
1

Queue Length Stability in Trees under Slowly Convergent
Traffic using Sequential Maximal Scheduling

Saswati Sarkar and Koushik Kar

Abstract— In this paper, we consider queue-length stability in wireless
networks under a general class of arrival processes that only requires
that the empirical average converges to the actual average polynomially
fast. We present a scheduling policy,sequential maximal scheduling, and
use novel proof techniques to show that it attains2

3
of the maximum

stability region in tree-graphs under primary interference constraints, for
all such arrival processes. For degree bounded networks, the computation
time of the policy varies as the the logarithm of the network size. Our
results are a significant improvement over previous results that attain
only 1

2
of the maximum throughput region even for graphs that have a

simple path topology, in similar computation time under stronger (i.e.,
Markovian) assumptions on the arrival process.

I. I NTRODUCTION

Scheduling for maximum throughput is a key operational goal in
any wireless network. Scheduling of links must be done such that
no two “interfering” links are scheduled at the same time. Under
random packet arrivals, the scheduling problem can be posed in a
stochastic decision framework where the goal is to attain stability
of queues over the largest possible set of arrival vectors. Queues
are said to be stable, or rather queue-length-stable, if their expected
lengths are finite in each slot. The set of arrival rate vectors for which
the network is stabilized under some scheduling policy is referred to
as the maximum throughput region. In a seminal work, Tassiulas
et al. have characterized the maximum throughput region and also
provided a scheduling strategy that attains this throughput region in
any given wireless network [19]. Subsequently, several policies have
been shown to attain (for the general and certain important special
cases of the problem) either the maximum throughput region [1], [5],
[6], [16], [17], [18] or a guaranteed fraction of it [2], [3], [10], [11],
[20], while requiring lower computation time.

In this paper, we consider primary interference constraints which
requires that a set of links can be simultaneously scheduled if and
only if they constitute a matching. This interference model is also
referred to as the node exclusive spectrum sharing model and arises
when every node has a single transceiver and a unique frequency in its
two-hop neighborhood. We focus on the special class of tree graph
topologies which are very important from a practical perspective.
For instance, in many applications, nodes organize themselves into a
spanning tree and communication is confined to the tree edges only.
These include various data gathering or data distribution applications
where nodes either send data to, or collect data from, a single
source node. We consider an arrival process which only requires that
the empirical average converges to the actual average polynomially
fast. This assumption is satisfied by a large number of arrival
processes including Markovian, periodic, bounded-burstiness∗ arrival

S. Sarkar is with the Department of Electrical Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA. Email:
swati@seas.upenn.edu . K. Kar is with the Department of Electrical,
Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy,
NY, 12180, USA. Email:kark@rpi.edu . This is an extended version of a
paper that appeared in the Annual Allerton Conference, Urbana-Champaign,
2006.
∗An arrival process is said to have bounded-burstiness if the number of

arrivals in any time interval of lengtht differs from ρt by at most a constant
σ that does not depend ont; hereρ is the long-term arrival rate.

processes†. We consider a class of simple scheduling policies, which
allows a link to contend if its neighboring links have equal or lower
queue lengths, and links are scheduled among the contending links
using “maximal scheduling”. Maximal scheduling only ensures that
if a link contends then either the link or one of its adjacent links is
scheduled. We prove that this queue length based maximal scheduling
policy attains2/3 of the maximum throughput region for tree graphs
and primary interference model. Furthermore, the policy does not
use any knowledge of the arrival rates, and requires each link to
learn only the queue lengths and the scheduling decisions of its
adjacent links. Under the reasonable assumption that control message
exchanges have to satisfy primary interference constraints as well,
the algorithm can be implemented in a fully distributed manner in
O(∆ log ∆ log n) time, wheren is the number of links and∆ is the
maximum node degree in the network.

The main contributions of this paper with respect to existing
research in this area are as follows. Firstly, we obtain throughput
guarantees under the notion of queue length stability for a large class
of “polynomially convergent” arrival processes which includes, but is
not limited to, Markov processes. In most of the existing literature,
the proofs, and hence the throughput guarantees, (a) rely on Lyapunov
arguments and Foster’s theorem [7] and (b) equivalence between the
positive Harris recurrence and fluid stability of a queueing system
[4], both of which apply only when the queue length process is
Markovian, which in turn holds only when the arrival process is
Markovian. Such assumptions on the arrival process do not often
hold in reality, as recent Internet traffic analysis has shown. For
non-Markovian arrival processes, throughput guarantees are known
only under the notions of (a) rate stability which only requires that
the input rates equal the output rates [2], [3], or (b) vanishing tail
probability which requires that tail probabilities of queue lengths
approach zero [13]‡. Note that several applications require finite
expected delay, and therefore finite expected queue lengths, which
rate stability does not guarantee. Thus, unlike existing results, our
policy is able to guarantee queue length stability (and therefore finite
expected delay) to a large class of realistic traffic models. In our
work, throughput guarantees are obtained using non-standard proof
techniques since the arrival process and therefore the queue length
process is not Markovian in this system. Thus, both the policy and
the proofs for the throughput guarantees are important contributions
of this paper.

Secondly, for tree networks, our policy provides an excellent
tradeoff between performance and complexity, which is better than
those in the existing literature in different ways. While existing
policies that attain maximum throughput in a similar setting require

†Note that for Markov, periodic and bounded-burstiness arrival processes
the empirical mean converges to the actual mean exponentially fast. The
processes we consider may therefore have slower convergence.
‡The notion of stability Neely et. al. [13] consider

requires that limV→∞ g(V) = 0 where g(V) =
lim supt→∞(1/t)

Pt−1
τ=0 P (Qi(τ) > V) whereQi(τ) is the queue length

at timeτ for link i. But, this does not guarantee that
P∞

V =1 P (Qi(τ) > V)
can be upper bounded by a quantity that does not depend onτ and thus
it does not follow that the expected queue length in a linki can be upper
bounded by a quantity that is independent ofτ in any slotτ.

2

O(n∆) time [1], [5], [6], [17], [18], our scheduling algorithm can
be implementedO(∆ log ∆ log n) time. Therefore, our approach
reduces the scheduling complexity significantly, at the cost of1/3 of
the throughput region in the worst case. On the other hand, existing
maximal scheduling based scheduling policies that requireO(∆)
or O(∆ log n) time [2], [3], [11], [20], [10], have been shown to
attain at most 1/2 of the maximum throughput region. With respect
to this class of work, therefore, we are able to improve the throughput
guarantee significantly (from1/2 to 1/3), with a modest increase in
the computational complexity.

We now briefly review existing policies with provable throughput
guarantees under the primary interference model. Tassiulaset al.
[19], [18] have obtained policies that attain the maximum throughput
region, which can be implemented in fully distributed manner using
gossip based algorithms [6]. Distributed implementation of these
policies however requireO(n) communication rounds, where each
communication round involve message exchanges by nodes with
their neighbors; the time complexity of these policies is therefore
O(n∆). Lin et al. [11] and Wuet al. [20] have shown that maximal
scheduling is guaranteed to attain at least half of the maximum
throughput region under the primary interference model. It has also
been shown that the above performance guarantee is tight, i.e., in
the worst case some maximal scheduling policies attain at most half
the maximum throughput region even in simple networks like paths
with only three links [2]. An arbitrary maximal scheduling policy
cannot therefore attain a worst-case performance ratio better than
1/2 even in the special case of trees. Maximal scheduling can be
implemented in a distributed manner inO(log n) communication
rounds, which translates to a time complexity ofO(∆ log n) in
trees under primary interference constraints§. Lin et al. [10] proved
that a random access scheme, where links access the medium with
a probability that depends on their and their interferers’ queue
lengths, attains1/3 of the throughput region while requiringO(1)
communication rounds, orO(∆) computation time in trees under
primary interference constraints. Dimakiset al. [5] have shown that
a greedy maximal weight scheduling attains the maximum throughput
region in certain classes of networks; Brzezinskiet. al.[1] have shown
the above result for trees. The number of the communication rounds
required by the above algorithm however depends on the diameter
of the network, and the computation time is thereforeO(n∆) in the
worst case. Therefore, our algorithm has a lower computation time
than that in [1], [5], unless the diameter of the network is sufficiently
small. Salonidiset al. [16] designed another policy that attains the
maximum throughput region in trees; the policy however requires
knowledge of the arrival rates in all links and therefore must be
recomputed every time these rates change. The throughput guarantees
obtained in all the above papers, except those in [2], [3], critically
depend on the assumption that arrival processes are Markovian which
we do not assume. As mentioned before, the throughput guarantees
obtained in [2], [3] do not guarantee that expected queue lengths are
finite which we ensure. Also, our policy attains a better throughput
guarantee as compared to those in [2], [3], [11], [20], [10] and lower
computation time as compared to those in [5], [19], [18], [6].

The paper is organized as follows. We describe the system model

§Several well-known distributed randomized algorithms for computing
maximal schedules (e.g., [12]) need to exchange in each round at most one
control message in each link. For attaining the above in trees under primary
interference constraints, the nodes need to know their distances from the root
which can be accomplished in a pre-processing step. The nodes with even-
valued (odd-valued) distances are referred to as even (odd) nodes. Next, each
round is divided in2∆ sub-rounds, and the even (odd) nodes communicate
the control messages to their children in the first (last)∆ sub-rounds. Clearly,
the communications in the same sub-round do not interfere and can therefore
be executed simultaneously; thus, each sub-round consumes constant time.

and the terminology in Section II. We present our policy and
performance guarantee for (a) the special case that the network
topology is a path in Section III, and (b) the case that the network
topology is a tree in Section IV. We conclude in Section V.

II. SYSTEM MODEL

We consider the scheduling problem at the medium access control
(MAC) layer of the network. We assume that time is slotted, and
each packet takes exactly one slot for transmission. Therefore, a link
transmission schedule must be computed at the beginning of every
slot, and is used to transmit packets in that slot.

A wireless network topology can be modeled as a graphG =
(N ,L), where N and L respectively denote the sets of nodes
and links. Each (undirected) link(u, v) ∈ L therefore denotes
whether nodesu and v can hear each other’s signals. The link set
L depends on the transmission power levels of nodes and the local
propagation conditions of the wireless channel. We assume thatG
is a degree-bounded treewith maximum degree-bound∆. Without
loss of generality, we will assume thatG is connected; otherwise, our
algorithm can be executed independently in each of the maximally
connected subgraphs ofG. Let n = |N | = |L|+ 1.

Each link is associated with a unique identifier (id). LetLu be the
set of links incident on nodeu. Two links areadjacentif and only
if they have a node in common. By this definition, a link is always
adjacent to itself. LetNl be the set of links adjacent tol. For any
pathP , let CP denote the set of links that are adjacent to the first
and last link ofP and are not part ofP.

Since we consider the primary interference model, two adjacent
links “interfere” with each other and cannot be scheduled simulta-
neously, i.e., any two links(u, v) and (u′, v′) cannot be scheduled
together ifu ∈ {u′, v′} or v ∈ {u′, v′}. Thus a valid schedule in any
slot must correspond to a matching or a set of links none of which are
adjacent to each other. Note that the primary interference model arises
when the only transmission constraint is due to the single transceiver
constraint at every node.

Each session represents a triplet(i, u, v) wherei is the identifier
associated with the session andu andv are source and destinations
of the session. At the MAC layer, each session traverses only one
link, but multiple sessions may traverse a link. LetŜ denote the set
of sessions in the network.

Next we state our assumptions on the packet arrival process. Let
Âi(t1, t2) denote the number of packets arriving at sessioni in
interval (t1, t2]. We assume that̂Ai(t, t + 1) ≤ σ̂i ∀ t, sessioni,
where σ̂i is an integer for eachi, andmaxi σ̂i ≥ 1. Further, there
exists a constantα > 1 and a vector~̂ρ = (ρ̂1, . . . , ρ̂|Ŝ|) such that the
empirical average of the arrivals in the system inT slots converges
to ~̂ρ at a rate faster than1

T α . Mathematically, there existŝχδ > 0
such that for everyi, 0 ≤ t3 < t4 andδ > 0,

P

(����� Âi(t3, t4)

t4 − t3
− ρ̂i

����� ≥ δ

)
<

χ̂δ

(t4 − t3)α
. (1)

Clearly, χ̂δ is a non-increasing function ofδ. Note that (1) implies
that the empirical average of the packet arrivals converges in prob-
ability to ~̂ρ polynomially fast. Also, most commonly used arrival
processes, e.g., bounded-burstiness, periodic, i.i.d., and Markovian
arrival processes with finite state space, satisfy the above assumption.

Next we introduce a few definitions.
Definition 1: The network is said to bestableif there exists a finite

real numberB0 such that for anyt > 0, EQl(t) ≤ B0, ∀ l ∈ L.
We consider a virtual-queueQl associated with linkl that contains

all packets waiting for transmission for all sessions that traversel.
All packets arriving in a session traversingl are routed toQl and

3

wheneverl is scheduled the head of line packet inQl is transmitted.
Note that the virtual queue in a linkl = (u, v) may contain packets
of sessions traversingl in both directionsu → v and v → u. Let
Ql(t) be the queue length at linkl at the beginning of slott (after the
arrivals but before the transmissions int). For simplicity, we assume
that Ql(0) = 0 for all l ∈ L; our results can be generalized for any
positive, but finite values of~Q(0).

Let Al(t1, t2) denote the number of packets arriving in virtual
queueQl, or more simply at linkl, in interval (t1, t2]. Clearly,
there exists integersσl such thatAl(t, t + 1) ≤ σl ∀ t, l ∈ L,
and maxl∈L σl ≥ 1. Also, there exists an arrival rate vector~ρ =
(ρ1, . . . , ρ|L|) such that the empirical average of the arrivals in each
link in T slots converges to~ρ at a rate faster than1

T α . Mathematically,
there existsχδ > 0 such that for everyl ∈ L, 0 ≤ t3 < t4 andδ > 0,

P

�����Al(t3, t4)

t4 − t3
− ρl

���� ≥ δ

�
<

χδ

(t4 − t3)α
. (2)

Again, χδ is a non-increasing function ofδ. We refer toρi as the
arrival rate for linki.

Clearly, the network is stable if and only if the expected queue
length at each link remains finite at all time.

Definition 2: The throughput regionof a scheduling policy is the
set of arrival rate vectors~ρ satisfying (2) for which the network is
stable under the policy.

Definition 3: An arrival rate vector~ρ is said to befeasibleif it is
in the throughput region of some scheduling policy.

Definition 4: Themaximum throughput regionΛ∗ is the set of all
feasible arrival rate vectors.

If an arrival rate vector~ρ ∈ Λ∗, then (a)ρl ≥ 0 ∀ l ∈ L and (b)
∀ u ∈ N ,

P
l∈Lu

ρl < 1 [9].
Definition 5: A scheduling policyπ is said toguarantee a fraction

ν of the maximum throughput regionif its throughput region,Λπ,
satisfies the following condition: for any~ρ ∈ Λ∗, ν~ρ ∈ Λπ.
Loosely speaking, if scheduling policyS guarantees a fractionν of
the maximum throughput region, then its throughput region is at least
ν fraction of the maximum throughput region.

We seek to prove that the scheduling policies we propose guarantee
2/3 of the maximum throughput region. We therefore need to show
that for any arrival rate vector~ρ such that

∀ u ∈ N ,
X
l∈Lu

ρl < 2/3, (3)

~ρ is in the throughput region of our policies. We assume (3)
henceforth.

Let ξ = 2/3−max
u∈N

X
l∈Lu

ρl.

Finally, we describe the maximal scheduling policy, which will
be a key constituent in our scheduling policy presented later in the
paper. A maximal scheduling policy schedules a subsetS of links
such that (i) every link inS has a packet to transmit, (ii) no link in
S interferes with any other link inS, (iii) if a link l has a packet to
transmit, then eitherl or a link adjacent tol, is included inS.

III. SCHEDULING POLICY FOR A PATH

In this section, we consider a graphG that is a simple path,
i.e., L corresponds to a sequence of links such that the consecutive
links in the sequence are adjacent. In Section III-A, we describe
our scheduling policy, which we callSequential Maximal Path
Scheduling, and in Section III-B we prove that this policy attains
2/3 of the maximum throughput region.

SEQUENTIAL M AXIMAL PATH SCHEDULING

INITIAL STEP: Each link sets its status to to “un-decided” if
it has a packet to transmit, and to “un-scheduled” otherwise.

ITERATIVE STEP:: For k = 1 to k = 2, execute Phasek,
as given below:
Phase k : A link in the path contends if and only if
(a) it is un-decided, (b) its adjacent links are un-scheduled
or un-decided, (c) its queue length is not less than that
of its adjacent links that satisfy conditions (a) and (b). A
contending link sets its status to “scheduled” if its adjacent
links do not contend or have higher id than it; links that
are adjacent to scheduled links set their status to “un-
scheduled”.

TERMINAL STEP: Compute a maximal schedule among the
links that are un-decided and whose adjacent links are un-
scheduled or un-decided. Set the status of the links selected
in the maximal schedule to “scheduled”, and the status
of the links that are adjacent to scheduled links as “un-
scheduled”.

Fig. 1. Sequential Maximal Path Scheduling Algorithm

A. Sequential Maximal Scheduling in Paths

We describe the Sequential Maximal Path Scheduling policy in
Figure 1.

Next we illustrate the Sequential Maximal Path Scheduling algo-
rithm using the example shown in Figure 2. The path graph shown in
the figure consists of 10 links whose queue-lengths are shown. Using
our scheduling algorithm, only link 9 will be scheduled in Phase 1,
link 7 will be scheduled in phase 2 and link 5 will be scheduled in
phase 3. The terminal step will compute a maximal schedule amongst
the links 1, 2, 3, which can be either links{1, 3} or only link 2.

We now provide the intuition behind the design.

1) The iterative step of Sequential Maximal Path Scheduling
policy provides higher priority to links whose queue lengths
are higher than that of their adjacent links. This ensures that
that a link can not be congested in isolation. Specifically, if
links in a segment ofG of length 5 or less have high queue
lengths, then with a high probability, at least one link that is
not in the segment but is adjacent to a link in the segment has
high queue length as well (lemma 2, Section III-B.1).Thus, if
a link is congested, then with a high probability all links in a
segment of length at least6 are congested (Property 1).The
number6, which is crucial in the rest of the proof, is attained
because of multiple phases in the iterative step.

2) The terminal step of the policy ensures that the scheduling is
maximal, which in turn guarantees thatthe probability that in
any slot t all links in any segment ofG consisting of6 links
has high queue lengths is small(lemma 3, Section III-B.1). If
the above happens, then all these links must have packets to
transmit for several slots untilt. But, then, since the scheduling
is maximal, at least2 links are scheduled in the segment in
each of the above slots. Now, the sum of the arrival rates in
the links in any segment consisting of6 links is less than2
due to (3). Thus, the sum of the queue lengths of the links in
such a segment must have been decreasing over all these slots,
which implies that all links in the segment can not have large
queue lengths int.

4

� � � � � � � � � � 	

� � � � � � � � � �
 � � � � � � � � �

 � � � �

Fig. 2. Path Scheduling Example.

The above (italicized) assertions together imply our main result in
this section, Theorem 1, that the queue length in any link becomes
large only with a small probability.

Theorem 1:Let G be a simple path and (3) hold.
1) For eacht > 0, l ∈ L, P {Ql(t) ≥ B} ≤ τB−α, where

τ = max(1, 151χξ/3)× (72× 45 × 55 maxl∈L σl)
α.

2) For eacht ≥ 0, E (Ql(t)) ≤ τ
P∞

i=1 i−α.
Thus, for any~ρ′ ∈ Λ∗, (2/3)~ρ′ is in the throughput region of

our scheduling policy. In other words, our policy guarantees a2
3

fraction of the maximum throughput region. We prove Theorem 1 in
Section III-B− the proof proceeds as per steps 1 and 2 above.

We now analyze the time complexity of the policy. The iterative
step in Sequential Maximal Path Scheduling can be computed in
constant number of communication rounds. The expected number of
communication rounds for the terminal step isO(log n) if maximal
scheduling is computed using a distributed randomized algorithm
like the one proposed in [12]. Since the graph topology is a path,
each communication round takes constant time. This is because the
iterative step, and the algorithm proposed in [12], can be executed
by exchanging in each round at most one control message through
each link in the path. For this purpose, each round can be divided
in two sub-rounds, and the even (odd) numbered nodes in the path
can transmit control messages to the odd (even) numbered nodes
in the first (second) sub-round. Note that the nodes in the path can
be numbered once att = 0, i.e., during a pre-processing phase.
Clearly, the communications in the same sub-round do not interfere
and can therefore be executed simultaneously. Thus, each sub-round
consumes constant time. Thus, the expected computation time for
Sequential Maximal Path Scheduling isO(log n).

We now examine in more detail why the iterative step uses
multiple phases. First, note that if this step did not have any phase
(that is if this step were absent), the policy would be an ordinary
maximal scheduling policy, which attains at most1/2 the throughput
region even for paths of size3 [2]. Thus, at least one phase is
necessary for improving the throughput guarantee to2/3. However,
our proofs indicate that only one phase does not guarantee Property1
above which is key towards attaining the2/3 throughput guarantee.
Nevertheless, we do not have a counterexample to establish that the
policy does not attain the2/3 throughput guarantee in presence of
only one phase. Also, it would be interesting to examine whether the
throughput guarantee can be improved beyond2/3 by using a larger
number of phases, especially since the policy can useO(log n) phases
while still requiring O(log n) computation time. These intriguing
questions constitute interesting topics for future research.

B. Proof of the2/3 throughput guarantee

We state and prove the supporting lemmas 2 and 3 in Section III-
B.1 and prove Theorem 1 in Section III-B.2.

1) Supporting lemmas:We first state and prove lemma 1 which is
used for proving lemma 2, and subsequently state and prove lemmas 2
and 3.

Lemma 1:Consider a pathP ⊆ G and an arbitrary slott. Let P
consist of linksl1, . . . , lm, and satisfy the following properties att.

1) Qli(t) > 0 ∀ i ∈ {1, . . . , m} (non-emptyness criterion).

2) If l ∈ CP thenQl(t) < Qlj (t) ∀ lj ∈ Nl∩{l1, lm} (isolation
criterion).

Consider the iterative step of the Sequential Maximal Tree Schedul-
ing. If m ∈ {1, 2}, at least1 link in P is scheduled during the first
phase att. If m = 3, eitherl2 is scheduled during the first phase or
two links in P are scheduled in the first two phases att. If m > 3,
at least2 links in P are scheduled during the first two phases att.

Proof: We first show that for anym ≥ 1 at least1 link in
P is scheduled during the first phase att. From the isolation and
non-emptyness criteria, at least one link inP contends in the first
phase att, and the link with the greatest id among the contending
links in P is scheduled. Thus, the first part of the lemma follows.

Now, let m > 2. The second and third parts of the lemma follows
if at least2 links in P are scheduled in the first phase. So, let exactly
1 link in P be scheduled in the first phase.

Let l1 be scheduled in the first phase. Thus,{l2, . . . , lm} are not
scheduled in the first phase and,l2 does not prevent the contention
of any link in the second phase. Consider a pathP ′ consisting of
links l3, . . . , lm. Now, sincelm−1 have not been scheduled in the
first phase (sincem > 2, lm−1 6= l1), from the isolation and non-
emptyness criteria, at least one link inP ′ contends in the second
phase. Using arguments similar to those in the first paragraph, we
can show that at least one link inP ′ is scheduled in the second
phase. Thus, the second and third part of the lemma follow.

The proof is similar if instead ofl1, lm is scheduled in the first
phase. Now, letli be scheduled in the first phase where1 < i < m.
Let m = 3. Theni = 2. Thus, the second part of the lemma follows.
Let m > 3. Now, eitheri > 2 or i < m− 1. Wlog, let i > 2. Thus,
{l1, . . . , li−2} are not scheduled in the first phase, andli−1 does not
prevent the contention of any link in the second phase. Consider a
pathP ′ that consists of links{l1, . . . , li−2}. Again, sincel2 have not
been scheduled in the first phase (sincei > 2), from the isolation
and non-emptyness criteria, at least one link inP ′ contends in the
second phase. Using arguments similar to those in the first paragraph,
we can show that at least one link inP ′ is scheduled in the second
phase. Thus, the third part of the lemma follows.

Note that the last two parts of lemma 1 do not hold if the iterative
step of the Sequential Maximal Path Scheduling has only one phase.
For example consider a slott such thatQl1(t) > Ql2(t) > . . . >
Qlm(t). Clearly, at most one link inP , l1 is scheduled at the end of
the first phase int, irrespective of whether the non-emptyness and
the isolation criteria hold. Ifm ≥ 6 and the non-emptyness criterion
holds, then at least2 links will be scheduled by Sequential Path
Maximal Scheduling (since the scheduling is maximal), but these
links need not be selected during the iterative step if the iterative
step has one phase, and hence these links may be those with the
minimum queue lengths inP.

Lemma 2:Let κ andB be positive integers such thatB ≥ 5κ+1.
Consider a pathP ⊆ G. Let P consist of linksl1, . . . , lm, where
1 ≤ m ≤ 5. Consider an eventA that occurs if and only if there
exists a timet such that

1) Qli(t) ≥ B − κ ∀ i ∈ {1, . . . , m} (lower bound criterion)
2) Qli(t

′) ≤ B − 1 ∀ i ∈ {1, . . . , m} and ∀ t′ ≤ t (upper
bound criterion), and

5

3) Ql(t
′) < B − 5κ ∀ l ∈ CP , ∀ t′ < t (boundary condition).

ThenP(A) ≤ 5χξ/3(
maxl∈L σl

4κ
)α.

Proof: Let A occur. SinceQl(0) = 0 for all l ∈ L, there exists
a slot t2 < t such that

Qli(t
′) ≥ B − 5κ ∀ i ∈ {1, . . . , m} and t′ ∈ [t2, t], (4)

andQli(t2) = B − 5κ for somei ∈ {1, . . . , m}. (5)

From the lower bound criteria and (5),t− t2 ≥ 4κ
maxl∈L σl

.

LetBi be the event thatAli(t2, t)−ρli(t−t2) ≥ ξ/3(t−t2). From
(2),P(Bi) < χξ/3(

maxl∈L σl

4κ
)α. We will prove that ifA occurs, then

∪m
i=1Bi occurs. Thus,P(A) ≤Pm

i=1 P(Bi). The result follows.
From (5) and the lower and upper bound criteria,

mX
i=1

(Qli(t)−Qli(t2))

≥ m(B − κ)− (m− 1)(B − 1)− (B − 5κ),

= 5κ−mκ + m− 1 ≥ 0 (since1 ≤ m ≤ 5). (6)

mX
i=1

(Qli(t)−Qli(t2)) =

mX
i=1

(Ali(t2, t)− Sli(t2, t)) , (7)

where Sli(t2, t) is the number of packets of linki scheduled in
interval [t2, t). Thus, from (6) and (7),

mX
i=1

(Ali(t2, t)− ρli(t− t2)) ≥
mX

i=1

(Sli(t2, t)− ρli(t− t2)) .

(8)
First, let m ∈ {1, 2}. Now, from the boundary condition, (4) and

lemma 1, at least1 link in P is scheduled in each slot in[t2, t).
Thus, from (8),

mX
i=1

(Ali(t2, t)− ρli(t− t2)) ≥ (1−
mX

i=1

ρli)(t− t2)

≥ ξ(t− t2)(from (3)). (9)

Thus, clearlyBi occurs for somei such that1 ≤ i ≤ m. The result
follows.

Now, let m ∈ {4, 5}. Then, from the boundary condition, (4)
and lemma 1, at least2 links in P are scheduled in each slot
in [t2, t). Thus, from (8),

Pm
i=1 (Ali(t2, t)− ρli(t− t2)) ≥ (2 −Pm

i=1 ρli)(t− t2). From (3),
Pm

i=1 ρli ≤ 3× (2/3− ξ) = 2− 3ξ.
Thus,

Pm
i=1 (Ali(t2, t)− ρli(t− t2)) ≥ 3ξ(t−t2). Thus,Bi occurs

for some i such that1 ≤ i ≤ m. Thus, the lemma holds for
m ∈ {1, 2, 4, 5}.

Now, let m = 3. Thus,P consists ofl1, l2, l3.

2X
i=1

(Qli(t)−Qli(t2)) +

3X
i=2

(Qli(t)−Qli(t2))

=
X

i∈{1,3}
(Qli(t)−Qli(t2)) + 2 (Ql2(t)−Ql2(t2)) . (10)

Now, from (5) and lower and upper bound criteria,∀ i ∈ {1, 2, 3},
Qli(t) − Qli(t2) ≥ B − κ − (B − 1) = 1 − κ, and for some
i ∈ {1, 2, 3}, Qli(t)−Qli(t2) ≥ B − κ− (B − 5κ) = 4κ. Thus,X

i∈{1,3}
(Qli(t)−Qli(t2)) + 2 (Ql2(t)−Ql2(t2))

≥ 3(1− κ) + 4κ > 0 (sinceκ ≥ 0). (11)

Now, from (10) and (11),

2X
i=1

(Qli(t)−Qli(t2)) +

3X
i=2

(Qli(t)−Qli(t2)) ≥ 0. (12)

From the boundary condition, (4) and lemma 1, eitherl2 or both
l1 and l3 are scheduled in each slot in[t2, t). Thus,

Sl1(t2, t) + 2Sl2(t2, t) + Sl3(t2, t) ≥ 2(t− t2). (13)

2X
i=1

(Qli(t)−Qli(t2)) +

3X
i=2

(Qli(t)−Qli(t2))

=

2X
i=1

(Ali(t2, t)− Sli(t2, t))

+

3X
i=2

(Ali(t2, t)− Sli(t2, t)) (from (7))

=

2X
i=1

Ali(t2, t) +

3X
i=2

Ali(t2, t)− Sl1(t2, t)

−2Sl2(t2, t)− Sl3(t2, t)

≤
2X

i=1

(Ali(t2, t)− ρli(t− t2)) +

3X
i=2

(Ali(t2, t)− ρli(t− t2))

−

2−
2X

i=1

ρli −
2X

i=1

ρli

!
(t− t2) (14)

≤
2X

i=1

(Ali(t2, t)− ρli(t− t2)) +

3X
i=2

(Ali(t2, t)− ρli(t− t2))

− (2− 4/3 + 2ξ) (t− t2) (from (3))

≤
2X

i=1

(Ali(t2, t)− ρli(t− t2))

+

3X
i=2

(Ali(t2, t)− ρli(t− t2))− 2ξ(t− t2).

Note that (14) above follows from (13). Thus, from
(12),

P2
i=1 (Ali(t2, t)− ρli(t− t2)) +

P3
i=2 (Ali(t2, t)−

ρli(t− t2)) ≥ 2ξ(t − t2). Thus, again,Bi occurs for somei
such that1 ≤ i ≤ m. The result follows.

Note that lemma 2 does not hold if the iterative step of the
Sequential Maximal Path Scheduling has only one phase, as its proof
uses lemma 1 which does not hold in this case.

Lemma 3:Consider an integerB ≥ 6 and a pathP ⊆ G
consisting of linksl1, . . . , lm such thatm = min(6, |L|). Consider
an eventA that occurs if and only if there exists a slott such that

Qli(t
′) ≤ B − 1 ∀ i ∈ {j, . . . , j + m− 1} and∀ t′ ≤ t,

Qli(t) ≥ 5B/6 ∀ i ∈ {j, . . . , j + m− 1}.

ThenP(A) ≤ 6χξ/2(6maxl∈L σl/5B)α.

Proof:
Consider the last slott′ beforet such thatQlk (t′) = 0 for some

k ∈ {1, . . . , 6}. SinceQlk (t) ≥ 5B/6, t′ ≤ t − 5B/6maxl∈L σl.
Let Bi be the event thatAli(t

′, t)− ρli(t− t′) ≥ ξ/2(t− t′). From
(2), P(Bi) < χξ/2(

6 maxl∈L σl

5B
)α. We will prove that ifA occurs,

then∪m
i=1Bi occurs. Thus,P(A) ≤Pm

i=1 P(Bi). The result follows.

mX
i=1

�
Qli(t)−Qli(t

′)
�

=
�
Qlk (t)−Qlk (t′)

�
+
X

1≤i≤m
i 6=k

�
Qli(t)−Qli(t

′)
�

≥ 5B/6 +
X

1≤i≤m
i6=k

(5B/6−B + 1) ≥ m. (15)

6

Also,
mX

i=1

�
Qli(t)−Qli(t

′)
�

=

mX
i=1

Ali(t
′, t)−

mX
i=1

Sli(t
′, t). (16)

Thus,
mX

i=1

�
Ali(t

′, t)− ρli(t− t′)
�

≥
mX

i=1

Sli(t
′, t)−

mX
i=1

ρli(t− t′) + m (from (15),(16))

≥
mX

i=1

Sli(t
′, t)− (dm/2e) ((2/3)− ξ) (t− t′) + m (from (3)).

Next, Qli(t1) > 0 ∀ i ∈ {1, . . . , m}, ∀ t1 ∈ (t′, t]. Thus,
since the set of links scheduled at each slot constitutes a maximal
scheduling among those that have positive queue lengths in the slot,
(a) at least two links inP are scheduled in every slot in(t′, t], if
m ∈ {4, 5, 6} and (b) one link inP is scheduled in every slot in
(t, t′). (For m < 6, the above follows sincem = |L|, and hence
P = G). Thus, if m ≥ 4,

Pm
i=1 Sli(t

′, t) ≥ 2(t − t′) − 2. Thus, if
m ≥ 4,

mX
i=1

�
Ali(t

′, t)− ρli(t− t′)
� ≥ (m/2)ξ(t− t′).

Thus, for somei ∈ {1, . . . , m}, Bi occurs. The result follows for
m ∈ {4, 5, 6}. Next, let m ∈ {1, 2}. Then,

Pm
i=1 Sli(t

′, t) ≥ (t −
t′)− 2. Thus,

mX
i=1

�
Ali(t

′, t)− ρli(t− t′)
� ≥ ξ(t− t′)− 1.

Thus, for somei ∈ {1, . . . , m}, Bi occurs. The result follows for
m ∈ {1, 2}.

Now, let m = 3. Similar to the proof for (15), we can prove that,X
i∈{1,3}

�
Qli(t)−Qli(t

′)
�

+ 2
�
Ql2(t)−Ql2(t

′)
�

≥ 5B/6 + 3(5B/6−B + 1) ≥ 3. (17)

Also,
X

i∈{1,3}

�
Qli(t)−Qli(t

′)
�

+ 2
�
Ql2(t)−Ql2(t

′)
�

=
X

i∈{1,3}
Ali(t

′, t)−
X

i∈{1,3}
Sli(t

′, t)

+2Al2(t
′, t)− 2Sl2(t

′, t). (18)

Thus,
X

i∈{1,3}

�
Ali(t

′, t)− ρli(t− t′)
�

+2
�
Al2(t

′, t)− ρl2(t− t′)
�

≥
X

i∈{1,3}
Sli(t

′, t) + 2Sl2(t
′, t)−

X
i∈{1,3}

ρli(t− t′)

−2ρl2(t− t′) + 3 (from (17),(18))

≥
X

i∈{1,3}
Sli(t

′, t) + 2Sl2(t
′, t)

−2 ((2/3)− ξ) (t− t′) + 3 (from (3)).

Again, using similar arguments as before, eitherl2 or both l1 and
l3 are scheduled in every slot in(t′, t]. Thus,

P
i∈{1,3} Sli(t

′, t) +

2Sl2(t
′, t) ≥ 2(t− t′)− 2. Thus,X
i∈{1,3}

�
Ali(t

′, t)− ρli(t− t′)
�

+ 2
�
Al2(t

′, t)− ρl2(t− t′)
�

≥ 2ξ(t− t′)− 1.

Thus, for somei ∈ {1, . . . , 3}, Bi occurs. The result follows.

2) Proof for Theorem 1:We just prove the first part of the theorem,
as the second part is immediate from the first. The result trivially
holds forB < τ. Let B ≥ τ. Consider the eventA(B, t) that occurs
if and only if maxl∈G Ql(t) ≥ B. Let A(B, t) occur. Then there
exists a slott0 ≤ t such thatQl(t

′) ≤ B − 1 for all l ∈ L and
t′ ≤ t0 and Ql(t0 + 1) ≥ B for some l ∈ L; let l′ be one such
l. Then, Ql′(t0) ≥ B − maxl∈L σl. For 1 ≤ c ≤ 6, 1 ≤ d ≤ c,
consider pathsPc,d ⊆ G consisting ofc links with thedth link being
l′, provided such a path exists. For example, such a path does not exist
if l′ is the last link of pathG, andd < c. For 1 ≤ c ≤ 5, 1 ≤ d ≤ c,
eventCc,d is said to occur if the eventA described in lemma 2 occurs
with P = Pc,d, κ = 455c−1b B

6×45×55 c. EventCmin(6,|L),d is said
to occur ifPmin(6,|L),d exists and the eventA described in lemma 3
occurs withP = Pmin(6,|L),d. Clearly, whenA(B, t) occurs,Cc,d

occurs for somec, d, 1 ≤ c ≤ 6, 1 ≤ d ≤ c. Thus,P (A(B, t)) is
upper bounded by the sum of the probabilities of the above events.
Thus, the result follows from the upper bounds of the probabilities
of these events provided in lemmas 2 and 3.

IV. SEQUENTIAL MAXIMAL SCHEDULING IN TREES

We now describe how a throughput guarantee of2/3 can be
attained through distributed scheduling in trees. We will first show
that every tree can be decomposed into a collection of link disjoint
paths that constitute a tree of paths of depth at mostO(log n)
(Section IV-B). We refer to this new tree as apath tree. In our
scheduling algorithm, every path in this path tree executes a queue
length based sequential maximal scheduling policy after waiting for
a time interval in which its parent path in the path tree finishes its
scheduling (with high probability) (Section IV-C). The sequential
maximal scheduling policy that can be used in paths in the tree
(Sequential Maximal Tree Scheduling) however needs to be slightly
different from that when the entire graph is a path. This is because
irrespective of its queue length, the first link in a pathH can not
be scheduled in a slot in which the last link of its parent path is
scheduled− such slots are referred to asconstrained slotsfor H.
Nevertheless, we prove that the combination attains a2/3 throughput
guarantee as before (Section IV-E).

A. Preliminaries

We now assume thatG is a tree with maximum degree∆ ≥ 1.
Next we introduce some terminology and definitions that will be

used in presenting our algorithm and its analysis. LetHi, i =
1, . . . , k, denote subsets ofL. If Hi = {l1,i, . . . , lm,i} is a path,
thenl1,i andlm,i are itsterminal links. If there exist a linkl1 ∈ Hi

and a linkl2 ∈ Hj such thatl1 andl2 are adjacent, thenHi andHj

are adjacentand l1 (l2) is adjacent toHj (Hi); if l1 is a terminal
link in Hi, thenHi is terminal-adjacentof Hj .

The following property, which we refer to as thetree-property,
holds sinceG is a tree. Let elements in{H1, . . . ,Hk} be pair-
wise disjoint and pair-wise adjacent, andB = {l : l ∈
Hi for somei, andNl ∩ Hj 6= φ for somei 6= j}. Then all links
in B intersect at one node inG. Also, at most two links in anyHi

can be adjacent toHj wherej 6= i.

Let {Hk} constitute a partition ofL such that each setHu in the
partition is a path inG, and corresponds to a nodeu in a treeGP

(with a designated root node) that satisfies the following properties.
Consider two nodesu and v in GP and the corresponding setsHu

andHv in the partition.

P.1 If u is a parent (child) ofv, (a)Hv (Hu) is terminal-adjacent
of Hu (Hv) and (b) only one link inHv (Hu) is adjacent to
Hu (Hv).

7

P.2 If u and v are siblings, then either bothHu and Hv are
terminal-adjacent of each other, or they are not adjacent.

P.3 If u is not a parent, child, sibling ofv, thenHu andHv are
not adjacent.

To illustrate the above definitions and properties, consider the
example tree network consisting of 11 links as shown in Figure 3(a).
The tree has been partitioned into 6 (link-) disjoint paths,{H0, . . .,
H5}, where H0 ={1,2,3}, H1 = {4}, H2 = {5}, H3 = {6, 7}, H4
= {8, 10, 11}, and H5 ={9}. For path H0, 1 and 3 are the terminal
links, while for path H3, both 6 and 7 are terminal links. H0 and
H3 are not only adjacent, but also terminal-adjacent of each other;
however, H0 is not adjacent to H5. To illustrate the tree property,
consider the paths{H0, H2, H3 } which are pair-wise disjoint and
pair-wise adjacent. In this caseB = {1, 2, 5, 6}. Clearly, all links in
B intersect at a single node,v1. Also note that two links in H0 are
adjacent to H2, H3, while only a single link in H2 (H3) is adjacent
to H1, H3 (H1, H2).

In this example, it can be verified the path treeGP shown in
Figure 3(b) satisfies the properties P.1-P.3 stated above. For instance,
since H3 is a child of H0 inGP , consistent with property P.1, in
graphG, H3 is terminal adjacent of H0, and only one link of H3
is adjacent to H0. To illustrate property P.2, consider siblings H1,
H2, H3, H4 in graphGP , and note that H2, H3 are terminal-adjacent
of each other, while H1 and H4 are not adjacent to any of the other
sibling paths. Property P.3 ca be illustrate by considering H0 and H5.

Our algorithm requires a decomposition of the link setL into a
treeGP of paths that satisfy properties P.1-P.3 and have a depth of
O(log n). We show next that this can always be done, and present
an algorithm that achieves this in polynomial time.

B. Path Tree Construction

We first introduce some new terminology. Thesizeof a node in
G is the number of nodes in the subtree rooted at the node. The
root-componentof G is G itself.

We now describe the construction of the paths corresponding to
nodes inGP . The path corresponding to the root ofGP , which we
denote as theroot-pathof G, is the pathu0, . . . , uk whereu0 is the
root of G, ui is the node with the maximum size among the children
of ui−1 in G, and uk is a leaf ofG. Once the root-path has been
identified, all nodes in the root-path and the links originating from
these nodes are removed fromG. Each component in the residual
graph is referred to as thechild-componentof the root-component
and theroot-componentis theirparent-component.Note that a child-
component may consist of a single node or may have multiple nodes
and links. The root-path in each child-component with a single node
is considered to be the node itself (i.e., this path is empty in the sense
that it does not have any links). Once the root-path is identified in
such a child-component, the child-component is removed from the
graph. The root-path in each child-component with multiple nodes
is determined similar to the root-path inG, and this in turn leads to
child-components of each child-component. The process terminates
when the residual graph has no nodes.

We now describe how the paths obtained as above can be organized
to constitute the path treeGP . The root-pathH for the root-
component (i.e.G) corresponds to the root ofGP . Subsequently,
we consider the root-paths of the child-components ofG. Let H′
be one such root-path. There exists a linkl between an end-node
of H andH′. Let H′′ = H′ ∪ {l}. Then in GP , H′′ corresponds
to a child of the node corresponding toH. Similarly, other children
of the root ofGP are identified by considering root-paths of other
child-components ofG. Subsequently, the paths corresponding to the
nodes in the next level ofGP are identified similarly. Note that at

the end of this procedure each identified path has at least one link;
thus henceforth we no longer consider empty paths as in the above
paragraph.

From the construction ofGP , it is easy to verify that it satisfies
P.1-P.3.

To illustrate the path tree construction for the graph shown in
Figure 3(a), note that starting from the root nodev0, the first path
identified (the root path ofG) is H0. (Note thatv1 (size = 7) is
preferred overv8 (size = 4), andv2 (size = 3) is preferred overv3

(size = 2).) When this root path is removed, the graphG decomposes
into 4 child components - the subgraphs formed by the node sets
{v4}, {v5}, {v6, v7} and{v8, v9, v10, v11}. The first two components
are single node sets, and result in the two single-link paths H1 and
H2. The third is a two-link single-path component which results in
path H3. The root path in the last child component is{10, 11} (v10

(size = 2) is preferred overv9 (size = 1)), which when appended
with link 8 (which connects this root path with H0, the root path of
the parent component), results in the path H4. Thus H1, H2, H3 and
H4 become children of H0 in the path treeGP . Removing the root
path from the last child component leaves the single node component
{v9}, which results in path H5, a child of H4 in the path treeGP ,
as show in Figure 3(b). Thus, running our path tree construction
algorithm onG shown in Figure 3(a) results in Figure 3(b).

Lemma 4:The depth ofGP is at mostlog n.

Proof: Each nodeu in GP corresponds to a path inG, and
each such path is the root-path of some component inG, sayGu; let
the counterpart of u in GP be the root-node ofGu. Let theweight
of a node inGP be the size of its counterpart inG. We will show
that for any two nodesu, v in GP such thatv is a child of u in
GP the weight ofv is less than half that ofu. Thus, if the depth of
GP is d(GP), then,2d(GP) times the weight of a leaf node inGP is
upper-bounded by the weight of the root node inGP . Note that the
weight of the root and leaf nodes inGP are n and 1 respectively.
Thus,d(GP) ≤ log(n).

Consider nodesu andv in GP such thatv is a child ofu in GP .
We now show that the weight ofv is less than half that ofu in GP .
Let Hu be the path inG that corresponds tou. Let u1 and v1 be
counterparts ofu andv respectively inG. Then (a)v1 is in the sub-
tree ofG rooted atu1, (b) v1 is not inHu, (c) v1 is the child inG
of a nodew in Hu in G, (d) w is in the sub-tree ofG rooted atu1

andw has a childw1 in Hu. Clearly,w1 andv1 are siblings and the
size ofv1 can not exceed the size ofw1 (otherwiseHu would have
traversedv1 instead ofw1). Sincew1 andv1 are children ofw, the
size ofw exceeds the sum of sizes ofv1 andw1. Hence, the size of
v1 is less than half the size ofw and hence less than half the size of
u1 sincew is in the sub-tree inG rooted atu1. Thus, the weight of
v is less than half that ofu in GP .

C. Scheduling Algorithm

Each path represented by the vertices in the path tree graphGP ,
the output of the path tree construction procedure described above,
executes the Sequential Maximal Path Scheduling algorithm after
waiting for a time interval that depends on the position of the vertex
corresponding to the path inGP . We provide details of the algorithm
below.

Let paths {Hk} be the output of the path tree construction
algorithm. If u is the parent ofv in GP then the link inHv that
is adjacent toHu is referred to as thefirst link in Hv; note that
this is a terminal link inHv. For example, in Figure 3, link 6 is the
first link of path H3. Due to the tree properties P.1-P.3, there exists
a partition on the children of eachu in GP such thatHu and the
corresponding paths in each set in the partition intersect at a common

8

� �

� �

� �

� � � �

� �

� �

� �

� 	

�
 � � �

� � �

� �

�

� � � �

� �

� �

� �

� � � � � �
� �

� �

�

�

� �

� �

�

�

� � �

� �

� � � � �

Fig. 3. Path Tree Construction: (a) The original treeG; (b) The path treeGP .

node inG, and the corresponding paths in different partitions are not
adjacent. For the children of H0 inGP , {H1}, {H2, H3}, {H4},
represents such a partition. Given the degree bound, each partition
consists of at most∆ nodes inG, and all these nodes are siblings.
The nodes in a partition are numbered in some chosen order. If two
siblings v, w are in the same partition, andv has a higher number
thanw, thenv (w) is an older (younger) sibling of w (v). Thus, a
node inGP can have at most∆− 1 older siblings.

Without loss of generality, assume that theHis have been num-
bered in the sequence in which the corresponding nodes will be
visited in a breadth first traversal ofGP starting from the root of
GP ; the breadth first traversal visits an older sibling before a younger
sibling. Let pi be the level (i.e., the distance from the root) of node
i in GP and ri be the number of its older siblings. Let̂p be the
maximum level of any node inGP . From Lemma 4,̂p is O(log n).
In GP , pi for H1, H2, H3 and H4 is 1, whilepi for H5 is 2. Moreover,
if H2 is considered older than H3 in the partition{H2, H3}, thenri

for H1, H2, H3 and H4 are 0, 0, 1 and 0, respectively.
Recall that maximal scheduling is implemented using a distributed

randomized algorithm like the one proposed in [12]. The algorithm
operates in rounds, where each round requires communication by
nodes with their neighbors in the same path of the path tree. [12],
[14](chap. 8). Letγ > 0 be the probability that the second link in
a path with only three links does not select itself at the end of its
first round of the distributed maximal scheduling algorithm. Given
that a link is un-decided at the beginning of a round in its maximal
scheduling, it is un-decided with a probability of at mostγ at the
end of the round. For the algorithm in [12], it can be easily shown
that γ < 13

27
.

At the beginning of every slot, all links that do not have any
packets to transmit set their status toun-scheduled. All other links
set their status toun-decidedinitially. As the scheduling algorithm
progresses, these un-decided links change their status toscheduled
or un-scheduled. Links in Hi start executing their scheduling phase
after the paths that correspond toHi’s predecessors and their older
siblings inGP , and the older siblings ofHi itself, have completed
their scheduling (with high probability). Note that since a node inGP

can have at most∆ older siblings, the number ofHi’s predecessors
and their older siblings, plus the older siblings ofHi itself, is upper
bounded bypi∆+ri. In our algorithm, links inHi start executing the
Sequential Maximal Tree Scheduling routine (Figure 4) after(pi∆+

ri) (T1 + T2dln (36∆) / (−ln(γ))e) time, whereT1 represents an
upper bound on the time required to execute the initial and iterative
steps of the Sequential Maximal Tree Scheduling algorithm for a path,
andT2 represents an upper bound on the time required to complete
a single roundof the distributed maximal scheduling algorithm [12],
[14](chap. 8). Note that this implies that a path starts its scheduling
after its predecessors and their older siblings, and the path’s own
older siblings, have completed at leastdln (36∆) / (−ln(γ))e rounds
of the maximal scheduling algorithm. Thus when a path starts its
scheduling, its predecessor paths and their older siblings, and its
own older siblings, may not have completed their scheduling process
(recall that maximal scheduling for a path takesO(log n) expected
time). However, the constantdln (36∆) / (−ln(γ))e is chosen such
that the probability of maximal scheduling completing within those
many rounds is high enough for our stability result to hold.

We now point out the similarities and differences between Se-
quential Maximal Tree Scheduling and Sequential Maximal Path
Scheduling. Consider an arbitrary pathH ∈ {Hk}, whereH =
lH,1, . . . , lH,m, andlH,1 is the first link inH. A slot is aconstrained
slot for H ∈ {Hk} if the first link ofH sets its status to un-scheduled
in the sequential constraint step, and is anun-constrained slot
otherwise. In an un-constrained slot, since the start of its scheduling
phase, the two scheduling procedures are identical. The above holds
in a constrained slot as well except forlH,1 which becomes un-
scheduled in Sequential Maximal Tree Scheduling irrespective of its
queue length. Note that in an un-constrained slot, the scheduling for
H is oblivious of any link not inH, and in a constrained slot, the
scheduling forH\{lH,1} is oblivious of any link not inH\{lH,1}.
Finally, unlike that for paths, the overall scheduling for trees need not
be maximal. This is because in a slot that is constrained forH, it may
turn out that the links that are (a) in the parent and older siblings
of H, (b) adjacent to the first link inH, and (c) were undecided
at the timeH started its scheduling phase, may eventually not be
scheduled in the slot. Nevertheless, in the next section, we prove that
the 2/3 throughput guarantee still holds for trees. This is attained
by (a) exploiting the fact that the constrained slots for each path
occur only at a rate which is upper-bounded by one minus the packet
arrival rate in the first link ofH, and (b) using an additional phase in
the the iterative step of Sequential Maximal Tree Scheduling. Thus,
the iterative step now uses 3 phases, whereas the iterative step of
Sequential Maximal Path Scheduling only uses 2 phases.

9

SEQUENTIAL M AXIMAL TREE SCHEDULING (Hi)

INITIAL STEP: The first link, saylHi1, inHi, sets its status
to “un-scheduled” if at least one link inNlHi1

∩Hj , wherej
is a parent or an older sibling ofi in GP , has been scheduled
or is un-decided (sequential constraint). Each link sets its
status to “un-scheduled” if it does not have a packet to
transmit. If a link does not set its status to “un-scheduled,”
it sets its status to “un-decided.”

ITERATIVE STEP: For k = 1 to k = 3, execute Phasek,
as given below:
Phase k : A link in Hi contends if and only if (a) it is
un-decided, (b) its adjacent links inHi are un-scheduled
or un-decided, (c) its queue length is not less than that
of its adjacent links inHi that satisfy conditions (a) and
(b). A contending link sets its status to “scheduled” if its
adjacent links do not contend or have higher id than it;
links that are adjacent to scheduled links set their status to
“un-scheduled”.

TERMINAL STEP: Compute a maximal schedule among the
links in Hi that are un-decided and whose adjacent links
in Hi are un-scheduled or un-decided. Set the status of the
links selected in the maximal schedule to “scheduled”, and
the status of the links that are adjacent to scheduled links
as “un-scheduled”.

Fig. 4. Sequential Maximal Tree Scheduling Algorithm forHi

Finally, we evaluate the time required for the schedule computa-
tion. Firstly, note that the first linklHi1 in Hj shares a node with
links in NlHi1

∩Hj (wherej is a parent or an older sibling ofi in
GP). Therefore, assuming that each end-node of a link keeps track
of its scheduling status, the initial step in the Sequential Maximal
Tree Scheduling algorithm takes constant time. Since the iterative
step requires nodes to exchange a constant number of messages
with their neighbors in the corresponding path, this implies that
T1, the maximum time required to execute the initial and iterative
steps of the Sequential Maximal Tree Scheduling algorithm is a
constant independent of∆ andn. Furthermore, since a single round
of the maximal schedule computation (terminal step of the Sequen-
tial Maximal Tree Scheduling algorithm) only requires a constant
number of message exchanges by nodes with their neighbors in the
corresponding path,T2 is also a constant independent of∆ and n.
The path that starts its scheduling process last, starts after waiting
for O ((maxi pi∆ + ri) log ∆) time, sinceT1 andT2 are constants
independent of∆ and n. Once started, the scheduling process for
a path takesO(log n) expected time to complete. Thus, sinceri ≤
∆− 1, andpi ≤ p̂ which is O(log n), the scheduling for the entire
tree can be computed inO(∆ log ∆ log n + ∆ log ∆ + log n), or
O(∆ log ∆ log n), expected time.

D. Discussion

The Sequential Maximal Tree Scheduling Algorithm is fully dis-
tributed, as long as we implement the maximal scheduling algorithm
on each path in a distributed manner (using the algorithm in [12], for
example).

Note that in the path construction algorithm, the root path in any
component can be constructed inO(n) communication rounds, where
each communication round requires communication by nodes with

their neighbors in the given tree network. Therefore, utilizing the
fact that root path in all child components of a root component can
be constructed in parallel, the entire path construction procedure takes
O(n log n) communication rounds, orO(∆n log n) time. The path
tree construction algorithm should be viewed as a “pre-processing”
step, and needs to be re-run only when the network topology changes.
Therefore, the complexity of the path tree construction does not
contribute to the per-slot complexity of the scheduling algorithm.

As mentioned earlier, in our scheduling algorithm, when a path
starts its scheduling process, it is possible (although with low
probability) that its predecessor and older sibling paths have not
completed their scheduling processes yet. However, note that the
control message exchanges required during the scheduling process of
any path does not interfere with that of its predecessor or older sibling
paths, assuming primary interference constraints on control message
exchanges. For example, in Figure 3, consider the message exchanges
on path H4 after it begins its scheduling process (but before path
H5 begins its scheduling). At this time, if link 1 (which belongs to
the predecessor path H0) has already decided its scheduling status,
then there is no message exchange across link 1, and therefore no
interference in the message exchanges on the links in path H4.
However, if link 1 is still undecided, then link 8 sets its status to
un-scheduled and does not subsequently participate in the scheduling
process; control messages are then exchanged only on links 10 and
11, which do not interfere with message exchanges on the link 1 or
any other link on the predecessor or older sibling paths. When child
path H5 (which consists of only link 9) starts its scheduling process,
link 9 will schedule itself only if links 8 and 10 have already set their
status to un-scheduled; therefore, there is no interference between
control message exchanges on path H4 with those on path H5, even
after H5 has started its scheduling process. This holds true in general,
due to the fact that at any point in time during the scheduling process
on any path, the set of undecided links in the path is node disjoint
from all undecided links in other paths that have already begun their
schedule computation process.

Finally, note that the framework we proposed involves decompo-
sition of trees into paths and scheduling links in each path using a
policy that attains a provable throughput guarantee (2/3) for paths.
It is interesting to observe that this decomposition based approach
retains the same throughput guarantee for trees as compared to that
for paths. In general, if the throughput guarantee for path graphs can
be improved further while usingO(log n) time, then we can use
this framework to obtain the same guarantees for trees while still
requiring an overall computation time ofO(∆ log ∆ log n).

E. Proof of the2/3 throughput guarantee for a tree

We now state the main result of this section, Theorem 2, which
proves that Sequential Maximal Tree Scheduling policy attains a2/3
throughput guarantee whenG is a tree.

Theorem 2:Let G be a tree and (3) hold.

1) For eacht > 0, l ∈ L, P {Ql(t) ≥ B} ≤ τp̂,∆−1B
−α, where

τp̂,∆−1 is obtained through the following recursions.

γ0,y = 0 ∀ 0 ≤ y ≤ ∆− 1, (19)

τx,y =
�
max(1, 151χmin(ξ/3,1/6) + 11γx,y)

�
×(72× 45 × 55 max

l∈L
σl)

α,

0 ≤ x ≤ p̂, 0 ≤ y ≤ ∆− 1, (20)

γx,y = ∆
�
ν(∆, α) + χ(1/18∆)

�
+18α∆α+1 ×max(τx−1,∆−1, max

0≤z≤y−1
τx,z),

0 ≤ x ≤ p̂, 0 ≤ y ≤ ∆− 1. (21)

10

2) For eacht ≥ 0, E (Ql(t)) ≤ τp̂,∆−1

P∞
i=1 i−α.

Note that Theorem 2 is similar to Theorem 1; only the constants in
the expressions for the probabilitiesP {Ql(t) ≥ B} and the expected
queue lengths differ. We now describe the structure of the proof for
Theorem 2 and point out the similarities and differences with the
proof for Theorem 1.

Similar to the proof for the special case in whichG is a path, we
first prove that a link can not be congested in isolation. This proof
has two major steps. Consider a pathH in G. The first step is to
show that if links in a segmentP of H of length 5 or less have
high queue lengths and the segment does not include the first link
of H, then with a high probability, at least one link inH that is not
in P but is adjacent to a link inP has high queue length as well
(lemma 6, Section IV-E.1). This result is similar to lemma 2 proved
earlier for a path. We next prove that ifH is not constrained very
often, and the first link inH has a high queue length, then with a
high probability the second link has a high queue length as well;
this holds for the second-third, third-fourth, fourth-fifth and fifth-
sixth pairs as well (lemma 8, Section IV-E.1). This result holds only
when the iterative step of the Sequential Tree Maximal Scheduling
has three (or more) phases. The above results together imply that if
a path is not constrained very often and a link in the path has a high
queue length, then with a high probability all links in a segment of
length at least6 are congested.

We next prove that if a path is not constrained very often, the
probability that all links in a segment of a path consisting of6 links
has high queue lengths is small (lemma 9, Section IV-E.1). This
result is similar to lemma 3, but the proofs differ somewhat since the
scheduling for a tree is not always maximal. The proof for lemma 9
again relies on the fact that the iterative step of the Sequential Tree
Maximal Scheduling has three phases.

We next prove that a path is not constrained very often if the
probability that the queue lengths in the links in its parent and older
siblings is low (lemma 10, Section IV-E.1).

Our main result, that the queue length in a link becomes large
only with a small probability (Theorem 2), is now obtained using the
above results and an induction argument. Note that the root path in
G is never constrained. Thus, using lemmas 6, 8, 9, and arguments
similar to the proof for Theorem 1, the result follows for the root
path. It therefore follows from lemma 10 that the eldest child of the
root path is not constrained very often. Thus the result follows for this
as well, and hence follows for the children and the younger siblings
of this eldest path, and subsequently for all other paths inG.

We state and prove the supporting lemmas, lemmas 5 to 10 in
Section IV-E.1, and using these prove Theorem 2 in Section IV-E.2.

1) Supporting lemmas:We present a series of lemmas, lemmas 5
to 10, for an arbitrary pathH in {Hk}, whereH = lH,1, . . . , lH,m,
and lH,1 is the first link inH. Lemmas 6, 8, 9, 10 are the main
lemmas which will be used in proving Theorem 2. Lemmas 5 and 7
provide intermediate results that are only used in proving the main
lemmas: lemma 5 is used in proving lemma 6, and lemma 7 is used
in proving lemmas 8 and 9.

We first introduce some terminology required in the proofs. Let
ΘH(t1, t2) be the number of un-constrained slots in[t1, t2) for H ∈
{Hk}. Then,H is said to satisfy theconstraint-lower-boundif there
exists a constantγH such that∀ 0 < t6 < t7,

P
�
ΘH(t6, t7) ≤ (ρlH,1 + 1/6)(t7 − t6)

	 ≤ γH
(t7 − t6)α

.

The constraint-lower-bound states that with a high probability the
unconstrained slots in each path occur more frequently than the
arrivals in the first link of the path. In Theorem 2, using induction,
we prove that every pathH satisfies the constraint-lower-bound, and

subsequently prove the throughput guarantee using lemmas 6, 8, 9 -
the last two of these lemmas hold only when the constraint-lower-
bound holds.

Lemma 5:Consider a pathP ⊆ H whereH is a path in{Hk}
and an arbitrary slott. Let eitherP ⊆ H \ {lH,1} or t be an un-
constrained slot. LetP consist of linksl1, . . . , lm, and satisfy the
following properties att.

1) Qli(t) > 0 ∀ i ∈ {1, . . . , m} (non-emptyness criterion).
2) If l ∈ CP thenQl(t) < Qlj (t) ∀ lj ∈ Nl∩{l1, lm} (isolation

criterion).

Consider the iterative step of the Sequential Maximal Tree Schedul-
ing. If m ∈ {1, 2}, at least1 link in P is scheduled during the first
phase att. If m = 3, eitherl2 is scheduled during the first phase or
two links in P are scheduled in the first two phases att. If m > 3,
at least2 links in P are scheduled during the first two phases att.

The statement and the proof for this lemma is similar to that for
lemma 1 for the special case thatG is a path. The only difference
is that this lemma holds under additional conditions, that is, when
(a) the slot is un-constrained or (b) the segment does not contain the
first link of the path.

Lemma 6:Let κ andB be positive integers such thatB ≥ 5κ+1.
Consider a pathP ⊆ H\{lH,1} whereH is a path in{Hk}. Let P
consist of linksl1, . . . , lm, where1 ≤ m ≤ 5. Consider an eventA
that occurs if and only if there exists a timet such that

1) Qli(t) ≥ B − κ ∀ i ∈ {1, . . . , m} (lower bound criterion)
2) Qli(t

′) ≤ B − 1 ∀ i ∈ {1, . . . , m} and ∀ t′ ≤ t (upper
bound criterion), and

3) Ql(t
′) < B−5κ ∀ l ∈ CP∩H, ∀ t′ < t (boundary condition).

ThenP(A) ≤ 5χξ/3(
maxl∈L σl

4κ
)α.

The above lemma is similar to that for lemma 2 for the special
case thatG is a path. The only difference is that this lemma applies
only for segments that do not contain the first link of the path. This
lemma can be proved using lemma 5 just as lemma 2 has been proved
using lemma 1.

The following lemmas, lemmas 7 and 8 do not have counterparts
in the special case thatG is a path.

Lemma 7:Consider an arbitrary pathH ∈ {Hk}. Consider two
adjacent linkslH,i, lH,i+1 in H, where1 ≤ i ≤ min(4, |H| − 1).
Consider a slott that satisfies: 1)min

�
QlH,i(t), QlH,i+1(t)

�
> 0,

and 2) if i + 2 ≤ |H|, QlH,i+1(t) > QlH,i+2(t). Then eitherlH,i or
lH,i+1 is scheduled int.

Proof: First, let i = 1. In a constrained slot, clearly,lH,2 is
scheduled at the end of the first phase. In an un-constrained slot,
consider a pathP consisting of linkslH,1, lH,2. Clearly,P satisfies
the conditions of lemma 5. The result follows from the case with
|H| = 2 in lemma 5.

Now, let i > 1. First, letQk(t) = 0 for somek such that1 ≤ k <
i. Let j = max{k : k < i, Qk(t) = 0}. Consider pathP consisting
of links lH,j+1, . . . , lH,i, lH,i+1. Now, P consists ofi− j + 1 links
where2 ≤ i−j+1 ≤ 4. Sincej+1 > 1, lH,1 6∈ P. Also,P satisfies
the conditions of lemma 5. Leti − j + 1 = 2. Then,P consists
of lH,i, lH,i+1. The result follows from the case with|H| = 2 in
lemma 5. Leti−j +1 = 3. Then,P consists oflH,i−1, lH,i, lH,i+1.
The result follows from the case with|H| = 3 in lemma 5. Let
i− j +1 = 4. Then,P consists oflH,i−2, lH,i−1, lH,i, lH,i+1. From
lemma 5 with|H| = 4, at least2 links in {lH,i−2, . . . , lH,i+1} are
scheduled at the end of the first two phases. SincelH,i−2 andlH,i−1

can not be scheduled simultaneously, one of the scheduled links must
be lH,i or lH,i+1. The result follows.

Now, let Qk(t) > 0 for all k, 1 ≤ k < i. In a constrained slot,
consider a pathP consisting of linkslH,2, . . . , lH,i, lH,i+1. Now,
P consists ofi links where 2 ≤ i ≤ 4. Also, lH,1 6∈ P. The

11

result follows using the same arguments as in the previous paragraph.
Consider an un-constrained slot and a pathP consisting of links
lH,1, . . . , lH,i, lH,i+1. Let i < 4. Now,P consists ofi+1 links where
3 ≤ i + 1 ≤ 4. Again, P satisfies the conditions of lemma 5. The
result follows using the same arguments as in the previous paragraph.
Finally, let i = 4. Now, P consists of5 links: lH,1, . . . , lH,5. Let
neither lH,4 nor lH,5 be scheduled at the end of the second phase.
From lemma 5 for|H| = 5, at least2 links in P are scheduled at the
end of the second phase. Thus,lH,1 and lH,3 must be scheduled at
the end of the second phase. Thus,lH,4 does not contend in the third
phase,lH,5 contends in the third phase, andlH,6 (if |H| ≥ 6) does
not contend in the third phase (sinceQlH,5(t) > QlH,6(t)). Thus,
lH,5 is scheduled in the third phase. The result follows.

Lemma 7 does not hold if the iterative step of the Sequential
Maximal Tree Scheduling has two or fewer phases. Consider a path
H in G with 6 links l1, . . . , l6. Let Ql1(t) > Ql2(t) . . . Ql6(t) > 0.
Thus, l4, l5 satisfy the conditions of the lemma. LetH not be
constrained in slott. Only l1 and l3 are scheduled at the end of
the first two phases of the iterative step. If the iterative step has
only two phases, thenl5 andl6 subsequently contend using maximal
scheduling, and letl5 lose this contention. Thus, neitherl4 nor l5 are
scheduled.

Lemma 8:Consider an arbitrary pathH ∈ {Hk}, whereH =
{lH,1, . . . , lH,m.} Let H satisfy the constraint-lower-bound. LetB
andβ be positive integers such thatβ < B/4. Consider a linklH,i

in H, 1 ≤ i ≤ 5, and an eventA that occurs if and only if there
exists a slott such that

1) QlH,i(t) ≥ B − β,
2) maxl∈NlH,i

∩HQl(t
′) ≤ B − 1 for eacht′ ∈ [0, t] and

3) if i < m, QlH,i+1(t
′) < B − 4β ∀ t′ ∈ (0, t].

ThenP(A) ≤ (2χ1/6 + γH)(maxl∈L σl/β)α.

Lemma 8 does not hold when the iterative step has one or two
phases, as its proof uses lemma 7 which does not hold in this case.

Proof: LetA occur. Then there exists a slott2 ∈ (0, t) such that
QlH,i(t2) = B−4β andQlH,i(t

′) ≥ B−4β for all t′ ∈ [t2, t], and
eitherm = i (case (a)) orQlH,i+1(t

′) < B − 4β for all t′ ∈ [t2, t]
(case (b)). Also,t− t2 ≥ 3β/ maxl∈L σl.

First, let i = 1. In both cases (a) and (b),lH,1 is scheduled in
each un-constrained slot in[t2, t). Thus, SlH,1(t2, t) = ΘH(t2, t).
Now, QlH,1(t) = QlH,1(t2) + AlH,1(t2, t) − SlH,1(t2, t). Thus,
AlH,1(t2, t) ≥ SlH,1(t2, t) = ΘH(t2, t). This implies that either
AlH,1(t2, t) ≥ (ρlH,1 + 1/6)(t − t2) or ΘH(t2, t) ≤ (ρlH,1 +
1/6)(t − t2). From (2), the probability of the first event is at most
χ1/6(t − t2)

−α. From the constraint-lower-bound, the probability
of the second event is at mostγH(t − t2)

−α. Thus, P(A) ≤
(χ1/6 + γH)(t − t2)

−α. The lemma follows fori = 1 since
t− t2 ≥ 3β/ maxl∈L σl.

Now, let i > 1. Thus, there exists a slott3 ∈ (t2, t) such
that QlH,i(t3) = B − 2β and QlH,i(t

′) ≥ B − 2β for all t′ ∈
[t3, t]. Clearly, t − t3 ≥ β/ maxl∈L σl. Let B be the event that
QlH,i−1(t

′) < B − 2β for all t′ ∈ [t3, t].
Let A ∩ B occur. In both cases (a) and (b),lH,i is scheduled in

each slot in[t3, t]. Thus, SlH,i(t3, t) = t − t3. Now, QlH,i(t) =
QlH,i(t3) + AlH,i(t3, t) − SlH,i(t3, t). Thus, AlH,i(t3, t) ≥
SlH,i(t3, t) = t−t3. From (2) and (3),P

�
AlH,i(t3, t) ≥ t− t3

	
<

χ1/3(t − t3)
−α. Thus, P(A ∩ B) < χ1/3(t − t3)

−α ≤
χ1/3(maxl∈L σl/β)α.

Now, let A ∩ Bc occur. Thus,QlH,i−1(t
′) ≥ B − 2β for some

t′ ∈ [t3, t]; let t4 be one sucht′. Now, t4 ∈ [t2, t], QlH,i−1(t4) ≥
B − 2β, QlH,i(t4) ≥ B − 2β (sincet4 ∈ [t3, t]). Thus,X

l∈{lH,i−1,lH,i}
Ql(t4) ≥ 2B − 4β. (22)

From the definition oft2, there also exists a slott5 ∈ [t2, t4] such
that Ql(t

′) ≥ B − 4β for all l′ ∈ {lH,i−1, lH,i} and t′ ∈ [t5, t4]
and min

�
QlH,i−1(t5), QlH,i(t5)

�
= B − 4β. Clearly, t4 − t5 ≥

2β/ maxl∈L σl. Since4β < B, and 1 ≤ i − 1 ≤ 4, in both cases
(a) and (b), from lemma 7, eitherlH,i−1 or lH,i is served in each
slot in [t5, t4]. Thus,

P
l∈{lH,i−1,lH,i} Sl(t5, t4) = t4 − t5. Now,X

l∈{lH,i−1,lH,i}
Al(t5, t4)

=
X

l∈{lH,i−1,lH,i}
Ql(t4)−

X
l∈{lH,i−1,lH,i}

Ql(t5)

+
X

l∈{lH,i−1,lH,i}
Sl(t5, t4) (23)

≥ (2B − 4β)− (B − 4β)− (B − 1) + t4 − t5 (24)

≥
X

l∈{lH,i−1,lH,i}
(ρl + 1/6)(t4 − t5) (from (3)). (25)

Note that (24) above follows from (22) and the factP
l∈{lH,i−1,lH,i} Sl(t5, t4) = t4 − t5.

Thus, eitherAlH,i−1(t5, t4) ≥ (ρlH,i−1 + 1/6)(t4 − t5), or
AlH,i(t5, t4) ≥ (ρlH,i + 1/6)(t4 − t5). From (2), the prob-
ability of each event is less thanχ1/6(t5 − t4)

−α, which is
upper bounded byχ1/6(maxl∈L σl/2β)α. Thus, P(A ∩ Bc) <
2χ1/6(maxl∈L σl/2β)α.

Since P(A) = P(A ∩ B) + P(A ∩ Bc), for i > 1, P(A) <
3χ1/6(maxl∈L σl/β)α. The result follows.

Lemma 9:Let H be a path in{Hk} that satisfies the constraint-
lower-bound. Consider an integerB ≥ 6 and a pathP ⊆ H
consisting of linkslH,j , . . . , lH,j+m−1 such thatm = min(6, |H|).
Consider an eventA that occurs if and only if there exists a slott
such that

QlH,i(t
′) ≤ B − 1 ∀ i ∈ {j, . . . , j + m− 1} and∀ t′ ≤ t,

QlH,i(t) ≥ 5B/6 ∀ i ∈ {j, . . . , j + m− 1}.

ThenP(A) ≤ (6χmin(ξ/2,1/6) + γH)(6maxl∈L σl/5B)α.

Lemma 9 is similar to lemma 3 for the special case thatG is a
path. The only difference is that this lemma holds under additional
conditions, that is, when the pathH satisfies the constraint-lower-
bound. The proofs differ whenm < 6.

Proof: Whenm = 6, in every slot in which every link inP has
a packet to transmit, at least2 links in P are scheduled for service.
This clearly holds when either the slot is un-constrained orlH,1 6∈ P.
If P consists oflH,1 and the slot is constrained, at least2 links are
scheduled amonglH,2 . . . lH,6. Using the above, the proof in this
case follows using the same arguments as in the proof for lemma 3
in the case thatm = 6.

Now, let m < 6. Thenm = |H|. Thus,P = H.

Let m > 1. Thus, Ql(t) ≥ 5B/6 for all l ∈ {lH,m−1, lH,m}.
Thus, X

l∈{lH,m−1,lH,m}
Ql(t) ≥ 5B/3. (26)

Also, there exists a slott1 < t such that QlH,i(t
′) >

0 for all l ∈ {lH,m−1, lH,m} and t′ ∈ (t1, t], and
minl∈{lH,m−1,lH,m}QlH,i(t1) = 0. Clearly, t − t1 ≥
5B/6maxl∈L σl. From lemma 7, eitherlH,m−1 or lH,m is served in
each slot in(t1, t]. Thus,

P
l∈{lH,m−1,lH,m} Sl(t1, t) ≥ t− t1 − 1.

12

Now, X
l∈{lH,m−1,lH,m}

Al(t1, t)

=
X

l∈{lH,m−1,lH,m}
Ql(t)−

X
l∈{lH,m−1,lH,m}

Ql(t1)

+
X

l∈{lH,m−1,lH,m}
Sl(t1, t) (27)

≥ 5B/3− (B − 1) + (t− t1)− 1 (28)

≥
X

l∈{lH,m−1,lH,m}
(ρl + 1/6)(t− t1)(from (3)). (29)

Note that (28) above follows from (26) and from the factP
l∈{lH,m−1,lH,m} Sl(t1, t) ≥ t− t1 − 1.
Thus, either AlH,m−1(t1, t) ≥ (ρlH,m−1 + 1/6)(t − t1),

or AlH,m(t1, t) ≥ (ρlH,m + 1/6)(t − t1). From (2), the
probability of each event is less thanχ1/6(t − t1)

−α, which
is upper bounded byχ1/6(6maxl∈L σl/5B)α. Thus, P(A) <
2χ1/6(6maxl∈L σl/5B)α.

Let m = 1. Thus, P and H consist of only one linklH,1.
Thus, QlH,1(t) ≥ 5B/6. Thus, there exists a slott1 < t such
that QlH,1(t

′) > 0 for all t′ ∈ (t1, t], and QlH,1(t1) = 0. Again,
t − t1 ≥ 5B/6maxl∈L σl. Clearly, lH,1 is scheduled in each un-
constrained slot in(t1, t]. Thus, SlH,1(t1, t) ≥ ΘH(t1, t) − 1.
Now, AlH,1(t1, t) = QlH,1(t) − QlH,1(t1) + SlH,1(t1, t). Thus,
AlH,1(t1, t) ≥ 5B/6 + ΘH(t1, t)− 1 ≥ ΘH(t1, t) (sinceB ≥ 2)).
This implies that eitherAlH,1(t1, t) ≥ (ρlH,1 + 1/6)(t − t1) or
ΘH(t1, t) ≤ (ρlH,1 + 1/6)(t − t1). From (2), the probability of
the first event is at mostχ1/6(t− t1)

−α. From the constraint-lower-
bound, the probability of the second event is at mostγH(t− t1)

−α.
Thus,P(A) ≤ (χ1/6+γH)(t−t1)

−α. The lemma follows form = 1
sincet− t1 ≥ 5B/6maxl∈L σl.

Consider an arbitrary pathH ∈ {Hi} and the correspond-
ing node u in GP . Let FH = {v : v is either the
parent or an older sibling ofu in GP }.

Lemma 10:Consider an arbitrary pathH ∈ {Hj}. Let for each
t > 0, l ∈ ∪i∈FHHi, P {Ql(t) ≥ B} ≤ µHiB

−α. ThenH satisfies
the constraint-lower-bound withγH = ∆χ(1/18∆) + ∆ν(∆, α) +
18α∆α+1 maxi∈FH µHi , whereν(∆, α) is a constant whose value
depends on∆, α.

Lemma 10 does not have a counterpart for the special case thatG
is a path.

Proof: Consider i ∈ FH. For each0 < t1 < t2, let
Ul(t1, t2) be the number of slots in[t1, t2) in which link l in
Hi∩NlH,1 is undecided just before the start of the scheduling phase
of H. Let W = dln (36∆) / (−ln(γ))e. Each link inHi ∩ NlH,1

executes maximal scheduling for at leastW rounds beforeH starts
its scheduling phase, and it is undecided at the end ofW rounds
with a probability of at mostγW , which is less than1/(36∆). Thus,
Ul(t1, t2) is stochastically lesser than the sum oft2− t1 independent
Bernoulli random variables each of which is1 w.p. 1/(36∆) and0
otherwise. Thus, from Bernstein’s inequality (p.32, [8]),

P

�
Ul(t1, t2) ≥ t2 − t1

18∆

�
≤ e

− t2−t1
4×362×∆2

≤ ν(∆, α)(t2 − t1)
−α ∀ l ∈ Hi ∩NlH,1 , (30)

where,ν(∆, α) is a constant whose value depends on∆, α.

Clearly, ΘH(t1, t2) ≥ (t2 − t1) −
P

l∈∪i∈FH (Hi∩NlH,1
)

(Sl(t1, t2) + Ul(t1, t2)) . Let ΘH(t1, t2) ≤ (ρlH,1 + 1/6)(t2 − t1).

Then, X
l∈∪i∈FH (Hi∩NlH,1

)

(Sl(t1, t2) + Ul(t1, t2))

≥ (5/6− ρlH,1)(t2 − t1)

≥ (1/6 +
X

l∈∪i∈FH (Hi∩NlH,1
)

ρl)(t2 − t1). (31)

The last inequality follows from (3) since all links in∪i∈FH(Hi ∩
NlH,1) intersect at the same node inG

Now, Sl(t1, t2) ≤ Ql(t1)+Al(t1, t2). Thus, from (31), and since
| ∪i∈FH (Hi ∩NlH,1)| ≤ ∆,X

l∈∪i∈FH (Hi∩NlH,1
)

(Al(t1, t2) + Ql(t1) + Ul(t1, t2))

≥
X

l∈∪i∈FH (Hi∩NlH,1
)

(1/(6∆) + ρl)(t2 − t1).

Thus, eitherAl(t1, t2) ≥ (1/18∆ + ρl)(t2 − t1) or Ql(t1) ≥
(t2 − t1)/18∆ or Ul(t1, t2) ≥ (t2 − t1)/18∆ for some l ∈
∪i∈FH(Hi∩NlH,1). From assumption, the probability thatQl(t1) ≥
(t2− t1)/18∆ is at mostµHi(

t2−t1
18∆

)−α if l ∈ Hi andi ∈ FH. The
result follows from (2) and (30).

2) Main Result:Theorem 2 is proved using an induction argument,
and the proof for the base case is similar to the proof for Theorem 1.

Proof: We first prove the first part of the theorem. We will
prove that for anyt > 0, for all l ∈ Hj ,

P {Ql(t) ≥ B} ≤ τpj ,rj B−α, (32)

whereτpj ,rj is defined through the recursions in the statement of the
theorem. The result follows sinceτx,y increases with increase inx, y
andpi ≤ p̂ andri ≤ ∆− 1 for all i.

We prove using induction on the level ofj, pj and the number of
older siblings ofj, rj .

First consider pj = 0. Since for all x, τ0,x ≥�
12× 45 × 55 maxl∈L σl

�α
, (32) trivially holds forB < 12× 45×

55 maxl∈L σl. Let B ≥ 12×45×55 maxl∈L σl. Now, j is the root of
GP and hence does not have any sibling. Thus,rj = 0. Thus, every
slot is an un-constrained slot forHj . Hence, from (3),Hj satisfies
the constraint-lower-bound withγHj = γ0,0 = 0. Consider the event
A(B, t) that occurs if and only ifmaxl∈Hi Ql(t) ≥ B. Let A(B, t)
occur. Then there exists a slott0 ≤ t such thatQl(t

′) ≤ B−1 for all
l ∈ Hj andt′ ≤ t0 andQl(t0+1) ≥ B for somel ∈ Hj ; let lHj ,k be
one suchl. Then,QlHj ,k (t0) ≥ B−maxl∈L σl. For 0 ≤ q ≤ 5−k,
if |Hj | > k + q, eventBq is said to occur if the eventA described
in lemma 8 occurs withi = k + q andβ = 4qbB/(6 × 45 × 55)c.
If |Hj | ≥ 6, for 1 ≤ c ≤ 6, 1 ≤ d ≤ c, consider pathsPc,d ⊆ Hj

consisting ofc links with the dth link being lHj ,max(k,6). If c ≤ 5
lH1,1 6∈ Pc,d. For 1 ≤ c ≤ 5, 1 ≤ d ≤ c, event Cc,d is said to
occur if the eventA described in lemma 6 occurs withP = Pc,d,
κ = 455c−1b B

6×45×55 c. EventC6,d is said to occur if the eventA
described in lemma 9 occurs withP = P6,d.

Clearly, whenA(B, t) occurs,Bq or Cc,d occurs for somec, d, q,
0 ≤ q ≤ 5 − j, 1 ≤ c ≤ 6, 1 ≤ d ≤ c. Thus, P (A(B, t)) is
upper bounded by the sum of the probabilities of the eventsBq, Cc,d

for 0 ≤ q ≤ 5 − j, 1 ≤ c ≤ 6, 1 ≤ d ≤ c. Thus (32) follows
from the upper bounds of the probabilities of these events provided
in lemmas 6, 8, 9.

We now consider the induction case. Now, let (32) hold for all
i such thatpi ≤ h. We will prove the hypothesis fori such that
pi = h + 1. The proof is the same as that for the base case once we
can show thatHi satisfies the constraint-lower-bound withγHi =
γh+1,ri . First considerHi such thatpi = h + 1 and ri = 0. Thus,

13

i does not have an older sibling inGP . Sincei’s parent’s level ish,
i’s parent satisfies (32). Now, lemma 10 shows thatHi satisfies the
constraint-lower-bound withγHi = γh+1,ri . Now, using the same
proof as that for the base case, we can show that (32) holds fori.
Now, let (32) hold for alli such thatpi = h + 1 and ri ≤ a. Let
pi = h + 1 and ri = a + 1. Now, i’s parent and older siblings
satisfy (32). Again, lemma 10 shows thatHi satisfies the constraint-
lower-bound withγHi = γh+1,a+1. Thus, as before, (32) holds for
i.

Thus, the first part of the theorem holds. The second part is
immediate from the first.

V. CONCLUSION

In this paper, we provide a policy that attains queue-length
stability under mild assumptions on the arrival process. This pol-
icy approximates the maximum throughput region within a factor
of 2/3 in tree topologies under primary interference constraints,
can be implemented in a fully distributed manner, and requires
O(∆ log ∆ log n) computation time. The computation time of our
policy is comparable (within alog ∆ factor) to that of existing
maximal scheduling based policies that can only attain up to1/2 of
the maximum throughput region. It would be interesting to investigate
whether, without significantly increasing the computation time, the
approximation ratio can be improved and the results can be extended
for cyclic graphs and other interference models for the same class
of polynomially convergent arrival processes. In a companion paper,
we show that when the arrival process is i.i.d., the stability region
can be approximated arbitrary closely for a large class of networks
and interference models with a computation time that depends only
on the approximation factor and the maximum node degree in the
network [15]. The results in the two papers complement each other.

VI. A CKNOWLEDGEMENT

We would like to thank Professor Sudipto Guha at University of
Pennsylvania for several discussions on Lemma 4 which helped us to
substantially simplify its proof. This research was supported in part by
NCR 0238340, CNS-0435141, CNS 0435306, CNS-0448316, ECCS
0621782, CNS 0721308

REFERENCES

[1] A. Brzezinski, G. Zussman, and E. Modiano. Distributed throughput
maximization in wireless mesh networks - a partitioning approach. In
Proceedings of ACM MOBICOM, Los Angeles, CA, September 2006.

[2] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in multihop wireless networks. InProceedings
of 43d Annual Allerton Conference on Communication, Control and
Computing, Allerton, Monticello, Illinois, September 28-30 2005.

[3] J. Dai and B. Prabhakar. The throughput of data switches with and
without speedup. InProceedings of INFOCOM, pages 556–564, Tel
Aviv, Israel, Mar 2000.

[4] J. G. Dai. On the positive Harris recurrence for multiclass queueing
networks: A unified approach via fluid models.The Annals of Applied
Probability, 5:49–77, 1995.

[5] A. Dimakis and J. Walrand. Sufficient conditions for stability of
longest queue first scheduling: second order properties using fluid limits.
Advances of applied Probability, 38(2):505–521, June 2006.

[6] D. Shah E. Modiano and G. Zussman. Maximizing throughput in
wireless networks via gossiping. InProc. ACM SIGMETRICS / IFIP
Performance’06, June 2006.

[7] G. Fayolle, V. A. Malyshev, and M. V. Menshikov.Topics in the Con-
structive Theory of Countable Markov Chains. Cambridge University
Press, 1995.

[8] G. Grimmett and D. Stirzaker.Probability and Random Processes.
Oxford University Press, Great Clarendon Street, Oxford, U.K, 3 edition,
2001.

[9] B. Hajek and G. Sasaki. Link scheduling in polynomial time.IEEE
Transactions on Information Theory, 34(5):910–917, Sep 1988.

[10] X. Lin and S. Rasool. Constant-time distributed scheduling policies for
ad hoc wireless networks. InProceedings of IEEE CDC-ECC’05, San
Diego, CA, Dec 2006.

[11] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. InProceedings of
INFOCOM, Miami, FL, Mar 2005.

[12] M. Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM J. Comput., 15(4):1036–1055, 1986.

[13] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation and
routing for time varying wireless networks.IEEE Journal on Selected
Areas in Communications, Special Issue on Wireless Ad-Hoc Networks,
23(1):89–103, Jan 2005.

[14] D. Peleg.Distributed Computing: A Locality-sensitive Approach. Society
of Industrial and Applied Mathematics, Philadelphia, PA, 2000.

[15] S. Ray and S. Sarkar. Arbitrary throughput versus complexity tradeoffs
in wireless networks using graph partitioning. InProceedings of
Information Theory and Applications Second Workshop, University of
California at San Diego, 2007.

[16] T. Salonidis and L. Tassiulas. Distributed dynamic scheduling for end-
to-end rate guarantees in wireless ad hoc networks. InProceedings of
ACM MOBIHOC, 2005.

[17] D. Shah, P. Giaccone, and B. Prabhakar. An efficient randomized
algorithm for input-queued switch scheduling.IEEE Micro, 22(1):19–25,
Jan-Feb 2002.

[18] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. InProceedings of
INFOCOM, pages 533–539, 1998.

[19] L. Tassiulas and A. Ephremidis. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
37(12):1936–1948, Dec 1992.

[20] X. Wu and R. Srikant. Regulated maximal matching: a distrib-
uted scheduling algorithm for multihop wireless networks with node-
exclusive spectrum sharing. InProceedings of IEEE CDC-ECC’05,
Seville, Spain, Dec 2005.

Saswati SarkarSaswati Sarkar (S’98, M’00) received Master of Engineering
in Electrical Communication Engineering from the Indian Institute of Science,
Bangalore in 1996 and Phd in Electrical and Computer Engineering from
University of Maryland, College Park in 2000. She is currently an Associate
Professor in the department of Electrical and Systems Engineering in Uni-
versity of Pennsylvania. Her research interests are in resource allocation and
performance analysis in communication networks. She received the Motorola
gold medal for the best masters student in the division of electrical sciences
at the Indian Institute of Science and a National Science Foundation (NSF)
Faculty Early Career Development Award in 2003. She was an associate editor
of IEEE Transaction on Wireless Communications from 2001 to 2006.

Koushik Kar Koushik Kar received the Ph.D. and M.S. degrees in Electrical
and Computer Engineering from the University of Maryland, College Park,
in 2002 and 1999, respectively. He received the B.Tech degree in Electrical
Engineering from Indian Institute of Technology, Kanpur, in 1997. Since 2002,
he has been an assistant professor in the Electrical, Computer and Systems
Engineering department at Rensselaer Polytechnic Institute, Troy, NY. His
research interests include performance optimization questions in ad-hoc and
sensor networks, traffic engineering, congestion control and multicasting. Dr.
Kar received the National Science Foundation (NSF) Faculty Early Career
Development Award from the National Science Foundation in 2005.

