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Optimal Quarantining of Wireless Malware Through
Reception Gain Control

MHR. Khouzani, Eitan Altman, Saswati Sarkar

Abstract—Containment of worms constitutes an important
challenge in mobile wireless networks as recent outbreaks have
revealed actual vulnerabilities. We introduce a defense strategy
that quarantines the malware by reducing the communication
range. This counter-measure confronts us with a trade-off:
reducing the communication range suppresses the spread of the
malware, however, it also deteriorates the network performance.
We model the propagation of the malware as a deterministic
epidemic. Using an optimal control framework, we select the
optimal communication range that captures the above trade-
off by minimizing a global cost function. Using Pontryagin’s
Maximum Principle, we derive structural characteristics of the
optimal communication range as a function of time for general
cost functions. Our numerical computations reveal that the
dynamic optimal control of the communication range significantly
outperforms static choices and is also robust to errors in
estimation of the network and attack parameters.

I. I NTRODUCTION

Malicious computer softwares, in the form of worms, have
inflicted enormous damages on computer networks. For in-
stance, during an outbreak of Code Red on July 19, 2001,
hundreds of thousands of computers were infected in a blazing
speed, inflicting repair costs of billions of dollars [2]. Worms,
as self-replicating codes, have the potential of exploiting
their infected hosts to infect other nodes and exponentially
multiply the number of their victims: a phenomenon that we
call epidemic. Thus detection and containment of malware
have drawn substantial attention among the Internet research
community ( [2]–[5] etc). However, a new battle-field has
emerged: personal mobile devices such as cell-phones, smart-
phones and pocket-PCs are acquiring more computation and
communication capabilities, and hence, new vulnerabilities
are introduced. The sprouting popularity of these mobile
devices combined with their new capabilities have created
an ideal prey-ground for future malware [3], [6]. In wireless
networks, since resources are scarce, worms can cause new
forms of havoc above and beyond those in wired networks.
For instance, as the media in wireless networks is common,
bandwidth is severely limited. The increased rate of attempts
to access the media by infected nodes can jam the media and
thereby disrupt network functionalities [7]. The dimensions
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of the threat become more alarming when we consider the
huge investments that have been directed towards wireless
communication infrastructure and the economic liability that
is built upon it. The viability of these investments is contingent
upon designing effective detection and containment strategies.

In this paper, we focus on the containment of infection in a
mobile wireless network. As we pointed out, several wireless
properties enhance the severity of the infection. However,these
unique features can also be utilized to contrive new counter-
measures against the spread of infection. An infected node
can transmit its infection to another node only if they are in
communication range of each other. We propose to quarantine
the infection by regulating the communication range of the
nodes. Specifically, the reception gain of the healthy nodes
can be reduced to abate the frequency of contacts between the
mobile nodes and thus suppress the spread of the infection. In
fact, there is an interesting analogy between the spread of a
worm in mobile wireless networks and a biological epidemic
in a human community. During a biological virus outbreak,
individuals might choose to restrain their contacts with the
rest of the society. This abstinence decreases the chance of
getting infected at the expense of deterioration in the quality
of life: a decrease in the rate of communication between the
members of the society hampers their ability to fully perform
their daily tasks [8]. Such a trade-off also exists in the case of
a mobile wireless network: reducing the communication range
of nodes can deteriorate the QoS offered by the network, as
the end-to-end communication delay increases.

We present a containment strategy based on power control.
We propose an optimal control framework to characterize the
trade-off between the containment efficacy and communication
capabilities of the nodes (section III). Using Pontryagin’s
Maximum Principle, we devise a framework for computing
the dynamically evolving optimal communication range. We
identify several structural characteristics of the optimal con-
trol by examining the analytical properties of the solution
(section V). Specifically, for a general concave cost function
(subsection V-A), we show that the optimal solution has the
classical bang-bang structure, i.e., it is only at its minimum
or maximum values. We prove that the optimal solution in
this case has at most two (abrupt) transitions between these
extreme values. Subsequently, we establish that the optimal
solution follows a similar structure for a strictly convex cost
function, with the exception that transitions are continuous
and smooth instead of being abrupt (subsection V-B). Finally,
we demonstrate that dynamic optimal control of the commu-
nication range significantly outperforms static choices, and is
also robust to errors in estimation of the network and attack
parameters (Section VIII).
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II. L ITERATURE REVIEW

Most of the literature on worm propagation traditionally
assume a wired network framework and also chiefly, the
underlying network is the internet. An engaging historical
review of major recent malware outbreaks in networks may
for instance be found in [9]. Deterministic epidemiological
frameworks have been used to model the propagation of
malware in the internet [2], [3], [10]–[14]. [15] combined a
deterministic worm propagation model with a game theoretic
process that involves learning, in order to incorporate decisions
of users about whether to install or uninstall a security patch in
a wired network. Game theoretic techniques for the analysisof
network security have been used in [16], [17], among others.

Controlling the spread of the worm by reducing the rate
of communication of nodes [18], [19], or the number of
communications [4], are the closest analogs in wired networks
to reducing the communication range of the nodes in wireless
networks. The work in [18] is based on heuristics and simula-
tions. Next, unlike our work, [19] does not propose a formal
framework for attaining desired trade-offs, and considersonly
a static choice of the communication rate, whereas we allow
the communication range of the nodes to dynamically evolve
over time as the infection level fluctuates. Recently, [4] has
proposed to contain a worm in the initial phase of infection by
limiting the total number of distinct contacts per node overthe
containment cycle, and models the growth of the worm using a
stochastic branching process. However, this work only applies
to the initial phase of infection and their countermeasure is
ineffective once the epidemic starts.

Control theoretic tools have been used in [20] to propose a
feedback-based (but heuristic) strategy for containment of mal-
ware in a wired network. [21]–[24] adopt malware propagation
models to investigate an optimal dynamic response based on a
quantified cost function in communication networks. [21], [22]
assume the viewpoint of an attacker and propose a maximum
damage malware attack in an energy-constrained network.
This work differs from [23], [24] in that (i) we propose
and investigate reduction of reception gain of nodes in a
wireless network as a countermeasure rather than dynamically
changing the settings of firewall softwares [23], or rate of
recovery [24], and (ii) we consider cost functions which are
only assumed to be either concave or convex and are therefore
more general than quadratic functions. Also unlike [23] we
do not use any linearization of the system which can be
inadequate in the context of epidemic behavior. Optimal
control has also been used as an effective tool to develop
immunization and/or screening strategies to counter the spread
of a biological or social epidemic [25]–[28]. Introductionof
our new countermeasure policy in the framework of mobile
wireless network results in a new optimal control problem that
requires an original analysis and previous results in [23]–[28]
do not apply here.

III. SYSTEM MODEL

To begin, let us introduce some terminologies. A node is
calledsusceptibleif it is not contaminated by the worm, but

is prone to infection. A node isinfective if it has the worm. In-
fective nodes can propagate the worm through communication
with susceptible nodes. Upon detection of an infective node,
either the user of an infected device or the network operator
removes the infection of the node by installing a security patch,
which also grants the node permanent immunity against that
threat. However, this does not take place immediately upon
infection, but rather after an exponentially distributed random
delay with mean1/γ. This delay is associated with detection
of the malware before obtaining the appropriate patch. Each
node obtains the security patch directly from a trusted source,
such as a server, or authorized access points, or trained human
agents. In section VI we consider an alternative setting for
obtaining these security patches. We use the termrecovered
for the infective nodes which receive the patch.

Transmission of a packet between a pair of nodes is success-
ful if the received SNR is above the minimum level necessary
to decode the signal. The signal power at the receiver node is:

transmission gain× reception gain

distancepropagation loss factor × base signal power (1)

in which the base signal power is the power of the signal at the
output of the transmitter antenna when the transmission gain is
unity, and the propagation loss factor is a constant no less than
2, determined by the type of media and geographical features
of the network [29], [30]. Thus two nodes can communicate
only if they are within a certain distance from each other,
which we refer to as their communication range. When two
nodes are in communication range of each other, we say they
are incontact.

Here, we investigate the effect of changing the communica-
tion range on the propagation dynamics. Nodes are moving in a
vast region (of areaA) and according to mobility models such
as random waypoint or random direction model [31]. Also, the
communication range (u) is small compared toA, and speed
of the movement is sufficiently high. It is shown (e.g. in [32])
that under such circumstances, the pairwise inter-contacttime
is nearly exponentially distributed, and the contact rate of a
given pair of nodes is estimated asβ̂u whereβ̂ = 2wE[V ∗]

A
, w

is a constant factor pertaining to the specific mobility model,
andE[V ∗] is the average relative speed between two nodes.
When a susceptible and an infective node are in contact, the
infection is transmitted to the former with a certain probability.
We assume that̂β does not change with time.

Let N be the total number of nodes, andnS(t), nI(t) and
nR(t) respectively represent the total number of susceptible,
infective and recovered nodes at timet. Following the condi-
tions we assumed for the model, the state(nS(t), nI(t), nR(t))
of the system evolves according to a pure jump Markov chain.
Let the rate between the statesσ1(t) andσ2(t) in that Markov
chain be denoted byρ(σ1(t), σ2(t)). Thus, we have:

ρ[(nS(t), nI(t), nR(t)), (nS(t)− 1, nI(t) + 1, nR(t))]

= β̂unS(t)nI(t) and,

ρ[(nS(t), nI(t), nR(t)), (nS(t), nI(t)− 1, nR(t) + 1)]

= γnI(t).

Let the fraction of the infective, susceptible and recov-
ered nodes at timet be denoted byI(t), S(t), R(t) re-
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spectively, i.e.,I(t) = nI(t)/N , S(t) = nS(t)/N and
R(t) = nR(t)/N . Now, if S0 = limN→∞ nS(0)/N, I0 =
limN→∞ nI(0)/N,R0 = limN→∞ nI(0)/N and β =
limN→∞ Nβ̂ exist, it may be shown using the results of [33]
that asN grows,S(t), I(t), R(t) converge to the solution of
the differential equations1

Ṡ = −βuIS, İ = βuIS − γI, Ṙ = γI

with initial states (S0, I0, R0). The convergence is in the
following sense:

∀ ǫ > 0, t ≥ 0, lim
N→∞

Pr{sup
τ≤t

|
nS(τ)

N
− S(τ)| > ǫ} = 0

and likewise for I and R. Recall that β̂ ∝ 1
A
; hence

limN→∞ Nβ̂ exists as long aslimN→∞ N/A, the node den-
sity on the plane, exists. We assume that at time zero, a
nonzero portion (I0) of the nodes, but not all of them, are
infective: 0 < I(0) = I0 < 1. Similarly, 0 < S0 < 1. More-
over, in general, some fraction of the nodes may be previously
immunized to the infection, i.e.,0 ≤ R(0) = R0 < 1. Using
the fact thatS+ I+R = N/N = 1, the system of differential
equations presented above may be reduced to the following
2-dimensional system

Ṡ = −βuIS S(0) = 1− I0 −R0 (2a)

İ = βuIS − γI I(0) = I0 (2b)

with the state constraints

0 ≤ S, I, S + I ≤ 1. (3)

As we can see from the system dynamics in (2), reduction
of the communication range between susceptible and infective
nodes,u, can repress the propagation of the malware. Recall
from (1) that the communication range between an infective
transmitter and a susceptible receiver is governed both by the
transmission gain of the infective and the reception gain ofthe
susceptible node. This motivates a defense policy for wireless
networks: upon detection of malicious behavior, susceptible
nodes can reduce their reception gains. Effectively, this results
in a reduction of their communication range, which lessens the
frequency of contacts between the infective and susceptible
nodes. This in turn reduces the rate of propagation of the
infection. Thus, the reception gain of the susceptible nodes and
hence the communication rangeu(t) can be a control variable,
which is bounded between a maximum and minimum value:

umin ≤ u ≤ 1. (4)

These bounds are imposed by the physical constraints of the
device as well as the MAC protocol and the minimum accept-
able QoS. Note that the actual bounds of the communication
range can always be re-scaled and normalized, and their impact
can be captured by an appropriateβ, so thatumax = 1. Any
u(t) that satisfies the above constraint is calledadmissible,and
the range[umin . . . 1] is referred to as theadmissible range.
We make the technical assumption thatumin > 0.

1Henceforth, whenever not ambiguous, the dependency ont is made
implicit for brevity.

On the other hand, in most practical cases, the malware
might not have controllable access to the parameters of the
MAC, and in such cases, the transmission gain of the infective
nodes is unchanged. However, if the malware could indeed
modify the transmission gain of the infective nodes, irrespec-
tive of the choice of the reception gain of the susceptibles,it is
apt to use the maximum transmission range and scanning rate
that is physically realizable by the devices, so as to accelerate
its spread. The resulting increase in the transmission range of
the infectives can be effectively captured through appropriate
scaling ofβ, and the model for the dynamics of the system
does not change. In particular, note that the malware has no
incentive to vary the transmission range over time.2

We now construct a meaningful cost function which cap-
tures the advantages and disadvantages of changing the com-
munication range. Our cost functions are naturally integration
of an instantaneous cost over an operation period. Infective
nodes can be used by the malware to perform various forms
of malicious activities, such as eavesdropping, analyzingthe
data traversing the network, accessing privileged information,
hijacking sessions, disrupting network functionalities such as
routing, etc. Hence, the instantaneous cost grows larger with
an increase in the fraction of the infective nodes. We naturally
assume a linear dependence onI(t). Let us now explore the
relation between the instantaneous cost and the communication
range. Note thatumax (which is considered to be1 after
appropriate scaling) is the normal communication range of the
nodes and constitutes the optimum operating point in absence
of malware. Reducing the communication range belowumax

undermines the ability of the nodes to deliver their own traffic
and increases delays in the end-to-end delivery of messages
related to the normal function of the network. This is more so
because nodes can not selectively reduce their communication
ranges based on whether they are receiving from an infective
or a susceptible node. This is because an infected node does
not detect that it is infected for some time, and upon detection
it is immediately recovered by the system. Thus, information
about whether or not a node is infective or susceptible, is not
available to that node and to any other nodes. Therefore, the
reduction of communication range affects communication of
packets between all pairs, and thus deteriorates the overall
QoS.3 We model the effect of changingu on the QoS through
a double differentiable cost functionh(u) that increases with
decrease inu, i.e., h′(u) ≤ 0 for umin ≤ u ≤ 1 and,
without loss of generality,h(1) = 0. To simplify the technical
arguments, we further assumeh′(1) is strictly negative. Since
the characterization ofh(·) depends on the implemented MAC
and routing policies, we consider two classes ofh(·) function:
(i) concaveh, i.e., h′′(u) ≤ 0 for umin ≤ u ≤ 1, and strictly
convexh, i.e., h′′(u) > 0 for umin ≤ u ≤ 1.

2When battery lifetimes are limited, which we do not considerin this
paper, malware may have an advantage in dynamically varyingthe propagation
range of the infective nodes. This scenario may be analyzed by considering
a dynamic game, which is beyond the scope of this paper.

3Assuming bi-directional communication,u is in fact the communication
range between a susceptible and an infective node or betweentwo susceptible
nodes. Specifically, the control ofu may not alter the communication range
between the infective nodes. However, as far as QoS is concerned, only the
communication range between the susceptible nodes counts.
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The overall cost incurred by the network therefore can be
represented as follows:

J =

∫ T

0

(CI + h(u)) dt+KI(T ). (5)

CoefficientC ≥ 0 determines the relative importance (hazard)
of the infection. The termKI(T ), whereK ≥ 0, represents
the cost associated with the final tally of the infectives at
the end of the operation period. The decision process of the
susceptibles may now be represented as a dynamic control
problem, that of determination of theu(·) that minimizes the
network cost over all admissibleu(·)s subject to satisfaction
of the system dynamics in (2) - such au(·) is denoted as the
optimal control.

Finally, note that we allowu to vary as a function of time,
i.e., it is selected dynamically, though identically for individual
nodes. Particularly, susceptibles may initially choose a lower
value of the reception gain to suppress the spread of contagion
and to buy time for the recovery process of the nodes to
eliminate a safe number of infectives, and subsequently choose
higher values ofu so as to minimally disrupt the network
communication. Note that all susceptibles choose the same
u(t) at eacht since information about the state of the nodes
in a susceptible node’s neighborhood is either nonexistentor
at best represent a statistics about the average state of the
whole network, which is identical for all nodes. In addition,
inter-contact times are exponentially distributed, and the mem-
oryless property of the exponential distribution implies that
each node is equally likely to meet any node in the future
irrespective of its prior contact history.

S I R
βuIS γI

Fig. 1. u(t) is the reception gain of the susceptible nodes at timet.

S fraction of susceptible nodes
I fraction of infective nodes
R fraction of recovered nodes
u communication range of susceptible nodes
γ recovery rate of infective nodes

TABLE I
TABLE OF IMPORTANT NOTATIONS

IV. OPTIMAL u

We develop a framework for numerical computation of the
optimal controlu. Note that classical control techniques do
not provide the optimal control in closed form since the state
dynamics (2) is non-linear, the overall cost function (5) isnot
necessarily linear or quadratic inu, and the level of infectives
is not monotonic, i.e., it can be increasing or decreasing over
different intervals of time. We start by proving lemmas 1 and2.

lemma 1. I andS are continuous functions of time.

Proof: According to (2), bothS and I are integrals of
bounded functions and thus are continuous functions of time.

Note that as a consequence, any continuous function ofI
andS is also a continuous function of time.

lemma 2. For any admissibleu(·), states(S, I) strictly satisfy
the state constraints(3) for the entire interval of(0 . . . T ).

This lemma allows us to deal with an optimal control prob-
lem without any state constraints, since the state constraints
are never active - thus, constraints (3) are ignored henceforth.

Proof: Note that att = 0, by assumption we have0 <
I = I0 < 1, and also0 < S = S0 = 1− I0 −R0 < 1. Hence,
from lemma 1, the first two constraints in (3), i.e.,0 ≤ S, I
are strictly satisfied on an interval starting fromt = 0. The
last constraint, i.e.,S + I ≤ 1 is active att = 0, however, by
summing equations (2a) and (2b) we haved

dt
(S + I) at time

zero is equal to−γI0, which, following the assumptions, is
negative. Therefore, there exists an interval after time zero on
which the constraintS + I ≤ 1 is strictly met. Now suppose
that the statement of the lemma is not true. Then, lett0 where
0 < t0 ≤ T , be the first time that (at least) one of the three
state constraints in (3) becomes active. Thus, the constraints
are strictly met in(0 . . . t0). For0 < t < t0, from (2a) we have
Ṡ ≥ −βS, thusS ≥ S0e

−βt, for all 0 ≤ t < t0 and therefore,
due to continuity ofS(·), S(t0) > 0. Similarly, for 0 < t < t0
from (2b) we haveİ ≥ −γI, thusI(t0) > 0 as well. Now by
summing (2a) and (2b), we obtaind

dt
(S + I) = −γI. Hence

at t0, S + I < S0 + I0 = 1. Thus, none of the constraints
could have become active, a contradiction.

We can now apply thePontryagin’s Maximum Principle[34,
P.232] on the un-constrained optimal control problem. Con-
sider a piecewise continuous controlu(·) and the correspond-
ing state functions(S, I). TheHamiltonianH is the following
scaler function of theco-stateor adjoint variables4 λ1 andλ2:

H = CI + h(u) + (λ2 − λ1)βuIS − λ2γI. (6)

Here, except at the discontinuity epochs ofu(·),

λ̇1 = −
∂H

∂S
= −(λ2 − λ1)βuI

λ̇2 = −
∂H

∂I
= −C − (λ2 − λ1)βuS + λ2γ.

(7)

Also, λ1, λ2 have the following final value constraints

λ1(T ) = 0, λ2(T ) = K. (8)

Then, according to Pontryagin’s Maximum Principle, any
optimal controlleru, minimizes the Hamiltonian (6) over all
admissible controls at each time epoch:

u ∈ arg min
umin≤u≤1

H(λ1, λ2, S, I, u), (9)

where the state and co-state variables(S, I, λ1, λ2) are abso-
lutely continuous functions of time that satisfy (2), (7) and (8)
with the optimumu. Let

ϕ , βIS(λ2 − λ1), (10)

4In the terminology of Pontryagin’s Maximum Principle,S, I, λ1, λ2 are
often referred to as variables, though they are functions oftime in reality.
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which is a continuous function of states and co-states and thus,
a continuous function of time. This allows us to rewrite the
Hamiltonian (in (6)) as follows:

H = CI + h(u) + ϕu− λ2γI. (11)

Thus according to (9), the optimal solutionu satisfies

h(u) + ϕu ≤ h(u) + ϕu, (12)

whereu is any admissible controller, i.e.,u ∈ [umin . . . 1].
Thus, to find the optimal controller, one needs to minimize the
functionh(u) + ϕu over the admissible setu ∈ [umin . . . 1].

For strictly concaveh, h(u) + ϕu is a strictly concave
function of u, and is therefore minimized at eitheru = umin

or u = 1. Let κ ,
h(umin)

1− umin
> 0. Comparing the values of

the function atu ∈ {umin, 1}, we obtain the optimalu as

u(t) =











umin, ϕ(t) > κ

1, ϕ(t) < κ

umin or 1, ϕ(t) = κ.

(13)

For linearh(u), i.e., for h(u) = 1 − u, κ = 1, and the
optimal u can assume any value in[umin, 1] if ϕ(t) = 1.
Thus, we just have:

u(t) =

{

umin, ϕ(t) > 1

1, ϕ(t) < 1.
(14)

On the other hand, for strictly convexh, h(u) +ϕu can be
minimized atu = umin, or atu = 1 or atu = x ∈ (umin, 1) at

which
∂

∂x
(h(x)+ϕx) = 0. This yields the following relation

for an optimalu :

u(t) =











umin, −h′(umin) ≤ ϕ(t)

h′−1(−ϕ), −h′(1) < ϕ(t) < −h′(umin)

1, ϕ(t) ≤ −h′(1).

(15)

We have therefore expressed the optimumu as a function of
the state(S, I) and co-state(λ1, λ2) functions. Now, (2) and
(7), provide a system of differential equations involving only
the state and co-state functions, and not the control function.
Using the initial and final values on the state and co-state
functions, this system can be solved numerically to obtain the
optimum state and co-state functions, which can then be used
to computeu via (13), (14), (15), and the overall cost via (5).

V. STRUCTURAL RESULTS

In this section, we show that for a concaveh, any optimal
communication range is abang-bangfunction of time, that is,
it possesses only two possible valuesumin and1 (theorem 1).
Moreover, it switches abruptly between the extreme values
and has at most two such jumps. An optimal solution for a
strictly convexh again has at most two switches betweenumin

and1, but the transitions are smooth and traverses through all
intermediate values (theorem 2). We first observe the following
monotonicity result:

Corollary 1. For any admissible control function,S is a
strictly decreasing function of time, i.e.,S ց S(T ).

A. Concaveh(u):

Theorem 1. For concaveh, the optimalu(·) has the following
structure:

• u(t) = 1 for 0 ≤ t < t1 for 0 ≤ t1 ≤ T ;
• u(t) = umin for t1 < t ≤ t2 for t1 ≤ t2 ≤ T ;
• u(t) = 1 for t2 < t ≤ T.

Thus, optimalu(t) has one of these five forms: it either
has no jump and is fixed atumin or 1 throughout[0 . . . T ]
(t1 = 0, t2 = T or t1 = T, respectively); or has only one
jump of the formu = umin ↑ 1 or u = 1 ↓ umin (0 =
t1 < t2 < T or 0 < t1 < t2 = T, respectively); or has only
two jumps which is necessarily of the formu = 1 ↓ umin ↑ 1
(0 < t1 < t2 < T ). We first develop some intuition behind the
occurrence of each case. If the malware is highly contagious
(largeβ), or highly dangerous (largeC,K), or the recovery
process is slow (smallγ), or the cost inflicted by reducingu is
low (smallh(u)), then susceptibles should maintainu = umin

throughout. The other extreme arises for smallβ, highγ, small
C,K or largeh(u): deviation from the normalu = 1 is then
sub-optimal. The structure ofu in cases that lie between these
two extremes is not apriori clear. The cost

∫ T

0
h(u) dt due

to the deterioration of QoS depends on the duration and the
extent of the reduction ofu, but not on the timing of such
reductions. Ifu is reduced early on and subsequently restored
to its normal value of1, infectives start growing only later and
thus the time-accumulative costC

∫ T

0 I dt due to the growth
of the infectives is low. But then since the infection starts
spreading later, not enough infectives would be detected and
recovered by the end of the operation interval[0, T ]. Hence,
the final tally of the infectivesI(T ) may be high as compared
to when the reduction ofu starts (and also ends) later. The
timing of the reduction must therefore be chosen depending on
the relative values ofC andK and also the spread rateβ and
the recovery rateγ. The one jump case arises if the reduction
is either applied at the beginning or at the end, and the two
jump case corresponds to when the reduction is applied in an
intermediate interval. Note that the theorem establishes that
the reductions must be applied in one contiguous interval and
alsou is never reduced to an intermediate value betweenumin

and1 - facts that may not be anticipated based on intuition.
Proof: We first considerh to be strictly concave, and

use the optimal control characterization in (13). The proofis
organized as follows:

Step 1 First we prove that the optimal controller is bang-bang
(i.e., it assumes only its maximum and minimum values),
by arguing thatϕ cannot be equal toκ on an interval
of nonzero length.

Step 2 Next we show thatϕ can have at most twoκ-crossing
points(the time epochs at whichϕ−κ changes its sign).
From (13) these are the time epochs at whichu switches
between its extreme values, and therefore, the optimal
controller has at most two jumps.

Step 3 Finally, we use the terminal value condition ofϕ to
evince the nature of the jumps of the optimal controller.

Proof of Step 1. From the definition ofϕ in (10), and
state and co-state equations respectively in (2) and (7), atany
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t at whichu(t) is continuous we have

ϕ̇

β
= İS(λ2 − λ1) + IṠ(λ2 − λ1) + IS(λ̇2 − λ̇1)

= (βuIS − γI)S(λ2 − λ1) + I(−βuIS)(λ2 − λ1)

+ IS(−C − (λ2 − λ1)βuS + λ2γ + (λ2 − λ1)βuI)

Thus,ϕ̇ = −βIS(C − λ1γ). (16)

Now, suppose thatϕ = κ on an interval of nonzero length.
Sinceu(t) is a piecewise continuous function of time,u(t)
is continuous on a subinterval of this interval. On such a
subinterval,ϕ̇ is equal to zero. Consider now two distinct
points of this subinterval, call themt1 and t2. We have:

ϕ̇(t1) = −βI(t1)S(t1)(C − λ1(t1)γ) = 0

ϕ̇(t2) = −βI(t2)S(t2)(C − λ1(t2)γ) = 0.

Following lemma 2, we must have:λ1(t1) = λ1(t2). However,

λ̇1 = −
ϕ

S
u.

Sinceϕ = κ > 0, andu ≥ umin > 0, this is a contradiction.
Proof of Step 2. We denoteκ-points tκ as epochs at

whichϕ = κ. A κ-crossing point must also be aκ-point, but
the reverse is not true. Let the variables with tilde denote their
values attκ. Next, note that the Hamiltonian isautonomous,
i.e., does not explicitly depend on the independent variable t
(∂H
∂t

≡ 0). When the final timeT is fixed and the Hamiltonian
is autonomous then ( [34, P.236]):

H(S(t), I(t), u(t), λ1(t), λ2(t)) ≡ constant ≡ H. (17)

From (10) and by equatingϕ(tκ) = κ, we obtain

βĨS̃(λ̃2 − λ̃1) = κ. (18)

Sinceu is piecewise continuous, state and co-state functions,
and henceϕ, are piecewise differentiable. Thus, we can write5

ϕ̇(t−κ ) = ϕ̇(t+κ ) = −βĨS̃(C − λ̃1γ) [from (16)]

= −βĨS̃(C + γ(
κ

βĨS̃
− λ̃2)) [from (18)]

= −βS̃(CĨ − λ̃2γĨ)− γκ

= −βS̃(H − h(u)− ϕ̃u)− γκ [from (11)]

= −βS̃(H − κ)− γκ. (19)

Equation (19) follows since according to (13), approaching
tκ, a κ-point, u is either1 or umin and for both of these two
values, we haveh(u) + ϕ̃u = κ.

Here, we state a general property of continuous and piece-
wise differentiable functions which we prove in the appendix.

Property 1. Let f(·) be a continuous and piecewise-
differentiable function. Lett1, t2 be its consecutiveL-Level
points, that is,f(t1) = f(t2) = L and f(t) 6= L for all
t1 < t < t2. Also, ḟ(t+1 ) 6= 0 and ḟ(t−2 ) 6= 0. Thenḟ(t+1 ) and
ḟ(t−2 ) must have opposite signs.

We investigate the case ofH − κ ≥ 0 first. Then according
to (19) and lemma 2,̇ϕ(t−κ ) = ϕ̇(t+κ ) ≤ −γκ < 0, asκ > 0.

5f(t+
0
) , limt↓t0 andf(t−

0
) , limt↑t0 .

Thus, first of all,ϕ cannot equalκ over an interval of nonzero
length, since that would requirėϕ to be equal to zero over that
interval. Now let there be more than oneκ-point and call the
first two astκ1 andtκ2. We have ˜̇ϕ(t+κ1), ˜̇ϕ(t

−
κ2) ≤ −γκ < 0.

This contradicts property 1. Thus there is at most oneκ-point,
and hence at most oneκ−crossing point.

Now, let H − κ < 0. Sinceβ,H, γ are constants, (19) is
linear in S̃. Also, recall from Corollary 1 thatS is a strictly
monotonic function of time. Thus̃S, as samples ofS, is
strictly monotonic intκ. Therefore, ˜̇ϕ is strictly monotonic
in tκ. This, together with property (1) show that there are at
most three distinctκ-points, saytκ1 to tκ3. Thus, if there are
more than twoκ-crossing points, then they have to betκ1 to
tκ3. According to (19) ˜̇ϕ is indeed either negative for alltκ
epochs (case ofH − κ ≥ 0), or is strictly decreasing between
consecutive samples attκ epochs (case ofH − κ < 0), a
critical fact that we will use later. Thus, by property 1 and
the strict monotonicity of̃ϕ̇ in tκ, ϕ̇(t

−
κ2) = ϕ̇(t+κ2) = 0, and

ϕ̇(t+κ1) andϕ̇(t−κ3) have opposite signs. But this contradicts the
following property of continuous and piecewise differentiable
functions (which we prove in the appendix):

Property 2. Let f(·) be a continuous and piecewise-
differentiable function. Lett1, t2, t3 be three consecutiveL-
level points that are alsoL-crossing points, that is,f(t1) =
f(t2) = f(t3) = L, f(t) 6= L for all t1 < t < t2 and
t2 < t < t3, and (f(t)− L) changes its sign at these points.
Now, if we haveḟ(t+1 ) 6= 0 and ḟ(t−2 ) = ḟ(t+2 ) = 0 and
ḟ(t−3 ) 6= 0, then ḟ(t+1 ) and ḟ(t−3 ) must have the same sign.

Therefore, there cannot be more than twoκ-crossing points.
Proof of Step 3. Note thatϕ(t) is a continuous function

that following (8), ends at

ϕ(T ) = βu(T )I(T )(λ2(T )− λ1(T )) = βu(T )I(T )K. (20)

First supposeϕ(T ) < κ. Hence, from (13), the optimal con-
troller u(t) = 1 in a subinterval towards the end of(0 . . . T ).
Now if ϕ has noκ-crossing point thenu(t) = 1 throughout
(0 . . . T ). If ϕ has oneκ-crossing point, sayt1 ∈ (0 . . . T ),
thenu = umin in (0 . . . t1) andu = 1 in (t1 . . . T ). Finally,
if ϕ has twoκ-crossing points, sinceϕ(T ) < κ, ϕ(t) − κ
must change its sign from negative to positive at some time
0 < t1 < T and then back to negative at some later timet1
where0 < t1 < t2 < T. Thus,u(t) = 1 in (0 . . . t1), then
u(t) = umin in (t1, . . . t2) andu(t) = 1 again aftert2.

Now letϕ(T ) > κ. As we argued in step-2,̇ϕ at κ-crossing
points is either always negative, or is decreasing between
consecutiveκ-crossing points. This shows that the case ofϕ
crossing downκ and then crossing back upκ is not possible
since that would requirėϕ at itsκ-crossing points to be strictly
increasing. Thus eitherϕ always stays aboveκ in which case
u = umin throughout, orϕ crossesκ up once, which is the case
in which u switches fromu = 1 to umin. Similar arguments
apply for the case ofϕ(T ) = κ, depending whetherϕ(t) > κ
or ϕ(t) < κ as t approachesT. This completes step-3 and
thus proves the theorem for strictly concaveh.

We now consider linearh, i.e., h(u) = 1 − u, and use
the optimal control characterization in (14). Following similar
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footsteps that lead to eq. (19), and using the fact that here
H = Ĩ(C − γλ̃2) + 1, we obtain:

˜̇ϕ = −βS̃(H − 1)− γ.

The proof is otherwise similar to that for strictly concaveh,
with κ replaced with1.

Remark1. (I): H ≥ −
γκ

β(1 − I0)
+ κ. Then ˜̇ϕ < 0.

This follows from (19), and since0 < S < S0 = 1−
I0 (Corollary 1). The negativity of̃̇ϕ along with the
fact thatϕ is a continuous function of time, according
to property 1, show that there can be at most one
switch in the sign ofϕ − κ, and hence the optimal
u(·) has at most one jump. Recall from (20) that
ϕ(T ) = 0 < κ. Thus, if ϕ(0) = βI0S0(λ2(0) −
λ1(0)) < κ then u(t) = 1 for t ∈ [0, T ]. If, on
the other hand,ϕ(0) > κ, then it follows from the
Intermediate Value Theorem (IVT) thatu(·) jumps
from umin to 1 in (0, T ).

(II): H < −
γκ

β(1− I0)
+ κ. This therefore constitutes a

necessary condition for the optimal control to have
two jumps. According to (8) and (17),H = H(T ) =
CI(T )+h(u(T ))+ϕ(T )u(T )−γλ2(T )I(T ). Also,
from (2b) and following the argument in the proof of
lemma 2, we haveI(T ) ≥ I0e

−γT . The necessary
condition therefore is:

I0e
−γTC < −

γκ

β(1− I0 −R0)
+ κ,

which, for instance, requiresβ(1 − I0 −R0) > γ.

B. Strictly Convexh(u):

Theorem 2. Let Phases 1 and 2 be defined as follows.

Phase 1:
a. u(t) = 1, on 0 ≤ t < t1 ≤ T for somet1 ≥ 0;
b. u(t) strictly and continually decreases ont1 ≤

t < t2 ≤ T for somet2 ≥ t1;
c. u(t) = umin on t2 ≤ t ≤ t3 for somet2 ≤ t3 ≤

T.

Phase 2:
a. u(t) strictly and continually increases ont3 ≤

t ≤ t4 ≤ T for somet3 ≤ t4 ≤ T ;
b. u(t) = 1 on the intervalt4 ≤ t ≤ T.

For strictly convexh, an optimalu(t) is a continuousfunction
consisting of

• Only Phase 1, or
• Only Phase 2, or
• Phase 1 followed by Phase 2.

Qualitatively, the optimal controller for strictly convexh(·)
shows similar pattern of up to two transitions between a
maximum and minimum value as that for concaveh(·). The
transitions are however smooth for strictly convexh(·) as
a slight increase inu from umin decreases the cost due to
QoS and hence the overall cost significantly. In contrast, for a
concaveh(u), the decrease in the overall cost as a result of a
slight increase in the value ofu is insignificant and if it is at

all beneficial to increaseu so as to enhance QoS, it is better
to increase it to the maximum possible value of1.

Proof of Theorem 2. We use the optimal control charac-
terization in (15). It follows from the continuity ofϕ that
the optimalu is a continuous function of time. Thus the state
and co-state functions and thus any differentiable function of
them, e.g.ϕ, is differentiable throughout(0 . . . T ).

Note that due to strict convexity and decreasing properties
and assumptions onh, we have0 < −h′(1) < −h′(umin). The
following key lemma can be validated similar to the steps 1
and 2 of the proof of theorem 1:

lemma 3. Consider anyL > 0. (i) ϕ cannot be equal to level
L over an interval of nonzero length. (ii)ϕ = L for at most
three time epochs. (iii)ϕ crosses any levelL at most at two
time epochs in(0 . . . T ). Moreover, (iv)ϕ̇ either is negative at
theseL-crossing points or is decreasing between consecutive
L-crossing points.

Thus, there exists at most one interval of nonzero length
on which ϕ > L for any levelL > 0 (e.g.,L = −h′(1)).
Otherwiseϕ, as a differentiable function of time, either has to
crossL more than twice, or has to be atL for an interval of
positive length, or has to crossL down and then above which
requiresϕ̇ to be non-decreasing between its consecutiveL-
crossing points. However, all of these cases would contradict
the above lemma.

lemma 4. ϕ̇ = 0 at at most one time epoch during the (only
possible) interval on whichϕ > −h′(1).

Proof: Supposeϕ̇ is zero att1, t2 in the interval on which
ϕ > −h′(1) > 0, and t1 < t2. Since from lemma 2,IS is
never zero, from the expression forϕ̇ in (16) we must have:

C − λ1(t1)γ = 0 = C − λ1(t2)γ.

Hence,λ1(t1) = λ1(t2). (21)

The relation forλ̇1 in (7) can be rewritten as follows:

λ̇1 = −
ϕu

S

Note thatϕu > 0 over (t1 . . . t2). Thusλ1 is strictly decreas-
ing during this interval. This contradicts (21).

Next, from (15),

du

dt
=

{

−ϕ̇
h′′(h′−1(−ϕ)) , −h′(1) < ϕ(t) < −h′(umin)

0, otherwise.
(22)

The above relation shows that on the interval over which
−h′(1) < ϕ(t) < −h′(umin), u̇ has the opposite sign oḟϕ
and over such intervalṡu = 0 only if ϕ̇ = 0.

If ϕ ≤ −h′(1) throughout [0 . . . T ], then (15) implies
that u = 1 throughout and we only have phase 2-b. Other-
wise, there exists exactly one interval, denoted as(ν1 . . . ν2),
0 ≤ ν1 < ν2 ≤ T , such thatϕ > −h′(1) in (ν1 . . . ν2),
and ϕ ≤ −h′(1) at t ≤ ν1 and t ≥ ν2. Thus, referring
to (15), u = 1 over the intervals[0 . . . ν1] and [ν2 . . . T ],
which respectively correspond to phases 1-a and 2-b. Second,
Lemmas 3 and 4 imply that on the interval over whichϕ >
−h′(1) > 0, i.e., (ν1 . . . ν2), ϕ is either (A) always strictly
decreasing; (B) always strictly increasing; or (C) strictly
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increasing on a sub-interval(ν1 . . . ν3) and strictly decreasing
during (ν3 . . . ν2). Here, we investigate case (A). Similar
arguments can be made about cases (B) and (C). In case (A),
ν1 = 0. Now either (i)ϕ ≤ −h′(umin) throughout(0 . . . ν2);
or (ii) ϕ > −h′(umin) on (0 . . . ν4), thenϕ ≤ −h′(umin) on
(ν4 . . . ν2). For case (i),u is strictly increasing over[0 . . . ν2],
and assumingν2 < T, thenu = 1 over [ν2 . . . T ] (phase 2-a
followed by phase 2-b). Ifν2 = T, phase 2-b has length zero.
On the other hand, for case (ii), assumingν2 < T, we have
u = umin, over [0 . . . ν4] (phase 1-c), thenu strictly increases
over [ν4 . . . ν2] (phase 2-a), thenu = 1 over [ν2 . . . T ] (phase
1-c). Again, if ν2 = T, phase 2-b has length zero.

VI. D ISTRIBUTION OF SECURITY PATCHES THROUGH THE

UNDERLYING WIRELESSNETWORK

Security patches may themselves be compromised unless
they are obtained directly from trusted resources such as au-
thorized access points, or trained human agents. Nevertheless,
we still investigate the alternative (less secure) distribution of
the patches through the underlying wireless network. In this
case, decreasing the reception gain of the susceptible nodes
can increase the delay in delivery of the patches. We therefore
replace the recovery rateγ with γ0 + γ1u whereγ1 ≥ 0, and
show that theorem 1 extends. The differential equation forI
in (2b) changes to:

İ = βuIS − γ0I − γ1uI.

The Hamiltonian in (6) is updated as follows:

H = CI + h(u) + (λ2 − λ1)βuIS − λ2γ0I − λ2γ1uI.

If we update the definition ofϕ in (10) as

ϕ , βIS(λ2 − λ1)− λ2γ1I,

the optimal u may be characterized as in (13) and (14).
Rewriting the Hamiltonian using the definition ofϕ yields:

H = CI + h(u) + ϕu − λ2γ0I.

Since the system is autonomous,H is a constant. Hence,

H = H(t+κ ) = H(t−κ ) = CĨ + κ− λ̃2γ0Ĩ . (23)

At tκ we have:

ϕ(tκ) = (λ̃2 − λ̃1)βĨS̃ − λ̃2γ1Ĩ = κ. (24)

The co-state equation foṙλ2 changes to the following:

λ̇2 = −C − (λ2 − λ1)βS + λ2(γ0 + γ1u).

The time derivative ofϕ turns out to be:

ϕ̇ = −βISC + βISλ1γ0 + γ1IC. (25)

Hence,

ϕ̇(t−κ ) = ϕ̇(t+κ )

= −βĨS̃C + γ1ĨC

+ (λ̃2 −
κ+ λ̃2γ1Ĩ

βĨS̃
)βĨS̃γ0 [from (24)]

= −βĨS̃C + λ̃2βĨS̃γ0 + γ1ĨC − γ1λ̃2γ0Ĩ − κγ0

= −β(ĨC − λ̃2γ0Ĩ)S̃ + γ1(ĨC − λ̃2γ0Ĩ)− κγ0

= −β(H − κ)S̃ + γ1(H − κ)− κγ0. [from (23)]

Therefore,ϕ̇(t−κ ) andϕ̇(t+κ ) are linear inS̃ and theorem 1 can
be established using similar arguments as in subsection V-A.

VII. I MPLEMENTATION AND PRACTICAL ISSUES

Dynamic control of the reception gain of the nodes is
possible through control of antenna gains, which may be
realized through the use of smart antennas and adaptive
antenna arrays (see e.g. [35], [36]). A simple example for
circuitry and algorithms for achieving controllable gain at the
receiver end of adaptive antennas is presented in [?]. Such
smart antennas have been implemented e.g. by Ericsson and
Mannesmann Mobilfunk [?], and are expected to be more
pervasive in wireless devices in near future. Note that it
may not be possible to adjust antenna gains up to arbitrary
precision, and in practice, only a few quantized gain levels
may be available. This does not lead to any sub-optimality
when theh(.) function is concave, since as we proved, the
optimal u in this case is either atumin or 1 during different
intervals. For a strictly convexh(.), quantization may however
lead to sub-optimality as the optimalu may assume any
intermediate value betweenumin and 1. Nevertheless, our
numerical computations presented in the next section reveal
that the above sub-optimality is insignificant.

In absence of adaptive antennas, reduction of reception gain
may be achieved by simply rejecting some of the communica-
tion requests. In this caseu is the fraction of communication
requests accepted by each node. In more details, here the rate

of contacts of each pair of node is
2wαE[V ∗]

A
whereα is

the communication range of the nodes which is now fixed.
However, only a fractionu of such contacts result in successful
communication. Hence the rate of permitted communication

between susceptible and infective nodes is
2wαE[V ∗]

A
u, and

hence the governing system of differential equations is the

same as before witĥβ =
2wαE[V ∗]

A
.

Recall that the optimal control for the case of concaveh is
completely specified by (at most two) jump points, and for a
strictly convexh consists of at most two phases, characterized
by at most four time epochs. Thus, the reception gain may be
optimally controlled by the nodes without any local or global
coordination or information exchange once they know these
transition epochs. Upon detection of a new malware in the
network, a central surveillance can assess the cost coefficients
C,K, the rate of recoveryγ, and estimate (or may already
have an estimate of) the spread rateβ of messages from the
mobility pattern and the density of the nodes etc. Switching
epochs can then be calculated and distributed with small
communication overhead at time zero. Alternatively, nodescan
receive the estimated parameters from the central surveillance
and calculate the epochs themselves.

VIII. S IMULATIONS AND NUMERICAL COMPUTATIONS

We first develop some intuition about the trends of changes
in the structure of the optimum control as a result of changes
in values of parametersβ, I0, R0,K,C. We subsequently
demonstrate that overall costs can be substantially lowered by
using dynamic optimal reception gain control as compared to
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static gain control. Moreover, through simulations, we demon-
strate how a heuristic policy which utilizes approximate and
temporally evolving state information in a node’s neighbor-
hood (hence a node-specific policy) compares to our dynamic
optimal policy which requires only one time estimates of the
system parameters. Finally, we demonstrate that the dynamic
optimal policy is robust to errors in the above estimates, and
also to quantization errors in gain control.
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Fig. 3. Optimalu, varyingβ. Here,I0 = 0.1, K = 50, and other parameters
are as in fig. 2.
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Fig. 4. Optimalu, varyingγ. Here,I0 = 0.1,K = 50, and other parameters
are as in fig. 2.

As fig. 2 reveals, the optimal control becomes more conser-
vative (selects lower values) for higher values ofK. However,
an interesting phenomenon is that increasingI0 does not
necessarily lead to more conservative defense policy. In fact,
the defense policy chooses progressively lower values ofu,
whenI0 is increased up to a certain value, but onceI0 exceeds
this threshold the defense barely deviatesu from the normal
value of1. This is because for largeI0 the defense’s efficacy
is so low that reducing the reception gain does not help
the containment but only deteriorates the QoS. The optimal
controller becomes more conservative for higher and lower
values ofβ, γ respectively (fig. 3 and fig. 4). Finally, for large
C, u is reduced earlier so as to reduce the time-accumulative
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Fig. 5. Optimalu, varyingC. Here,I0 = 0.1, K = 50, and other parameters
are as in fig. 2.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time

u(
t)

, S
(t

),
 I(

t)

 

 

S(t)

I(t)

u(t)

Fig. 6. An optimalu with two jumps. Here,h(u) = 1−u, umin = 0.1, γ =
0.22, β = 0.4, I0 = 0.05, R0 = 0, C = 0.8 andK = 60.

cost associated with the infectives (and increased earliertoo
to provide the desired QoS) (fig. 5). Also, as all the above
figures reveal, for concaveh, usually the optimalu is either
at 1 throughout or jumps once fromumin to 1. But, scenarios
where it has two jumps does indeed arise (Fig. 6).

Fig. 7. Cost comparison: optimum dynamic versus the static policies. The
parameters areT = 25, umax = 1, umin = 0.1 γ = 0.2, I0 = 0.2, C = 5
K = 50 andh(u) = 1− u.

Fig. 7 compares the overall costs inflicted by the optimal
dynamic policy versus the best static policy, as a function of
β. A static policy is one in which the same value of reception
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Fig. 2. Optimalu, varying K. The h(u) functions used for concave and convex cases are0.5(1 − u) and (1 − u)1.2, respectively. Other parameters are
umin = 0.1, γ = 0.2, β = 0.4, R0 = 0 andC = 1.

gain is used throughout and we have optimized this fixed value
to obtain the best static policy. Our dynamic policy achieves
substantially lower costs except whenβ is small; in the latter
case its choice is largely static (u ≈ 1 most of the time).
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Fig. 8. Comparison of the costs achieved by our dynamic optimal control
and a heuristic control that uses (noisy) local state information.

As we discussed before, a node usually does not have
information about the states of those that it contacts. However,
by monitoring the anomalous increase in the media access
activity as a result of attempts of infective nodes to spreadthe
malware, a node may be able to estimate the number of in-
fectives in its neighborhood. This estimate, however, depends

on measurements over fading channels in a network whose
topology is constantly changing due to mobility. Hence, these
estimates have limited accuracy and are fraught with random
errors. An important question that remains to be answered then
is whether and how nodes can utilize this noisy information
about the number of infective nodes in their neighborhood,
even at the cost of higher signal processing and computations.
In order to assess the usefulness of these noisy estimates,
we develop a heuristic node-specific policy that utilizes the
available information, and compare its efficacy against our
dynamic optimal control through simulation. In the heuristic
policy, each node estimates the number of infective nodes
in its neighborhood; however, the state of each neighbor is
not flawlessly known. In the simulation, we modeled this
imprecision in detection by adding a Gaussian noise with mean
zero and powerσ2 to the indicator that a node is infective or
not. Upon contact by one of its neighbors, the receptive node
blocks the communication, by reducing its reception gain to
umin, if the estimated fraction of infected nodes in its vicinity
is greater than a certain threshold. (We considerumin very
close to0 and hence whenu = umin, the communication
is effectively blocked). This policy can be optimized over
the selected threshold and the size of the sensing area which
determines the set of neighbors. Specifically, at any given time
t, the neighbors of a node are those who are in contact with
it in a time window(t−∆ . . . t+∆), and∆ depends on the
size of the sensing area and node velocity. We choose∆ (as
also the decision threshold) so as to minimize the overall cost
incurred by the heuristic policy. Our dynamic optimal control
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blocks communications at all times at which the optimalu
equalsumin (as againumin ≈ 0) and accepts communications
otherwise (since the optimalu equals1 otherwise). We ran the
simulations forN = 50 nodes over a period ofT = 20, with
β = 0.5, γ = 0.2, I0 = 0.2 (i.e., nI(0) = 0.2 × 50 = 10),
C = 10,K = 0, h(u) = 1− u, and considering exponentially
distributed inter-contact times, with parameterβ̂ = β/N
(refer to Section III, 3rd para), as is the case for random
waypoint and random direction mobility models ( [31], [32]).
The overall cost is calculated for both the heuristic policy
and our dynamic policy through simulation as follows: the
cost of infectives (

∫ T

0
CI dt in (5)) is obtained by integrating

(C times) the fraction of infectives over time and the cost
due to reduction ofu is considered as the fraction of blocked
communications. The latter corresponds toh(u) = 1 − u, as
when u = umin ≈ 0 (u = 1, respectively) every contact
results in a blocked (successful, respectively) communication
and incurs unit (0, respectively) cost as per theh(.) function.
As fig. 8 reveals, the heuristic policy attains slightly lower
costs than our optimal control policy, which does not use
any local or global state information, for small estimation
errors. This better performance is due to avoiding unnecessary
blocking of communication and hence not losing too much of
QoS. However, as the estimation noise increases this advantage
quickly diminishes and in fact our dynamic policy significantly
outperforms the heuristic. Hence, considering the computation
overhead that state estimations introduces and since accuracy
in such estimates is hard to achieve, our dynamic policy which
requires no state information is preferable.

In order to calculate our dynamic policy, one requires a
one time(as opposed to a continuous estimation of the state)
estimate of the parameters of the system, e.g.,β, I0 etc. Here,
we demonstrate that the cost achieved by our dynamic policy
is robust to errors in estimation of these parameters. Suppose
thatβ equals0.5 but the optimal control is calculated based on
an estimate that is somewhere between0.35 and0.65. Fig. 9(a)
reveals that the increase in the overall cost as a result of
inaccurate estimation ofβ up to30% is less than6%. Similar
observation holds aboutI0: as fig. 9(b) depicts, up to75% error
in the estimation ofI0 results in less than2.5% increase in the
cost incurred by our dynamic policy. Finally, as we pointed
out in the previous section, the reduction of communication
rates may only be possible at quantized levels, which leads to
sub-optimality only when theh(.) function is strictly convex.
The quantization ofu however only minimally increases the
overall cost: as Fig. 9(c) and 9(d) show that even when the
number of levels is only2 (and thus the controller is bang-
bang), the increase in cost is less than3%.

IX. CONCLUSION

We proposed reduction of reception gains of susceptible
nodes for containing malware outbreaks in mobile wireless
networks. Using optimal control tools, we identified the op-
timum policy for dynamically controlling the reception gains
so as to minimize the overall network costs. We analytically
proved that the optimal policies have simple structures when
the cost functions are concave and convex, and can therefore
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Fig. 9. The first two figures respectively demonstrate the robustness with
respect toβ and I0 respectively forh(u) = 1 − u. The last two figures
demonstrate robustness with respect to quantization in thecontrol forh(u) =
(1 − u)1.5. In the last figure, the x-axis represents the number of levels
available foru, and the control is rounded to the level closest to the optimal
value, e.g.,x = 2 means the output is rounded toumin and 1. The other
parameters for all the figures areβ = 0.5, I0 = 0.2, R0 = 0, γ = 0.2,
umin ≈ 0, umax = 1, C = 10, T = 20.
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be easily implemented in resource constrained devices without
requiring constant coordination and information exchange.

Investigation of dynamic control of infective nodes’ trans-
mission gains by the malware (instead of selecting the maxi-
mum value throughout) constitutes an interesting direction for
future research. Such control may be motivated in scenarios
where energy limitations lead to premature battery depletions
of infective nodes owing to high transmission range selections,
which in turn throttles the spread of the infection. Such control
may also be necessary in a highly dense network in which a
malware might want to avoid jamming during its spreading
period, in order not to self-throttle its propagation, and then
initiate a more effective jamming attack. These cases, however,
will lead to a dynamic game setting as both the network and
an attacker will optimize against each other.

APPENDIX

Proof of Property 1. Without loss of generality, let
ḟ(t+1 ) > 0. Let ḟ(t−2 ) > 0. The continuity and piecewise
differentiability off(·) implies that there existsδ > 0 such that
f(·) is continuous in the closed intervals[t1, t1+δ], [t2−δ, t2]
and differentiable in the open intervals(t1, t1+δ), (t2−δ, t2).
Thus, sincef(t1) = f(t2) = L and ḟ(t+1 ) > 0, ḟ(t−2 ) > 0, it
follows from the Mean value theorem that

∃ δ1 ∈ (0 . . .
1

2
(t2 − t1)) such thatf(t1 + δ1) > L, and

∃ δ2 ∈ (0 . . .
1

2
(t2 − t1)) such thatf(t2 − δ2) < L.

But, by the Intermediate value theorem (IVT), there exists
a time t1 + δ1 < τ < t2 − δ2 such thatf(τ) = L. This
contradicts the assumption thatf(t) 6= L for all t1 < t < t2.
Thus, ḟ(t−2 ) < 0, and Property 1 holds.

Proof of Property 2. Without loss of generality, let
ḟ(t+1 ) > 0. Arguing as in the proof of Property 1,

∃ δ1 ∈ (0 . . .
1

2
(t2 − t1)) such thatf(t1 + δ1) > L.

Also, (f(t)−L) must change its sign frompositiveto negative
at t2. This is because otherwise,∃ δ2 ∈ (0 . . . 12 (t2 − t1)),
such thatf(t2 − δ2) < L. But then, following IVT, ∃ τ1 ∈
(t1 + δ1 . . . t2 − δ2) such thatf(τ1) = L. This contradicts the
assumption thatf(t) 6= L, for all t1 < t < t2. Thus,

∃ δ2 ∈ (0 . . .
1

2
(t3 − t2)) such thatf(t2 + δ2) < L.

Now let Property 2 not hold. Then,̇f(t−3 ) < 0, and as before,

∃ δ3 ∈ (0 . . .
1

2
(t3 − t2)) such thatf(t3 − δ3) > L.

But, by IVT, there exists a timet2 + δ2 < τ < t3 − δ3, such
that f(τ) = L. This contradicts the assumption thatf(t) 6= L
for all t2 < t < t3. Thus, Property 2 holds.
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