. Thus, some of the
recent work that quantifies throughput loss in presence of finite
packet buffers, as [22], [23] can be leveraged to address the
case of finite energy storage. These papers however provide
throughput optimal policies (in networks where nodes have
unlimited energy) when packet buffers increase linearly with
increase in the number of nodes [23], or number of hops
in the network [22] (in addition to increasing with decrease
in arrival slack). Both of these quantities can be very large
for multi-hop wireless networks, and energy storage per node
is limited (and independent of the network size in general),
and thus these policies do not apply. We now describe the

Finite-storage Energy Back-pressurepolicy that we develop
for maximizing the throughput while using energy storage
amounts that depend only on the arrival slack (and not on
network size parameters). The design of this policy exploits
the fact that packet buffer storage is unlimited in our case,only
energy storage is limited. Again, for simplicity we consider
tv = 1, rv = 0, lv = B and our results can be generalized as
in the previous section when these assumptions are relaxed.

We describe how finite storage energy back pressure policy
differs from its infinite storage version. The energy marking
storage step is the same except that a packet at the entry buffer
of nodev is transferred to the exit buffer ifv has at least one
unit of unmarked energy and the exit buffer has fewer than
B packets (note that a packet may be transferred even if the
entry buffer has fewer packets than the exit buffer). The packet
transmission step is the same except that the weight of link
(u, v) at timet isQo

u(t)Q
i
u(t)−BQi

v(t). Note thatQo
u(t) ≤ B,

and thus the queue length at the entry buffer ofu is weighed
less than that for the exit buffer in calculating this weight.
We next prove that this policy stabilizes the network for any
packet and energy arrival rate vectors inΛ4/B (i.e., as long as
he arrival slack is4/B or higher).

B. Stability Analysis

Theorem 3:If (~λ,~e) ∈ Λδ andB ≥ 4/δ, the Finite-storage
Energy Back-pressure policy stabilizes the network.

Proof: Let ~Q′(t), Fv(t), J
Ov , JIv be as defined in the proof

of Theorem 1. Again, we present the proof when the en-
ergy and packet arrival processes are temporally independent,
although it can be easily generalized to stationary ergodic
processes. We investigate the conditional expected drift of the
lyapunov function:V ( ~Q′) =

∑

u(Q
i
u)

2+(1/B)
∑

u(Q
o
u)

2Qi
u.

E[V ( ~Q′(t+ 1))− V ( ~Q′(t))| ~Q′(t)] = ∆R1 +∆R2, (15)

where∆R1 = E[
∑

u

(

Qi
u(t+ 1)

)2
−
(

Qi
u(t)

)2
| ~Q′(t)]

and∆R2 = (1/B)E[
∑

u

(Qo
u(t+ 1))2 Qi

u(t+ 1)

− (Qo
u(t))

2 Qi
u(t)|

~Q′(t)].

Now, ∆R1 is at most

E[
∑

u

Qi
u(t)

(

Au(t) +
∑

v∈Iu

Dv(t)− Fu(t)

)

| ~Q′(t)] + µ1, (16)



hereµ1 is a constant that depends onM,N,L, γ.

∑

u

(Qo
u(t+ 1))

2
Qi

u(t+ 1)

=
∑

u

(

Qo
u(t) + Fu(t)−

∑

v∈Ou

Dv(t)

)2

×[Qi
u(t) +Au(t) +

∑

v∈Iu

Dv(t)− Fu(t)]

≤ (Qo
u(t))

2
Qi

u(t) +

(

Fu(t)−
∑

v∈Ou

Dv(t)

)2

Qi
u(t)

+2Qi
u(t)Q

o
u(t)

(

Fu(t)−
∑

v∈Ou

Du(t)

)

+ µ2,

whereµ2 is a constant that depends onM,N,L, γ,B (we
use the fact thatQo

u(t) ≤ B,Fu(t) ≤ 1,
∑

v∈Ou
Dv(t) ≤ 1).

Again, using the same,∆R2 can be upper-bounded by,

E[4Qi
u(t) + 2Qi

u(t)Q
o
u(t)

(

Fu(t)−
∑

v∈Ou
Dv(t)

)

| ~Q′(t)] + µ2

B
.

(17)
From (16) and (17),

∆R1 +∆R2 ≤ (4/B)
∑

u

Qi
u(t) + µ1 + (µ2/B)

+2E[
∑

u

Qi
u(t)

(

Au(t) +
∑

v∈Iu

Dv(t)− Fu(t)

)

+(2/B)

(

Qi
u(t)Q

o
u(t)

(

Fu(t)−
∑

v∈Ou

Dv(t)

))

| ~Q′(t)]. (18)

We next upper bound the last term of the R.H.S above, denoted
by S, henceforth.

S = 2
∑

u

Qi
u(t)λu

−(2/B)
∑

u

E[Fu(t)| ~Q
′(t)]Qi

u(t) (B −Qo
u(t))

−(2/B)
∑

(u,v)∈E

E[D(u,v)(t)| ~Q
′(t)]

(

Qi
u(t)Q

o
u(t)−BQi

v(t)
)

≤ 2
∑

u

Qi
u(t)λu − (2/B)

∑

u

euQ
i
u(t) (B −Qo

u(t))

−(2/B)max
J∈J

∑

(u,v)∈J

(

Qi
u(t)Q

o
u(t)−BQi

v(t)
)

We use the fact that the packet arrival process is temporally
independent in the first step. The last inequality follows from
the packet transmission policy and the temporal independence
of the energy arrival process. We obtain it observing that (i)
Qo

u(t) ≤ B, and (ii) irrespective of the size of the energy and
packet queues1 unit of energy arrives at nodei w.p. eu, and
(iii) Fu(t) = 1 wheneverQo

u(t) < B andv has at least1 unit

of unmatched energy (including new arrivals). Also,

max
J∈J

∑

(u,v)∈J

(

Qi
u(t)Q

o
u(t)−BQi

v(t)
)

≥
∑

J∈J

ωJ

∑

(u,v)∈J

(

Qi
u(t)Q

o
u(t)−BQi

v(t)
)

≥
∑

u

Qi
u(t)

(

Qo
u(t)

∑

J∈J

ωJ |J
Ou | −B

∑

J∈J

ωJ |J
Iu |

)

.

S ≤ 2[
∑

u

Qi
u(t)(λu +

∑

J∈J

ωJ |J
Iu |

−(Qo
u(t)/B)

∑

J∈J

ωJ |J
Ou | − eu(1−Qo

u(t)/B))]

≤ 2[
∑

u

Qi
u(t)(

∑

J∈J

ωJ |J
Ou | − δ − (Qo

u(t)/B)
∑

J∈J

ωJ |J
Ou |

−
∑

J∈J

ωJ |J
Ou |(1−Qo

u(t)/B))] (from (5) and (6)).

= −2δ
∑

u

Qi
u(t).

Thus, from (18),

∆R1 +∆R2 ≤ ((4/B)− 2δ)
∑

u

Qi
u(t) + µ1 + (µ2/B).

Now, from (15) and observing thatB ≥ 4/δ,

E[V ( ~Q′(t+1))−V ( ~Q′(t))| ~Q′(t)] ≤ −δ
∑

u

Qi
u(t)+µ1+(µ2/B).

Now, following the steps after (11) in the proof of Theorem 1,

lim
T→∞

∑T
t=1

∑

u E[Qi
u(t)]

T
≤ (1/δ)(µ1 + µ2/B).

SinceQu(t) = Qi
u(t) +Qo

u(t) andQo
u(t) ≤ B,

lim
T→∞

∑T
t=1

∑

u E[Qu(t)]

T
≤ B + (1/δ)(µ1 + µ2/B). �

The result in Theorem 3 can be interpreted in two equivalent
ways. It states a minimum energy storage requirement at each
node to attain maximum throughput for any given subset of
the network stability region. Alternatively, for a given finite
energy storage capacity, it quantifies the amount of loss in the
maximum throughput due to the limitation on energy storage.
This can be useful in provisioning the energy storage capacities
in a renewable energy network, or calculating what data rates
can be supported in such networks. Also, note that Theorem 3
and its proof assumes at any node can transmit at most one
packet transmission in a slot; if a node can transmit up toκ
packets in a slot, the minimum energy storage requirement for
maximum throughput will scale asO(κ2/δ). The scaling of
energy storage limit inversely withδ is possibly unavoidable,
particularly for back-pressure based policies. However, the
arrival slack is typically large since the minimum packet delay
achievable would also depend inversely onδ; so the energy
storage requirement is small for all low-delay traffic loads.
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