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Abstract—In this paper, we consider queue-length stability in wireless processés We consider a class of simple scheduling policies, which
networks under a general class of arrival processes that only requires gllows a link to contend if its neighboring links have equal or lower
that the empirical average converges to the actual average polynomially 66 |engths, and links are scheduled among the contending links
fast. We present a scheduling policysequential maximal schedulingand o . - . .
use novel proof techniques to show that it attainsZ of the maximum USIN9 maximal scheduling”. Maximal scheduling only ensures that
stability region in tree-graphs under primary interference constraints, for  if a link contends then either the link or one of its adjacent links is
all such arrival processes. For degree bounded networks, the computation scheduled. We prove that this queue length based maximal scheduling
time of the policy varies as the the logarithm of the network size. Our policy attains2/3 of the maximum throughput region for tree graphs

results are a significant improvement over previous results that attain d ori interf del. Furth th licy d t
only % of the maximum throughput region even for graphs that have a and primary Interierence mocel. Furthermaore, the policy does no

simple path topology, in similar computation time under stronger (i.e., USe any knowledge of the arrival rates, and requires each link to
Markovian) assumptions on the arrival process. learn only the queue lengths and the scheduling decisions of its

adjacent links. Under the reasonable assumption that control message
exchanges have to satisfy primary interference constraints as well,
the algorithm can be implemented in a fully distributed manner in
Scheduling for maximum throughput is a key operational goal ip(A log Alogn) time, wheren is the number of links anad is the
any wireless network. Scheduling of links must be done such thatximum node degree in the network.
no two “interfering” links are scheduled at the same time. Under The main contributions of this paper with respect to existing
random packet arrivals, the scheduling problem can be posed imegearch in this area are as follows. Firstly, we obtain throughput
stochastic decision framework where the goal is to attain stabiliguarantees under the notion of queue length stability for a large class
of queues over the largest possible set of arrival vectors. Quewgspolynomially convergent” arrival processes which includes, but is
are said to be stable, or rather queue-length-stable, if their expeated limited to, Markov processes. In most of the existing literature,
lengths are finite in each slot. The set of arrival rate vectors for whighe proofs, and hence the throughput guarantees, (a) rely on Lyapunov
the network is stabilized under some scheduling policy is referred &guments and Foster’s theorem [7] and (b) equivalence between the
as the maximum throughput region. In a seminal work, Tassiulpssitive Harris recurrence and fluid stability of a queueing system
et al. have characterized the maximum throughput region and algt], both of which apply only when the queue length process is
provided a scheduling strategy that attains this throughput regionNtarkovian, which in turn holds only when the arrival process is
any given wireless network [19]. Subsequently, several policies havearkovian. Such assumptions on the arrival process do not often
been shown to attain (for the general and certain important spediald in reality, as recent Internet traffic analysis has shown. For
cases of the problem) either the maximum throughput region [1], ["Jon-Markovian arrival processes, throughput guarantees are known
[6], [16], [17], [18] or a guaranteed fraction of it [2], [3], [10], [11], only under the notions of (a) rate stability which only requires that
[20], while requiring lower computation time. the input rates equal the output rates [2], [3], or (b) vanishing tail
In this paper, we consider primary interference constraints whighobability which requires that tail probabilities of queue lengths
requires that a set of links can be simultaneously scheduled if amgproach zero [13] Note that several applications require finite
only if they constitute a matching. This interference model is alssxpected delay, and therefore finite expected queue lengths, which
referred to as the node exclusive spectrum sharing model and arigge stability does not guarantee. Thus, unlike existing results, our
when every node has a single transceiver and a unique frequency ipificy is able to guarantee queue length stability (and therefore finite
two-hop neighborhood. We focus on the special class of tree gragipected delay) to a large class of realistic traffic models. In our
topologies which are very important from a practical perspectivework, throughput guarantees are obtained using non-standard proof
For instance, in many applications, nodes organize themselves int@éhniques since the arrival process and therefore the queue length
spanning tree and communication is confined to the tree edges opiwcess is not Markovian in this system. Thus, both the policy and
These include various data gathering or data distribution applicatiahg proofs for the throughput guarantees are important contributions
where nodes either send data to, or collect data from, a singithis paper.
source node. We consider an arrival process which only requires thaSecondly, for tree networks, our policy provides an excellent
the empirical average converges to the actual average polynomiatydeoff between performance and complexity, which is better than
fast. This assumption is satisfied by a large number of arrivilose in the existing literature in different ways. While existing
processes including Markovian, periodic, bounded-burstinesss/al  policies that attain maximum throughput in a similar setting require
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O(nA) time [1], [5], [6]. [17], [18], our scheduling algorithm can and the terminology in Section Il. We present our policy and
be implementedO(Alog Alogn) time. Therefore, our approach performance guarantee for (a) the special case that the network
reduces the scheduling complexity significantly, at the codt/8fof topology is a path in Section 1, and (b) the case that the network
the throughput region in the worst case. On the other hand, existitmpology is a tree in Section IV. We conclude in Section V.

maximal scheduling based scheduling policies that reqai(é\)

or O(Alogn) time [2], [3], [11], [20], [10], have been shown to 1. SYSTEM MODEL

attain at most 1/2 of the maximum throughput region. With respectWe consider the scheduling problem at the medium access control

to this class of work, therefore, we are able to improve the throughp(]{hAC) layer of the network. We assume that time is slotted, and
guarantee significantly (from/2 to 1/3), with a modest increase in each packet takes exactly one slot for transmission. Therefore, a link

the computational complexity. ransmission schedule must be computed at the beginning of ever
We now briefly review existing policies with provable throughpuE ) i P 9 9 y
slot, and is used to transmit packets in that slot.

uarantees under the primary interference model. Tassgtlea. .
g P Y A wireless network topology can be modeled as a grgphk=

[19], [18] have obtained policies that attain the maximum throughp .
. . . . - : ,L), where N' and £ respectively denote the sets of nodes
region, which can be implemented in fully distributed manner uswﬁfd links. Each (undirected) linku.v) € £ therefore denotes

gossip based algorithms [6]. Distributed implementation of theWeh ther nod nd N hear h others sianals. The link set
policies however requiré(n) communication roundswhere each ether nodes: andv can hear ach ofhers signais. he s€
depends on the transmission power levels of nodes and the local

communication round involve message exchanges by nodes with i diti f th irel h L Wi Ghat
their neighbors; the time complexity of these policies is therefoﬂampgga |onbcond| |3nts O'th € wire essdc anneb. edaswme ¢ a
O(nA). Lin et al. [11] and Wuet al.[20] have shown that maximal IS a degree-bounded tréaith maximum degree- Ol_m - Yvithou

scheduling is guaranteed to attain at least half of the maximdppss of generality, we will assume théltis connected; otherwise, our

throughput region under the primary interference model. It has al%‘oqorlthm can be executed independently in each of the maximally

been shown that the above performance guarantee is tight, i.e_,c?nnecte_d s_ubgraph_s ot Lgtn - |N| :.lﬁl + 1 .

the worst case some maximal scheduling policies attain at most hal ach. link 1S qssouated with a unique |dent|f|gr ('d)'. \&1 be the
the maximum throughput region even in simple networks like patf) t of links incident pn node. Two I|nI§s aregq[acentlf.anq only
with only three links [2]. An arbitrary maximal scheduling poIicyI they have a node in common. By th|§ deﬂmgon, a link is always
cannot therefore attain a worst-case performance ratio better t acent to itself. Let; be the se_t of links adjace_nt o For any
1/2 even in the special case of trees. Maximal scheduling can Bgth P, let Cp denote the set of links that are adjacent to the first

implemented in a distributed manner @(logn) communication an(Sj.Iast link of7> %nd ?r:e no.t part 01: ; del t di ¢
rounds, which translates to a time complexity 6fAlogn) in Ince we consider the primary interierencé model, two adjacen

trees under primary interference constraintsin et al. [10] proved links “interfere” with each other and cannot be scheduled simulta-

; . P
that a random access scheme, where links access the medium \p\,ﬁRUSW, 1€ aﬂ¥ tV\/IO l'nk$“’v)/ ar,]d (', ) can_not be sche_duled
gether ifu € {u, v’} orv € {v/,v'}. Thus a valid schedule in any

a probability that depends on their and their interferers’ queﬁ K . .
lengths, attaing /3 of the throughput region while requiring (1) slot must correspond to a matching or a set of links none of which are

communication rounds, 0©(A) computation time in trees underaclg"j‘cetrllt to elacth other.. Npte that the. ptr!mgryl?tetlgerepcel n:odel anses
primary interference constraints. Dimalés al. [5] have shown that when the only transmission constraint Is due to the single transceiver

a greedy maximal weight scheduling attains the maximum throughp(iﬂEStrﬁ'nt at every node.t triglet herei is the identifi
region in certain classes of networks; Brzeziretkial.[1] have shown ac tSZSSI'(t)r? trhepresen sa rclngu’v) where: 15 dedl etn : |t_er
the above result for trees. The number of the communication roun?fstoc'a ed wi € Session an@ndv are source and destinations

required by the above algorithm however depends on the diamel he session. At thg MAC layer, each session traverses only one
link, but multiple sessions may traverse a link. L&denote the set

r%sessions in the network.
Next we state our assumptions on the packet arrival process. Let

of the network, and the computation time is therefét@g:A) in the
worst case. Therefore, our algorithm has a lower computation ti

than that in [1], [5], unless the diameter of the network is sufficiently. o h b f K - L
small. Salonidiset al. [16] designed another policy that attains th i(t“tf) enot\t,avt € num err\a% packets a<rr|Y|ng at sesguonp
maximum throughput region in trees; the policy however requiré@terva (t1,t2). We assume thatli(t, + 1) < &: V ¢, session;,

knowledge of the arrival rates in all links and therefore must pihered; is an integer for each, andmax; 6; > 1. Further, there

recomputed every time these rates change. The throughput guaranf&bys @ constant > 1 and a vectop = (f1,. .., jj5|) such that the

obtained in all the above papers, except those in [2], [3], critical Elncal avere:ge of t:e 1arr|v|\f/|als r']n the_ sylfterrri]ﬁrslots_cqnverges
depend on the assumption that arrival processes are Markovian whi Whatha rfate aster tj%' athe dn:satlca y, there existgs > 0
we do not assume. As mentioned before, the throughput guarantﬁlé% that for every, 0 < t5 <4 ando > 0,

> 5} <G (2)

obtained in [2], [3] do not guarantee that expected queue lengths are {
ta —t3)’

Aqi(ts, ta)

finite which we ensure. Also, our policy attains a better throughput fa—ts pi
guarantee as compared to those in [2], [3], [11], [20], [10] and lower
computation time as compared to those in [5], [19], [18], [6]. Clearly, xs is a non-increasing function of. Note that (1) implies
The paper is organized as follows. We describe the system motlet the empirical average of the packet arrivals converges in prob-
ability to 5 polynomially fast. Also, most commonly used arrival
§several well-known distributed randomized algorithms for CompUti”Err]%cesses, e.g., bounded-burstiness, periodic, i.i.d., and Markovian

maximal schedules (e.g., [12]) need to exchange in each round at most | ith finite stat tisfy the ab ti
control message in each link. For attaining the above in trees under prim&y V@l Processes with finite state space, satisfy the above assumption.

interference constraints, the nodes need to know their distances from the rodNext we introduce a few definitions.
which can be accomplished in a pre-processing step. The nodes with everBefinition 1: The network is said to bstableif there exists a finite
valued (odd-valued) distances are referred to as even (odd) nodes. Next, §aell numberB, such that for any > 0, EQ:(t) < By, V1€ L.

round is divided in2A sub-rounds, and the even (odd) nodes communicate . . . ) .
the control messages to their children in the first (Iastub-rounds. Clearly, We consider a virtual-queug; associated with link that contains

the communications in the same sub-round do not interfere and can therefllePackets waiting for transmission for all sessions that travérse
be executed simultaneously; thus, each sub-round consumes constant tinfdl packets arriving in a session traversihgare routed toQ; and




wheneverl is scheduled the head of line packet(n is transmitted.
Note that the virtual queue in a link= (u,v) may contain packets
of sessions traversingin both directionsu — v andv — wu. Let
Q(t) be the queue length at lirkat the beginning of slat (after the
arrivals but before the transmissionstjn For simplicity, we assume
that @;(0) = 0 for all I € L; our results can be generalized for any
positive, but finite values of}(0).

Let A;(t1,t2) denote the number of packets arriving in virtua
queue@;, or more simply at linkl, in interval (¢1,t2]. Clearly,
there exists integers; such thatA;(¢t,t + 1) < oy V t,1 € L,
and max;e. 07 > 1. Also, there exists an arrival rate vectpr=
(p1,--.,pjz)) such that the empirical average of the arrivals in eag
link in T slots converges tg at a rate faster thagilg. Mathematically,
there existys > 0 such that forevery € £,0 < t3 < t4 andd > 0,

X6

Al(t3,t4) }
P|l— — >0 < —L.
{‘ ti—ts |7 (ta —t3)*

Again, x5 is a non-increasing function af. We refer top; as the
arrival rate for links.

)

Clearly, the network is stable if and only if the expected queue

length at each link remains finite at all time.

=y

scheduled”.

SEQUENTIAL MAXIMAL PATH SCHEDULING
INITIAL STEP: Each link sets its status to to “un-decided”|if
it has a packet to transmit, and to “un-scheduled” otherw|

ITERATIVE STEP:: For k = 1 to k = 2, execute Phaseg,
as given below:

Phase k : A link in the path contends if and only i
(a) it is un-decided, (b) its adjacent links are un-schedu
or un-decided, (c) its queue length is not less than {
of its adjacent links that satisfy conditions (a) and (b).
contending link sets its status to “scheduled” if its adjac
links do not contend or have higher id than it; links th
are adjacent to scheduled links set their status to “

led
hat
A
ent
at
un-

TERMINAL STEP: Compute a maximal schedule among the
links that are un-decided and whose adjacent links are|un-

scheduled or un-decided. Set the status of the links selegcted

in the maximal schedule to “scheduled”, and the status

o ) . L of the links that are adjacent to scheduled links as “un-
Definition 2: The throughput regionof a scheduling policy is the scheduled”
set of arrival rate vectorg satisfying (2) for which the network is :
Fig. 1. Sequential Maximal Path Scheduling Algorithm

stable under the policy.

Definition 3: An arrival rate vectoly is said to befeasibleif it is
in the throughput region of some scheduling policy.

Definition 4: The maximum throughput region\* is the set of all
feasible arrival rate vectors.

If an arrival rate vectop € A, then (a)p; > 0V [ € £ and (b)
VueN, Yp, o <19

Definition 5: A scheduling policyr is said toguarantee a fraction
v of the maximum throughput regidfits throughput region A,
satisfies the following condition: for any € A*, vp € Ax.
Loosely speaking, if scheduling policy guarantees a fraction of

A. Sequential Maximal Scheduling in Paths

We describe the Sequential Maximal Path Scheduling policy in

Figure 1.

Next we illustrate the Sequential Maximal Path Scheduling algo-

rithm using the example shown in Figure 2. The path graph shown in
the figure consists of 10 links whose queue-lengths are shown. Using
our scheduling algorithm, only link 9 will be scheduled in Phase 1,
link 7 will be scheduled in phase 2 and link 5 will be scheduled in

the maximum throughput region, then its throughput region is at leggiase 3. The terminal step will compute a maximal schedule amongst

v fraction of the maximum throughput region.

the links 1, 2, 3, which can be either link4, 3} or only link 2.

We seek to prove that the scheduling policies we propose guarante@e now provide the intuition behind the design.
2/3 of the maximum throughput region. We therefore need to showl) The iterative step of Sequential Maximal Path Scheduling

that for any arrival rate vectgs such that

VueN, Y p < 2/3

lely,

@)

g is in the throughput region of our policies. We assume (3)
henceforth.

Let, = 2/3 — .

Finally, we describe the maximal scheduling policy, which will

be a key constituent in our scheduling policy presented later in the

paper. A maximal scheduling policy schedules a sulssef links
such that (i) every link inS has a packet to transmit, (ii) no link in
S interferes with any other link irf, (iii) if a link ! has a packet to
transmit, then eithet or a link adjacent td, is included inS.

I1l. SCHEDULING POLICY FOR A PATH

In this section, we consider a gragh that is asimple path,

i.e., £ corresponds to a sequence of links such that the consecutive
links in the sequence are adjacent. In Section IlI-A, we describe

our scheduling policy, which we calSequential Maximal Path
Scheduling and in Section IlI-B we prove that this policy attains
2/3 of the maximum throughput region.

policy provides higher priority to links whose queue lengths
are higher than that of their adjacent links. This ensures that
that a link can not be congested in isolation. Specifically, if
links in a segment ofj of length5 or less have high queue
lengths, then with a high probability, at least one link that is
not in the segment but is adjacent to a link in the segment has
high queue length as well (lemma 2, Section 1lI-B.Thus, if

a link is congested, then with a high probability all links in a
segment of length at least are congested (Property 1Yhe
number6, which is crucial in the rest of the proof, is attained
because of multiple phases in the iterative step.

The terminal step of the policy ensures that the scheduling is
maximal, which in turn guarantees ththie probability that in

any slot¢ all links in any segment of consisting of6 links

has high queue lengths is sméiékmma 3, Section IlI-B.1). If

the above happens, then all these links must have packets to
transmit for several slots until But, then, since the scheduling

is maximal, at leas® links are scheduled in the segment in
each of the above slots. Now, the sum of the arrival rates in
the links in any segment consisting 6flinks is less thar2

due to (3). Thus, the sum of the queue lengths of the links in
such a segment must have been decreasing over all these slots,
which implies that all links in the segment can not have large
queue lengths in.

2)



queue length 1 2 3 4 5 6 7 8 9 9
. O———»O———»O———»O———»O———»O——»O———>O———>O———’O——_'O
link # 1 2 3 4 5 6 7 8 9 10

Fig. 2. Path Scheduling Example.

The above (italicized) assertions together imply our main resultin2) If I € Cp thenQu(t) < Qi,(t) Y 1; € Nin{li,l} (isolation
this section, Theorem 1, that the queue length in any link becomes criterion).

large only with a small probability. Consider the iterative step of the Sequential Maximal Tree Schedul-
Theorem 1:Let G be a simple path and (3) hold. ing. If m € {1,2}, at leastl link in P is scheduled during the first
1) For eacht > 0,1 € £, P{Q:i(t) > B} < 7B~ where phase at. If m = 3, eitherl, is scheduled during the first phase or
7 =max(1,151x¢/3) x (72 x 4° x 5° maxje, 07)°. two links in P are scheduled in the first two phaseg.alf m > 3,
2) For eacht >0, E(Qi(t)) <7y 2,4 “. at least2 links in P are scheduled during the first two phases.at
Thus, for anyp’ € A*, (2/3)p" is in the throughput region of Proof: We first show that for anyn > 1 at least1 link in

our scheduling policy. In other words, our policy guaranteeg a P is scheduled during the first phase tatFrom the isolation and
fraction of the maximum throughput region. We prove Theorem 1 ifon-emptyness criteria, at least one link7hcontends in the first
Section 1I-B — the proof proceeds as per steps 1 and 2 above. phase at;, and the link with the greatest id among the contending
We now analyze the time complexity of the policy. The iterativéinks in P is scheduled. Thus, the first part of the lemma follows.
step in Sequential Maximal Path Scheduling can be computed inNow, letrn > 2. The second and third parts of the lemma follows
constant number of communication rounds. The expected numberifaft least2 links in P are scheduled in the first phase. So, let exactly
communication rounds for the terminal stepQglogn) if maximal 1 link in P be scheduled in the first phase.
scheduling is computed using a distributed randomized algorithmiet /; be scheduled in the first phase. Thiis, ..., I} are not
like the one proposed in [12]. Since the graph topology is a patéecheduled in the first phase arig,does not prevent the contention
each communication round takes constant time. This is because gheny link in the second phase. Consider a p&thconsisting of
iterative step, and the algorithm proposed in [12], can be execut@ks I, ...,l,. Now, sincel,,_1 have not been scheduled in the
by exchanging in each round at most one control message throygét phase (sincen > 2, l,,—1 # l1), from the isolation and non-
each link in the path. For this purpose, each round can be dividgghptyness criteria, at least one link  contends in the second
in two sub-rounds, and the even (odd) numbered nodes in the pgHase. Using arguments similar to those in the first paragraph, we
can transmit control messages to the odd (even) numbered noggs show that at least one link iR’ is scheduled in the second
in the first (second) sub-round. Note that the nodes in the path ggifase. Thus, the second and third part of the lemma follow.
be numbered once at = 0, i.e., during a pre-processing phase. The proof is similar if instead ofy, I, is scheduled in the first
Clearly, the communications in the same sub-round do not interfgfRase. Now, let; be scheduled in the first phase where: i < m.
and can therefore be executed simultaneously. Thus, each sub-rougdy, = 3. Thens = 2. Thus, the second part of the lemma follows.
consumes constant time. Thus, the expected computation time f@k y, > 3. Now, eitheri > 2 ori < m — 1. Wilog, leti > 2. Thus,
Sequential Maximal Path Scheduling@logn). {l1,...,1;_2} are not scheduled in the first phase, and does not
We now examine in more detail why the iterative step usgsrevent the contention of any link in the second phase. Consider a
multiple phases. First, note that if this step did not have any phasgthP’ that consists of linkgl4,...,li—2}. Again, sincel; have not
(that is if this step were absent), the policy would be an ordinaBeen scheduled in the first phase (sirice 2), from the isolation
maximal scheduling policy, which attains at mage the throughput and non-emptyness criteria, at least one linkFih contends in the
region even for paths of siz8 [2]. Thus, at least one phase issecond phase. Using arguments similar to those in the first paragraph,
necessary for improving the throughput guarantee & However, e can show that at least one link # is scheduled in the second
our proofs indicate that only one phase does not guarantee Prdperphase. Thus, the third part of the lemma follows. ]
above which is key towards attaining tB¢3 throughput guarantee.  Note that the last two parts of lemma 1 do not hold if the iterative
Nevertheless, we do not have a counterexample to establish thatg{g?) of the Sequential Maximal Path Scheduling has only one phase.
policy does not attain the/3 throughput guarantee in presence ofor example consider a slétsuch thatQy, (t) > Qi,(t) > ... >
only one phase. Also, it would be interesting to examine whether tig (). Clearly, at most one link ifP, I, is scheduled at the end of
throughput guarantee can be improved bey®pigl by using a larger the first phase irt, irrespective of whether the non-emptyness and
number of phases, especially since the policy carideg n) phases  the isolation criteria hold. If» > 6 and the non-emptyness criterion
while still requiring O(logn) computation time. These intriguing holds, then at leas? links will be scheduled by Sequential Path

questions constitute interesting topics for future research. Maximal Scheduling (since the scheduling is maximal), but these
links need not be selected during the iterative step if the iterative
B. Proof of the2/3 throughput guarantee step has one phase, and hence these links may be those with the
We state and prove the supporting lemmas 2 and 3 in Section IMnimum queue lengths i®.
B.1 and prove Theorem 1 in Section 1lI-B.2. Lemma 2:Let x and B be positive integers such that > 5x+1.
1) Supporting lemmasWe first state and prove lemma 1 which isConsider a pati® C G. Let P consist of linksly, ..., ., where
used for proving lemma 2, and subsequently state and prove lemmds € m < 5. Consider an event that occurs if and only if there
and 3. exists a timet such that

Lemma 1:Consider a patt? C G and an arbitrary slot. Let P 1) Qi,(t) >B—x Vie{l,...,m} (lower bound criterioh
consist of linksly, ..., L., and satisfy the following properties &t 2) Q)< B-1 Vie{l,...,m}and V¢ <t (upper
1) Q,(t) >0 Vie{l,...,m} (non-emptyness criterion bound criterior), and



3) Qi(t')<B-5kVY1eClp, Vt <t (boundary condition From the boundary condition, (4) and lemma 1, eitheor both
ThenP(A) < 5xe/q(2ieLtye Iy andl3 are scheduled in each slot jty, t). Thus,

4k

Proof: Let.A occur. Sinca®;(0) = 0 for all [ € L, there exists

a slott, < t such that Sty (t2,) + 28, (t2, 1) + Sig (2, 1) > 2(t — t2). (13)

Qu,(tY>B—5xY i€ {l,...,m}andt’ € [t2,1], (4) 2 3
andQ;, (t2) = B — 5k for somei € {1,...,m}. (5) D (Qu(t) = Qu(t2)) + D (Qu (1) — Qi (t2))
1=1 =2
From the lower bound criteria and (5)— t2 > ﬁ”ﬁm 2
Let B; be the event thatl;, (t2,t) —pi, (t—t2) > £/3(t—t2). From = Z(Ali (t2,t) — Si; (t2, 1))
(2),P(Bi) < xe/3(—=1e£71) . We will prove that if. A occurs, then 1:13
UL, B; occurs. ThusP(A) < > P(B;). The result follows.
From (5) and the lower and upper bound criteria, +Z Ay (t2, Si,(t2,t)) (from (7))
Z(Ql Ql tz)) = ZAZ t2, +ZAL t2, Sll(t% )
> (B K) — (m—1)(B— 1)~ (B 5K). 260, (t201) — S (12.1)
= b5k—mk+m—1 > 0(sincel <m <5). 6 2 3
K mek m = ( =m= ) ( ) S Z(All(t27t) t—tg) —|—Z tg, (t—tg))
m m =2
Z Ql t2 Z t27 (tQa t)) ) (7)
=1 =1 ( sz —sz ) t—t2) (14)
where S;, (t2,t) is the number of packets of link scheduled in )
interval [t2,t). Thus, from (6) and (7), < Z (Au, (b2, 8) — pu (£ — 12)) + Z (As (b2, ) — pu(t — 1))

E i (t2, ) (= t2)) E i(t2,t) = pu; (T = t2)) . 1:22 —4/3+2€) (t —t2) (fromzz\’s%))
P — ,
®) ST (A (ta ) — (1)

First, letm € {1,2}. Now, from the boundary condition, (4) and — —
lemma 1, at least link in P is scheduled in each slot iftz, t). B

3
Thus, from (8), + Z S(ta,t) — pr, (t —t2)) — 26(t — t2).

=2

Z: it t) —pi(t—t2)) = (- ;p“)(t —12) Note that (14) above follows from (13). Thus, from
N " (12), i (At t) —pr(t—12)) 4+ i, (A (t2,t)—
> — . =1 i i . =2 i
> &t —t2)(from (3)).  (9) pu,(t —12)) > 26(t — t2). Thus, again,B; occurs for somei
Thus, clearlyB; occurs for some such thatl < ¢ < m. The result such thatl <7 < m. The result follows. |
follows. Note that lemma 2 does not hold if the iterative step of the

Now, let m € {4,5}. Then, from the boundary condition, (4)Sequential Maximal Path Scheduling has only one phase, as its proof
and lemma 1, at leas? links in P are scheduled in each slotuses lemma 1 which does not hold in this case.
in [t2,t). Thus, from (8),>° 1", (A, (t2,t) — pi; (t —t2)) > (2 — Lemma 3:Consider an integetB > 6 and a path? C G
> pzl)(t —t2). From (3),>°7, pr, <3 x (2/3—¢) =2—3¢.  consisting of linksly, ..., I, such thatm = min(6, |£|). Consider
Thus, > | (A, (t2,t) — pi, (t — t2)) > 3€(t—t2). Thus,B; occurs  an eventA that occurs if and only if there exists a slosuch that
for some: such thatl < 7 < m. Thus, the lemma holds for

m e {1,2,4,5}. Qli(t/) < 371Vie{j,...,j+m71}anth’gt,
Now, let m = 3. Thus, P consists ofl1, l2, I3. Qu(t) > 5BB/6Vie{]....,j+m—1}.
2 3
ThenP(.A) < 6X§/2(6 maxjec 0’1/5B)a.
; (Qh (t) - Qli (tQ)) + ; (Qll (t) - Qli (t2)) Proof:

Consider the last slot’ beforet such thatQ;, (¢') = 0 for some

= 2 Qu = Qi) +2(Qu() = Qu(t2)- A0 1 S 64 Since, (1) > 5B/6, ¢ < t - 5B/6maxier 0.
ety Let B; be the event thatly, (t',t) — pi, (t —t') > £/2(t —t'). From
Now, from (5) and lower and upper bound criteria,i € {1,2,3}, (2), P(B:) < Xg/g(%)a. We will prove that if A occurs,
Qi;(t) — Qi;(t2) > B—x — (B—1) = 1 -k, and for some thenU;Z,; occurs. ThusP(A) < -7 P(B;). The result follows.

1€ {1,2,3}, Qli (t) - Qli (tg) >B—kx— (B - 5I€) = 4k. Thus,
> (Qu(t) = Qu(t2)) +2(Quy (1) — Quy(t2))

ie{1,3}

NgE

(Qu () = Qu, (1)

. =1
231 =m)+dn > 0 (sincer 2 0). ) = Q) - Q)+ Y (Qul) - Q)
Now, from (10) and (11), Tt
2 3 -
3 (Qut) = Q) + 3 (Qu(t) — Qu(t2)) > 0. (12) > 5B/6+192Sm(53/6 B+1) > m. (15)
1=2

i=1 1#£k



m

Also, Y (Qu, (t) — Qi (1)

=1

m m

S AL )= S t). (16)

Thus,

m

Z (A11 (t/v t) - P (t - t/))

i=1

> Zm: Sy, (t',t) — zm: pu; (t —t') + m (from (15),(16))
=1 i=1
2 Z S (t',t) = (Tm/21) ((2/3) = €) (t = ') + m (from (3)).

Next, @i, (t1) > 0 Vi € {1,...,m}, V t1 € (¢,t]. Thus,

since the set of links scheduled at each slot constitutes a maxi

scheduling among those that have positive queue lengths in the
(a) at least two links inP are scheduled in every slot ift’, t], if
m € {4,5,6} and (b) one link inP is scheduled in every slot in
(t,t'). (For m < 6, the above follows sincen = |£|, and hence
P =G). Thus, ifm >4, 37 S, (', t) > 2(¢t —t') — 2. Thus, if
m > 4,

S (AL 1) = pr(t— 1) > (m/2)E(t 1),

=1
Thus, for somei € {1,...,m}, B; occurs. The result follows for
m € {4,5,6}. Next, letm € {1,2}. Then,>°7" , S, (¥',¢) > (t —
t') — 2. Thus,

m

(Ali (t/7t) — P (t - t/)) > g(t - tl) - L
i=1
Thus, for somei € {1,...,m}, B; occurs. The result follows for
m € {1,2}.

2) Proof for Theorem 1We just prove the first part of the theorem,
as the second part is immediate from the first. The result trivially
holds forB < 7. Let B > 7. Consider the eventi(B, t) that occurs
if and only if max;eg Qi(t) > B. Let A(B,t) occur. Then there
exists a slotty < ¢ such that@,(t') < B—1foralll € £ and
t' < to andQ(to + 1) > B for somel € L; let I’ be one such
[. Then,Qu (to) > B —maxjeco;. Forl <c¢<6,1<d<eg,
consider path®. ; C G consisting ofc links with thedth link being
I’, provided such a path exists. For example, such a path does not exist
if I’ is the last link of pathg, andd < c. For1 <c¢<5,1<d <,
eventC, 4 is said to occur if the evend described in lemma 2 occurs
With P = Pea, & = 4°5° 7" | 5585 ). EVeNtCuin(s,|z),q IS Said
to oceur if Prins,|2),q €Xists and the everd described in lemma 3
Qgpurs WIthP = Ppins,|2),qa- Clearly, whenA(B,t) occurs,Cc q
feeurs for some:,d, 1 < ¢ < 6,1 <d < e Thus,P (A(B,t)) is
upper bounded by the sum of the probabilities of the above events.
Thus, the result follows from the upper bounds of the probabilities
of these events provided in lemmas 2 and 3.

IV. SEQUENTIAL MAXIMAL SCHEDULING IN TREES

We now describe how a throughput guarantee2¢8 can be
attained through distributed scheduling in trees. We will first show
that every tree can be decomposed into a collection of link disjoint
paths that constitute a tree of paths of depth at m@élogn)
(Section IV-B). We refer to this new tree aspath tree.In our
scheduling algorithm, every path in this path tree executes a queue
length based sequential maximal scheduling policy after waiting for
a time interval in which its parent path in the path tree finishes its
scheduling (with high probability) (Section IV-C). The sequential
maximal scheduling policy that can be used in paths in the tree
(Sequential Maximal Tree Schedul)nigowever needs to be slightly
different from that when the entire graph is a path. This is because

Now, letrn = 3. Similar to the proof for (15), we can prove that,jrespective of its queue length, the first link in a pathcan not

> (Qut) — Qi) +2(Qu(t) — Qi (1)

ie{1,3}

> 5B/6+3(5B/6—B+1)>3. 17)
Also, > (Qu(t) = Qu (1) +2 (Qu () — Qi (1))
ie{1,3}
= > A - D St
ie{1,3} i€{1,3}
245, (t',t) — 285, (¢, ). (18)
Thus, > (A (t,t) — pi(t —t))
ie{1,3}
+2 (Alz (t/7 t) — Py (t - t/))
> S ) +2S,( ) — > p(t—t)
ie{1,3} ie{1,3}
—2p1, (t — t') + 3 (from (17),(18))
> Z Sli (t/, t) + 25, (tl7 t)

i€{1,3}
—2((2/3) — &) (t — ') + 3 (from (3)).

Again, using similar arguments as before, eitheor bothil; and
I3 are scheduled in every slot i, t]. Thus, 3, 4 Si, (', 1) +
28, (t',t) > 2(t —t') — 2. Thus,

o (A ) = ot =) + 2 (A (1) = pi (t — 1))
1€{1,3}
> 2(t—t)—1.

Thus, for some € {1,...,3}, B; occurs. The result follows. =

be scheduled in a slot in which the last link of its parent path is
scheduled— such slots are referred to @snstrained slotdor H.
Nevertheless, we prove that the combination attaigg3athroughput
guarantee as before (Section IV-E).

A. Preliminaries

We now assume thaj is a tree with maximum degrea > 1.

Next we introduce some terminology and definitions that will be
used in presenting our algorithm and its analysis. B8t ¢ =
1,...,k, denote subsets of. If H; = {l14,...,lm,i} is a path,
thenl; ; andl,, ; are itsterminallinks. If there exist a link; € H;
and a linkly € H; such that; andl, are adjacent, thet; andH;;
are adjacentand; (I2) is adjacent toH; (H;); if I, is a terminal
link in H;, thenH; is terminal-adjacenf H;.

The following property, which we refer to as theee-property
holds sinceG is a tree. Let elements ifH1,...,Hr} be pair-
wise disjoint and pair-wise adjacent, anfl {l l €
H; for somei, and N; N'H,; # ¢ for somei # j}. Then all links
in B intersect at one node if. Also, at most two links in any+;
can be adjacent t@{; wherej # i.

Let {Hx} constitute a partition of such that each sét,, in the
partition is a path ing, and corresponds to a nodein a treeG”
(with a designated root node) that satisfies the following properties.
Consider two nodes. andv in G¥ and the corresponding setg,
andH, in the partition.

P.1 If w is a parent (child) ob, (a) H. (H.) is terminal-adjacent

of H,, (H.) and (b) only one link inH, (H.) is adjacent to
Hu (Ho).



P.2 If v and v are siblings, then either botf{, and H, are the end of this procedure each identified path has at least one link;
terminal-adjacent of each other, or they are not adjacent. thus henceforth we no longer consider empty paths as in the above
P.3 If u is not a parent, child, sibling of, then’®,, andH, are paragraph.
not adjacent. From the construction of”, it is easy to verify that it satisfies

To illustrate the above definitions and properties, consider tifel-P.3.
example tree network consisting of 11 links as shown in Figure 3(a).To illustrate the path tree construction for the graph shown in
The tree has been partitioned into 6 (link-) disjoint patfdp, ..., Figure 3(a), note that starting from the root nodg the first path
H5}, where HO ={1,2,3}, H1 = {4}, H2 = {5}, H3 = {6, 7}, H4 identified (the root path o) is HO. (Note thatv, (size = 7) is
= {8, 10, 11, and H5 ={9}. For path HO, 1 and 3 are the terminalPreferred ovemns (size = 4), andv; (size = 3) is preferred overs
links, while for path H3, both 6 and 7 are terminal links. HO andsize = 2).) When this root path is removed, the grgptlecomposes
H3 are not only adjacent, but also terminal-adjacent of each oth#tio 4 child components - the subgraphs formed by the node sets
however, HO is not adjacent to H5. To illustrate the tree propertyva}, {vs}, {ve,v7} and{vs, vo, v10,v11}. The first two components
consider the path§HO, H2, H3 } which are pair-wise disjoint and are single node sets, and result in the two single-link paths H1 and
pair-wise adjacent. In this cage= {1, 2, 5, . Clearly, all links in H2. The third is a two-link single-path component which results in
B intersect at a single node,. Also note that two links in HO are Path H3. The root path in the last child componen{19, 11} (vio
adjacent to H2, H3, while only a single link in H2 (H3) is adjacentsize = 2) is preferred over, (size = 1)), which when appended
to H1, H3 (H1, H2). with link 8 (which connects this root path with HO, the root path of

In this example, it can be verified the path tré& shown in the parent component), results in the path H4. Thus H1, H2, H3 and
Figure 3(b) satisfies the properties P.1-P.3 stated above. For instaht4 become children of HO in the path trée”. Removing the root
since H3 is a child of HO ing”, consistent with property P.1, in Path from the last child component leaves the single node component
graph G, H3 is terminal adjacent of HO, and only one link of H3{vs}, which results in path H5, a child of H4 in the path trg€,
is adjacent to HO. To illustrate property P.2, consider siblings H&s show in Figure 3(b). Thus, running our path tree construction
H2, H3, H4 in graphg”, and note that H2, H3 are terminal-adjacen@lgorithm ong shown in Figure 3(a) results in Figure 3(b).
of each other, while H1 and H4 are not adjacent to any of the other.emma 4:The depth ofG" is at mostlog 7.
sibling paths. Property P.3 ca be illustrate by considering HO and H5. Proof: Each nodeu in G” corresponds to a path ig, and

Our algorithm requires a decomposition of the link geinto a €ach such path is the root-path of some componegt isayG.; let
tree G¥ of paths that satisfy properties P.1-P.3 and have a depthtBe counterpart of u in G” be the root-node of.. Let the weight
O(logn). We show next that this can always be done, and preséita node inG” be the size of its counterpart ii. We will show
an algorithm that achieves this in polynomial time. that for any two nodes, v in G” such thatv is a child of u in
G* the weight ofv is less than half that of.. Thus, if the depth of
GP is d(G"), then,299") times the weight of a leaf node iG” is
upper-bounded by the weight of the root nodeGifi. Note that the

We first introduce some new terminology. Thizeof a node in  weight of the root and leaf nodes @ aren and 1 respectively.

G is the number of_ nod_es in the subtree rooted at the node. ThRus, d(G") < log(n).
root-componenbf G is ¢ itself. Consider nodes, andv in G¥ such thatv is a child ofu in G¥.

We now describe the construction of the paths corresponding\ie now show that the weight af is less than half that of in GgFr.
nodes inG”. The path corresponding to the root 6f’, which we Let 7, be the path inG that corresponds ta. Let u; and v be
denote as theoot-pathof G, is the pathuo, ..., ur Whereuo is the  counterparts of, andv respectively inG. Then (a)v; is in the sub-
root of G, u; is the node with the maximum size among the childreftee ofG rooted atu, (b) v1 is not in H.,, (c) v1 is the child inG
of u;—1 in G, anduy, is a leaf of G. Once the root-path has beenof a nodew in H,, in G, (d) w is in the sub-tree of; rooted atu;
identified, all nodes in the root-path and the links originating frorand«w has a chilcw; in H.,. Clearly,w; andv; are siblings and the
these nodes are removed frogh Each component in the residualsize ofv; can not exceed the size af; (otherwiseH., would have
graph is referred to as thehild-componenbf the root-component traversedv; instead ofw:). Sincew; andv; are children ofw, the
and theroot-componenis their parent-componentNote that a child-  sjze ofw exceeds the sum of sizes of andw,. Hence, the size of
component may consist of a single node or may have multiple nodgsis |ess than half the size af and hence less than half the size of

and links. The root-path in each Child-component with a Single no% sincew is in the sub-tree irg rooted atwu;. Thus, the We|ght of
is considered to be the node itself (i.e., this path is empty in the sensg less than half that of in G~. ™

that it does not have any links). Once the root-path is identified in

such a child-component, the child-component is removed from the . .

graph. The root-path in each child-component with multiple nod&s Scheduling Algorithm

is determined similar to the root-path @ and this in turn leads to  Each path represented by the vertices in the path tree gfaph

child-components of each child-component. The process terminatiee output of the path tree construction procedure described above,

when the residual graph has no nodes. executes the Sequential Maximal Path Scheduling algorithm after
We now describe how the paths obtained as above can be organizaiting for a time interval that depends on the position of the vertex

to constitute the path tre¢”. The root-path’{ for the root- corresponding to the path i”. We provide details of the algorithm

component (i.eG) corresponds to the root aff. Subsequently, below.

we consider the root-paths of the child-componentsGofLet H’ Let paths {H.} be the output of the path tree construction

be one such root-path. There exists a linketween an end-node algorithm. If  is the parent ofv in G then the link in7, that

of H and . Let H” = H’ U {I}. Then inG¥, 1" corresponds is adjacent to¥,, is referred to as thdirst link in 7,; note that

to a child of the node corresponding to. Similarly, other children this is a terminal link in*,. For example, in Figure 3, link 6 is the

of the root of GT are identified by considering root-paths of othefirst link of path H3. Due to the tree properties P.1-P.3, there exists

child-components of. Subsequently, the paths corresponding to the partition on the children of each in G¥ such thatH,, and the

nodes in the next level of are identified similarly. Note that at corresponding paths in each set in the partition intersect at a common

B. Path Tree Construction



HO

H4

H5

Fig. 3. Path Tree Construction: (a) The original t@e(b) The path treeg”.

node inG, and the corresponding paths in different partitions are net) (T1 + T>[In (36A) / (—In(y))]) time, whereT; represents an
adjacent. For the children of HO ig*, {H1}, {H2, H3}, {H4}, upper bound on the time required to execute the initial and iterative
represents such a partition. Given the degree bound, each partiteps of the Sequential Maximal Tree Scheduling algorithm for a path,
consists of at most\ nodes inG, and all these nodes are siblingsand s represents an upper bound on the time required to complete
The nodes in a partition are numbered in some chosen order. If tagingle roundof the distributed maximal scheduling algorithm [12],
siblings v, w are in the same partition, andhas a higher number [14](chap. 8). Note that this implies that a path starts its scheduling
thanw, thenv (w) is anolder (youngej sibling of w (v). Thus, a after its predecessors and their older siblings, and the path’s own
node inG" can have at mosh — 1 older siblings. older siblings, have completed at leqhi (36A) / (—In(v))] rounds
Without loss of generality, assume that thes have been num- of the maximal scheduling algorithm. Thus when a path starts its
bered in the sequence in which the corresponding nodes will beheduling, its predecessor paths and their older siblings, and its
visited in a breadth first traversal @ starting from the root of own older siblings, may not have completed their scheduling process
G*'; the breadth first traversal visits an older sibling before a youngg@ecall that maximal scheduling for a path tak@glogn) expected
sibling. Letp; be the level (i.e., the distance from the root) of nodéme). However, the constarin (36A) / (—In(v))] is chosen such
i in G¥ andr; be the number of its older siblings. Lgtbe the that the probability of maximal scheduling completing within those
maximum level of any node i¢”. From Lemma 45 is O(logn). many rounds is high enough for our stability result to hold.
InGF, ps for H1, H2, H3 and H4 is 1, while; for H5 is 2. Moreover, We now point out the similarities and differences between Se-
if H2 is considered older than H3 in the partitigf2, H3}, thenr;  quential Maximal Tree Scheduling and Sequential Maximal Path
for H1, H2, H3 and H4 are 0, 0, 1 and 0, respectively. Scheduling. Consider an arbitrary patt € {Hx}, whereH =
Recall that maximal scheduling is implemented using a distributég 1, ..., I3 m, andiy 1 is the first link inH. A slot is aconstrained
randomized algorithm like the one proposed in [12]. The algorithislotfor H € {H,} if the first link of H sets its status to un-scheduled
operates in rounds, where each round requires communicationibythe sequential constraint step, and is an-constrained slot
nodes with their neighbors in the same path of the path tree. [18}herwise. In an un-constrained slot, since the start of its scheduling
[14](chap. 8). Lety > 0 be the probability that the second link inphase, the two scheduling procedures are identical. The above holds
a path with only three links does not select itself at the end of iis a constrained slot as well except fog,:1 which becomes un-
first round of the distributed maximal scheduling algorithm. Givescheduled in Sequential Maximal Tree Scheduling irrespective of its
that a link is un-decided at the beginning of a round in its maximajueue length. Note that in an un-constrained slot, the scheduling for
scheduling, it is un-decided with a probability of at mesiat the 7 is oblivious of any link not inH, and in a constrained slot, the
end of the round. For the algorithm in [12], it can be easily showscheduling forH \ {l+,1} is oblivious of any link not ifH \ {l3,1}.
thaty < ;i; Finally, unlike that for paths, the overall scheduling for trees need not
At the beginning of every slot, all links that do not have anye maximal. This is because in a slot that is constraine@ffat may
packets to transmit set their statusun-scheduledAll other links turn out that the links that are (a) in the parent and older siblings
set their status tan-decidedinitially. As the scheduling algorithm of H, (b) adjacent to the first link i+, and (c) were undecided
progresses, these un-decided links change their stateshiduled at the time’H started its scheduling phase, may eventually not be
or un-scheduledLinks in 7, start executing their scheduling phasescheduled in the slot. Nevertheless, in the next section, we prove that
after the paths that correspond #’s predecessors and their olderthe 2/3 throughput guarantee still holds for trees. This is attained
siblings inG*, and the older siblings of; itself, have completed by (a) exploiting the fact that the constrained slots for each path
their scheduling (with high probability). Note that since a nodgfh occur only at a rate which is upper-bounded by one minus the packet
can have at mosA older siblings, the number &f;'s predecessors arrival rate in the first link ofH, and (b) using an additional phase in
and their older siblings, plus the older siblings7df itself, is upper the the iterative step of Sequential Maximal Tree Scheduling. Thus,
bounded by; A+r;. In our algorithm, links irH; start executing the the iterative step now uses 3 phases, whereas the iterative step of
Sequential Maximal Tree Scheduling routine (Figure 4) afte + Sequential Maximal Path Scheduling only uses 2 phases.



SEQUENTIAL MAXIMAL TREE SCHEDULING (H;) their neighbors in the given tree network. Therefore, utilizing the
fact that root path in all child components of a root component can

INITIAL STEP: The first link, sayis,1, in H;, sets its status be constructed in parallel, the entire path construction procedure takes

to “un-scheduled” if at least one link iN;,, , N, wherej O(nlogn) communication rounds, aD(Anlogn) time. The path

is a parent or an older sibling éfn G¥ has been scheduled tree construction algorithm should be viewed as a “pre-processing”

or is un-decided gequential constraift Each link sets its step, and needs to be re-run only when the network topology changes.

status to “un-scheduled” if it does not have a packet| to Therefore, the complexity of the path tree construction does not

transmit. If a link does not set its status to “un-scheduled,” contribute to the per-slot complexity of the scheduling algorithm.

it sets its status to “un-decided.” As mentioned earlier, in our scheduling algorithm, when a path

starts its scheduling process, it is possible (although with low
probability) that its predecessor and older sibling paths have not
completed their scheduling processes yet. However, note that the
control message exchanges required during the scheduling process of
any path does not interfere with that of its predecessor or older sibling
paths, assuming primary interference constraints on control message
exchanges. For example, in Figure 3, consider the message exchanges
on path H4 after it begins its scheduling process (but before path
H5 begins its scheduling). At this time, if link 1 (which belongs to
the predecessor path HO) has already decided its scheduling status,
then there is no message exchange across link 1, and therefore no
interference in the message exchanges on the links in path H4.
However, if link 1 is still undecided, then link 8 sets its status to

ITERATIVE STEP: For k = 1 to kK = 3, execute Phasg,
as given below:

Phase k : A link in H; contends if and only if (a) it is
un-decided, (b) its adjacent links i, are un-scheduled
or un-decided, (c) its queue length is not less than that
of its adjacent links inH; that satisfy conditions (a) and
(b). A contending link sets its status to “scheduled” if its
adjacent links do not contend or have higher id than| it;
links that are adjacent to scheduled links set their status to
“un-scheduled”.

TERMINAL STEP: Compute a maximal schedule among the un-scheduled and does not subsequently participate in the scheduling
links in H; that are un-decided and whose adjacent links process; control messages are then exchanged only on links 10 and
in H; are un-scheduled or un-decided. Set the status of the 11, which do not interfere with message exchanges on the link 1 or
links selected in the maximal schedule to “scheduled”, and any other link on the predecessor or older sibling paths. When child
the status of the links that are adjacent to scheduled links path H5 (which consists of only link 9) starts its scheduling process,
as “un-scheduled”. link 9 will schedule itself only if links 8 and 10 have already set their
Fig. 4. Sequential Maximal Tree Scheduling Algorithm fi status to un-scheduled; therefore, there is no interference between

control message exchanges on path H4 with those on path H5, even
after H5 has started its scheduling process. This holds true in general,
Finally, we evaluate the time required for the schedule computdue to the fact that at any point in time during the scheduling process
tion. Firstly, note that the first links,1 in H; shares a node with on any path, the set of undecided links in the path is node disjoint
links in Nlml N7H; (wherej is a parent or an older sibling aéfin  from all undecided links in other paths that have already begun their
G?). Therefore, assuming that each end-node of a link keeps trs&ghedule computation process.
of its scheduling status, the initial step in the Sequential Maximal Finally, note that the framework we proposed involves decompo-
Tree Scheduling algorithm takes constant time. Since the iteratiséion of trees into paths and scheduling links in each path using a
step requires nodes to exchange a constant number of mess&§disy that attains a provable throughput guarantgs) for paths.
with their neighbors in the corresponding path, this implies thék is interesting to observe that this decomposition based approach
Ty, the maximum time required to execute the initial and iterativegtains the same throughput guarantee for trees as compared to that
steps of the Sequential Maximal Tree Scheduling algorithm is far paths. In general, if the throughput guarantee for path graphs can
constant independent df andn. Furthermore, since a single roundbe improved further while using)(logn) time, then we can use
of the maximal schedule computation (terminal step of the Sequdhis framework to obtain the same guarantees for trees while still
tial Maximal Tree Scheduling algorithm) only requires a constarfi€quiring an overall computation time 6#(A log Alogn).
number of message exchanges by nodes with their neighbors in the
corresponding pathl is also a constant independent Af and n. E. Proof of the2/3 throughput guarantee for a tree

The path that starts its scheduling process last, starts after Waitinc\;N ) ) ) )
for O ((max; p;A + ;) log A) time, sinceT; and T are constants e now state the main result of this section, Theorem 2, which

independent ofA and n. Once started, the scheduling process fdProves that Sequential Maximal Tree Scheduling policy attainssa
a path take®)(log n) expected time to complete. Thus, singe<  throughput guarantee whehis a tree.

A — 1, andp; < p which is O(logn), the scheduling for the entire ~ Theorem 2:Let G be a tree and (3) hold.

tree can be computed i@(Alog Alogn + Alog A + logn), or 1) For eacht > 0,1 € L, P{Q:(t) > B} < 75,Ao-1B™%, where
O(Alog Alogn), expected time. T5,a—1 IS Obtained through the following recursions.

Yoy = O0VO<y<A-1, (19)
Tey = (maX(l, 151Xmin({/&},l/G) + 117@,y))
x (72 x 4° x 5° max a;)%,
leL

D. Discussion

The Sequential Maximal Tree Scheduling Algorithm is fully dis-
tributed, as long as we implement the maximal scheduling algorithm

on each path in a distributed manner (using the algorithm in [12], for 0<z<p 0<y<A-1, (20)
example). Yo = AW(A @)+ X))
Note that in the path construction algorithm, the root path in any T18%A! X max(ro_1.a-1, max Tp.)

component can be constructed{n) communication rounds, where 0<z<y-—1
each communication round requires communication by nodes with 0<z<p,0<y<A-1 (21)
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2) Foreacht > 0, E (Qi(t)) < mpa-1D i0q 8 % subsequently prove the throughput guarantee using lemmas 6, 8, 9 -
Note that Theorem 2 is similar to Theorem 1; only the constants ihe last two of these lemmas hold only when the constraint-lower-
the expressions for the probabiliti®s{Q;(¢) > B} and the expected bound holds.
gueue lengths differ. We now describe the structure of the proof forLemma 5: Consider a patt? C H where® is a path in{H:}
Theorem 2 and point out the similarities and differences with thrend an arbitrary slot. Let either? C H \ {l».,1} or ¢t be an un-
proof for Theorem 1. constrained slot. LeP consist of linksly, ..., and satisfy the
Similar to the proof for the special case in whiGhis a path, we following properties at.
first prove that a link can not be congested in isolation. This proof 1) @, (1) >0 Vi€ {1,...,m} (non-emptyness criterin
has two major steps. Consider a pdthin G. The first step is to  2) If [ € Cp thenQ,(t) < Qu, (t) YV 1I; € N\in{ly, 1} (isolation
show that if links in a segmer® of H of length 5 or less have criterion).
high queue I_engths_ and the s_ggment does not_ include th_e first @K nsider the iterative step of the Sequential Maximal Tree Schedul-
of M, then with a high probability, at least one link # that is not ;0 ¢ ., ¢ 11 21 at leastt link in P is scheduled during the first
in P but is adjgcent o a |Ink.|ﬂ7 has ,h'g,h queue length as We”phase at. If m = 3, eitherl, is scheduled during the first phase or
(lemma 6, Section IV-E.1). This result is similar to lemma 2 provegNO links in P are scheduled in the first two phasestalf m > 3
e?rller for ahpa;_h. Vl\_lekn_ext pr)]rove tI?_athH IS n0t| cons;]tralr?ed V?Ly at least2 links in P are scheduled during the first two phases.at
o_ten, and t_? irst link In¥ as a nigh queue ength, then with @ ¢ gratement and the proof for this lemma is similar to that for
high probability the second link has a high queue length as Weluémma 1 for the special case th@tis a path. The only difference
this holds for the second-third, third-fourth, fourth-fifth and ﬁfth"ls that this lemma holds under additional conditions, that is, when

sixth paurs as w_eII (lemma 8, Section IV_'E'l)' This ““_'S“'t holds on_I a) the slot is un-constrained or (b) the segment does not contain the
when the iterative step of the Sequential Tree Maximal Scheduli t link of the path

has three (or more) phases. The above results together imply that ilf_emma 6:Let x and B be positive integers such th& > 5+ 1

a path is not constrained very often and a link in the path has a hi anider apatP C H\ {1 where is a path in{H, V. Let P
queue length, then with a high probability all links in a segment onsist of Iir?ksll - l\ { xﬁgrel <m<5 gonsid({er gri.evenn

length at least are congested. . . that occurs if and only if there exists a timesuch that

We next prove that if a path is not constrained very often, the . .
probability that all links in a segment of a path consistingsdinks £ @b (Q 2B —r Vie{l,...,m} (lower bound criterion
has high queue lengths is small (lemma 9, Section IV-E.1). Thisz) Qi () S B — 1 vie{l...,m}and V¢ <t (upper
result is similar to lemma 3, but the proofs differ somewhat since the boun/d criterion), and , .
scheduling for a tree is not always maximal. The proof for lemma 9 3) Q') <B-5xVIeCpnH, V' <t (boundary conditioh

maXjec o 0 )a

again relies on the fact that the iterative step of the Sequential TrERen P (A) < 5x¢/3(—5
Maximal Scheduling has three phases. The above lemma is similar to that for lemma 2 for the special
We next prove that a path is not constrained very often if tHease thatj is a path. The only difference is that this lemma applies
probability that the queue lengths in the links in its parent and old@ply for segments that do not contain the first link of the path. This
siblings is low (lemma 10, Section IV-E.1). lemma can be proved using lemma 5 just as lemma 2 has been proved
Our main result, that the queue length in a link becomes larg€ing lemma 1.
only with a small probability (Theorem 2), is now obtained using the The following lemmas, lemmas 7 and 8 do not have counterparts
above results and an induction argument. Note that the root pathifinthe special case that is a path.
G is never constrained. Thus, using lemmas 6, 8, 9, and arguments€mma 7:Consider an arbitrary path( € {H}. Consider two
similar to the proof for Theorem 1, the result follows for the roofdjacent linksly i, i1 in H, wherel < i < min(4,[H| — 1).
path. It therefore follows from lemma 10 that the eldest child of th€onsider a slot that satisfies: 1in (Q,, , (t), Qiy,,14 (t)) > 0,
root path is not constrained very often. Thus the result follows for thd 2) ifi +2 < [H[, Qu,, ., (t) > Qu,, .- (¢). Then eitherl,; or
as well, and hence follows for the children and the younger siblingg.i+1 is scheduled irt.
of this eldest path, and subsequently for all other pathg.in Proof: First, leti = 1. In a constrained slot, clearlyy > is
We state and prove the supporting lemmas, lemmas 5 to 10Sgheduled at the end of the first phase. In an un-constrained slot,
Section IV-E.1, and using these prove Theorem 2 in Section IV-E gonsider a pattP consisting of linksly 1, 1%.2. Clearly, P satisfies
1) Supporting lemmasWe present a series of lemmas, lemmas the conqlitions of lemma 5. The result follows from the case with
to 10, for an arbitrary path{ in {H;}, whereH = ly1, ..., lim, |1/ =2 inlemmas.
and Iy, is the first link in%. Lemmas 6, 8, 9, 10 are the main NOW, leti > 1. First, letQx(¢) = 0 for somek such thatl < k <
lemmas which will be used in proving Theorem 2. Lemmas 5 and?7 Let j = max{k : k <, Qx(t) = 0}. Consider pattP consisting

provide intermediate results that are only used in proving the mah!iNks ire.j+1, ..., lrei, b1 Now, P consists ofi — j +1 links
lemmas: lemma 5 is used in proving lemma 6, and lemma 7 is uséfere2 < i—j+1 < 4. Sincej+1 > 1,ls,1 ¢ P. Also, P satisfies
in proving lemmas 8 and 9. the conditions of lemma 5. Let— j + 1 = 2. Then, P consists

We first introduce some terminology required in the proofs. L& 7.i; l.i+1. The result follows from the case witft| = 2 in
O (t1,t2) be the number of un-constrained slotsffin, ;) for 7 €  |emma5. Let —j+1 = 3. Then,P consists Ofy,i—1, ln,is ri+1-
{H}. Then, M is said to satisfy theonstraint-lower-boundf there ~ The result follows from the case wit{#| = 3 in lemma 5. Let

exists a constanty, such thaty 0 < t¢ < tr, i—j+1=4.Then,P consists 0fl3;;—2,l+,i—1,1,i, l+,i+1. From
lemma 5 with|H| = 4, at least2 links in {ly,—2,...,ln,i+1} are
P {GH(tG,t7) < (Pryes +1/6)(t7 — ta)} < @777;)& scheduled at the end of the first two phases. Siace > andi ;—1

7 — le

can not be scheduled simultaneously, one of the scheduled links must
The constraint-lower-bound states that with a high probability tHee i+ ; or i,;+1. The result follows.

unconstrained slots in each path occur more frequently than theNow, let Qx(¢) > 0 for all k, 1 < k < 4. In a constrained slot,
arrivals in the first link of the path. In Theorem 2, using inductionconsider a pathi® consisting of linksls 2, ..., l+,, l7,i+1. Now,

we prove that every path( satisfies the constraint-lower-bound, and? consists ofi links where2 < i < 4. Also, ly1 & P. The



11

result follows using the same arguments as in the previous paragraptom the definition oft,, there also exists a slat € [t2, t4] such
Consider an un-constrained slot and a p@hconsisting of links that Q;(¢') > B — 43 for all I’ € {l3,i—1,ln,:} andt’ € [ts,t4]
I, Iy bgig . Leti < 4. Now, P consists ofi+1 links where  and min (Qu,, ,_, (t5), Q1,, , (t5)) = B — 40. Clearly, t4 — t5 >
3 < i+ 1 < 4. Again, P satisfies the conditions of lemma 5. The23/ max;c. 0;. Since4 < B, and1 < i — 1 < 4, in both cases
result follows using the same arguments as in the previous paragragl.and (b), from lemma 7, eithés, ;1 or Iy ; is served in each

Finally, let i = 4. Now, P consists of5 links: l3,1,...,lx,5. Let

slot in [t5,t4}. ThLJS,Z:le{ZH i Sl(t5,t4) = t4 — t5. NOow,

1,0}

neitheriy 4 nor i 5 be scheduled at the end of the second phase.

From lemma 5 fofH| = 5, at least links in P are scheduled at the
end of the second phase. Thitg,: andl+,3 must be scheduled at
the end of the second phase. Thiys, does not contend in the third
phase| s contends in the third phase, ahds (if |H| > 6) does
not contend in the third phase (sin@,, ,(t) > Qu,, 4(t)). Thus,
I+,5 is scheduled in the third phase. The result follows. [ ]

Lemma 7 does not hold if the iterative step of the Sequenti
Maximal Tree Scheduling has two or fewer phases. Consider a p
H in G with 6 links [1,...,ls. Let Qi, (¢£) > Qi (t) ... Qs (t) > 0.
Thus, l4,15 satisfy the conditions of the lemma. Lé{ not be
constrained in slot. Only I; and l; are scheduled at the end of
the first two phases of the iterative step. If the iterative step h
only two phases, thely andls subsequently contend using maximal
scheduling, and lefs lose this contention. Thus, neithirnor i; are
scheduled.

Lemma 8:Consider an arbitrary pati € {Hx}, whereH =
{1, ln,m.} Let H satisfy the constraint-lower-bound. Lé&
and 3 be positive integers such thgt< B/4. Consider a linkl3 ;
in H, 1 <14 <5, and an eventd that occurs if and only if there
exists a slott such that

1) Qi () > B -3,

2) maxien;,, ,nn Qi(t') < B — 1 for eacht’ € [0,¢] and

3) if i <m, Quipy () <B—48 Yt € (0,1
ThenP(.A) < (2X1/6 + ’YH)(maXleg O’l/ﬂ)a.

Lemma 8 does not hold when the iterative step has one or tg@nsisting of linksls ;, ..

Ai(ts, ta)
le{ly,i1lr,i}
= Qi(ts) — Qu(ts)
le{ly,im1lr,4} le{ly,i—1ln,i}
N + ) Silts,ta) (23)
le{lyi—1ln,i}
ath > (2B—48)— (B—48)— (B—1)+ts—ts  (24)
> ST (o +1/6)(ts —t5) (from (). (25)
le{ly,im1,lr,i}
as
fNote that (24) above follows from (22) and the fact

te{lnr,i—1:l0,:} Silts, ta) = ta — ts.

Thus, either Ay, (ts,ta) > (p1p_y + 1/6)(ta — t5), OF
Apy, (ts, ta) > (piy,; + 1/6)(ta — ts). From (2), the prob-
ability of each event is less thaw,,(ts — ta)”, which is
upper bounded by /¢(maxiec 01/28)%. Thus, P(A N B°) <
2X1/6(maxl€[; 0'1/26)&.

SinceP(A) = P(ANB) + P(AN B°), for i > 1, P(A) <
3x1/6(maxiec 01/B3). The result follows.

|

Lemma 9:Let H be a path in{H;} that satisfies the constraint-
lower-bound. Consider an integd8 > 6 and a pathP? C H
-, 1, j+m—1 such thatm = min(6, |H|).

phases, as its proof uses lemma 7 which does not hold in this caS@nsider an event! that occurs if and only if there exists a siot

Proof: Let.A4 occur. Then there exists a sigte (0, ¢) such that
Qi (t2) = B—4B andQu,, , (') > B—48 forall ¢’ € [t2,¢], and
eitherm = i (case (a)) orQl'WH(t’) < B—4pfor all t’ € [ta, 1]
(case (b)). Alsof — t2 > 33/ maxier 01.

First, let: = 1. In both cases (a) and (b)s,1 is scheduled in
each un-constrained slot iz, ). Thus, Sy, , (t2,t) = On(t2,1).
Now, an,1(t) = Ql?—t,l(t2) + AlH)l(tQ,t) — SlHyl(tQ,t). Thus,
Ao (t2, 1) > Sy (t2,t) = On(t2,t). This implies that either
Aty o (t2,1) 2 (i, + 1/6)(E — t2) OF Op(ta,t) < (pry, +
1/6)(t — t2). From (2), the probability of the first event is at mos

X1/6(t — t2)”“. From the constraint-lower-bound, the probability

of the second event is at mosty(t — t2)~*. Thus, P(A) <
(X176 + vr)(t — t2)~%. The lemma follows fori 1 since
t— 1o Z 3ﬁ/maX[e£ agj.

Now, let i > 1. Thus, there exists a slats € (t2,t) such
that Qu,, ,(t3) = B — 26 and Qu,,,(t') > B —2p3 for all ' ¢
[ts,t]. Clearly, t — t3 > 3/max;cc0;. Let B be the event that
Quy ., (t') < B =23 forall t' € [ts, 1].

Let A N B occur. In both cases (a) and (1#),; is scheduled in
each slot in[ts, t]. Thus, Si,, ,(t3,t) = t — ts. Now, Q1,, ,(t) =
an,i(t?’) + Alﬂvi(tg,t) — SlH,i(tg,t). Thus, Alﬂvi(tg,t) >
Siy, 4 (s, t) = t—ts. From (2) and )P { Ay, , (ts,t) > t —t3} <
X1/3(t — tg)_a. Thus, P(A n B) < X1/3(t — tg)_a <
X1/3(maxiec o1/0)".

Now, let A N B¢ occur. Thus,QlH’ifl(t’) > B — 23 for some
t' € [ts,t]; let t4 be one such’. Now, t4 € [t2,], Qi ,_, (ta) >
B — 24, Qlﬂgi(t4) > B — 20 (sincety € [t3,t]). Thus,

> Quta) =2B-48.

te{lpi—1:l2,i}

(22)

such that
Qi) < B—1Vie{j....j+m—1}andv ¢ <t,
Qi (t) > 5B/6Yie{j,....,j+m—1}

ThenP(A) < (6xXmin(e/2,1/6) + 7)) (6 maxie e 01/5B)“.
Lemma 9 is similar to lemma 3 for the special case tias a

path. The only difference is that this lemma holds under additional

conditions, that is, when the path satisfies the constraint-lower-
ound. The proofs differ whem < 6.

Proof: Whenm = 6, in every slot in which every link irP has
a packet to transmit, at lea8tlinks in 7 are scheduled for service.
This clearly holds when either the slot is un-constrainethor ¢ P.
If P consists ofl;,; and the slot is constrained, at le&slinks are
scheduled amongy > .. .lx 6. Using the above, the proof in this

case follows using the same arguments as in the proof for lemma 3

in the case thatn = 6.
Now, letm < 6. Thenm = |H|. Thus,P = H.
Let m > 1. Thus,Q;(t) > 5B/6 for all | € {3, m—1,l+,m}-

Thus,
> Qi(t) > 5B/3. (26)
ZG{ZH,m,flle‘m,}
Also, there exists a slotty < t such that Qi (') >
0 for all I € {lym-1,lnm} and t' € (t1,t], and
minlE{lH,nHlJH,m}an,i(tl) = 0. Clearly, t — t1 >

5B/6 max;cc o;. From lemma 7, eithely, ., —1 OF I3, is served in
each slot in(ty,¢]. Thus, 3>, 0y Sita,t) =t —ti— 1.
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Now, Then,

> Al(ta,t) > (Si(t1, t2) + Ur(t1, t2))

le{l’H,'mflal’H,'m} leuiE]’H(HiﬁNlﬁ’l)

= Z Qu(t) — Z Qi(t1) > (5/6 = piyg 1) (t2 — 1)
le{l’Hnnflal’H,nz} ZG{ZH,nzflle,nL} 2 (1/6 —‘,— Z Pl)(tQ — tl) (31)
+ Z Si(t1,t) 27) l€Uiery (HinNy,, )
el m—1.05,m} The last inequality follows from (3) since all links ;¢ 7, (H; N
> SB/3—(B-1+(t—-t)-1 (28) M, ,) intersect at the same node ¢h
> > (pr +1/6)(t — t1)(from (3)).  (29)  Now, Si(t1,t2) < Qi(t1) + Ai(t1,t2). Thus, from (31), and since
te{ly,m—1:br,m} | Uiery (HiN Ny, ) <A,
Note that (28) above follows from (26) and from the fact Z (Ai(t1,t2) + Qi(t1) + Ui(ts, t2))
it m 1ty St 1) 2T =11 — 1. leUiemy, (HinNiyg 1)

Thus, either Ay, ., (t1,t) > (piyy oy + 1/6)(t — t1),
or Ay, ,.(t1,t) > (py.,, + 1/6)(t — t1). From (2), the
probability of each event is less thag,,s(t — t1)~®, which
is upper bounded byx,/6(6 maxicc 01/5B)%. Thus, P(A) <  Thus, eitherA;(ti,t2) > (1/18A + p)(ta — t1) or Qi(t1) >
2x1/6(6 maxies 01/5B)". (ta — t1)/18A or Uj(ti,ta) > (t2 — t1)/18A for somel €

Let m = 1. Thus, P and H consist of only one linkls,;. Uierp (HiN Ny, , ). From assumption, the probability th@ (¢1) >
Thus, Qi,, , (t) > 5B/6. Thus, there exists a sloty < t such (4, —¢,)/18A is at mostyur, (25) = if | € H, andi € Fy. The
that Qu,, , (') > 0 for all ¢’ € (t1,t], and Qu,, , (t1) = 0. Again, result follows from (2) and (30). n
t —t1 > 5B/6maxiec 0. Clearly, Iy is scheduled in each un-  2) Main Result: Theorem 2 is proved using an induction argument,
constrained slot in(t1,t]. Thus, Si,, (t1,t) > ©n(t1,t) — 1. and the proof for the base case is similar to the proof for Theorem 1.
Now, Ay, (t1,t) = Quppy (1) — Quapy (t1) + Sty (t1,1). Thus, Proof: We first prove the first part of the theorem. We will
Ay 1 (t1,1) 2 5B/6 + O (t1,1) — 1 = O(t1,1) (since B > 2)).  prove that for anyt > 0, for all [ € H,;,

This implies that either4;,, , (t1,t) > (le’l + 1/6)(t — t1) or L
O3 (t1,t) < (piy, + 1/6)(t — t1). From (2), the probability of P{Qi(t) =2 B} < mp;.r; B, (32)
the first event is at most, /(¢ —1)~". From the constraint-lower- \yherer, . is defined through the recursions in the statement of the

bound, the probability of the second event is at mpstt —11)".  theorem. The result follows sinee , increases with increase in y
Thus,P(A) < (x1/6+7#)(t—t1)~*. The lemma follows fom = 1 andp; < p andr; < A — 1 for all i.

Y

> (1/(6A) + pi)(t2 — ta).

l€Usery (HinN,, )

sincet — t1 > 5B/6 maxicz 01 u We prove using induction on the level ¢f p; and the number of
Consider an arbitrary pattt{ € {H;} and the correspond- giger siblings ofj, ;

ing node u in Q.P.. Let Fy L= {v : wiseitherthe  Fist consider p, = 0. Since for all z, 7. >
parent or an older sibling of in G* }. (12 x 4° x 5° max;e. 01)”, (32) trivially holds for B < 12 x 4° x

Lemma 10:Consider an arbitrary path{ € {7;}. Let for each g5 maxez o7. Let B > 12 x4° x 5% maxje £ o7. Now, j is the root of
t>0,1 € Uier, Hi, P{Qi(t) > B} < pw, B~ ThenH satisfies  G” and hence does not have any sibling. Thys= 0. Thus, every
the constraint-lower-bound with» = Ax(1/1sa) + Av(A, @) +  glot is an un-constrained slot f6¢;. Hence, from (3);H; satisfies
18 A% max;er,, pr,;, wherev(A, a) is a constant whose value the constraint-lower-bound Withh, = 70,0 = 0. Consider the event

depends om\, cv. _ A(B,t) that occurs if and only ifnax;cy, Qi(t) > B. Let A(B,t)
Lemma 10 does not have a counterpart for the special cas€ thagccur. Then there exists a skt < ¢ such thatQ, (') < B—1 for all
is a path. l € H; andt’ < to andQ;(to+1) > B for somel € H;; letiy, . be

Proof: Consideri € F». For each0 < t1 < t2, let one such. Then,Qi,, . (to) > B—maxjer 01. For0 < ¢ <5—k,
Ui(t,t2) be the number of slots irity, o) in which link Iin if |27, > k + ¢, events, is said to occur if the eventl described
HiNNy,, , is undecided just before the start of the scheduling phaggjemma 8 occurs with = k + gandg = 49| B/(6 x 4° x 5°)].
of H. Let W = [In(36A) / (~In())]. Each link inH; N Ni,,, f [H,] > 6,for 1 < ¢ <6,1<d < c, consider path®, , C H,
executes maximal scheduling for at le&gt rounds beforet starts  consisting ofc links with the dth link being 1, max(k,6)- If ¢ <5
its scheduling phase, and it is undecided at the endofounds lrya & Pea. Forl < ¢ <51<d< e, e(/enth’d is said to
with a probability of at most™, which is less thar /(36A). Thus, occur if the eventd described in lemma 6 occurs with = P. 4,
Ui(t1,t2) is stochastically lesser than the sumtof-¢, independent . — 4550_1[ﬁ} EventCs.q is said to occur if the eventl
Bernoulli random variables each of whichisw.p. 1/(36A) and0  described in lemma 9 occurs wif = Py .

otherwise. Thus, from Bernstein’s inequality (2, [8]), Clearly, whenA(B, t) occurs,B, or C.4 occurs for some, d, q,
0<qg<5-4j1<¢c¢<6,1<d<ec Thus,P(A(B,1)) is
to —t1 upper bounded by the sum of the probabilities of the evBgt<L. 4
P{Ul(tl’@) BTN } for 0 < ¢ <5-j1<e¢<61<d< c Thus (32) follows
ity from the upper bounds of the probabilities of these events provided
< e xaetxal in lemmas 6, 8, 9.
< v(Aa)(ta —t1) *VIeHiNNy, ,, (30) We now consider the induction case. Now, let (32) hold for all
1 such thatp; < h. We will prove the hypothesis foi such that
where, (A, ) is a constant whose value depends&n. pi = h+ 1. The proof is the same as that for the base case once we

Clearly, ©x(t1,t2) > (t2 — t1) — Zzeuief?{(HleH‘l) can show thatH; satisfies the constraint-lower-bound with;, =
(Sl(th tz) + Ul(tl,tg)) . Let @H(thtz) < (le’l + 1/6)(t2 — tl) Yh+1,r; - First considerH; such thatpi =h+1andr; = 0. Thus,



i does not have an older sibling . Sincei’s parent’s level ish,
i's parent satisfies (32). Now, lemma 10 shows thatsatisfies the
constraint-lower-bound withys, = ~vn+1,~,. Now, using the same
proof as that for the base case, we can show that (32) holds fo
Now, let (32) hold for alli such thatp; = h+ 1 andr; < a. Let
p; = h+1andr; = a + 1. Now, i’s parent and older siblings [12]
satisfy (32). Again, lemma 10 shows th4t satisfies the constraint- [13]
lower-bound withys, = yn+1,a+1. Thus, as before, (32) holds for
1.

(10]

[11]

Thus, the first part of the theorem holds. The second part is

immediate from the first. m [14]
[15]
V. CONCLUSION

In this paper, we provide a policy that attains queue-length
stability under mild assumptions on the arrival process. This p k6]
icy approximates the maximum throughput region within a factor
of 2/3 in tree topologies under primary interference constraints,
can be implemented in a fully distributed manner, and requirés/]
O(Alog Alogn) computation time. The computation time of our
policy is comparable (within dog A factor) to that of existing 18]
maximal scheduling based policies that can only attain up/@of
the maximum throughput region. It would be interesting to investigate
whether, without significantly increasing the computation time, tH&®l
approximation ratio can be improved and the results can be extended
for cyclic graphs and other interference models for the same class
of polynomially convergent arrival processes. In a companion papgo]
we show that when the arrival process is i.i.d., the stability region
can be approximated arbitrary closely for a large class of networks
and interference models with a computation time that depends only
on the approximation factor and the maximum node degree in the
network [15]. The results in the two papers complement each other.
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