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Approximation Schemes for Information Acquisition and Exploitation in
Multichannel Wireless Networks

Sudipto Guha, Kamesh Munagala, Saswati Sarkar

Abstract— Nodes in future wireless networks are likely to
have access to multiple channels. A node can learn the
instantaneous state of a channel only by probing it which
in turn consumes both additional energy and time. A node
therefore needs to not only optimally select the channel based on
available information but also optimally determine the amount
of information it should acquire about the instantaneous states
of its available channels. The successful exploitation of the
available channels is therefore contingent upon designingsimple
mechanisms for jointly optimizing both information acquisition
and exploitation. We provide a joint channel probing and
selection scheme that can approximate a utility function that
captures both the cost and value of information. The approx-
imation can be made arbitrarily close to the optimal while
increasing the computation time of the solution. Specifically,
given any positiveǫ, the proposed scheme can be tuned to attain
a utility which is at most ǫ less than that of the optimal, and
requires a computation time which is polynomial in the number
of channels and the degree of this polynomial increases with
decrease inǫ.

I. I NTRODUCTION

Future wireless networks will provide each terminal access
to a large number of channels. A channel can for example
be a frequency in a frequency division multiple access
(FDMA) network, or a code in a code division multiple
access (CDMA) network, or an antenna or a polarization
state (vertical or horizontal) of an antenna in a device
with multiple antennas (MIMO). Several existing wireless
technologies, e.g., IEEE 802.11a [1], IEEE802.11b [11],
IEEE802.11h [2] propose to use multiple frequencies. For
example, IEEE 802.11a protocol has8 channels for indoor
use and4 channels for outdoor use in the 5GHz band,
while the IEEE 802.11b protocol has3 channels in the
2.4 GHz band. The potential deregulation of the wireless
spectrum is likely to enable the use of a significantly larger
number of frequencies. Due to significant advances in device
technology, laptops with multiple antennas (antenna arrays)
incorporated in the front lid, and devices with smart anten-
nas have already been developed, and the number of such
antennas are likely to significantly increase in near future.

The increase in the number of channels is expected to sig-
nificantly enhance network capacity and enable several new
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bandwidth-intensive applications as multiple transmissions
can now proceed simultaneously in a vicinity using different
channels. Furthermore, the availability of multiple channels
substantially enhances the probability (at any given time)of
existence of at least one channel with acceptable transmission
quality, since the transmission quality of the individual chan-
nels stochastically vary with time and location of the users.
These benefits can however be realized only if the users can
select the channels efficiently using intelligent control mech-
anisms. Acquiring the information utilized by such control
mechanisms often constitutes an important bottleneck. Note
that a user can only learn the instantaneous state of a channel
by transmitting a control packet in it and subsequently the
receiver informs the sender about the quality of the channel
in a response packet (e.g., the RTS and CTS packet exchange
in IEEE 802.11). The exchange of control packets in this
probing process consumes additional energy, and prevents
other neighboring users from simultaneously utilizing the
channel. Probing a channel is therefore associated with a
cost. When the number of available channels is large, the cost
incurred in learning the instantaneous transmission qualities
of all channels may become prohibitive. We therefore seek
to develop a framework for joint optimization of information
acquisition and exploitation which in accordance with the
cost and the benefits of probing different channels, deter-
mines both (a) the amount of information a user must obtain
about the instantaneous transmission qualities of the channels
at its disposal and also (b) how to select the channels based
on the acquired information.

We consider a single sender with access ton channels. The
instantaneous transmission qualities of the channels can have
K possible values and stochastically vary with time. The
statistics of these temporal variations may be different for
different channels. Every time the sender probes a channel it
learns about the signal to noise ratio and thereby the proba-
bility of success in the channel, but also incurs a certain cost
c. Before each transmission, the sender needs to determine
how many and which channels it will probe and also the
sequence in which these channels will be probed (probing
policy). Note that depending on the available hardware (e.g.,
availability, or lack thereof, of multiple network interface
cards, or compatible transmission circuits to appropriately
distribute the power across the antennas), a sender may,
or may not, be able to simultaneously transmit in multiple
channels. In this paper, we consider the scenario where a
sender can transmit in only one channel in a time slot and
transmits one packet in each slot. Based on the outcomes of
the probes, the sender selects one of the available channels



2

(channel selection policy), which need not be those that it
has probed.

The sender seeks to maximize a utility function which de-
pends on the probability of success of each transmission and
the probing cost incurred before each transmission. Clearly, a
meaningful utility function should (a) increase with increase
in the former and (b) decrease with increase in the latter.
As a starting point, we consider linear functions that satisfy
the above criteria. Specifically, we seek to design a jointly
optimal probing and channel selection policy that maximizes
a system utility which is the difference between the probabil-
ity of successful transmission and a suitably scaled expected
probing cost before each transmission. Loosely, this utility
function represents the gain or the profit of the sender if the
sender receives credit from the receiver for each packet it
delivers successfully and needs to additionally compensate
the wireless provider for each probe packet it transmits1.

We first enumerate the challenges in designing the jointly
optimal strategy. The optimal policy needs to probe adap-
tively, i.e., the result of a probe determines the channels
to be probed subsequently. For example, consider channels
with 3 possible states (0, 1, 2), each of which is associated
with a different transmission quality. Clearly, the probing
terminates if a probed channel is in the highest state. Now,
let a probed channel be in the intermediate state (state1).
Then the subsequent probes should be limited to channels
that have high probabilities of being in the highest state.
However, if all channels that have been probed in a slot are in
the lowest state, then the channels that have high probabilities
of being in the intermediate state may also be subsequently
probed. Also, the channel selection decision depends on the
outcomes of the probes and the expectation and uncertainty
of the transmission quality of the channels that have not
been probed. The optimal policy is therefore a decision tree
overn variables (Figure 1) – naive computations will require
both exponential time and exponential storage space. Next,
the policies may depend on the higher order statistics of the
channels. This is because the optimum policy may not probe
a channel if its quality has a low variance as probing it does
not provide significant information but incurs additional cost.

In this paper, we obtain a parameterized probing and
channel selection policy whose parameters can be appropri-
ately selected so as to attain any desired tradeoff between
performance guarantee and computation time. Specifically,
given anyǫ > 0, we obtain a policy that attains a utility
which is at mostǫ less than that of the optimal and requires
a computation time which is polynomial in the number of
channelsn, but does not depend on the number of states
K. The degree of this polynomial however increases with
decrease inǫ. Our results are somewhat surprising given
that optimal solutions for most partial information based
control problems turn out to be computationally intractable,
and standard approximation techniques either do not provide
guaranteeable approximation ratios or require exponential

1The sender may have to share with the provider part of the credit it
receives from the receiver for each successfully deliveredpacket. Then the
credit we are considering here is the credit remaining afterthe sharing
process.

computation times [5]. Our proofs therefore rely on exploita-
tion of specific system characteristics and employ techniques
that are not standard in context of stochastic control.

The paper is organized as follows. We review the related
literature in Section II. We describe the system model in
Section III. We present the probing and channel selection
policy, and prove its performance guarantee in Section IV.
We conclude in Section V.

II. RELATED L ITERATURE

We first discuss the relation of our problem with some
classical problems like the stopping time and multi-armed
bandit problems. The most well-researched version of the
stopping time problem is a stochastic control problem that
optimally selects between two possible actions at any given
time: to continue or to stop [7]. Recently, the results for this
problem have been used to solve partial information based
control problems for statistically identical channels with
equal probing costs [17], [22]. Since we consider channels
that may have different statistics, the optimal action needs
to be selected from multiple options at any given time -
the options being (a) whether to continue probing (b) which
channel to probe next if the decision is to probe and (c)
which channel to transmit if the decision is to stop probing.
Thus, the results from the above version of stopping time
problem do not apply in our context. The optimal stopping
time problem has also been considered in a more general
setting where the number of available actions may be more
than two; our problem is in fact a special case of this general
version (Chapter IV, [5]). In this general case, the process
terminates in certain states, which constitute the termination
set, and selects the optimal action in other states. But, so far,
only certain broad characterizations of the termination set are
known in this general case, and the optimal actions when the
decision is not to stop are also not known in close form [5].
Thus, these general results do not lead to the optimal policies
we are seeking to characterize.

The stochastic multi-armed bandit problem considers a
bandit with n arms [10]. The system can try one arm in
each slot, and when it tries an arm, it receives a random
reward which depends on the state of the arm. The state of
an arm changes only when the system tries it. The reward of
a system inT slots is the sum of the rewards in each slot.
The goal is to maximize the expected reward inT slots.
Our problem differs from the above in that (a) the state of a
channel can change even when it is not probed or used for
transmission and (b) a node can learn the states of multiple
channels in an epoch while incurring additional probing
costs for learning the state of each additional channel. The
adversarial multi-armed bandit problem removes one of the
above differences in that it allows the state of an arm to
change even when the system does not try it [3]. But, it
seeks to optimize the selection under the assumption that the
sender uses the same arm in all slots. Note that we allow a
sender to probe and transmit in different channels in different
slots. In another version of the adversarial multi-armed bandit
problem, the goal is to select the arms so as to minimize the
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“regret” or the difference in expected reward with the best
policy in a collection of a certain number (sayN ) of given
policies. As expected, the regret inT slots increases with
increase in bothN and T (the regret for the best known
policy is O(

√

nT ln(N))). In our context, the total number
of possible probing and channel selection policies that can
be used inT slots is large, e.g., the number of deterministic
policies is (n!)T . Thus the results available in this context
do not apply in our problem, and we use different solution
approach and obtain different performance guarantees.

Optimizing the order of evaluation of random variables so
as to minimize the cost of evaluation (“pipelined filters”) has
been investigated in several different contexts like diagnostic
tests in fault detection and medical diagnosis, optimizing
conjunctive query and joint ordering in data-stream systems,
web services [4], [6], [8], [9], [16], [18], [19], [20], [21].
However our work is different from all the above in that,
we (a) consider multi-state channel models whereas pipeline
filters consider two state models and (b) allow a node to
transmit in a channel even if the channel has not been
probed. Note that usually two state models can not capture
the statistical variations of wireless channels [12]. Boththe
above generalizations significantly alter the decision issues
and the optimal solutions.

Finally, opportunistic selection of channels with complete
knowledge of channel states has been comprehensively in-
vestigated over the last decade (e.g., [23]). But, in general,
the area of partial information based control problems, andin
particular the joint optimization of the reward obtained from
informed selections and the cost incurred in acquiring the
required information, remains largely unexplored in wireless
networks. The first results in this area have been obtained
in [17], [22], but as mentioned above, they consider only
statistically identical channels with equal probing costs. Re-
cent statistical investigations indicate that different channels
available to a sender may have different statistics [12]. We
now describe our earlier results in the area. We have recently
proved that when every channel has two states the joint
optimization problem can be solved in polynomial time even
when different channels have different statistics and probing
costs [14]. In [13], we proved that for channels with multiple
states the optimization can be approximated within a factor
of 1/2 using polynomial time algorithms. In another recent
submission (technical report [15]) we prove that the joint
optimization problem can be approximated within a factor of
4/5 for channels with arbitrary states using polynomial time
algorithms. In all these papers we considered channels with
potentially different probing costs and different statistical
distributions for the state processes. In the current paper, we
focus on the important special case where all channels have
equal probing costs, but potentially different distributions
for the state processes, and present a joint probing and
selection policy that attains any desired tradeoff between
approximation guarantees and computation time.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A senderU has access ton channels which are denoted
as channels1, 2, . . . , n, each of which hasK possible states,

0, . . . , K − 1. We assume that time is slotted. In any slot
channelj is in statei with probabilitypij independent of its
state in other time slots and the states of other channels in any
slot. Without loss of generality, we assume thatpK−1j < 1
for each j, as otherwise the optimum policy is simply to
transmit inj without probing any channel. In every slot,U
transmits one data packet in a selected channel. If the channel
selected for transmission is in statei, the transmission is
successful with probabilityri. Without loss of generality we
assume0 ≤ r0 < r1 < · · · < rK−1 ≤ 1. For simplicity, we
also assume thatr0 = 0; all analytical results can however
be generalized to the scenario wherer0 > 0. WheneverU
probes a channelj, it pays a cost ofc ≥ 0. We assume that
the probing cost is the same for different channels, as in many
cases of practical interest the probing cost is determined by
the energy consumed in transmitting the probe packets which
is again similar for different channels.

A probing policy is a rule that, given the set of channels
the sender has already probed in a slot (which would be
empty at the beginning of the slot) and the states of the
channels probed in the slot, determines (a) whether the
sender should probe any more channels and (b) if the sender
probes additional channels which channel it should probe
next. The sender knows the state of a channel in a slot if
and only if it probes the channel in the slot.

A selection policyis a rule that selects a channel for the
transmission of a data packet in a slot on the basis of the
states of the probed channels, after the completion of the
probing process in the slot. The selection policy can select
a channel even if it has not been probed in the slot, and in
that case, the channel is referred to as abackup channel.

The probing cost is the sum of the costs of all channels
probed in the slot. The probing cost is clearly a random
variable that depends on the probing policy and the outcomes
of the probes (as the sender may probe subsequent channels
depending on the outcomes of the previous probes). The
expected probing costis the expectation of this random
variable and depends on both the probing policy and the
channel statistics.

In any slot, the transmission rewardis 1 if there is
a successful transmission and0 otherwise. Therefore, the
expected transmission reward isri in a slot t if U transmits
in a channel in statei during t. We sometimes overload
the terminology and denote the ”reward” of transmitting in
statei by ri. The expected transmission reward of a policy
is therefore

∑

i qiri where qi is the probability that the
selection policy decides to use a channel which is in statei;
qi depends on the channel statistics as well as the policy.

Theexpected utilityof the sender, denoted simply asgain,
is the difference between the expected transmission reward,
and the probing cost scaled by a factorκ. The gain depends
on the probing and selection policies, the channel statistics
and the scaling parameterκ. Since κ can be included in
the probing cost themselves, we drop this parameter in the
remaining discussion without loss of generality.

Problem Definition: Given {cj}, {ri} and {pij}, find a
probing and selection policy so as to maximize the expected
gain. Let OPT denote the optimal policy andGOPT its gain.
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(a) Decision Tree

Fig. 1. The figure shows the decision tree for an example policy. A channel is probed at each probe node, and the letter inside it indicates which channel
is probed at the node. The numbers next to the branches indicate the outcome of the probe. The numberr/s next to a branch indicates that both statesr
and s of the previously probed channel lead to the same action. Forexample, the sender first probes channeli. If i is in state2, it transmits ini. If i is
in state1 and0, it probesk and j respectively.

Every joint probing and selection policy can be repre-
sented by a unique decision tree (Figure 1); we therefore
use policies and decision trees interchangeably.

The optimal probing policy does not probe any further in a
slot if a probed channel is in stateK−1. Since channels are
temporally independent, the optimal probing and selection
strategies in a slot need not depend on the decisions and
the observations in other slots. Also, the optimal probing
and selection strategies remain the same in all slots, though
the specific choices made by each policy may be different in
different slots depending on the outcome of the probes. Using
these observations, the optimal policy can be computed using
a bottom-up dynamic program. However, the computation
time for the optimal isΩ(K2n) time as the dynamic program
hasK2n states, and the storage space isΩ(nK).

IV. A RBITRARY TRADEOFF BETWEENAPPROXIMATION

GUARANTEE AND COMPUTATION TIME

We present a recursive policy, APPROX(ǫ) that given any
ǫ > 0 selects its parameters so as to attain a gain of at least
GOPT−ǫ. For any givenǫ, APPROX(ǫ) selects the optimum
among a class of recursive policies which is guaranteed to
contain at least one policy whose gain is at leastGOPT −
ǫ. The size of this class increases with decrease inǫ, and
the search in this class needs to evaluate the gain of each
policy in the class. Hence, the computation time of the search
increases with decrease inǫ.

First, consider the case thatǫ ≥ c. Note that if a policy
A that transmits in a backup channel for certain outcomes
of the probes attains a gain ofG, then there exists another
policy that transmits only in probed channels and attains a
gain of at leastG − c; the second policy is obtained by
alteringA so as to probe the channel in which it transmits if
that channel has not been probed already. Thus, the gain of
the policy, OPTNOBKUP (which we presented in [13]), that
attains the maximum gain among all policies that transmit
in only probed channels is at mostc less than that of the
optimum gain. Thus, sincec ≤ ǫ, OPTNOBKUP attains the
desired gain. For completeness, we present OPTNOBKUP

here.

Definition 1: For i = 1, . . . , n, let r̃i[u] =
Pv=K−1

v=u pvirviP
v=K−1

v=u pvi

and p̃i[u] =
∑v=K−1

v=u pvi. Let r̃0[0] = −1.
Definition 2: Let Hu = φ for all u ≥ K,

and for u = K − 1, down to u = 1 Hu =
{

i|i 6∈
⋃

v:v>u Hv, and r̃i[u] − c
p̃i[u] > ru−1

}

. Assume

c/p̃i[u] = +∞ when p̃i[u] = 0.

OPTNOBKUP

Consider eachHu in decreasing order ofu starting from
u = K − 1 down tou = 1.

Within each Hu probe in non-increasing order of
r̃j [u] − c

p̃j [u]
, and stop if any channel is found to be in

stateu or above (probing process).

Transmit in the channel, which is in the highest state, among
all probed channels (selection process).

We will next show that a recursive policy can be used
to obtain the desired approximation guarantees even when
ǫ < c. We first introduce a new definition.

Consider a fictitious systemF(Q, j) that can probe or use
as backup only channels in the set{1, . . . , n} \ Q. A user
is allowed not to select any channel in this system - its gain
then is 0. The incremental gainof a policy A, GA

I (Q, j),
is its expected gain in this fictitious system assuming that
the reward obtained by transmitting in a channel that is in
statei is ri − rj . This is the additional gain of a policy that
acts in accordance with policyA after probing channels in
Q and observing the highest state of probed channels asj,
as compared to selecting a probed channel that is in statej
(note that ifA does not select any channel then this policy
transmits in a channel inQ that is in statej). Theoptimum
incremental gain G∗

I(Q, j) is the maximum value of the
incremental gain for any policyA. Let OPTIG(Q, j) denote
the policy that that attains this optimum incremental gain.

Let k(ǫ, x) = ⌈ ln ǫ/(rK−1−rx)
ln(1−ǫ/(rK−1−rx))⌉.

We now show how to design a policy APPROXINTERME-
DIATE (Q, x, ǫ) that attains an incremental gain of at least
G∗

I(Q, j) − ǫ. We use a recursive design and assume that
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for each j > x and Q′ such thatQ ⊆ Q′ ⊆ Q ∪ S,
where S ⊆ {1, . . . , n} \ Q and |S| ≤ nk(ǫ,x), we have
a policy APPROXINTERMEDIATE (Q, j, ǫ/2) that attains
an incremental gain of at leastG∗

I(Q
′, j) − ǫ/2. We first

introduce the following definition.
Definition 3: Let ~τk,Q be a k-dimensional vector with

components in{0, . . . , n} \ Q which satisfies the property
that if τk,Q

i = 0 thenτk,Q
i+1 = 0.

SEQUENCE(~τ, ℓ,Q, x, ǫ)

Let k1 be the number of elements in~τ . If ~τj > 0 for all
j, k2 = k1, elsek2 = min{j : ~τj = 0}.

From i = 0 until i = k2 − 1, probe channels~τi unless a
probed channel is in a state higher thanx.

Let Q′ be the set of channels probed in this step. IfQ′ = φ,
rj = −1. Otherwise, let the highest state of a channel in
Q′ bej, and lett be the probed channel which is in statej.

If max(rj , r̃ℓ) ≤ rx, transmit in a probed channel that is
in statex. Else, if i = k2, (a) if rj > r̃ℓ transmit int and
(b) otherwise transmit inℓ. Else, follow the same decisions
as APPROXINTERMEDIATE (j,Q ∪Q′, ǫ/2).

Definition 4: Let SEQUENCE∗(Q, x, ǫ) be the policy that
attains the maximum gain among SEQUENCE (~τ , ℓ, x,Q, ǫ)
for different~τk(ǫ,x),Q∪{ℓ} for all possibleℓ ∈ {0, . . . , n}\Q.

The following lemma proves that if c > ǫ
SEQUENCE∗(Q, x, ǫ) attains an incremental gain
of at least G∗

I(Q, j) − ǫ. Thus, APPROXINTER-
MEDIATE (Q, x, ǫ) is in fact SEQUENCE∗(Q, x, ǫ),
and hence APPROXINTERMEDIATE (Q, x, ǫ) can be
constructed in a recursive manner provided we know
APPROXINTERMEDIATE (Q′, K − 2, ǫ/2K−2−x) for certain
subsetsQ′. Since G∗

I(φ, 0) is the optimum gain, the
recursive construction will in turn lead to the desired overall
approximation guarantee.

Lemma 4.1:Let c > ǫ. Suppose for eachj > x andQ′

such thatQ ⊆ Q′ ⊆ Q∪ S, whereS ⊆ {1, . . . , n} \ Q and
|S| ≤ nk(ǫ,x), a policy APPROXINTERMEDIATE (Q′, j, ǫ)
attains an incremental gain of at leastG∗

I(Q, j) − ǫ. Then
SEQUENCE∗(Q, x, ǫ) attains an incremental gain which is at
leastG∗

I(Q, j) − 2ǫ.
Proof: Clearly, at every node in its decision tree

OPTIG(Q, x) takes the same decisions irrespective of the
state of the probed channel provided the state isx or lower.
So, the sub-tree starting from the root node in which the
probed channels are in statex or a lower state corresponds
to a path, which we refer to as thex-path. Note that the
incremental gain of SEQUENCE∗(Q, x, ǫ) is at mostǫ less
than that of any policy in the fictitious systemF(Q, x)
that probes at mostk(ǫ, x) channels in itsx-path. Thus, if
OPTIG(Q, x) probesk(ǫ, x) or fewer channels in itsx-path,
then clearly the incremental gain of SEQUENCE∗(Q, x, ǫ) is
at leastG∗

I(Q, j)− ǫ. The result follows. Otherwise, OPTIG
(Q, x) probes at leastk(ǫ, x) + 1 channels in itsx-path.
Now, change OPTIG (Q, x) so that it terminates the probing

process after probing the firstk(ǫ, x) channels in thex-path
and takes the same decision as OPTIG (Q, x) does at the end
of its x-path. Let the new policy be denoted as OPTMOD.
Since OPTMOD probesk(ǫ, x) channels in itsx-path and
can be used inF(Q, x), its incremental gain exceeds that of
SEQUENCE∗(Q, x, ǫ) by at mostǫ. We now show that the
gain of OPTMOD is at mostǫ less than that of OPT. The
result follows.

Let the probability that all channels probed by OPTMOD

in its x-path are in statex or in a lower state beα. Clearly,
the difference between the incremental gains of OPTMOD

and OPTIG (Q, x) is at mostα(rK−1 − rx). We now show
that α ≤ ǫ/(rK−1 − rx). Note that if OPTIG probes a
channeli in its x-path, then

∑K−1
k=x+1 pki(rk − rx) − c ≥ 0.

Thus, if OPTMOD probes a channeli in its x-path, then
∑K−1

k=x+1 pki(rk−rx)−c ≥ 0. Thus,
∑K−1

k=x+1 pki(rk−rx) ≥

ǫ. Thus,(rK−1−rx)
∑K−1

k=x+1 pki ≥ ǫ. Thus,rK−1−rx ≥ ǫ.
Also, (1−

∑x
k=0 pki)(rK−1 − rx) ≥ ǫ. Hence,

∑x
k=0 pki ≤

1 − ǫ/(rK−1 − rx). Since OPTMOD probesk(ǫ, x) chan-
nels in the0-path, α ≤ (1 − ǫ/(rK−1 − rx))

k(ǫ,x)
. Since

k(ǫ, x) ≥ ln ǫ/(rK−1−rx)
ln(1−ǫ/(rK−1−rx)) , (1 − ǫ/ (rK−1 − rx))k(ǫ,x) ≤

ǫ/(rK−1 − rx).
Now, note that sincerK−1 ≤ 1, k(ǫ, x) ≤ g(ǫ) where

g(ǫ) = ⌈(1/ǫ) ln (1/ǫ)⌉.
Now, given lemma 4.1, the recursive design will be com-

plete once we determine APPROXINTERMEDIATE (Q, K −
2, ǫ) for certain subsetsQ of {1, . . . , n}. Note that the
channels in the fictitious systemF(Q, K − 2) effectively
have two statesK − 2, K − 1. We have presented a policy
that determines the optimum gain in any system where each
channel has2 states in polynomial time [14]. OPTIG(Q, K−
2), and hence APPROXINTERMEDIATE (Q, K−2, ǫ) for any
ǫ, can be obtained in polynomial time by minor modification
of the policy presented in [14]. The modified version is
presented as TWOSTATEOPT(Q).

TWOSTATEOPT (Q)

For each ℓ ∈ {0, . . . , n} \ Q, determine
TWOSTATEOPT(Q, ℓ) as follows.

1) Let Sℓ = {i : pK−1i (rK−1 − max(r̃ℓ[0], rK−2)) >
ci} \ Q.

2) Probe all channels inSℓ in non-increasing order of
pK−1i/ci and stop if one channel is in stateK − 1.

3) If a probed channel is in stateK − 1 transmit in it,
else if r̃ℓ[0] > rK−2 transmit inℓ, else transmit in a
probed channel that is in stateK − 2.

Select TWOSTATEOPT(Q, ℓ) that has the maximum gain
among allℓ ∈ {0, . . . , n} \ Q.

It now follows that APPROXINTERMEDIATE (Q, j, ǫ) can
be computed using the following recursive approach (the
recursion occurs as SEQUENCE∗(Q, j, ǫ) can be computed
using APPROXINTERMEDIATE (Q′, i, ǫ/2) for certain sub-
setsQ′ and i > j.

APPROXINTERMEDIATE (Q, j, ǫ)

If j = K − 2, use TWOSTATEOPT(Q).
If j < K − 2, use SEQUENCE∗(Q, j, ǫ).
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We now present the policy APPROX (ǫ) which attains a
gain of at leastGOPT− ǫ.

APPROX (ǫ)

If c ≤ ǫ, use OPTNOBKUP.

Otherwise, forj = K − 2 to j = 1
for all subsetsQ such that|Q| ≤ jg(ǫ/2j)
compute APPROXINTERMEDIATE(Q,j, ǫ/2j).
Compute and use APPROXINTERMEDIATE(φ,0, ǫ).

Theorem 4.2:The gain of APPROX(ǫ) is at leastGOPT−ǫ.

Proof: As discussed before, ifc ≤ ǫ, the gain
of OPTNOBKUP is at most ǫ less than that of the op-
timal policy. Let c > ǫ. From lemma 4.1 and since
TWOSTATEOPT(Q) is OPTIG(Q, K − 2), the incremental
gain of APPROXINTERMEDIATE(0, φ, ǫ) is at mostǫ less
than that of the optimum incremental gainG∗

I(φ, 0). Note
that the incremental gain of any policy in the fictitious system
F(φ, 0, ǫ) is the same as its gain in the overall system,
and any such policy always selects a channel. Thus, the
incremental gain of APPROXINTERMEDIATE(0, φ, ǫ) equals
its gain, andG∗

I(φ, 0) = GOPT. The result follows.
We now evaluate the computation time for AP-

PROX (ǫ). Now, APPROX (ǫ) can be computed in
O(g(ǫ/2K)ng(ǫ/2K)(K+2)+1) time. Given a positiveǫ, the
computation time is therefore polynomial inn but expo-
nential in K. This is usually acceptable since the number
of statesK is small. Nevertheless, we now describe how
the computation time can be made independent ofK. First,
divide [0, rK−1] in disjoint intervals of sizeǫ/2. Then,
consider a new system where the probability of success in
each statei equals(ǫ/2)⌊2ri/ǫ⌋. This new system effectively
consists ofK0 = 2rK−1/ǫ ≤ 2/ǫ states. In this system,
APPROX (ǫ/2) approximates the optimum gain within an
additive factor ofǫ/2. The gain of the optimum policy in
this system is at leastGOPT − ǫ/2. Thus, APPROX (ǫ/2)
computed in this system attains a gain of at leastGOPT− ǫ.
Note that the time required for computing APPROX (ǫ/2) in
this system isO(g(ǫ/22/ǫ)n2g(ǫ/22/ǫ)(1/ǫ+1)+1) irrespective
of the number of states in the original system.

Finally, we comment on the design of an approxima-
tion algorithm that approximates the optimum gain within
a multiplicative factor of ǫ. Let G′ be the gain of the
policy APPROXBKUP proposed in [13] that is guaranteed
to attain a gain of at least half that of the optimum policy.
APPROX (ǫG′/2) computed in the above system attains
a gain of at leastGOPT − ǫG′, which is at least(1 −
ǫ)GOPT. But, the computation time of APPROX (ǫG′/2)

is O(g(ǫG′/22/ǫG′

)n2g(ǫ/22/ǫG′

)(1/ǫG′+1)+1), and therefore
increases with decrease inG′. The computation time is still
a polynomial in n once ǫ is specified providedGOPT is
Ω(ǫk) for some constantk (as thenG′ is Ω(ǫk)). Thus, the
computation time becomes unacceptable only whenGOPT

is o(ǫk) for all constantsk. But, in systems with such low
gain, the channel qualities are so poor that from a practical
perspective any optimization becomes useless.

V. CONCLUSION

The area of optimization of joint information acquisition
and exploitation strategies in wireless networks poses several
open problems which have received limited attention until
recently. In this paper, we have provided a policy that attains
arbitrary desired tradeoffs between approximation guarantee
and computation time. The performance guarantees have
however been obtained for the special case of equal probing
costs and temporally and spatially independent channel state
processes. Generalizing the results for networks where these
assumptions do not hold constitute interesting problems for
future research.
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