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Economy of Spectrum Access in Time Varying
Multi-Channel Networks

M.H.R. Khouzani, Saswati Sarkar

Abstract—We consider a wireless network consisting of two classes of potentially mobile users: primary users and secondary users.
Primary users license frequency channels and transmit in their respective bands as required. Secondary users resort to unlicensed
access of channels that are not used by their primary users. Primaries impose access fees on the secondaries which depend on
access durations and may be different for different primary channels and different available communication rates in the channels. The
available rates to the secondaries change with time depending on the usage status of the primaries and the random access quality
of channels. Secondary users seek to minimize their total access cost subject to stabilizing their queues whenever possible. Our first
contribution is to present a dynamic link scheduling policy that attains this objective. The computation time of this policy, however,
increases exponentially with the size of the network. We next present an approximate scheduling scheme based on graph partitioning
that is distributed and attains arbitrary trade-offs between aggregate access cost and computation times of the schedules, irrespective
of the size of the network. Our performance guarantees hold for general arrival and primary usage statistics and multihop networks.
Each secondary user is however primarily interested in minimizing the cost it incurs, rather than in minimizing the aggregate cost. Thus,
it will schedule its transmissions so as to minimize the aggregate cost only if it perceives that the aggregate cost is shared among the
users as per a fair cost sharing scheme. Using concepts from cooperative game theory, we develop a rational basis for sharing the
aggregate cost amongst secondary sessions and present a cost sharing mechanism that conforms to the above basis.

Index Terms—stochastic network optimization, cognitive networks, economy of spectrum access, imperfect scheduling, graph
partitioning, cost-sharing, Shapley value

✦

1 INTRODUCTION

IN conventional wireless networks, legacy users li-
cense fixed spans of the spectrum. Actual measure-

ments of spectrum usage confirm that, since access is
fixed to specific frequencies, large portions of potential
bandwidth are used only sporadically. This results in
poor utilization of the bandwidth, as low as (6%) [1].
As the demand for bandwidth grows and industrial,
scientific and medical bands (ISM) become overcrowded,
higher utilization of licensed bands becomes imperative.
One strategy to overcome the bandwidth underutiliza-
tion problem, inspired by the major success of unlicensed
bands, is spectrum pooling, in which, the licence owners
of the channels (primaries) permit previously specified
renters (secondaries) to access their bandwidth during
the times or in locations that they themselves do not use
it [2].
The temporary underutilized bandwidth at a certain

time and location is known as a spectrum hole [3]. The
advent of cognitive radio (CR) in the form of software
defined radio (SDR) technology, enabled wireless devices
to continuously scan the spectrum in search of spectrum
holes and dynamically adjust their communication pa-
rameters at the MAC level to communicate over these
frequencies with minimal adverse effect on the primaries
[4], [5]. Consequently, the utilization of the bandwidth
can improve dramatically and new network capacity of
commercial value can be created out of the already allo-
cated but underutilized spectrum. Commercial network
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providers can use secondary access to provide wireless
service. For example, providers of access networks or
mesh networks can allow their users to communicate
with access points, base stations or mesh networks, or
directly among each other through secondary access
(Fig. 1). On the other hand, the primaries need a fi-
nancial incentive for this asset-sharing. In this regard,
each primary may impose access fees on the secondaries
which depend on the duration of access and the available
communication rate and can be specific to that primary
user. Specifically, a single primary user may also offer
different service rates at different prices to adjust its own
revenue and its own demand. Different primary users
may have different (frequency and space) reusability
requirements. For instance, radio and TV stations are
less dependent of reusability than cellular networks. This
can reflect itself in the access costs that they impose on
the secondaries: cellular networks may impose a higher
access fee.
Traffic variation of the primaries, movement of the

nodes (secondaries or primaries) and the fluctuations
in the quality of the channels lead to variable available
service rates with respect to different locations and times
for different secondaries. Each secondary session may
have a specific traffic demand and needs to transmit
data at a certain rate to its respective destination(s). The
objective of the network provider(s) is to schedule the
access of the users to the time varying available spectrum
so as to minimize the aggregate time average cost subject
to meeting the traffic demand of the users.
We thus seek to develop scheduling policies that

minimize the aggregate time average cost of scheduling
subject to meeting the traffic demand of all of the sec-
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ondaries whenever possible, i.e., supporting the stability
region of the network of the secondaries. Furthermore,
the scheduling policy must not require a priori knowl-
edge of the statistics of the arrivals or the channels.
Towards this objective, a judicious coordinated decision
for each secondary session has to be made about which
primary channels to transmit over and with what rate, or
whether a session should hold off until a cheaper band-
width becomes available. This decision should depend
on the prices of the available bandwidths and the traffic
demand of the sessions.

We illustrate the challenges through a simple example.
Suppose that there are two primary channels 1 and 2.
Channel 1 is available (idle) in 1/2 of the time slots
and channel 2 in 1/4. Channels are orthogonal and
their availabilities are mutually independent. Channel
1 and channel 2, whenever available, respectively offer
2 and 1 packet per slot (pps) of communication rates
and at 3/2$ and 1$ per pps fees. Suppose that there is
a secondary session with arrival rate equal to 1/4 pps.
Now the question facing the scheduler is whether the
secondary should transmit over the expensive channel 1
whenever that is the only available channel, or wait until
the cheaper channel 2 becomes available. These decisions
should be such that the time average of the incurred cost
is minimized while the backlog of the session does not
grow unbounded. Moreover these decisions should not
depend on the knowledge of the arrival and channel
availability rates, as a secondary user is not typically
aware of them. The scheduling decisions become even
more involved in case there is a network of secondaries
where interference constraints must also be considered,
e.g., when there are multiple interfering sessions with
different arrival rates.

Our first contribution is to present a joint channel and
rate selection and link scheduling policy that provably
attains minimum time average aggregate cost while
guaranteeing stability for the secondary arrivals inside
their capacity region. Our scheduling policy is dynamic,
that is, it does not require any a priori knowledge about
the statistics of arrivals, usage of the primaries, quality
of the channels or mobility of the nodes (Section-4).
The time required to calculate each schedule however
grows exponentially with the size of the network. This
might become problematic in large networks. Our next
contribution is to present a dynamic scheduling pol-
icy that provably attains arbitrary trade-offs between
(a) time average aggregate cost subject to stability and
(b) complexity and messaging overhead of each schedule
in each time slot. The developed trade-offs are indepen-
dent of the size of the network (Section-5). We discuss
in Section 6 how our algorithms can be extended to a
multihop network.

The next challenge is to develop a rational basis
for sharing the aggregate scheduling cost among the
sessions. This goal is motivated by the fact that each
session is interested in minimizing its own cost rather
than the aggregate cost of the service, and providing a
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Fig. 1. (a) A sample single-hop cognitive network demon-
strating an access network with a single provider. Users
communicate with access points using primary channels
whenever available (secondary access). Secondary ses-
sions are between a user and an access point. (b) A
sample cognitive mesh networks with multiple providers.
Users communicate among each other or with the mesh
points using secondary access. A MAC layer session
is represented by an arc between a user and a mesh
point or between two users. An end-to-end session may
traverse multiple MAC layer sessions.

rational basis for cost sharing is therefore a prerequisite
for motivating the sessions to schedule their transmis-
sions so as to minimize the aggregate cost. A desirable
cost sharing mechanism should share the aggregate cost
among the sessions in accordance with the amount of
stress that each session imposes on the network re-
sources. For instance, a session should naturally pay
more if it has a higher traffic demand, or has access
to only expensive channels, or is in an area where the
congestion is high. We will establish that naive cost
sharing solutions, such as splitting the aggregate cost
equally among the sessions and charging sessions based
on their direct access cost are not desirable. Using tools
from cooperative game theory, we present a rational
basis for sharing the aggregate cost among sessions, and
show that this cost sharing mechanism satisfies several
intuitively appealing properties (Section-7). The paper
is concluded in Section 9 with a discussion of future
research directions.

2 RELATED LITERATURE

[6] and [7] discuss the practical issues of spectrum
management and present frameworks that ensure a
secondary access that conforms to users’ privileges. [8]
proposes a secondary access scheme, based on an auction
sequence in a game-theoretical framework, but does not
consider the scheduling constraints. Indeed, one of the
main objectives of this paper is to bridge the gap be-
tween the current research in economical implications of
spectrum sharing and effective MAC scheduling policies.
It should be noted that the optimization problem in

our paper is different from a utility based optimization
in which the utility is merely a function of the achieved
long term time average service rates when the arrival
rates are outside of the stability region [9]–[11] etc. Here,
the time-average scheduling cost depends on specific
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scheduling decisions in time slots. The latter has been
considered in [12] in the context of scheduling rewards
and in [13] in the context of energy expenditure. We use
the framework of these papers to develop our dynamic
optimal scheduling policy. The time required to compute
the schedule in each time slot in the policy offered by [13]
grows exponentially with the size of the network. In this
paper we proceed to develop a dynamic scheduling pol-
icy that (a) attains a time average cost that is arbitrarily
close to the minimum time average cost and (b) has a
computation time that is independent of the size of the
network. [12] seeks a similar goal, however in that paper,
the computation time is reduced at the expense of huge
network delays. In contrast, our approximate scheduling
policy does not affect the network delay. Also, unlike
these two papers which consider iid arrival and channel
statistics, we establish our performance guarantees for
more general statistical models.
Designing an optimal spectrum assignment for secon-

daries is considered in [14]–[16] among others. However,
in all of these works, spectrum bandwidth is assumed
to be free of charge and thus, other performance metrics
including stability are considered. Moreover, [14] and
[15] assume infinite demand for all secondaries, and [16]
assumes a fixed transmission rate for all of the channels
and a single-hop access-point based network.
Approximate dynamic scheduling policies that

achieve a polynomial complexity have been proposed
in [17]–[24] among others. All of these works focus
essentially on approximating the stability region and/or
fairness outside of the stability region and consider
networks whose topologies do not change with time.
[25] considers the power efficiency problem and presents
some only heuristic suboptimal algorithms.
In this paper we develop a dynamic scheduling policy

that for a time-varying network attains arbitrary trade-
offs between (a) the time average aggregate cost subject
to stability of the secondaries and (b) complexity of the
scheduling in each time slot, without affecting the delay.

3 SYSTEM MODEL

Throughout the paper, matrices are represented by bold
letters and vectors are specified by vector signs. Also, all
of the comparisons between matrices or vectors are con-
sidered element-wise. Time is slotted and synchronized.
This assumption is justified when clock drifts are neg-
ligible at the time scale of control packet transmission;
similar assumptions have been made in several papers
in this genre (e.g., [10]–[14], [16], [19], [24], etc.). Clock
synchronization, however, is a challenging problem and
an area of active research; addressing the relevant issues
is beyond the scope of this paper.
There are M primary channels. Each primary user

is the license owner of a unique set of channels and
communicates over them whenever needed. There are
a total of N wireless secondary users and secondary
access points (or base stations) which we will collectively
refer to as nodes. Let V be the set of the nodes, i.e.,

V = {1. . . . , N}. Also, let the set of links, E, be a
subset of the ordered triplets (i, j, k) where i, j ∈ V
and k ∈ {1, . . . ,M}. The triplet (i, j,m) specifies the link
ijm where i and j are the two end nodes and m is the
channel of the link ijm. The network of the secondaries
is modeled as the graph G = (V,E). Note that up to M
links may exist between two nodes.

Packets may randomly arrive to a secondary node
(source) to be transmitted to its individual destination
node. We refer to a source-destination pair as a session.
Here we consider single-hop communication among sec-
ondaries. Thus, each session can be attributed to a link.
The sessions are indexed from 1 to L,where L is the total
number of the sessions in the network. Let Al(t) denote
the amount of data arrival during time slot t for session
l. The arrivals are according to an aperiodic positive-
recurrent Markov process with a countable set of states
{ϑ(τ)}, where state ϑ(τ) determines the distribution of
~A(τ).

During each time slot, the network is randomly in one
of the finitely many states out of set S. We assume that
the network preserves its state during a time slot and
possibly changes its state at the end of a slot. The state of
the network embodies information about the scheduling
constraints. Specifically, it indicates the availability of
a link and the available communication rates over it.
This depends on the usage status of the primary users
on their respective channels, mobility of the nodes, and
fluctuations in the quality of the channels. We assume
that the state of the network is also an aperiodic positive-
recurrent Markovian process and thus has a stationary
probability distribution. Let the stationary probability of
the state s be denoted by πs.

We assume that the secondary nodes are capable of
sensing the local state of the network at the beginning
of each time slot. This assumption follows from the CR
capabilities. For each state s, the collective scheduling
decision, denoted by i, is confined to be chosen from the
finitely many members of the set Is. Is represents the set
of all valid scheduling decisions provided that the state
of the network is s. Is depends on the interference model
as well as the multichannel transmission capability of
nodes and the actual deployment of the nodes. We
say that two links interfere if they cannot be scheduled
concurrently. The choice of i along with the state of the
network determines the offered transmission rate over
each link. Specifically, clm(i(t), s(t)), i(t) ∈ Is(t) is the
offered transmission rate over link lm during time slot t
when the state of the network is s(t) and the scheduling
decision is i(t) ∈ Is(t). Recall that session l refers to a pair
of source-destination nodes say i and j, thus link lm is
in fact a reference to link ijm. The matrix of the offered
rates is represented by the L × M matrix C(i, s). We
assume bounded offered transmission rates, Specifically

cmax , max
l,m,s,i∈Is

{clm(i, s)} <∞. (1)
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Queues evolve according to the following equation:

Ql(t+ 1) = [Ql(t) −
∑

m

clm(i(t), s(t))]+ +Al(t). (2)

Let flm(t) represent the actual flow over link lm during
time slot t and let f(t) be the matrix of the flows over
the entire set of links. Mathematically:

flm(t) = min{Ql(t),
∑

m

clm(i(t), s(t))}.

For a network state s, a flow matrix, f , is associ-
ated with an access cost determined by the scalar non-
negative function r(f , s). This is the instantaneous aggre-
gate access cost during time slot t that is incurred by the
secondaries by using primary channels. We have allowed
the same flow matrix on the network to potentially
induce different costs, depending on the state of the
network, to preserve its generality. Function r is non-
decreasing with respect to each fmn(t) and is bounded
by rmax. As a specific example, the cost function can be
additive, i.e.,

r(f , s) =

L
∑

l=1

∑

m

rlm(flm, s), (3)

where rlm(flm, s) is the cost incurred by flow flm of
session l on channel m when the network state is s.
A scheduling policy, denoted by ∆, is a rule that

determines the scheduling decision i ∈ Is(t) in each time
slot t.
Definition 1: The aggregate time average cost of a

scheduling policy ∆, denoted by Ω∆, is defined as
follows:

Ω∆ = lim sup
t→∞

1

t

t
∑

τ=1

r(f(τ), s(τ)).

Definition 2: We call a queue stable if

lim sup
t→∞

1

t

t
∑

τ=1

Q(τ) <∞ w.p.1.

A network is stable if all of the individual queues are
stable. Throughout the paper, the term stability is used
to refer to this definition of stability. The closure of the
set of all arrival rate vectors, ~λ, for which there exists a
scheduling policy that makes the network stable is called
the stability region of the network and is denoted by Λ.
Also, let Int(Λ) denote the interior of the set Λ.

Definition 3: ∆ is ǫ-optimal if and only if for any
~λ ∈ Int(Λ) :

(A) the network is stable; And,
(B) Ω∆(~λ) ≤ Ωmin(~λ) + ǫ w.p.1.

Let H(τ) , (ϑ(τ), s(τ), ~Q(τ)). Also, let H(τ) represent
the σ-field generated by H(τ). Since by assumption the
arrivals are due to an aperiodic positive-recurrent (hence
ergodic) Markov chain, for any τ and H(τ −T ) we have
limT→∞ E[ ~A(τ) | H(τ − T )] = ~λ. Hence:

∀ρ > 0, ∃TA(ρ) <∞, s.t. ∀T > TA(ρ), ∀τ :

E[ ~A(τ) | H(τ − T )] ≤ ~λ+ ρ~1. (4)

We assume that:

A2
max , max

l∈{1,...,L}
EA2

l (τ) <∞. (5)

Similar to (4), for the network states we have:

lim
T→∞

E[1s(τ)=s | H(τ − T )] = πs, (6)

where 1 is representing an indicator function.

{1 . . . M} set of primary channels
{1 . . . N} set of secondary users
{1 . . . L} set of links (sessions in a Single-Hop network)
{Al(t)} Arrival to session l during t

∆ (generic) scheduling policy
Ω time-average aggregate cost

cl(t) offered communication rate over link l during t

i(t) scheduling decision during t

I set of all feasible scheduling decisions

∆d(V ) dynamic scheduling policy in Section-4
∆Id(V ) Imperfect dynamic scheduling policy in subsection 5.1
π(k, V ) graph-partitioning scheduling policy in subsection 5.2

∆∗(~λ) stationary scheduling policy in Appendix A

TABLE 1
Table of Important Notations.

3.1 A Special Case

Here, we elucidate the above framework by constructing
Is for an important special case. We will focus on this
special network setup in Section-5.2.
We assume that all of the nodes are deployed in the

first quadrant of the 2-Dimensional plane. Note that this
assumption is made without loss of generality since the
choice of the origin and the coordinates is arbitrary. Let
two nodes be able to communicate if their distance is
less than D, which we assume to be invariant for any
channel at any transmission rate. Also, assume that the
M primary channels are orthogonal to each other. Recall
that each link is represented by a triplet ijm where i, j
designate the end points and m indicates the channel
of the link. During a time slot t, link ijm is available
in the network graph if firstly, its two end nodes are
within distance D of each other and secondly, there is no
primary user within distance D of nodes i or j which is
communicating over channel m. At time slot t, the state
of the network s(t) is interpreted as the network graph
of the available links in that time slot. The usage status
of the primaries is random and may change over time
slots. Also, both primary and secondary users may be
mobile. Thus, the network graph varies over time.
Now, there can be two different possibilities with

respect to the multichannel transmission capability of the
nodes:

(A) Each node can communicate over at most one
channel at a time. In this case, two links interfere
whenever (a) they are of the same channel, and an
end node of one of them is within distance D of an
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end node of the other; OR, (b) the two links have at
least one common end node.

(B) Nodes can communicate over different channels
simultaneously and with different nodes. In this
case, two links interfere only whenever they are of
the same channel, and an end node of one of the
links is within distance D of an end node of the
other.

We have considered this model since similar transmis-
sion constraints apply in 802.11 protocols. An independent
set is a subset of links in which no two links interfere
with each other. Let X (s) be the set of all of independent
sets given an instance of the network graph, which
is determined through network state s. First, consider
the case that each primary channel, whenever available,
offers a fixed transmission rate. Now given the state of
the network is s(t), the scheduling decision at time slot t,
is translated into selecting an independent set X(t) from
X (s(t)). Thus we can write Is = X (s(t)).More generally,
each primary channel, whenever available, may offer
different transmission rates per time slot at different
prices. Let ςm represent the set of all available offered
transmission rates for channelm. Here, given the state of
the network is s(t), the scheduling decision at time slot
t, is translated into selecting an independent set X(t)
from X (s(t)) and also specifying the transmission rate
on each of the scheduled links. Thus, a mathematical
representation of Is is as follows:

Is = {(X,Ξ) : X ∈ Xs, Ξ : X →
∏

(lm)∈X

ςm},

where Ξ as defined is a vector function from the set of
the links in the independent set X to the set of available
rates on each of the selected links.
Here, we explain the calculation of the instantaneous

cost function in the above framework. Let ̺(c,m) denote
the fee per time slot of using transmission rate c over
channel m. Thus the instantaneous access cost during
time slot t is:

r(C(i(t), s(t)), s(t)) =
∑

(lm)∈X(t)

̺(f(lm),m),

where f(lm) denotes the actual flow on link lm. Note
that this is an example of an additive cost model we
briefly alluded to in (3).

4 DYNAMIC SCHEDULING FOR SINGLE HOP
NETWORKS AND PERFORMANCE GUARANTEES

In this section we present an ǫ-optimal dynamic schedul-
ing policy for the general framework presented in
Section-3. This scheduling policy is dynamic, in that, it
does not require any a priori knowledge of the statistics
of the arrivals or the channels. The presented dynamic
policy features a controllable parameter V which pro-
vides a trade-off between the time average scheduling
cost and network delay.
Dynamic Scheduling ∆d(V )

At the beginning of each time-slot, given the state is

s, the scheduling policy ∆d(V ) chooses i(t) that is the
solution of the following optimization problem:

max
i∈Is

[
∑

l

(Ql(t)
∑

m

clm(i, s)) − V r(C(i, s), s)] (7)

r(C(i, s), s) is the instantaneous aggregate cost imposed
on the secondaries if the state of the network is s and
the flows in the network are equal to C(i, s).
Intuitively, the backlogs function as feedbacks; the

scheduling policy ∆d(V ) assigns the schedule in ac-
cordance with the trade-off between stability and the
scheduling cost. As some queue backlogs build-up, the
scheduling decision favors serving them and the effect
of the cost becomes less significant. A larger V tunes
the scheduler to favor the cost of each schedule at
the expense of larger delays. Theorem 1 formalizes the
performance guarantees of this scheduler.
Theorem 1: For any ~λ ∈ Int(Λ) and for all V ≥ 0,

dynamic policy ∆d(V ) stabilizes the system. Specifically,

lim sup
t→∞

1

t

t
∑

τ=1

∑

l

Ql(τ) ≤
W + V rmax

θmax

where θmax , α arg supθ>0
~λ + θ~1 ∈ Int(Λ) for some

α < 1∗ and W = L(T̂ + 1/2)(A2
max + c2max) where T̂

is determined through the proof.
Moreover, ∀ǫ > 0, ∃V̂ > 0 such that for every V ≥ V̂ ,
∆d(V ) is ǫ-optimal.

Proof: Proof in Appendix A.
It becomes clear from the proof that the only reliance

on the Markovian assumption for the arrivals and net-
work states processes is through properties in (4) and (6),
respectively. Specifically, (4) is used in (24), and (6) is
used to develop (29) and (32). Since (4) and (6) are
satisfied for any stationary and ergodic processes, our
performance guarantees hold for any stationary and
ergodic arrivals and networks states processes that sat-
isfy (1) and (5).

5 IMPERFECT SCHEDULING AND COMPUTA-
TION SIMPLIFICATION

In the previous section we presented an ǫ-optimal dy-
namic scheduling policy for our general framework.
Here we start by applying this dynamic scheduling
policy to the important special case of networks that
was described in subsection-3.1. We discuss the issues
that arise about the computation time of the algorithm
and argue that determining each schedule is an NP-
hard problem. In subsequent subsections we take steps
to tackle this issue. In subsection-5.1 we present a useful
lemma for the general framework which enables us to
develop approximate scheduling policies that bear less
burden of computation for each schedule. In subsection-
5.2 we again turn our attention to the special network
setup of subsection-3.1. Inspired by the result of the

∗. Here α < 1 is used just to avoid the singularities on the border
of the stability region.
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lemma, we propose a dynamic scheduling policy and
establish that for appropriate choice of parameters, our
policy is ǫ-optimal. As we next argue, the computation
time of each schedule in our algorithm does not depend
on the size of the network.
The scheduling policy ∆d(V ) must solve the optimiza-

tion problem (7) in every time slot. The computation
time of solving this combinatorial optimization can grow
exponentially in the size of the network, since for a
general cost function and scheduling constraints, there is
no other way than to exhaust all of the possible i ∈ Is(t).
Here, we explain the structure of the above optimiza-
tion problem for the special case network described in
subsection-3.1. In the beginning of each time slot, the
state of the network is observed which specifies the
network of available links. Note that by assumption,
altering the transmission rates does not affect the in-
terference constraints of the network. Thus in the first
step, each link lm in the network graph determines
its optimum weight w∗

lm(t) by individually solving the
following optimization and finding the best candidate
transmission rate over its channel (c∗):

w∗
lm(t) = max

c∈ςm

[Ql(t)c− V ̺(c,m)] (8)

and c∗lm(t) = arg maxc∈ςm
[Ql(t)c − V ̺(c,m)]. Note that

c = 0, i.e., refraining from transmission over a link,
can be a valid choice too. In the next step, a maximum
weight independent set of links using w∗s as weights
is found, which is the solution of the following NP-
hard [26] combinatorial optimization problem:

X∗(t) = arg max
X∈Xs

∑

lm∈X

w∗
lm(t) (9)

Links in X∗(t) are scheduled at rates equal to their
respective c∗lms. Indeed, as we observe, even for a simple
pairwise and symmetric interference model and when
the cost function is additive over the scheduled links, the
problem is NP-hard and thus impractical to implement
in large networks.

5.1 General Framework

In this section we prove a key lemma that formally spec-
ifies the effect of a multiplicative sub-optimal decision
on the performance guarantees of the scheduling policy.
Lemma (1) has an important implication: it asserts that if
in each time slot, the optimization problem given in (7)
can be approximated arbitrarily closely in the expected
value sense, then both the stability region and the time
average cost of the resulting policy are arbitrarily close to
their optimum values. It is tantalizing to notice the extent
of generality presented in inequality (10) as the necessary
condition of the lemma. Next subsection provides an
example in which inequality (10) is satisfied. In fact as we
will see, this inequality is achieved pathwise with respect
to s(t) and ~Q(t) and the approximation is introduced by
using graph-partitioning (subsection-5.2). For simplicity
of exposition, throughout this section we assume that the

arrivals and network states are iid. Indeed, these results
are easily extendable to Markovian model using similar
arguments as in the proof of Theorem 1.
Lemma 1: Consider a scheduling policy ∆Id(V ) that

in each time slot τ, chooses a (sub-optimal) scheduling
decision i(τ) ∈ Is(τ) that satisfies the following:

E[(
∑

l

Ql

∑

m

clm(i∆
Id(V ), s)) − V r(C(i∆

Id(V ), s), s)]

≥ (1 − φ)max
i∈Is

E[
∑

l

(Ql

∑

m

clm(i, s))

−V r(C(i, s), s)]
(10)

for some constants 0 ≤ φ < 1 (the τs are omitted
for brevity). Then for every V ≥ 0, ∆Id(V ) stabilizes
the network for all ~λ such that ~λ/(1 − φ) ∈ Int(Λ).
Specifically:

lim sup
t→∞

1

t

t
∑

τ=1

∑

l

Ql(τ) ≤
Ŵ + V (1 − φ)rmax

θ̂max

, (11)

in which Ŵ , 1
2L(A2

max + c2max) and θ̂max ,

α arg supθ>0(
~λ+ θ~1)/(1 − φ) ∈ Int(Λ) for some α < 1.†

Moreover, ∀ǫ > 0 and for every ~λ such that ~λ/(1 − φ) ∈
Int(Λ), ∃V̂ > 0 such that for every V ≥ V̂ we have:

Ω∆Id(V )(~λ) ≤ (1 − φ)Ωmin(~λ) + ǫ/2 + Γ(φ),

where Γ(φ) = φ(1 − φ)
√

A2
maxrmax/θ̂max, a constant

independent of the size of the network that goes to zero
as φ→ 0.

Proof: Proof in Appendix B.
Note that [23] also considers multiplicative approx-

imate schedulings. However in that paper, only the
stability region and fairness outside of the stability re-
gion is addressed for a fixed topology network. Here
we showed that both the stability region and the time
average cost of the scheduling subject to stability can
indeed be approximated arbitrarily closely by multiplica-
tive sub-optimal schedulings in a wireless network with
general time-varying topology. In a similar problem,
[12] assumes a fixed topology network and proposes an
additive approximate schedulings policy. The proposed
algorithm achieves lower complexity by using random-
ization without discussing the effect on the network de-
lay. However, simulation results [27] reveal that random-
ized policies impose large delays on the network. On
the contrary, the upperbound on the sum of the queue
backlogs under our approximate scheduling policy is
unaffected provided that we maintain the same distance
from the border of the stability region (inequality (11)).

5.2 Graph Partitioning

Here, we design a scheduling policy that for any given
ǫ > 0, stabilizes the network for every ~λ such that

†. Here α < 1 is used just to avoid the singularities on the border
of the stability region. Also, refer to the footnote at page 5.
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~λ/(1 − ǫ) ∈ Int(Λ) and its cost is at most ǫ more than
the minimum time average scheduling cost, and whose
complexity is independent of the size of the network.
Consider the same network setup described as the

special case in subsection-3.1. We further assume that
each node is aware of its own coordinates. We now
present the scheduling policy π(k, V ), where k and V
are control parameters. An illustration of the algorithm
is provided in Figure 2.
Scheduling Policy π(k, V ):

Consider k different grids: each grid consists of a series
of horizontal and vertical lines, respectively parallel to x
and y axes. The distance between any two consecutive
vertical or horizontal lines is kD. Each grid is specified
by its first horizontal and vertical lines. The first hori-
zontal and vertical lines of the jth grid are x = jD and
y = jD respectively, for j = 0, . . . , k − 1. Define L(j)

to be the set of links for which at least one end point
is within a distance D/2 of a vertical or a horizontal
line of the jth grid. Let G(j) represent the remainder
of the graph after removing all of the links in L(j). Note
that G(j) comprises a series of decoupled subsets of links
such that the links in a component do not interfere with
links in any other component. At the beginning of each
time slot, scheduling policy π(k, V ) observes the network
graph and performs the following:

1) every link selects a j ∈ 0, . . . , k − 1 with probability
1/k. links share the same random seed in their
pseudo-random number generators and thence will
select the same number. Upon selection of j, links
L(j) are removed.

2) Each link lm in the graph G(j) finds its optimum
weight w∗

lm(t) by individually solving the follow-
ing optimization and finding the best candidate
transmission rate over its channel:

w∗
lm(t) = max

c∈ςm

[Ql(t)c− V ̺(c,m)] (12)

c∗lm(t) = arg max
c∈ςm

[Ql(t)c− V ̺(c,m)] (13)

3) Within each component of G(j) the maximum
weight independent set is scheduled using the
calculated optimal weights. Links in each selected
independent set are scheduled at rates equal to
their respective c∗s.

Here we explain the intuition behind the mechanism
of the trade-off. At each time slot a set of the links
in the network of the secondaries are deactivated such
that the remainder is a set of decoupled components
where the scheduling decision in each component is
performed independently of (and thus in parallel with)
other components. The complexity and messaging over-
head of the scheduling decisions depend only on the
size of the largest component. However, in order to
construct smaller components, more links need to be
deactivated, which implies that the scheduling decision
is more astray from the optimal. We formally present

(a) Geometric graph of
the available links during
time slot t.

j=0

j=1

j=2

 3D

3D

(b) Depiction of the three grids as-
sociated with j = 0, 1, 2. Links
choose each grid with probability
1/3.

D
D/2

D/2
D

(c) Here the grid for j = 0 is
selected. Bold links construct the
set L0 and the rest of the links
comprise G(0). Each link in G(0)

calculates its optimal weight and
finds its best transmission rate
over its channel (12),(13).

(d) Then independently in
each component of G(0), a
maximum weight indepen-
dent set of links is sched-
uled at each link’s individ-
ual calculated best trans-
mission rate.

Fig. 2. Step by step illustration of the π(k, V ) scheduling
policy. Here k = 3 and there are two channels (i.e., m =
2).

these trade-offs and establish bounds for sub-optimality
versus complexity.

5.2.1 Performance Guarantees
Theorem 2: For every V ≥ 0, scheduling policies

π(k, V ) stabilize the network for all ~λ such that ~λ/(1 −
β/k) ∈ Int(Λ), where constant β = 120 for case (A), and
β = 96 for case (B). Specifically:

lim sup
t→∞

1

t

t
∑

τ=1

∑

l

Ql(τ) ≤
Ŵ + V (1 − β/k)rmax

θ̂max

(14)

in which Ŵ , 1
2L(A2

max + c2max) and θ̂max ,

α arg supθ>0(
~λ+ θ~1)/(1 − β/k) ∈ Int(Λ) for some α < 1.

Moreover, ∀ǫ > 0 and for every ~λ such that ~λ/(1−β/k) ∈
Int(Λ), ∃V̂ > 0 such that for every V ≥ V̂ we have:

Ωπ(k,V )(~λ) ≤ (1 − β/k)Ωmin(~λ) + ǫ/2 + Γ̂(k)

where Γ̂(k) is achieved constant independent of the size
of the network and that goes to zero as k goes to infinity.

Proof: Proof in Appendix C.
Theorem 2 and Lemma (1) imply that for any given

ǫ > 0, π(k, V ) is ǫ-optimal for a large enough V and k.
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Our analysis in Section-5.2.2 shows that the complexity
of π(k, V ) depends on k and the maximum degree of
a node, but is indeed independent of the size of the
network.

5.2.2 Discussion of Complexity
Finding the maximum weight independent set in dif-
ferent components can be performed in parallel. Hence,
the computation time depends only on the size of the
components (and not on the size of the entire network).
Each component in G(j) has O(D2

Gk
2) links of the same

channel [24], where DG is the maximum degree of that
channel in the network graph. In case (B), the maximum
weight independent set problem can be broken into M
decoupled problems for each channel and thus can be
performed in parallel. Thus the complexity is the same
as when there were only a single channel, which is
O(D2

Gk
2)O(k2) [24]. For case (A), the maximum weight

independent set problem must be considered for all
frequencies jointly, and thus the computation time is
O(MD2

Gk
2)O(k2).

6 MULTIHOP NETWORKS

Assume that there are N secondary nodes and there are
M different channels. As before, we represent each link
by a triplet xyz which shows a link from node x to
node y over channel z. Assume now that data can be
routed over multihop paths to reach its destination. We
refer to all of the data that originates from a particular
node and is destined for another particular node to
as a commodity (or a class). Hence each commodity
pertains to a certain source-destination pair. We use (κ)
to represent commodity κ. Assume that there are K

different commodities in the network. We define A
(κ)
n

to be the amount of data of commodity c exogenously

entering node n during time-slot t. Let Q
(κ)
n (t) be the

amount of data of commodity c buffered at node n at

time t. f
(κ)
xyz(t) is the flow of commodity κ over link xyz

during time slot t, which is the amount of data served

from Q
(κ)
n (t) over link xyz during time slot t. f(t) is the

matrix of such flows during timeslot t. For each network
state s, the scheduler can select j from a set of scheduling
decisions Js, each of which corresponds to a specific
offered transmission rate. j also indicates that on each
link, which commodity is the bandwidth allocated to.

Let c
(κ)
xyz(j(t), s(t)) represent the offered transmission

rate over link xyz to the data of commodity κ at node
x during time slot t. C(j(t), s(t)) is the matrix of the
offered transmission rates during time slot t. As before
we assume that the cost function also depends on the
state of the network and we represent the cost function
by r(f(t), s(t)).
The network is called stable if and only if each of

queues Q
(κ)
n is stable. The closure of the set of all ~λ

for which there exists a scheduling policy that stabilizes
the network is called the (multihop) stability region
and is denoted by Λ. For simplicity of the analysis,

we assume that the arrivals and network states are all
iid. The definition of the throughput and the ǫ-optimal
scheduling is the same as was defined for the single-hop
network. We now present a dynamic joint routing and
scheduling policy which we prove to be ǫ-optimal.
Multihop Dynamic Scheduling Θd :

1) At the beginning of each time slot and for each
link ijk find the commodity (κ) ∈ {1 . . .K} that

maximizes Q
(κ)
i (t) − Q

(κ)
j (t). Call it (κ∗ijk(t)) and

define

W ∗
ijk(t) , Q

(κ∗

ijk(t))

i (t) −Q
(κ∗

ijk(t))

j (t)

Note that both (κ∗ijk(t)) and W ∗
ijk(t) do not change

for a fixed i, j and different k’s.
2) Observe the state of the channel s(t). Out of the

set Is select i(t) = i which solves the following
optimization:

max
i∈Is

[
∑

a,b,m

W ∗
abmcabm(i, s) − V r(C(i, s), s)]

ǫ-optimality of the above scheduling policy can be
obtained as a special case of Theorem (3) by taking φ = 0.
We now consider the issue of imperfect scheduling. As

before, we first consider a general framework and state
a useful lemma and then focus on our special network
setup and present a scheduling that given ǫ > 0, stabi-
lizes the network for every ~λ such that ~λ/(1−ǫ) ∈ Int(Λ)
and its cost is at most ǫ more than the minimum time
average scheduling cost for any given ǫ > 0 and whose
complexity is independent of the size of the network.

6.1 General Framework

Lemma 2: Consider a scheduling policy ΘId that in
each time slot τ, chooses a (sub-optimal) scheduling
decision i(τ) ∈ Is(τ) that satisfies the following:

E[
∑

a,b,m

∑

(c)

c
(κ)
abm[Q(κ)

a −Q
(κ)
b ] − V r(C(j, s), s)]

≥ (1 − φ)maxE[
∑

a,b,m

∑

(κ)

c
(κ)
abm[Q(κ)

a −Q
(κ)
b ] − V r(C(j, s), s)]

(15)

for some constants 0 ≤ φ < 1 (τs are omitted for brevity)
. Then for every V ≥ 0, ΘId stabilizes the network for
all ~λ such that ~λ/(1 − φ) ∈ Int(Λ). Specifically:

lim sup
t→∞

1

t

t
∑

τ=1

∑

n,(κ)

Q(κ)
n (τ) ≤

Ŵ + V (1 − φ)rmax

θ̂max

in which Ŵ , 1
2NK[(Amax + cinmax)2 +

(cout
max)2], where A2

max , maxn,(κ)E(Aκ
n)2

and cout
max , max{n,s,j∈Js}

∑

b,m cnbm(j, s) and

cinmax , maxn,s,j∈Js

∑

a,m canm(j, s). Also,

θ̂max , α arg supθ>0(
~λ + θ~1)/(1 − φ) ∈ Int(Λ) for

some α < 1.‡

‡. Here α < 1 is used just to avoid the singularities on the border
of the stability region. Also, refer to the footnote at page 5.
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Moreover, ∀ǫ > 0 and for every ~λ such that
~λ/(1 − φ) ∈ Int(Λ), ∃V̂ > 0 such that for every
V ≥ V̂ we have:

ΩΘId

(~λ) ≤ (1 − φ)Ωmin(~λ) + ǫ/2 + Γ(φ)

where Γ(φ) is a constant independent of the size of the
network and that goes to zero as φ→ 0.

6.2 Graph-Partitioning

The setup is the same. The scheduling is quite sim-
ilar. The only difference is in the last two steps:
Scheduling Policy π(k, V ), Multihop version:

1) every link selects a j ∈ 0, . . . , k − 1 with probability
1/k. links share the same random seed in their
pseudo-random number generators and thence will
select the same number. Upon selection of j, links
L(j) are removed.

2) a) First each link xyz specifies its candidate com-
modity by individually solving for κ∗xyz(t) and
its respective best back-pressure B∗

xyz :

B∗
xyz(t) = max

(κ)
[Q(κ)

x (t) −Q(κ)
y (t)]

c∗xyz(t) = argmax
(κ)

[Q(κ)
x (t) −Q(κ)

y (t)]

b) Then each link lm in the graph G(j) finds its
optimum weight w∗

lm(t) by individually solv-
ing the following optimization and finding
the best candidate transmission rate over its
channel:

w∗
xyz(t) = max

c∈ςm

[B∗
xyz(t)c− V ̺(c,m)]

µ∗
xyz = argmax

c∈ςm

[B∗
xyz(t)c− V ̺(c,m)]

3) Within each component of G(j) the maximum
weight independent set is found using the calcu-
lated optimal weights. A link xyz in each selected
independent set is scheduled for data of commod-
ity κ∗xyz(t) at rate µ∗

xyz(t).

Theorem 3: For every V ≥ 0, scheduling policies
π(k, V ) stabilize the network for all ~λ such that ~λ/(1 −
β/k) ∈ Int(Λ), where constant β is the same constant as
in the single-hop case. Specifically:

lim sup
t→∞

1

t

t
∑

τ=1

∑

l

Ql(τ) ≤
W + V (1 − β/k)rmax

θ̂max

in which Ŵ , NK(Amax + cinmax)2 + cout
max. Also, θ̂max ,

α arg supθ>0(
~λ + θ~1)/(1 − β/k) ∈ Int(Λ) for some α < 1.

Moreover, ∀ǫ > 0 and for every ~λ such that ~λ/(1−β/k) ∈
Int(Λ), ∃V̂ > 0 such that for every V ≥ V̂ we have:

Ωπ(k,V )(~λ) ≤ (1 − β/k)Ωmin(~λ) + ǫ/2 + Γ̂(k)

where Γ̂(k) = φ
√

A2
maxrmax/θ̂max, a constant indepen-

dent of the size of the network and that goes to zero as
k goes to infinity.

The proofs of Lemma (2) and Theorem (3) are followed
by using similar techniques used for the single-hop
network model and thus are included in our technical
report [28].

7 COST SHARING AND SHAPLEY VALUE

We have developed ǫ-optimal dynamic scheduling poli-
cies that arbitrarily closely approximate the aggregate
time average cost of the scheduling subject to supporting
the stability region of the network. We now focus on
developing a rational basis for sharing the aggregate cost
between (a) the different sessions if the network consists
of one or more providers (b) the different providers in
case there are multiple providers in the network. Our
investigation is motivated by the fact that each user
(provider or session) is interested in minimizing its own
cost rather than the aggregate cost of the service, and
providing a rational basis for cost sharing is therefore
a prerequisite for motivating them to schedule their
transmissions so as to minimize the aggregate cost. We
develop this rational basis using principles from cooper-
ative game theory, more specifically, the notion of Shapley
value, which satisfies several intuitively appealing prop-
erties for a rational cost-sharing solution. The framework
we present can easily consider both the above cases, but
has been stated for only case (a): the aggregate time
average cost is shared amongst the sessions.
We first point out the deficiencies of two naive cost

sharing mechanisms: (i) equal splitting (ii) direct cost. As
the name suggests, (i) splits the cost equally among all
sessions. The second, (ii), assumes that the cost structure
is additive (3), and charges session i the time-average
of the additive cost (i.e., its direct cost) it imposes on
the system. Specifically, if session l uses flow flm over
channelm for γlm,s fraction of time when the system is in
state s, then it incurs a cost of

∑

s πs

∑

m γlm,srlm(flm, s).
Intuitively, the cost sharing mechanism should be such
that the cost incurred by a session depends on (a) its
traffic demand; (b) the access fees imposed by the
primary channels available to that session and (c) the
traffic demand of the sessions which interfere with it.
We demonstrate, using simple examples, that the above
naive cost sharing mechanisms do not consider the
above.
Assume that there are only two interfering sessions

with arrival rates equal to 1 and 2 pps respectively.
The aggregate time average scheduling cost is 3$ per
slot (ps) where session 1 is responsible for 1$ ps and
session 2 for 2$ ps. But, equal splitting will charge each
session 1.5 ps. Next, consider a network consisting of
two non-interfering sessions with identical arrival rates
equal to 1 pps. Assume that there are two available
channels. Session 1 has access to the expensive channel
1 which offers 1 pps transmission rate and imposes
1$. Session has access to cheap channel 2 which offers
4 pps and imposes 2$ per instance of access. Thus the
aggregate time average cost is 1.5$ ps where sessions
are responsible for 1 and 0.5$ ps respectively. But, again
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equal splitting charges each session 0.75 ps. These two
examples show that equally splitting the aggregate cost
amongst sessions is not desirable.
We now present an example to demonstrate the de-

ficiencies of the direct cost based cost-sharing mecha-
nism. Suppose that there are two interfering secondary
sessions each with an arrival rate equal to 0.75 pps.
Also, suppose that there are two primary channels that
both offer 1 pps transmission rates but charge 2 and 4
$ per access respectively. Suppose that the first session
has access to both channels and the second session has
access only to the cheaper channel. The scheduling cost
of each of the sessions if they were the only session
to be scheduled is 1.5$ ps. However, when they are
both present, the direct access cost of the first and
second sessions are 2.5$ ps and 1.5$ ps respectively.
Hence, the first session might argue that it is charged
excessively in favor of the second session and thus feels
unfairly treated. This example shows that charging the
sessions based on their direct cost is not desirable as
well, and a careful design should also take these subtle
mutual effects into account and share the aggregate cost
accordingly.
We now provide a rational basis for splitting the ag-

gregate time average scheduling cost between different
sessions. First, let us introduce the notations that are
used in this section. Let Z denote the set of all secondary
sessions, i.e., Z = {1, . . . , L}, and let Y be an arbitrary
subset of Z, with arrival rate vector equal to ~λY . Note
that ~λZ is simply ~λ. Let v(Y ) represent the aggregate
time average cost of scheduling the sessions in Y subject
to their stability, when only sessions in Y are present
in the network. The value of v clearly depends on the
scheduling policy. For our ǫ-optimal scheduling policies
we have v(Y ) = U(~λY ), where U(~λY ) is given by
the optimization problem defined in (18,19,20,21). This
follows from Lemma (5) and Theorems (1) and (2). Now,
the problem is to devise a rule for splitting v(Z) amongst
sessions of Z. Assume that the assignment of the time
average costs to the sessions of the set Z is represented
by the vector function ~φ(Z) = (φ1(Z), . . . , φL(Z)) and
is defined for any Z and any ‖Z‖ = L. We assume
that ~φ(∅) = 0. Also, we assume that the total cost is
shared between the sessions, i.e.,

∑L
i φi(Z) = v(Z). We

refer to this condition as feasibility. Trivially, ~φ({i}) =
v({i}), where i is a single session. Now let L ≥ 2 and
consider two distinct sessions i and j. Suppose that
φj(Z)−φj(Z \ {i}) > 0, then session j would pay less if
session i were not present in the network. Thus session
j might object that ~φ is an unfair assignment, unless
session i can counter-object that it is at least as much
disadvantaged due to the presence of session j, and vice
versa.§ This results in the following condition for the
assignment function:

∀L > 0 : φi(Z)−φi(Z\{j}) = φj(Z)−φj(Z\{i}), (16)

§. A similar argument can be constructed when φj(Z)−φj(Z\{i}) <
0; [29, pp. 170-171]

which is known as the balanced contributions property.
It is known [30] that there is only one assignment

function ~φ that satisfies both feasibility and balanced
contributions properties and is called the Shapley Value,
which is defined as follows.

ϕi(Z) =
∑

Y ⊆Z\{i}

‖Y ‖!(L− ‖Y ‖ − 1)!

L!
[v(Y ∪ {i})− v(Y )].

(17)
The Shapley value has an interesting intuitive inter-

pretation: suppose that all of the sessions are arranged
in a random order. Whenever a session with non-zero
demand is added to the network, the aggregate time
average cost of the scheduling increases. The incremental
cost of scheduling a session i depends on the specific
order, and thus is a random variable. Assume that all
permutations are assigned equal probabilities. Now the
Shapley value of a session i is the expectation of these
cost increments due to addition of that session under the
above probability distribution for the random ordering.
Now as an example, let us calculate the Shapely value

of each of the sessions in our three simple examples. In
the first example we have v({1, 2}) = 3$ ps, v({1}) =
1$ ps and v({2}) = 2$ ps. Thus the Shapley values are
as follows: ϕ1(~λ) = 1 and ϕ2(~λ) = 2$ ps. Note that
other things being identical, the session that has higher
arrival rate incurs a higher cost. In the second example
v({1, 2}) = 1.5, v({1}) = 1 and v({2}) = 0.5$ ps. Thus
ϕ1(~λ) = 1 and ϕ2(~λ) = 0.5$ ps. Thus, other things
being identical, the session that has access to the cheaper
channel incurs lower cost. Finally, in the third example
we have v({1, 2}) = 4 and v({1}) = 1.5 and v({2}) = 1.5$
ps. Thus, ϕi(~λ) = 2.5$ ps and ϕ2(~λ) = 2.5$ ps. We see
that now none of the sessions can unilaterally argue that it
is disadvantaged due to the presence of the other session.
In our first approach, we started from feasibility

and balanced contributions (16) properties and reached
the Shapley value function. Alternatively, it can be
shown [30] that the Shapley value ϕ(Z) is the unique
assignment function that satisfies feasibility along with
the following three axioms:

1) Symmetry: If for every subset Y that includes i
but not j, we have v((Y \ {i}) ∪ {j}) = v(Y ), then
φi(Z) = φj(Z).

2) Dummy player: If for every Y we have v(Y ∪{i})−
v(Y ) = v({i}), then φi(Z) = v({i}).

3) Additivity: If for every Y a new cost function u
is defined as the sum of the two separate cost
functions v and w, i.e., if for every Y, u(Y ) =
w(Y ) + v(Y ) then for all i ∈ Z we have φu

i (Z) =
φw

i (Z) + φv
i (Z), where φv

i (Z) is the assignment to
the player i when the cost function is v, etc.

These axioms have interesting interpretations in the
context of our problem. Symmetry guarantees that if two
sessions impose identical incremental costs irrespective
of the set of sessions they are scheduled with, then they
are charged the same. Dummy player says that a session
i pays exactly v({i}) when the increment in cost of



11

scheduling is v({i}) irrespective of the set of sessions that
i is scheduled with. For example, a session is a dummy
player if it does not interfere with other sessions or when
its arrival rate is zero. In the latter case, Shapely value
guarantees that sessions with zero arrival rate are not
charged. Finally additivity ensures that the cost incurred
by the session for two different types of service is the
sum of the costs incurred for each service.
Note that in order to be able to calculate the Shapley

values, we now require knowledge of stationary statistics
of the arrivals and the channels, however, this should
not impose a significant problem. It is because billing
the sessions, unlike scheduling the sessions, is not delay-
sensitive and thus, can be performed after sufficient data
about the statistics of the network is collected.

8 SIMULATION RESULTS

In this section, we apply both the dynamic scheduling
policy ∆d(V ) (section 4) and the graph-partitioning ap-
proximation algorithm π(k, V ) (section 5) to a sample
network. Particularly, we are interested to see how much
the algorithms are sensitive to choice of parameters V
and k when they take values much smaller than what
the theorems prescribe.
First, we consider 25 nodes located on a square grid

of 5 × 5 nodes, where the distance between each two
adjacent nodes on the grid is D. The communication
is single-hop and there is a session between every two
adjacent nodes on the grid, thus there are a total of 40
sessions to be scheduled. The topology of the network
does not change over the duration of simulation, which
is T = 10, 000 slots. There are two orthogonal channels
and the nodes have multiradio capability, i.e., they can
communicate over different channels simultaneously. We
use the same interference model described in section 3.1,
part B (page 4).
The arrivals to each session are according to an

ON/OFF Markovian source and are independent of
other sessions. We consider a symmetric arrival vector,
i.e., the same arrival rate for all sessions. The transition
from ON to ON state in the arrival generating Markov
chain set to 0.7 to model the bursty nature of the arrived
data. The ON state represents arrival of a packet. The
transition between the OFF to OFF state is chosen so as
to yield the desired arrival rate as an input parameter.
The first channel has capacity 1 and the second channel
has capacity 2 packets per slot. The access fee for channel
one is 1 unit per slot and for channel two is 4 units per
slot. Both channels are always connected.
We first apply the ∆d(V ) algorithm developed in sec-

tion 4. We observe that the scheduling policy ∆d(V ) sta-
bilizes the network for all the symmetric arrival rates less
than 0.35 packets per slot. The time average aggregate
cost of the scheduling is depicted in fig. 3. For V = 0,
∆d(V ) treats the two channels as if there was one chan-
nel of sum of their capacities, and is completely blind to
the access fees. We observe that even for a small value of
V = 5, the algorithm yields a substantial improvement
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Fig. 3. Time average aggregate cost of ∆d(V ) scheduling
policy versus V for different symmetric arrival rates.
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Fig. 4. Time average fraction of access to channel 2
over channel 1 in ∆d(V ) scheduling policy for different
symmetric arrival rates and different values of V.

over fee-blind access to both channels, and the time
average aggregate cost improves only slightly by further
increase in V. Recall from Theorem 1 (Section 4) that a
larger V translates into a higher bound on the sum of
backlogs. Thus our experiments show that, in practice,
we can choose a small V and thereby attaining the
minimum time average aggregate cost without suffering
from increased backlogs/network delays.

In fig. 4, we have gradually increased the symmetric
arrival rate and we depict the proportion of frequency
of access to channel 2 (the more expensive channel)
to channel 1. It clearly shows that as the arrival rates
increase, the relative frequency of acessing the expen-
sive channel increases. This is because the algorithm is
required to stabilized the queues and thus has to resort
to the expensive channel to prevent exceeding backlogs.

We now demonstrate the benefits of the approximate
scheduling policy by considering a large network. With
the same channel and interference settings, we consider
a a grid of 100 × 100 nodes. The implementation of the
∆d(V ) scheduling policy is thus clearly impractical as
there are 19, 800 links (sessions) in the network, and an
exponentially large number of independent sets. How-
ever, graph-partitioning technique allows us to perform
an approximate scheduling over the whole network. We
specifically choose k = 7, which makes the largest size of
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Fig. 5. Time average aggregate cost of partitioning algo-
rithm π(k, V ) for k = 7 versus V for different symmetric
arrival rates in the graph of 100 × 100 nodes.

the subgraphs be 5×5. As before, we run the simulation
for T = 10, 000 slots. As is clear from 5, even for V
as small as 5, we witness a significant improvement
compared with the case of V = 0, and minor sensitivity
to further increasing of V.

9 CONCLUSION AND FUTURE DIRECTIONS

In this paper we studied the problem of spectrum access
for a network of secondaries where the primaries impose
access fees. We developed a dynamic scheduling policy
that, without knowledge of arrivals’ and channels’ statis-
tics, (a) supports the stability region of the network of
the secondaries and (b) attains a time average cost that
is arbitrarily close to its minimum. We used a Lyapunov
drift technique to establish these performance guarantees
for a Markovian arrival and network statistics. Next, we
considered the issue of the computation time required
for calculation of each schedule and we proceeded to
develop an approximate scheme that attains arbitrary
trade-offs between (a) the complexity of the schedules
and (b) the time average access cost subject to stability.
The design of the approximate scheme relied on a com-
bination of Lyapunov drift and graph partitioning. We
also showed that our results are extendable to multihop
networks. Next, we proposed a cost-sharing policy based
on the concept of the Shapley value that attains a set of
desirable properties. Our paper provides a formal frame-
work to the problem of dynamic wireless scheduling
with economical consideration. The results in our paper
are rigorously proved based on a general Markov chain
model of the states of the network and arrivals, from
which the i.i.d. case follows as a special case.
The problem of effectively sharing the scheduling cost
can open doors to new investigations of this kind. For
instance, by introducing new objectives such as varia-
tions of fairness and/or collusion prevention from co-
operational game theory, other interesting cost-sharing
policies can be developed. Another interesting direction
of research is the issue of pricing: we started with a given
set of access fees by primaries. The choice of these costs
by each primary will determine the rate of their revenue.

In a more advanced model, the announced access fees
may also affect the demands of the secondaries. Now,
since more than one primary can be present in the
network, possibility of competition, cooperation and col-
lusion can be investigated. Inspired by works on pricing
the internet (e.g. [31]), new pricing mechanisms may be
developed to achieve a set of desirable properties and
potentially engineer the congestion in a multichannel
wireless network in presence of the mentioned dynam-
ics.

APPENDIX A
PROOF OF THEOREM 1
Here, we provide a brief overview of the proof: we estab-
lish the existence of a stationary randomized scheduler,
∆∗(~λ), which provably attains minimum time average
cost subject to stability of the network for any arrival rate
in the stability region of the network. (Lemmas 3,4,5).
Next, we compare the performance of our dynamic
scheduling policy (∆d(V )) against the stationary sched-
uler and hence, deduce our results.
Before we get to the proof of Theorem 1, we state

four lemmas which we later use. Consider the following
optimization problem which we will refer to as MC(~λ),
where the variables are ωs

i :

U(~λ) = min
{ω}

∑

s

πs

∑

i∈Is

r (C(i, s), s)ωs
i (18)

s.t.
∑

s

πs

∑

m

∑

i∈Is

clm(i, s)ωs
i = λl ∀l ∈ {1, . . . , L}

(19)
∑

i

ωs
i = 1 ∀s ∈ S (20)

ωs
i ≥ 0 ∀s, i ∈ Is. (21)

Lemma 3: MC(~λ) is feasible for all ~λ ∈ Int(Λ).
Lemma 4: For any ~λ ∈ Int(Λ), Ωmin(~λ) ≥ U(~λ).

In words, any scheduling policy that stabilizes ~λ has an
aggregate time average cost at least U(~λ).
Minimum Cost Stationary Single-Hop Scheduling Policy:

Let ω∗ be the minimizer of the MC(~λ). During each
time slot, observe the state of the network S(t) = s, and
choose scheduling decision i ∈ Is with probability ωs∗

i .

We refer to such a scheduling policy as ∆∗(~λ).
Lemma 5: For any ~λ ∈ Int(Λ) and any ǫ > 0, there

exists a δ > 0 such that

Ω∆∗(~λ+δ~1) ≤ U(~λ+ δ~1) ≤ Ωmin(~λ) + ǫ w.p.1

Also, δ → 0 as ǫ→ 0.
Lemma 6: If for nonnegative real variables X,Y, Z,W

we have X ≤ [Y −Z]++W, then the following inequality
holds: X2 ≤ Y 2 + Z2 +W 2 − 2Y (Z −W ).
Lemmas (3,4,5) follow by similar arguments used

in [13] and are relegated to our technical report [28].
The only significant difference in the assumptions is that
in [13] energy consumption is associated with allocation
of transmission rates. In contrast, we attribute cost only



13

to the actual transmitted flows. Lemma (6) is a simple
algebraic relation which can be found in [32]-p.54.

Proof of Theorem 1:

Throughout the proof ~Q(τ) is the vector of the sec-
ondary queue backlogs at time τ under the ∆d(V )
scheduling policy. We also assume that the network
starts at τ = 1 with finite queue backlogs.

Define: L(τ) , 1
2

∑

lQ
2
l (τ). Also, define: ∆(L(τ), τ) ,

E[L(τ+1)−L(τ)], in which the expectation is taken with
respect to the joint distribution of H(t), t = 1, . . . , τ + 1
and possibly any randomization used in the scheduling
policy. For brevity, we abuse the notation and use c∆lm(τ)
to represent the offered transmission rate assigned to link
lm during time slot τ by scheduling policy ∆, which is
in fact equal to clm(i∆(τ), s(τ)). Also, whenever Clm(t)
is used without superscript, it pertains to the ∆d(V )
scheduling policy. Applying Lemma (6) to the network
dynamics equation (2) yields:

∆(L(τ), τ) ≤
1

2

∑

l

E[Q2
l (τ)] +

1

2

∑

l

E[A2
l (τ)]

+
1

2

∑

l

E[(
∑

m

clm(τ))2]

−
∑

l

E[Ql(
∑

m

clm(τ) −Al(τ))] −
1

2

∑

l

E[Q2
l (τ )]

≤ Ŵ −
∑

l

E[Ql(
∑

m

clm(τ) −Al(τ))],

where Ŵ , 1
2 [A2

maxL + (cmax)2L]. The last inequal-
ity follows from inequalities (1) and (5). Adding
V E[r(C(τ), s(τ))] to both sides, we obtain:

∆(L(τ), τ) + V E[r(C(τ), s(τ))]

≤ Ŵ − E[(
∑

l

Ql(τ)
∑

m

clm(τ)) − V r(C(τ), s(τ))]

+
∑

l

E[Ql(τ)Al(τ)]. (22)

Now, note that by the law of iterated expectations, we
have:

E[Ql(τ)Al(τ)] = E[E[Ql(τ)Al(τ) | H(τ − T )]].

Clearly, Ql(τ) ≤ Ql(τ − T ) +
∑τ−1

ν=τ−T Al(ν). Thus,

E[Ql(τ)Al(τ)] ≤ E[E[Ql(τ − T )Al(τ) | H(τ − T )]]

+TA2
max. (23)

Since Ql(τ − T ) ∈ H(τ − T ), we have:

E[Ql(τ − T )Al(τ) | H(τ − T )] (24)

= Ql(τ − T )E[Al(τ) | H(τ − T )]. (25)

Hence, by using inequality (4) in (23), for T > TA(ρ) we
get:

E[Ql(τ)Al(τ)] ≤ (λl + ρ)E[Ql(τ − T )] + TA2
max.

Applying the above inequality in (22) yields:

∆(L(τ), τ) + V E[r(C(τ), s(τ))]

≤ Ŵ − E[(
∑

l

Ql(τ)
∑

m

clm(τ)) − V r(C(τ), s(τ))]

+ (λl + ρ)
∑

l

E[Ql(τ − T )] + TLA2
max. (26)

Now, note that the following inequality holds pathwise
in ~Q(τ) and s(τ) :

∑

l

(Ql(τ)
∑

m

clm(τ)) − V r(C(τ), s(τ))

≥
∑

l

(Ql(τ)
∑

m

c
∆∗(.)
lm (τ)) − V r(C∆∗(.)(τ), s(τ)). (27)

The inequality follows because referring to the definition
of the scheduling policy ∆d(V ), at each time slot τ it
observes ~Q(τ) and s(t) and maximizes the left-hand side
over any possible scheduling decisions, including those
made by any ∆∗(.). Taking the expectation of both sides
of (27) and applying the result in inequality (26), we
obtain:

∆(L(τ), τ) + V E[r(C(τ), s(τ))] ≤ Ŵ + TLA2
max

−E[
∑

l

Ql(τ)
∑

m

c
∆∗(.)
lm (τ)] + V E[r(C∆∗(.)(τ), s(τ))]

+(λl + ρ)
∑

l

E[Ql(τ − T )].

(28)

Consider the scheduling policy ∆∗(~λ+θ~1) where ~λ+θ~1 ∈
Int(Λ). According to Lemma (3), MC(~λ+ θ~1) is feasible.
The stationary probability of the network state s is πs.

Hence, from (6) and following constraint (19) ofMC(~λ+

θ~1) and the definition of ∆∗(~λ + θ~1), we conclude:

∀ρ > 0, ∃TC(ρ) <∞, s.t. ∀T > TC(ρ), ∀τ :

E[
∑

m

~c∆
∗(~λ+θ~1)

m (τ) | H(τ − T )] ≥ ~λ+ θ~1 − ρ~1, (29)

where ~cl , (cl1, . . . , clm). Clearly, Ql(τ) ≥ Ql(τ − T ) −
cmaxT. Therefore:

E[Ql(τ)
∑

m

c
∆∗(~λ+θ~1)
lm (τ)]

= E[E[Ql(τ)
∑

m

c
∆∗(~λ+θ~1)
lm (τ) | H(τ − T )]]

≥ E[Ql(τ − T )E[c
∆∗(~λ+θ~1)
lm (τ − T ) | H(τ − T )]] − c2maxT.

(30)

From (28), (29) and (30), for T > max{TA(ρ), TC(ρ)}, we
have:

∆(L(τ), τ) + V E[r(C(τ), s(τ))] ≤W

−(θ − 2ρ)
∑

l

E[Ql(τ − T )] + V E[r(C∆∗

(τ), s(τ))], (31)

whereW , Ŵ+TLA2
max+TLc2max = L(T+1/2)(A2

max+
c2max).
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Stability: We can ignore the second term in the left
hand side of the inequality (31), i.e., V E[r(C(τ), s(τ))],

for it is non-negative for all τ. Also, note that ~λ+θmax ∈
Int(Λ), thus (31) holds for θmax :

1

2

∑

l

EQ2
l (τ + 1) −

1

2

∑

l

EQ2
l (τ)

≤W − (θmax − 2ρ)
∑

l

EQl(τ − T ) + V rmax.

This inequality holds for every τ > 0. Summation of
these inequalities for τ = T+1, . . . , t+T and simplifying
the telescopic sum and reordering yield:

1

2

∑

l

EQ2
l (t+ T + 1) −

1

2

∑

l

EQ2
l (T + 1)

+ (θmax − 2ρ)
t

∑

ν=1

∑

l

EQl(ν) ≤ tW + tV rmax.

Note that 1/2
∑

l EQ
2
l (t + T + 1) ≥ 0, hence we

can remove it from the inequality. Now we take
the lim supt→∞

1
t of both sides. Notice the fact that

1/2
∑

lEQ
2
l (T +1) <∞, therefore as long as ρ < θmax/2

we have:

lim sup
t→∞

1

t

t
∑

ν=1

∑

l

EQl(ν) ≤
(W + V rmax)

θmax − 2ρ
.

Hence for instance, for ρ = θmax/4 we obtain:

lim sup
t→∞

1

t

t
∑

ν=1

∑

l

EQl(ν) ≤
2(W + V rmax)

θmax
,

where the value of T̂ in calculation of W is thus equal
to max{TA(θmax/4), TC(θmax/4)}. We notice that under
the ∆d(V ) scheduling policy, the random process H(τ)
is a countably infinite state discrete time Markov chain.
We conclude from the above lim sup inequality that the
Markov chain of H(τ) is positive-recurrent. Hence the
inequality is valid in almost sure sense as well:

lim sup
t→∞

1

t

t
∑

τ=1

∑

l

Ql(τ) ≤
1

θmax
(W + V rmax) w.p.1,

concluding the result for stability.
Time Average Cost: Note that by definition of U(~λ+θ~1),

we have:

U(~λ+ θ~1) =
∑

s

πs

∑

i∈Is

r (C(i, s), s)ω∆∗(~λ+θ~1)
s .

Thus, from (6) and the definition of ∆∗(~λ+θ~1), we have:

∀ρ > 0, ∃TU (ρ) <∞, s.t. ∀T > TU (ρ), ∀τ :

E[r(C∆∗(~λ+θ~1)(τ), s(τ)) | H(τ − T )] ≤ U(~λ+ θ~1) + ρ.
(32)

Using (32) in inequality (31), for T >
max{TU(ρ), TA(ρ), TC(ρ)}, we obtain:

∆(L(τ), τ) + V E[r(C(τ), s(τ))] ≤W

− (θ − 2ρ)E[
∑

l

Ql(τ − T )] + V U(~λ+ θ~1) + V ρ.

As long as ρ ≤ θ/2, we can ignore the term E[
∑

lQl(τ −
T )] in the right hand side of the inequality. Hence:

1

2

∑

l

EQ2
l (τ + 1) −

1

2

∑

l

EQ2
l (τ) + V Er(C(τ), s(τ))

≤W + V U(~λ+ θ~1) + V ρ.

This inequality holds for every τ > 0. Summing up the
inequalities for τ = 1 . . . t and simplifying the telescopic
sum yield:

1

2

∑

l

EQ2
l (t+ 1) −

1

2

∑

l

EQ2
l (1) + V

t
∑

τ=1

Er(C(τ), s(τ))

≤ tW + tV U(~λ+ θ~1) + tV ρ.

We can ignore the term 1/2
∑

l EQ
2
l (t + 1) on the left

hand side as it is non-negative. Dividing both sides by
t and taking the lim sup as t goes to infinity, noting the
fact that 1/2

∑

lEQ
2
l (1) <∞, we obtain:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) ≤
W

V
+ U(~λ+ θ~1) + ρ.

Since ~λ is strictly interior to Λ, following Lemma (4), for
any given ǫ > 0 we can find a θ > 0 such that U(~λ+θ~1) ≤
Ωmin(~λ) + ǫ/4. Thus, for such θ and ρ ≤ min{θ/2, ǫ/4},
we get:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) ≤
W

V
+ Ωmin(~λ) + ǫ/2.

Thus, for every choice of V ≥ V̂ ≥ 2W/ǫ, we have:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) ≤ Ωmin(~λ) + ǫ. (33)

Now, to relate the left hand side of the inequality

to Ω∆d(V )(~λ), we first note that due to non-decreasing
property of the r function, the following holds:

lim sup
t→∞

1

t

t
∑

τ=1

r(f(τ), s(τ)) ≤ lim sup
t→∞

1

t

t
∑

τ=1

r(C(τ), s(τ)).

(34)
Also, note that under ∆d(V ), H(t) is a discrete time
Markov chain process with countably infinite states.
By establishing the stability of the queues, we indeed
showed that this Markov chain is positive-recurrent.
Hence, any bounded function defined on theH(t) almost
surely converges to its mean:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) = E0r(C(t), s(t)) w.p.1,

(35)
where the last expectation is taken with respect to the
stationary distribution of H(t). Following the same ar-
gument, we conclude:

lim sup
t→∞

1

t

t
∑

τ=1

r(C(τ), s(τ)) = E0r(C(t), s(t)) w.p.1.

(36)
The result follows from (33, 34, 35, 36).
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APPENDIX B
PROOF OF LEMMA 1

Proof: Throughout the proof, ~Q(τ) is the queue back-
logs under the ∆Id(V ) scheduling policy. Also, C

∆(τ)
is used to refer to C(i∆(τ), s(τ)) and those without
superscript pertain to ∆Id(V ). Following the same steps
as in the proof of Theorem 1 until inequality (22), we
obtain:

∆(L(τ), τ) + V Er(C(τ), s(τ))

≤ Ŵ − E[
∑

l

Ql(τ)
∑

m

clm(τ) − V r(C(τ), s(τ))]

+
∑

l

E[Ql(τ)Al(τ)]. (37)

From the iid assumption of the arrivals we get:

E[Ql(τ)Al(τ)] = EQl(τ)λl. (38)

Applying (38) in (37) yields:

∆(L(τ), τ) + V Er(C(τ), s(τ))

≤ Ŵ − E[
∑

l

Ql(τ)
∑

m

clm(τ) − V r(C(τ), s(τ))]

+ λl

∑

l

EQl(τ)

≤ Ŵ − (1 − φ){E[
∑

l

Ql(τ)
∑

m

c
∆∗(.)
lm (τ)]

− V Er(C∆∗(.)(τ), s(τ))} + λl

∑

l

EQl(τ). (39)

Inequality (39) is obtained from inequality (10) which
defines the scheduling policy ∆Id(V ). Now note that
scheduling policies ∆∗(.) make their scheduling deci-
sions independent of the queue lengths. Moreover, due
to the assumption of iid network states, ~Q(τ) is indepen-
dent of s(τ). Therefore:

E[Ql(τ)
∑

m

c
∆∗(.)
lm (τ)] = EQl(τ)E[

∑

m

c
∆∗(.)
lm (τ)]. (40)

Stability: Consider the policy ∆∗((~λ + θ̂max
~1)/(1 −

φ)). Since (~λ + θ̂max~1)/(1 − φ) ∈ Int(Λ), according
to Lemma (3), MC((~λ + θ̂max

~1)/(1 − φ)) is feasible.
Note that constraint (19) of MC((~λ + θ̂max

~1)/(1 − φ))
and the iid assumption of the states guarantee that

E[
∑

m c
∆∗((~λ+θ̂max

~1)/(1−φ))
lm (τ)] = λl/(1−φ)+θ̂max/(1−φ).

Hence, by referring to (40) and (39) and canceling the
common terms, we obtain:

∆(L(τ), τ) + V Er(C(τ), s(τ)) ≤ Ŵ−

θ̂max

∑

l

EQl(τ) + (1 − φ)V Er(C∆∗(
(~λ+θ̂max~1)

(1−φ)
)(τ), s(τ))

≤ Ŵ − θ̂max

∑

l

Ql(τ) + (1 − φ)V rmax

Following similar steps as in the proof of Theorem 1 after
equation (31), we reach the following relation:

lim sup
t→∞

1

t

t
∑

τ=1

∑

l

EQl(τ) ≤
(Ŵ + (1 − φ)V rmax)

θ̂max

. (41)

Under ∆Id(V ), ~Q(t) is a Discrete time Markov chain
process with countably infinite states. We conclude from
the above lim sup inequality that the Markov chain of
~Q(t) is positive-recurrent. Hence, the inequality in almost
sure sense is also implied:

lim sup
t→∞

1

t

t
∑

τ=1

∑

l

Ql(τ) ≤
(Ŵ + (1 − φ)V rmax)

θ̂max

w.p.1.

Time Average Cost: Since ~λ ∈ Int(Λ), Lemma (3) guar-
antees that MC(~λ) is feasible. Also, note that:

Er(C∆∗(~λ)(τ), s(τ)) =
∑

s

πs

∑

i∈Is

ωs∗
i r(C(i, s), s) = U(~λ).

This follows by the iid assumption of the network states
and the definition of U(~λ). Also, referring to constraint
(19) of MC(~λ) and the iid assumption of the states, we

have: E[
∑

m c
∆∗(~λ)
lm (τ)] = λl. Hence, from (39) and (40):

∆(L(τ), τ) + V Er(C(τ), s(τ)) ≤

Ŵ + φ
∑

l

λlEQl(τ) + (1 − φ)V U(~λ).

Taking similar steps as in the proof of Theorem 1 after
equation (32), we achieve the following:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) ≤
Ŵ

V
+

φ

V
lim sup

t→∞

1

t

t
∑

τ=1

∑

l

λlEQl(τ) + (1 − φ)U(~λ).

Note that from Cauchy-Schwartz inequality, λl ≤
√

EA2
l (t). Thus by applying inequality (41), we obtain:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) ≤
Ŵ

V
+

φ
√

A2
max

V

(Ŵ + (1 − φ)V rmax)

θ̂max

+ (1 − φ)U(~λ).

Since ~λ ∈ Int(Λ), following Lemma (4), we have U(~λ) ≤
Ωmin(~λ). Therefore:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) ≤
Ŵ

V
+

φ
√

A2
max

V

(Ŵ + (1 − φ)V rmax)

θ̂max

+ (1 − φ)Ωmin(~λ). (42)

Thus, by choosing a large enough V we can have:

lim sup
t→∞

1

t

t
∑

τ=1

Er(C(τ), s(τ)) ≤ φ(1 − φ)

√

A2
maxrmax

θ̂max

+(1 − φ)Ωmin(~λ) + ǫ/2.

Following a similar argument as in the proof of Theo-
rem 1 we can conclude that the inequality for lim sup
holds in almost sure sense as well. Hence the result
follows with Γ(φ) = φ(1 − φ)

√

A2
maxrmax/θ̂max.
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APPENDIX C
PROOF OF THEOREM 2

Proof: Note that by assumption, altering the trans-
mission rates does not affect the interference constraints
of the network. Therefore, at time slot t, w∗

lm(t) is indeed
the weight that any solution of the optimization problem
in (9) chooses for link lm if that link is a part of X∗(t).
Let ι(t) be the integer selected by links

at the beginning of time slot t. Define:
B(t) , argmaxX∈X (s(t))

X⊆L(ι(t))

∑

lm∈X w∗
lm(t). For any given

~Q(t) and s(t), the following identity is obvious:
∑

lm∈X∗ w∗
lm =

∑

lm∈X∗∩G(j) w∗
lm +

∑

lm∈X∗∩L(j) w∗
lm.

Thus, from the definition of B(t) and π(k, V ), we have:
∑

lm∈Xπ(k,V )(t)

w∗
lm(t) ≥

∑

lm∈X∗(t)

w∗
lm(t) −

∑

lm∈B(t)

w∗
lm(t),

(43)
where Xπ(k,V )(t) is the independent set selected by the
scheduling policy π(k, V ) at time slot t. Now:

E[
∑

lm∈B(t)

w∗
lm(t) | ~Q(t), s(t)]

=

k−1
∑

j=0

P (ι(t) = j | ~Q(t), s(t)){

E[
∑

lm∈B(t)

w∗
lm(t) | ~Q(t), s(t), ι(t) = j]}

= (1/k)

k−1
∑

j=0

max
X∈X (s(t))

X⊆L(j)

∑

lm∈X

w∗
lm(t) (44)

The above inequality holds for any instance of network
graph and queue backlogs, i.e., holds pathwise in s(t) and
~Q(t).
We now bound the right hand side of the inequality

(44). Let ~ω be an arbitrary vector of non-negative real
weights for the links in an instance of the network graph.
Let Slm be the set of links that if scheduled will interfere
with link lm. For any link lm, ωlm ≤

∑

i∈X∗∩Slm
ωi; since

otherwise, X∗ could be improved by instead selecting
lm and deselecting the other links in Slm ∩ X∗. Let
X0, . . . , Xk−1 be k arbitrary independent sets such that

Xj ⊆ L(j), for j = 0, . . . , k − 1. Let η
(j)
lm , ‖Xj ∩ Slm‖.

Thus:
∑

lm∈Xj

ωlm ≤
∑

lm∈Xj

∑

i∈X∗∩Slm

ωi =
∑

i∈X∗

∑

lm∈Xj∩Si

ωi (45)

=
∑

lm∈X∗

η
(j)
lmωlm, (46)

where the equality in (45) follows from pairwise and
symmetric property of the interference model, and in

equality (46), we have used the definition of η
(j)
lm along

with a change of indexing. Thus,

k−1
∑

j=0

∑

lm∈Xj

ωlm ≤
∑

lm∈X∗

(

k−1
∑

j=0

η
(j)
lm )ωlm. (47)

Let the supergrid be the set of all lines of all grids. Then
the supergrid is a grid where the distance between any
two consecutive horizontal (vertical) lines is D.
Let ψlm , {j : lm ∈ L(j)}. Then ‖ψlm‖ ≤ 4, since an

end node of link lm can be within a distance D/2 from
at most 2 horizontal and 2 vertical lines. Now, let ψ̂lm ,

{j : lm /∈ L(j) & Slm∩L(j) 6= ∅}. Then ‖ψ̂lm‖ ≤ 8. This
is because, lm can interfere with a link in L(j) but not
be member of it, only if one of its end nodes is within a
distance of 5D/2 from a horizontal or a vertical line of
grid j and none of its end nodes are within D/2 distance
of any line of grid j. This can occur at most 4 times for
vertical lines and 4 times for horizontal lines of supergrid.

Therefore η
(j)
lm > 0 for at most 4 + 8 = 12 different js in

{0, . . . , k − 1}.
Now, for each case (A) and (B), we upperbound the

value of η
(j)
lm . Since each Xj is an independent set, for all

j ∈ ψlm we have η
(j)
lm = 1. Now, let us focus on the js in

p̂silm. In case (B), as channels are assumed orthogonal,
only links of the same channel can interfere with each
other. Hence, for any lm ∈ X∗, the maximum number of
the links that interfere with lm but do not interfere with
each other, is 8 [18]. In case (A), similarly we can have up
to 8 links of the same channel that interfere with lm but
not with each other. In addition, up to 2 extra links of
dissimilar channels can have a common end node with
lm, and thus by description of case (A), interfere with
lm. (Note that for the special case of M = 2, only one
such extra link is possible.)

We can now upperbound
∑k−1

j=0 η
(j)
lm . Following the

above observations, for any lm ∈ X∗,
∑k−1

j=0 η
(j)
lm <

4+8×10 = 84 in case (A) and
∑k−1

j=0 η
(j)
lm < 4+8×8 = 68 in

case (B). Applying these inequalities in (47), we obtain:

k−1
∑

j=0

∑

lm∈Xj

ωlm ≤ β
∑

lm∈X∗

ωlm, (48)

where β = 84 in case (A) and β = 68 in case (B).
Considering the relations (43,44,48), we obtain:

E[
∑

lm∈Xπ(k,V )

w∗
lm(t) | ~Q(t), s(t)]

≤ (1 − β)E[
∑

lm∈X∗

w∗
lm(t) | ~Q(t), s(t)].

Now, since the inequality holds pathwise in s(t) and ~Q(t),
we can take the expectation of both sides w.r.t s(t), ~Q(t)
to obtain:

E[
∑

lm∈Xπ(k,V )

w∗
lm(t)] ≤ (1 − β/k)E[

∑

lm∈X∗

w∗
lm(t)].

Comparing the above inequality with (8) and (9) implies
that scheduling policies π(k, V ) satisfy inequality (10),
as the necessary condition of Lemma (1) for φ = β/k,
where β = 84 for case (A) and β = 68 for case (B).
Thus, the performance guarantees of Lemma (1) hold
with the respective φs, and where Γ̂(k) = β/k(1 −
β/k)

√

A2
maxrmax/θ̂max.
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Remarks on Graph-Partitioning: Note that condition
0 ≤ φ < 1 requires k > β. If in the scheduling policy
π(k, V ) the grids are µkD distanced, where µ ≥ 1 is an
integer constant, then β in inequality (48) decreases as
µ is increased from 1. The best upperbound is realized
for µ = 6 where β = 20 and 16 for cases (A) and (B) re-
spectively. This can be established by showing that now
‖ψlm‖ + ‖ψ̂lm‖ ≤ 2. The details are straightforward and
are omitted for brevity. Also, note that similar perfor-
mance guarantees can be obtained for a 3-Dimensional
network, where grids are replaced with 3-D lattices and
each lattice is specified by its first three planes. The
calculations of the constants are quite identical to the
2-D case and are omitted for brevity. Finally, note that
our graph partitioning analysis is not specific to the
interference model assumed in this paper and is readily
extendable to any other pairwise symmetric interference
model.
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