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Abstract—Nodes in future wireless networks are likely to bandwidth-intensive applications as multiple transnoissi
have access to multiple channels. A node can learn the can now proceed simultaneously in a vicinity using différen
instantaneous state of a channel only by probing it which  channels. Furthermore, the availability of multiple chelsn
in turn consumes both additional energy and time. A node - - . )
therefore needs to not only optimally select the channel basl on supstanﬂally enhances the probab.|l|ty (at any given t,'m‘?)
available information but also optimally determine the amaint ~ €Xistence of at least one channel with acceptable tranemiss
of information it should acquire about the instantaneous sates  quality, since the transmission quality of the individubhao-
of its available channels. The successful exploitation ofhe  nels stochastically vary with time and location of the users
available channels is therefore contingent upon designingmple  page penefits can however be realized only if the users can

mechanisms for jointly optimizing both information acquisition - L :
and exploitation. We provide a joint channel probing and select the channels efficiently using intelligent contrelam-

selection scheme that can approximate a utility function tat ~ @nisms. Acquiring the information utilized by such control
captures both the cost and value of information. The approx- mechanisms often constitutes an important bottlenecke Not

imation can be made arbitrarily close to the optimal while that a user can only learn the instantaneous state of a dhanne
increasing the computation time of the solution. Specificdy, by transmitting a control packet in it and subsequently the

given any positivee, the proposed scheme can be tuned to attain . . .
a utility which is at most ¢ less than that of the optimal, and '€CevVer informs the sender about the quality of the channel

requires a computation time which is polynomial in the numbe  in @ response packet (e.g., the RTS and CTS packet exchange
of channels and the degree of this polynomial increases with in IEEE 802.11). The exchange of control packets in this
decrease ine. probing process consumes additional energy, and prevents
other neighboring users from simultaneously utilizing the
channel. Probing a channel is therefore associated with a
cost. When the number of available channels is large, the cos

Future wireless networks will provide each terminal accesacurred in learning the instantaneous transmission tiesli
to a large number of channels. A channel can for exampte all channels may become prohibitive. We therefore seek
be a frequency in a frequency division multiple accest develop a framework for joint optimization of informatio
(FDMA) network, or a code in a code division multiple acquisition and exploitation which in accordance with the
access (CDMA) network, or an antenna or a polarizationost and the benefits of probing different channels, deter-
state (vertical or horizontal) of an antenna in a devicenines both (a) the amount of information a user must obtain
with multiple antennas (MIMO). Several existing wirelessabout the instantaneous transmission qualities of theraian
technologies, e.g., IEEE 802.11a [1], IEEE802.11b [11]at its disposal and also (b) how to select the channels based
IEEE802.11h [2] propose to use multiple frequencies. Fayn the acquired information.
example, IEEE 802.11a protocol h&schannels for indoor ~ We consider a single sender with access thannels. The
use and4 channels for outdoor use in the 5GHz bandinstantaneous transmission qualities of the channels aam h
while the IEEE 802.11b protocol ha% channels in the K possible values and stochastically vary with time. The
2.4 GHz band. The potential deregulation of the wirelesstatistics of these temporal variations may be differemt fo
spectrum is likely to enable the use of a significantly largedifferent channels. Every time the sender probes a chanhnel i
number of frequencies. Due to significant advances in devidearns about the signal to noise ratio and thereby the proba-
technology, laptops with multiple antennas (antenna ajraybility of success in the channel, but also incurs a certagt co
incorporated in the front lid, and devices with smart antere. Before each transmission, the sender needs to determine
nas have already been developed, and the number of sudhw many and which channels it will probe and also the
antennas are likely to significantly increase in near future sequence in which these channels will be probgwking

The increase in the number of channels is expected to sigelicy). Note that depending on the available hardware (e.g.,
nificantly enhance network capacity and enable several newailability, or lack thereof, of multiple network intedfa

cards, or compatible transmission circuits to appropgate
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(channel selection poligy which need not be those that it computation times [5]. Our proofs therefore rely on ex@eit
has probed. tion of specific system characteristics and employ tectesqu
The sender seeks to maximize a utility function which dethat are not standard in context of stochastic control.
pends on the probability of success of each transmission andThe paper is organized as follows. We review the related
the probing cost incurred before each transmission. Giearl literature in Section Il. We describe the system model in
meaningful utility function should (a) increase with inase Section 1ll. We present the probing and channel selection
in the former and (b) decrease with increase in the lattgpolicy, and prove its performance guarantee in Section IV.
As a starting point, we consider linear functions that $atis We conclude in Section V.
the above criteria. Specifically, we seek to design a jointly
optimal probing and channel selection policy that maximize
a system utility which is the difference between the probabi
ity of successful transmission and a suitably scaled egpect We first discuss the relation of our problem with some
probing cost before each transmission. Loosely, thistytili classical problems like the stopping time and multi-armed
function represents the gain or the profit of the sender if theandit problems. The most well-researched version of the
sender receives credit from the receiver for each packetstopping time problem is a stochastic control problem that
delivers successfully and needs to additionally compensatptimally selects between two possible actions at any given
the wireless provider for each probe packet it transmits time: to continue or to stop [7]. Recently, the results fds th
We first enumerate the challenges in designing the jointlgroblem have been used to solve partial information based
optimal strategy. The optimal policy needs to probe adamontrol problems for statistically identical channels hwit
tively, i.e., the result of a probe determines the channetsjual probing costs [17], [22]. Since we consider channels
to be probed subsequently. For example, consider channtiat may have different statistics, the optimal action seed
with 3 possible states0(1,2), each of which is associated to be selected from multiple options at any given time -
with a different transmission quality. Clearly, the prodpin the options being (a) whether to continue probing (b) which
terminates if a probed channel is in the highest state. Nowhannel to probe next if the decision is to probe and (c)
let a probed channel be in the intermediate state (dfate which channel to transmit if the decision is to stop probing.
Then the subsequent probes should be limited to channdlbus, the results from the above version of stopping time
that have high probabilities of being in the highest statgaroblem do not apply in our context. The optimal stopping
However, if all channels that have been probed in a slot are time problem has also been considered in a more general
the lowest state, then the channels that have high protiedili setting where the number of available actions may be more
of being in the intermediate state may also be subsequenthan two; our problem is in fact a special case of this general
probed. Also, the channel selection decision depends on thersion (Chapter IV, [5]). In this general case, the process
outcomes of the probes and the expectation and uncertaitigyminates in certain states, which constitute the tertiina
of the transmission quality of the channels that have neet, and selects the optimal action in other states. Bugrso f
been probed. The optimal policy is therefore a decision treenly certain broad characterizations of the terminatidrase
overn variables (Figure 1) — naive computations will requirknown in this general case, and the optimal actions when the
both exponential time and exponential storage space. Negcision is not to stop are also not known in close form [5].
the policies may depend on the higher order statistics of thiéhus, these general results do not lead to the optimal pslici
channels. This is because the optimum policy may not prolyee are seeking to characterize.
a channel if its quality has a low variance as probing it does The stochastic multi-armed bandit problem considers a
not provide significant information but incurs additionakt.  bandit with n arms [10]. The system can try one arm in
In this paper, we obtain a parameterized probing anelach slot, and when it tries an arm, it receives a random
channel selection policy whose parameters can be appropward which depends on the state of the arm. The state of
ately selected so as to attain any desired tradeoff betwean arm changes only when the system tries it. The reward of
performance guarantee and computation time. Specificallg, System inl" slots is the sum of the rewards in each slot.
given anye > 0, we obtain a policy that attains a utility The goal is to maximize the expected reward7inslots.
which is at mosk less than that of the optimal and requireOur problem differs from the above in that (a) the state of a
a computation time which is polynomial in the number ofchannel can change even when it is not probed or used for
channelsn, but does not depend on the number of statetsansmission and (b) a node can learn the states of multiple
K. The degree of this polynomial however increases witchannels in an epoch while incurring additional probing
decrease ine. Our results are somewhat surprising givercosts for learning the state of each additional channel. The
that optimal solutions for most partial information baseddversarial multi-armed bandit problem removes one of the
control problems turn out to be computationally intractabl above differences in that it allows the state of an arm to
and standard approximation techniques either do not peovidghange even when the system does not try it [3]. But, it
guaranteeable approximation ratios or require exporentiseeks to optimize the selection under the assumption that th
sender uses the same arm in all slots. Note that we allow a
'The sender may have to share with the provider part of theitcited sender to probe and transmit in different channels in difier
receives from the receiver for each successfully delivgracket. Then the . . . .
slots. In another version of the adversarial multi-armautlita

credit we are considering here is the credit remaining after sharing g T
process. problem, the goal is to select the arms so as to minimize the
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“regret” or the difference in expected reward with the bedd, ..., K — 1. We assume that time is slotted. In any slot
policy in a collection of a certain number (s&y) of given channelj is in state; with probability p;; independent of its
policies. As expected, the regret i slots increases with state in other time slots and the states of other channets/in a
increase in bothV and T' (the regret for the best known slot. Without loss of generality, we assume that_;; < 1
policy is O(y/nTIn(N))). In our context, the total number for eachj, as otherwise the optimum policy is simply to
of possible probing and channel selection policies that caransmit inj without probing any channel. In every sldf,
be used inl" slots is large, e.g., the number of deterministidransmits one data packet in a selected channel. If the ehann
policies is (n!)”. Thus the results available in this contextselected for transmission is in statethe transmission is
do not apply in our problem, and we use different solutiosuccessful with probability;. Without loss of generality we
approach and obtain different performance guarantees. assume) <ry <71 < --- < rgx_1 < 1. For simplicity, we
Optimizing the order of evaluation of random variables salso assume thaty = 0; all analytical results can however
as to minimize the cost of evaluation (“pipelined filters§sh be generalized to the scenario whege> 0. Wheneverly
been investigated in several different contexts like démgic  probes a channel it pays a cost ot > 0. We assume that
tests in fault detection and medical diagnosis, optimizinthe probing cost is the same for different channels, as inyman
conjunctive query and joint ordering in data-stream systemcases of practical interest the probing cost is determiryed b
web services [4], [6], [8], [9], [16], [18], [19], [20], [21] the energy consumed in transmitting the probe packets which
However our work is different from all the above in that,is again similar for different channels.
we (a) consider multi-state channel models whereas pipelin A probing policy is a rule that, given the set of channels
filters consider two state models and (b) allow a node tthe sender has already probed in a slot (which would be
transmit in a channel even if the channel has not beeampty at the beginning of the slot) and the states of the
probed. Note that usually two state models can not captuckhannels probed in the slot, determines (a) whether the
the statistical variations of wireless channels [12]. Bttt  sender should probe any more channels and (b) if the sender
above generalizations significantly alter the decisiomdss probes additional channels which channel it should probe
and the optimal solutions. next. The sender knows the state of a channel in a slot if
Finally, opportunistic selection of channels with comelet and only if it probes the channel in the slot.
knowledge of channel states has been comprehensively in-A selection policyis a rule that selects a channel for the
vestigated over the last decade (e.g., [23]). But, in géneraransmission of a data packet in a slot on the basis of the
the area of partial information based control problems,iand states of the probed channels, after the completion of the
particular the joint optimization of the reward obtainedrir  probing process in the slot. The selection policy can select
informed selections and the cost incurred in acquiring tha channel even if it has not been probed in the slot, and in
required information, remains largely unexplored in wées  that case, the channel is referred to asaakup channel.
networks. The first results in this area have been obtainedThe probing cost is the sum of the costs of all channels
in [17], [22], but as mentioned above, they consider onlprobed in the slot. The probing cost is clearly a random
statistically identical channels with equal probing co&s- variable that depends on the probing policy and the outcomes
cent statistical investigations indicate that differenfuenels of the probes (as the sender may probe subsequent channels
available to a sender may have different statistics [12]. Weepending on the outcomes of the previous probes). The
now describe our earlier results in the area. We have rgcentixpected probing costis the expectation of this random
proved that when every channel has two states the joimariable and depends on both the probing policy and the
optimization problem can be solved in polynomial time everhannel statistics.
when different channels have different statistics andipgpb  In any slot, thetransmission rewardis 1 if there is
costs [14]. In [13], we proved that for channels with mukipl a successful transmission amdotherwise. Therefore, the
states the optimization can be approximated within a fact@xpected transmission rewardrisin a slott if U transmits
of 1/2 using polynomial time algorithms. In another recenin a channel in staté during t. We sometimes overload
submission (technical report [15]) we prove that the jointhe terminology and denote the "reward” of transmitting in
optimization problem can be approximated within a factor oftate: by ;. The expected transmission reward of a policy
4/5 for channels with arbitrary states using polynomial timés therefore ", ¢;r; where ¢; is the probability that the
algorithms. In all these papers we considered channels wiiglection policy decides to use a channel which is in state
potentially different probing costs and different statist ¢, depends on the channel statistics as well as the policy.
distributions for the state processes. In the current payeer  Theexpected utilityof the sender, denoted simply gain,
focus on the important special case where all channels haigethe difference between the expected transmission reward
equal probing costs, but potentially different distrilbm$ and the probing cost scaled by a fackorThe gain depends
for the state processes, and present a joint probing aond the probing and selection policies, the channel stedisti
selection policy that attains any desired tradeoff betweesnd the scaling parameter. Since x can be included in

approximation guarantees and computation time. the probing cost themselves, we drop this parameter in the
remaining discussion without loss of generality.
I1l. SYSTEM MODEL AND PROBLEM DEFINITION Problem Definition: Given {¢;},{r;} and {p;;}, find a

A senderU has access te channels which are denoted probing and selection policy so as to maximize the expected
as channeld, 2, ..., n, each of which hag( possible states, gain. Let OPT denote the optimal policy apr its gain.
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Fig. 1. The figure shows the decision tree for an example yolicchannel is probed at each probe node, and the lettereirisiddicates which channel
is probed at the node. The numbers next to the branches tadiva outcome of the probe. The numbgs next to a branch indicates that both states

and s of the previously probed channel lead to the same actionekample, the sender first probes chanhdf : is in state2, it transmits in:. If 7 is
in statel andO0, it probesk andj respectively.
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Every joint probing and selection policy can be repre- Definition 1: Fori =1,...,n, let 7;[u] = STER=T
sented by a unique decision tree (Figure 1); we therefo%dﬁi[u] _ Zv:K—lpvi' Let 7[0] = —1. v '
use policies and decision trees interchangeably. Definition 2:v:L1ét H, = ¢ for al u > K,

The optimal probing policy does not probe any further in nd foru = K — 1, down to u = 1 }{u _
slot if a probed channel is in stafé — 1. Since channels are {]iﬁ ¢ H,, andfifu] — =% > r } Assume
temporally independent, the optimal probing and selectio viv>u T ¢ pilu] umlyfe

strategies in a slot need not depend on the decisions and’[u] = +-00 whenpi[u] = 0.

the observations in other slots. Also, the optimal probing
and selection strategies remain the same in all slots, thoug | ©PTNOBKUP

th_e specific choices rr_1ade by each policy may be different_in Consider eachf,, in decreasing order of starting from
different slots depending on the outcome of the probes.dJsin |, — K — 1 down tou = 1.

these observations, the optimal policy can be computedjusin
a bottom-up dynamic program. However, the computation | Within each H, probe in non-increasing order q
time for the optimal i2(X2") time as the dynamic program | 7[u] — 7, and stop if any channel is found to be |n

—

has K2" states, and the storage spac&s). statew or above probing proces}s
Transmit in the channel, which is in the highest state, ampng
IV. ARBITRARY TRADEOFF BETWEENAPPROXIMATION all probed channelss¢lection procegs

GUARANTEE AND COMPUTATION TIME

We present a recursive policy, APPRQXthat given any ~ We will next show that a recursive policy can be used
e > 0 selects its parameters so as to attain a gain of at ledst obtain the desired approximation guarantees even when
Gopt— €. For any givere, APPROX) selects the optimum € < c. We first introduce a new definition.
among a class of recursive policies which is guaranteed to Consider a fictitious systetf(Q, j) that can probe or use
contain at least one policy whose gain is at le@gl-r — as backup only channels in the det ..., n} \ Q. A user
€. The size of this class increases with decrease, iand is allowed not to select any channel in this system - its gain
the search in this class needs to evaluate the gain of edtien is0. The incremental gainof a policy 4, G#(Q, j),
policy in the class. Hence, the computation time of the deards its expected gain in this fictitious system assuming that
increases with decrease dn the reward obtained by transmitting in a channel that is in

First, consider the case that> c. Note that if a policy Statei is r; —r;. This is the additional gain of a policy that
A that transmits in a backup channel for certain outcome&cts in accordance with policyt after probing channels in
of the probes attains a gain ¢f, then there exists another Q and observing the highest state of probed channels as
policy that transmits only in probed channels and attains @ compared to selecting a probed channel that is in gtate
gain of at leastG — ¢; the second policy is obtained by (note that if A does not select any channel then this policy
altering A so as to probe the channel in which it transmits itransmits in a channel i@ that is in statej). The optimum
that channel has not been probed already. Thus, the gainin¢éremental gain G7(Q,j) is the maximum value of the
the policy, ®TNoBKUP (which we presented in [13]), that incremental gain for any policyl. Let OPTIG(Q, j) denote
attains the maximum gain among all policies that transmthe policy that that attains this optimum incremental gain.
in only probed channels is at mostless than that of the Let k(e,z) = [Mﬁ]
optimum gain. Thus, since < ¢, OPTNOBKUP attains the We now show how to design a policyPRROX NTERME-
desired gain. For completeness, we presentrNBKUP DIATE (Q,z,¢) that attains an incremental gain of at least
here. G75(Q,j) — e. We use a recursive design and assume that



for eachj > x and Q' such thatQ C Q" C QU S, process after probing the firé{e, z) channels in the:-path
where S C {1,...,n}\ Q and |S| < n*?) we have and takes the same decision a8105 (Q, z) does at the end
a policy APPROXNTERMEDIATE (Q,j,¢/2) that attains of its z-path. Let the new policy be denoted a®T™™oOD.
an incremental gain of at least}(Q’,j) — ¢/2. We first Since QPTMoOD probesk(e, ) channels in itsz-path and
introduce the following definition. can be used ifF (Q, z), its incremental gain exceeds that of

Definition 3: Let 72 be a k-dimensional vector with SEQUENCE*(Q,z,¢) by at moste. We now show that the
components in{0,...,n} \ Q which satisfies the property gain of OPTMOD is at moste less than that of ©T1. The
that if 7°¢ = 0 then rﬁf =0. result follows.

Let the probability that all channels probed by™ioD
in its z-path are in state or in a lower state bev. Clearly,
the difference between the incremental gains &#fTlobp
and CrTIG (Q, x) is at mosta(rix—1 — r,). We now show
ITet k1 be the number pf gle@ents in If 7, > 0 for all that o < €¢/(rxg_1 — r.). Note that if GPTIG probes a
jr k2 = k1, elsekz = min{j : 7; = 0}. channeli in its z-path, thenZkK:;ilpki(rk —ry)—c>0.
Thus, if OPTMOD probes a channel in its z-path, then

SEQUENCE (7, 4, Q, , €)

Fromi: = 0 until ¢ = k2 — 1, probe channels; unless a

K—1 K—1
probed channel is in a state higher than Zk:m+1 Pri(rg—rs)—c > 0. ThUS,ZkZIH Dri(rE—"Ts) >
Let O’ be th t ch | bed in thi @” p €. ThUS,(T‘K_l —7‘1) Zf:_zlJrl Dki = €. ThUS,T‘K_l —7ry > €.

et e the set of channels probed in this ste@1f= ¢, Also. (1 =S¢ ) — > ¢. Hence,> 7 i <
r; = —1. Otherwise, let the highest state of a channel| in (1= D pg Pri) (M1 —70) 2 € 2o Phi =

1—¢€/(rk—1 —ry). Since ®PTMOD probesk(e, z) chan-
nels in theO-path,a < (1 —¢€/(rg—1 —rm))’“(”). Since
If max(r;,7¢) < rs, transmit in a probed channel that |s  k(e, z) > M#’ (1 — ¢/ (rig_y —12))F®) <
in statex. Else, ifi = ko, (a) if r; > 7 transmit int and n(1=e/(rx-1=r2))

; M ! €/(rg—1—rg). [ ]
b) otherwise transmit id. Else, follow the same decision .
(aS)APPROXINTERMEDIATE (j,0UQ',¢/2). Now, note that since'x_1 < 1, k(e,z) < g(¢) where

g(e) = [(1/e)In (1/€)].
- ) . Now, given lemma 4.1, the recursive design will be com-
Definition 4: Let SEQUENCE'(Q, z, ¢) be the policy that plete once we determine PRROXNTERMEDIATE (Q, K —

attains the maximum gain amon@QUENCE (7. £z, Q,¢) 5 ) for certain subsetsQ of {1,...,n}. Note that the

ford'ﬁeren”k(,e’z)’gum for all possible’ € {0.....n}\ Q. channels in the fictitious systei(Q, K — 2) effectively

The following lemma proves that ifc > ¢ paye two statedc — 2, K — 1. We have presented a policy
SEQUENCE'(Q, 7, ¢) .attalns an incremental  gain 5 determines the optimum gain in any system where each
of at least Gj(Q,j) — e Thus, APPROXNNTER-  channelhaq states in polynomial time [14]. MG (Q, K —
MEDIATE (Q,z,¢) is in fact SEQUENCE(Q.z,¢), 9) and hence APROXNTERMEDIATE (Q, K — 2, ) for any
and hence APROXNTERMEDIATE (Q,z,¢) can be  "can pe ghtained in polynomial time by minor modification

constructed in a recursi/ve mannerKPQr?\;ided we Knows e nolicy presented in [14]. The modified version is
APPROXNTERMEDIATE (Q', K —2,¢/2 ) for certain presented as WOSTATEOPT(Q).

subsets Q'. Since Gj(¢,0) is the optimum gain, the
recursive construction will in turn lead to the desired @ler [\ os7aTEORT (Q)
approximation guarantee.

Q' bej, and lett be the probed channel which is in state

[

Lemma 4.1:Let ¢ > ¢. Suppose for each > z and Q' For each ¢ ¢  {0,...,n} \ Q, determine

such thatQ C Q' C QU S, whereS C {1,...,n}\ Q and TWOSTATEOPT(Q, ¢) as follows.
|S| < nFe®) a policy APPROXNTERMEDIATE (Q', 7, €) 1) Le}t{ng: {i:pr—1i (rk—1 — max(7[0], rx—2)) >

. . . . C; .
attains an incremental gain Of. at IeaS;(Q,])_— & The_n 2) Probe all channels %, in non-increasing order o
SEQUENCE"(Q, z, €) attains an incremental gain which is at px—1:/c; and stop if one channel is in staé — 1.
leastG(Q, j) — 2e. 3) If a probed channel is in stat& — 1 transmit in it,

Proof: Clearly, at every node in its decision tree else if7[0] > rx—» transmit in/, else transmit in &
OPTIG(Q, z) takes the same decisions irrespective of the probed channel that is in stafé —2. .
state of the probed channel provided the state @ lower. Select WOSTATEOPT(Q, /) that has the maximum gain

among allt € {0,...,n}\ Q.

So, the sub-tree starting from the root node in which the
probed channels are in stateor a lower state corresponds
to a path, which we refer to as thepath. Note that the
incremental gain of BQUENCE*(Q, z, €) is at moste less
than that of any policy in the fictitious systeti(Q, z)
that probes at most(e,z) channels in itsz-path. Thus, if
OPTIG(Q, z) probesk(e, z) or fewer channels in its-path,
then clearly the incremental gain o0ESUENCE"(Q, x, ¢) is

at leastG;(Q, j) — e. The result follows. Otherwise, &G
(Q,x) probes at leask(e,z) + 1 channels in itsz-path. If j = K — 2, use WOSTATEOPT(Q).
Now, change ®TIG (Q, x) so that it terminates the probing | If j < K — 2, use £QUENCE'(Q, j, €).

It now follows that APPROXNTERMEDIATE (Q, j,¢) can
be computed using the following recursive approach (the
recursion occurs aseERQUENCE"(Q, j,¢) can be computed
using APPROXNTERMEDIATE (Q’,4,¢/2) for certain sub-
setsQ’ andi > j.

APPROXNTERMEDIATE (Q, 7, €)




We now present the policy #PROX (¢) which attains a
gain of at leastGopt — €.

APPROX (€)
If ¢ <e¢, use PTNOBKUP.

Otherwise, forj = K —2toj =1 _

for all subsetsQ such that|Q| < jg(e/27)
compute AAPROXNTERMEDIATE(Q,j,¢/27).
Compute and use PPROXNTERMEDIATE(¢,0, €).

V. CONCLUSION

The area of optimization of joint information acquisition
and exploitation strategies in wireless networks posesraév
open problems which have received limited attention until
recently. In this paper, we have provided a policy that attai
arbitrary desired tradeoffs between approximation guagn
and computation time. The performance guarantees have
however been obtained for the special case of equal probing
costs and temporally and spatially independent chanrtg sta
processes. Generalizing the results for networks whesethe
assumptions do not hold constitute interesting problems fo

Theorem 4.2:The gain of APPROX(e) is at leastGopr—e.
Proof: As discussed before, it < ¢, the gain

of OPTNOBKUP is at moste less than that of the op-
timal policy. Let ¢ > e From lemma 4.1 and since (1
TWOSTATEOPT(Q) is OPTIG(Q, K — 2), the incremental
gain of APPROXNTERMEDIATE(0, ¢,€) iS at moste less
than that of the optimum incremental gai¥i(¢4,0). Note
that the incremental gain of any policy in the fictitious gyst
F(¢,0,¢) is the same as its gain in the overall system,[3]
and any such policy always selects a channel. Thus, the
incremental gain of APROXNTERMEDIATE(D, ¢,€) equals  [4
its gain, andG7;(¢,0) = Goprt. The result follows. [ |

We now evaluate the computation time for PA 5]
PROX (e). Now, APPROX (e) can be computed in
O(g(e/25)na(e/2)(K+2)+1) time. Given a positiver, the  [6]
computation time is therefore polynomial im but expo- [7
nential in K. This is usually acceptable since the number
of statesK is small. Nevertheless, we now describe how!8l
the computation time can be made independenk ofirst, [9]
divide [0,7x_1] in disjoint intervals of sizee/2. Then,
consider a new system where the probability of success i#]
each stateé equals(e/2)|2r;/¢]. This new system effectively (1]
consists of Ky = 2rix_1/e < 2/e states. In this system,
APPROX (¢/2) approximates the optimum gain within an[12]
additive factor ofe/2. The gain of the optimum policy in
this system is at leastiopr — €/2. Thus, APPROX (€/2)
computed in this system attains a gain of at lgalgpr — e.
Note that the time required for computingPAROX (e/2) in
this system isO(g(e/22/€)n29(e/2/)(1/e+D+1) jrrespective  [14]
of the number of states in the original system.

Finally, we comment on the design of an approximays
tion algorithm that approximates the optimum gain within
a multiplicative factor ofe. Let G’ be the gain of the
policy APPROXBKUP proposed in [13] that is guaranteed;g
to attain a gain of at least half that of the optimum policy.
APPROX (eG'/2) computed in the above system attain?m
a gain of at leastGopr — €G’, which is at least(l —
€)Gopr. But, the computation time of BPROX (eG'/2)
is O(g(eG! /22/<C" \p20(e/2*/ ¢ )(1/eG'+1)+1) " and therefore
increases with decrease @f. The computation time is still [19]
a polynomial inn once e is specified providedzopr is
Q(e*) for some constant (as thenG’ is Q(e*)). Thus, the
computation time becomes unacceptable only wiigpr
is o(¢*) for all constantsk. But, in systems with such low
gain, the channel qualities are so poor that from a practic 2I2]
perspective any optimization becomes useless.

(2]

[13]

(18]

[20]

[21]

future research.
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