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Abstract— Several policies have recently been proposed for attaining The throughput guarantees usually improve with increase in the
the maximum throughput region, or a guaranteed fraction thereof, information each link acquires about the states of other links, but

through dynamic link scheduling. Among these policies, the ones that foohing information about distant links (nodes) require longer time.
attain the maximum throughput region require a computation time

which is linear in the network size, and the ones that require constant Thusj an important question is hOYV much information a link should

or logarithmic computation time attain only certain fractions of the acquire about the states of other links.

maximum throughput region. In contrast, in this paper we propose The scheduling policies that have been widely investigated can
policies that can attain any desirable fraction of the maximum throughput o ¢|assified into two broad classes: the policies that require each

region using a computation time that is largely independent of the . . .
network size. First, using a combination of graph partitioning techniques K t0 know attributes that depend on the states of (a) all links

and lyapunov arguments, we propose a simple policy for tree topologies N the network [4], [27], [28] and (b) only the links that interfere
under the primary interference model that requires each link to exchange with it (1-hop interferers) [2], [16], [17], [23], [29]. We refer to
only 1 bit information with its adjacent links and approximates the  the two classes ANFORMATION(N) andINFORMATION(1) policies

maximum throughput region using a computation time that depends only . . .
on the maximum tegree of nodes and the approximation factor, Then respectively, whereV refers to the number of links in the network.

we develop a framework for attaining arbitrary close approximations ~BY this nc_)menclatu_re, themNFORMATION(k) is the_class_, of policies
for the maximum throughput region in arbitrary networks, and use this  that require each link to learn the states of thieihop interferers.
framework to obtain any desired tradeoff between throughput guarantees A seminal result shows that the\FORMATION(IV) class contains
and computation times for a large class of networks and interference policies that attain the maximum possible throughput region in arbi-

models. Specifically, given any > 0, the maximum throughput region . . . .
can be approximated in these networks within a factor ofl — ¢ using a  trary wireless networks while computing each schedul@ (V) time

computation time that depends only on the maximum node degree and [27]. Recently, it has been shown that a policyl NFORMATION(1)
€. class can attain a guaranteed fraction of the maximum throughput
region usingO(AglogN) time for computing each schedule where
I. INTRODUCTION A is the maximum degree, or the maximum number of neighbors

- . . . of i de, in th twork [2]. Th tributi f thi
Attaining the maximum throughput region, or a guaranteed fractl(g)n any given node, in the network [2]. The contribution of this paper

L . . ) iS to show that in certain important classes of wireless networks,
thereof, through dynamic link scheduling is a key design go . . .
. . : . ; or appropriate selection ok betweenl and N, policies can be
in multihop wireless networks. The scheduling problem involves_ . . . .
determination of which links should transmit packets at a given timeeSIgned ININFORMATION(k) class so as to obtain arbitrary close
S0 as to avoid packet collisions. Moreover. thtleOtransmissioriJ scheduﬁl groxmatlons for the maximum throughput region, while computing
P : : - each schedule in an amount of time that depends onlyA@nand
cannot be pre-computed as the number of packets waiting at nodes as, . L . oo
L . . . . ‘The desired approximation factor and is otherwise independent of the
well as the transmission conditions in the wireless medium vary with
. o S ._Size of the network.
time, and the statistics of these temporal variations are oftentime . . . .
e first consider the primary interference model where any set

not known a priori. The transmission schedules need to be computt? . . . )
at every transmission epoch. Thus, the schedule computation tiO elmks that contains no two links with a common node can
y poch. ’ P BE simultaneously scheduled. Under this interference model and

is a key performance metric for any dynamic scheduling p0|ic¥r'ee network topology, given any positive constantwe obtain a

The contribution of this paper is to characterize tradeoffs betweggheduling policy iNINFORMATION(1) class that (a) approximates

throu_ghput guarantees ar_wd computation times for scheduling pohci 2 throughput region within a factor of — ¢ and (b) requires
for different classes of wireless networks.

The lack of a central controller dictates that each link neeﬁcomputatlon time 0l0(Aq /) for each schedule (Section IV).
d

. o . is policy requires no actual computation! Each link with a packet

to determine at every transmission epoch whether or not it wo T . Lo -
. : . L . 0 transmit simply waits until its parent and older siblings (all of
transmit based on its own state and the information it acquires about. . : . - .
which are adjacent to the link) take scheduling decisions, and if

the states of other nodes. The state of a node or link comprises ] . o . .

attributes that change in the time scale of packet transmission: ea of them decide not to transmit, it transmits. Thus, a link need
9 ) - pacx . " ~otily communicate its scheduling decision to its children and younger

queue lengths and scheduling decisions. The time required for eaqll; . o i

) N : . Siblings, and no queue length information is communicated.

link (or rather the node which is the source of the link) to decide Next we present a general framework for designing

Whet_her o transmit or not at any giver_1 time depends on the tinﬂEFORMATION(k) policies for approximating the throughput
required (a) to exchange messages \.N'th other links to _Iearn th}ae'rggion arbitrarily closely (Section V). We subsequently use this
state_s and (b) to compute the Qe0|5|on _base_d on the InfOrmaq‘cr)amework for obtaining arbitrary tradeoffs between throughput
acquired. We refer to the total time required in both parts as the

L ; S guarantees and computation times for large classes of networks: (i)
computation time of each schedule, or simply the computation time, o . - -
graphs with limited cyclicity under the primary interference model
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expected delays attained by these policies and prove that the bounds Il. RELATED LITERATURE
are comparable to the best known guarantees in these networks. Th1ea

throughput and computation time guarantees extend to networks _ssmlaset a_I. characterl_zed the maximum throgghput region and
where sessions traverse multiple links (Section V1) provided a policy that attains this throughput region in an arbitrary

We now briefly describe the design of the proposed policiélglreless network [28]. This policy schedules the maximum weighted

and provide the intuition behind the performance guarantees. .Iggependent set of links in each slot, and hence reqéi(es’) time

proposed policies partition the network in a collection of componen r computing each scheFiuIe unleSs= NP’ A minor modification
the size of the components depend onlyXwa ande. The links in one of the proof shows that if the schedule is computed as above once

component that interfere with those in another component are “sg‘fery T slots and subsequently used for transmittifigpackets,

down” i.e., not scheduled. Hence, scheduling among the resid g" the thr_oughput rej%'on does n_ot change as Ion@“agsflnlte.
us, by usindgl’ = ©(2""), the maximum throughput region can be

links in different components can now be determined in parallel, . : . S Y .
b P ained while devoting)(1) fraction of total time in computing the

Thus, the time required to compute the overall schedule now depeﬁé dules. This inf ¢ schedul tation is h likelv t
only on the size of each component and can be determined onlysn eduies. This inirequent schedule computation 1S however fikely fo

A¢ ande. The links that are scheduled in each component maximii pstantially increase packet delays and packet loss when nqdes have
the throughput region of the component; the reduction in the over hnte buffers. Schedules can be computed frequently if the time for

throughput region may happen only because of the “shut down” Iinlé;sc.)mputing each s:ch_edule is reasonable. Thus, sybsequent res_earch
This reduction in throughput is kept small using different partitionin ttempted to maximize the throughput region subject to constraints

schemes at different times that ensure that each link is shut do the IC(l)mpl;tatlon t!;nedof ezch .SCZEdUI!]e.d i h h .
only a small fraction of time and the size of the components in each 'assiulas [27] provided randomized scheduling schemes that attain

partition is large enough. the maximum achievable throughput region while requird@\V)

The proofs for the throughput guarantees rely on a combinatigme to compute e_ach schedule for arbitrary interference model_s. In
of graph-partitioning techniques and lyapunov arguments. A majS?Ch slot, _th's p_ollcy r_andomly S_eIeCtS an |ndepe_ndent set of I|n|§s,
challenge in proving the analytical results has been that standgfi"Pares its weight with the weight of the set of links SChedU|ed.'n
results in graph partitioning and approximation of throughput regior‘i@e prewous |S|°t ahnd schﬁduleshthe set t.hat has th? Iar%er weight.
do not apply owing to this combination. For example, the followin odiano et al. [5] have shown that gossip base_d algorithms can
result is often used for approximating the throughput region: if & used_ to implement the above policy for arbl_trary_lnterf(_erence
scheduling policy ensures that the sum of the queue lengths of {Hgdels in n_et\{vorks? where _nodes do not have unique identities and
links that transmit packets is within a factorof the maximum sum know only limited information about the global topology such as

of the queue lengths of the links in any valid schedule, then tlﬁ’éith lengths, number of nodes in t_he netwprk etc. Dimai(isal. )
throughput region of the policy is within a facterof the maximum [ have shown that a greedy maximal weight scheduling, which

throughput region [17]. Since a valid schedule in a network witffpauiresd(V) time to compute each schedule, attains the maximum

N links can oftentimes be represented as an independent set i];prggghput region in several different networks. All the above policies
graph withN links, such schedules can be computed if the maximufif€ " thelNFORMATION(N) class. . )
weighted independent set in such graphs can be approximated withifr"@porkaret al. [2] proved that a simple greedy scheduling

a factor ofc. Existing graph partitioning schemes can be used fGicheéme, maximal independent set selection, which can be com-
attaining the above in geometric graphs and secondary interfereREged in©(AclogN) time [10], attains guaranteed fraction of the
model for ¢ arbitrarily close tol, and existing matching algorithms Maximum throughput region for arbitrary interference models. The
can attain the above in trees under primary interference model fgfarantees depend on the interference model, &/g.for primary

¢ = 1. But, all such schemes need(¥N) computation time [9], interference [3], [17], [29]1/8 for geometric graphs under secondary

[13], [20]. Thus, such schemes can not be directly used to Obt&merference model [2], etc., and can not be made arbitrarily clo$e to

arbitrary tradeoffs between throughput guarantees and computafih Sarkaret al. [23] proved that for the primary interference model
times for each schedule. We circumvent this difficulty by proving"d trée graphs, a queue length dependent maximal matching attains

that in a large class of networks, given any 0, simple randomized /3 of the t_hVOUQhIOUt region Whilt_e usirg (Ag(logAg)logN) time
partitioning schemes can be used to (a) obtain independent sets d@EfFOmputing each schedule. Let al. [16] proved that a random
that the expected weight of such an independent set is withine access scheme, where links access the medium with a probability that
of the maximum weight of an independent set for any allocation §€Pends on their and their interferers’ queue lengths, atigidand
non-negative weights, (b) while requiring a computation time thd¢ 2c the throughput region for arbitrary networks under primary and
depends only oM\ and e. The above property may be usem,gecondary interference models, respectively, while requitid.¢)

for approximating maximum weighted independent sets in expecti@® for computing each schedule. All these policies are in the
sense in other contexts as well, and is therefore an interesting redlff CRMATION(1) class.

in its own right (appendix B). It also turns out that if the scheduling Our contribution is to introduce the class BiFORMATION(k)
policy ensures that the expected sum of the queue lengths of the lipéicies and prove that for appropriate choiceskofpolicies can

that transmit packets is within a factoof the maximum sum of the be designed in théNFORMATION(k) class so as to obtain arbitrary -
queue lengths of the links in any valid schedule, then the throughptdeoffs between the best throughput guarantees and the computation
region of the policy is within a factor of the maximum throughput {imes obtained so far.

region. Together, these results have enabled the design of scheduling€ design of our policies rely on the use of graph partitioning
policies that obtain arbitrary tradeoffs between throughput guaranté@ghniques. Hunet al. [9], Kuhn et al. [13], Nieberget al.[20] have

and computation times for each schedule. Finally, note that the simgiRvised graph partitioning techniques for approximating maximum
scheduling scheme we proposed for trees does not approximate, e¥gfghted independent sets in geometric graphs within a factor-af

in expected sense, the maximum weighted schedule within any fac4§fng policies inINFORMATION (N) class which have computation

in any slot. The proof in this case relies on an appropriate choice tshes of® (N + A2<1/€ )) . The computation time depends o

a lyapunov function that captures artifacts introduced by the poli@s the policies consider several different partitions of the graph, com-
and the graph partitioning techniques. putes the maximum weighted independent set for each partition, and



selects the independent set that has the maximum weight amongdbmpleteness. A nodgeis a neighbor of a nodey, if there exists
above. Thus selecting the links using these approximation technigaebnk from i to j, i.e., (i,j) € E. The degree of a node: is the
require central control an®(N + A2(1/52>) time for computing number of neighbors ofi. We denote the maximum degree of any
each schedule. The partitioning technique used in [13] howeveede inG asAc. Two links (sessions) aradjacent to each other if
requiresA@G)(l/52) time for computing a maximum size independenth€y have common nodes. By definition, a link is adjacent to itself.
set which does not depend o, but this technique approximatesA link ¢ interfereswith link j if j can not successfully transmit
a maximum weighted independent set arbitrarily closely only wheh Packet wheni is transmitting. A subset of links is said to be
the weights are all equal. Since different links have different queidependentf no two links in the subset interfere with each other.
lengths in a network, this partitioning technique does not provid@tX be the collection of independent sets of links. Therference
throughput guarantees. Brzezinskial. [1] and Sharmaet al. [24] 9raph IV = (V¥ E}Y) of a network\ is an undirected graph in
have recently used graph partitioning schemes for spectrum allocati¥ich the vertex se¥;\" corresponds to the set of links and there
and maximum weight independent set selection in wireless networl&2an edge between two verticesaand j if either 7 interferes withj

For geometric graphs, our framework yields a policy in thér J interferes withi. The distance between linksl; and i, is the
INFORMATION(O(Ag/€?)) class that computes each schedule ifistance between the corresponding nodes in the interference graph
O(A%/€?) time using a simpler partitioning technique, and stilPf the network, and &-hop neighborhoodf a link I is the set of
attains desired approximation guarantees for the maximum throudjiks whose distance frorhis at mostx.
put region. Our design is based on the following result which may We now describe the data packeirrival process. We assume that
become useful for approximating maximum weighted independeit MOStamax > 1 packets arrive for any session in any slot. Let
sets in an expected sense in several different contexts, and therefbrét) be the number of packets that sessiarenerates in slat We
constitutes a contribution of the paper in its own right. We sho@ssume that a packet arriving in a slot arrives at the end of the slot,
that for geometric graphs, given amy> 0 and any allocation of and may not be transmitted in the slot. The arrival prode$s(t)}
non-negative weights, the expected weight of the maximum weightisdindependent and identically distributed for &ll
independent set in a randomly selected partition approximates theéd subset of sessions can transmit packets in a slot if no two
overall maximum weighted independent set within a factar-of for ~ sessions traverse the same link and the links the sessions traverse
appropriate random selection strategies, and the maximum weightedstitute an independent s&, i.e., if X € X. Every packet has
independent set in any such partition can be computed(inZ /) length1 slot. Thus, if a session is scheduled in a slot, it transmits a
time (appendix B). Thus, if the goal is to approximate the maximumacket in the slot. Ascheduling policyis an algorithm that decides
weighted independent set in an expected sense, which incidentatlyeach slot the subset of sessions that would transmit packets in the
suffices for approximating the maximum throughput region, thgot.
computation time need not depend @0 given Ag,e. For trees  Let D;(t) be the number of packets that sessidransmits in slot
under the primary interference model, we show that the schedules = 1,...,..., N. D;(¢) € {0,1} and depends on the scheduling
that approximate the throughput regions arbitrarily closely need nablicy. Let Qi(t) be the queue length before the arrivals and the
approximate, even in the expected sense, the maximum weighteghsmissions in slot. ThenQ; (t + 1) = Qi(t) + Ai(t) — D;(t).
schedule within any guaranteed factor. Performance guarantees inet DL;(t) be the delay, or the number of slots that elapsed
this case has been attained by combining similar simple partitionigtween the arrival and transmission of thh arriving packet in
schemes with properties of trees and matchings. the queue of sessiof. Thus, theexpected delayor sessioni is

Fl_nally, receqtly, Jung and Shah [;Ll], [12] obtained pollcu;s th?itmT_)oo ZL;JL,:(O. The expected delays for the sessions depend
attain orQer optimal .expected delays in a c!ass of graphs that incluggsihe scheduling policy.
geometric graphs with bounded nodg density. Using result; from [11]'Definition 1: The network is said to bstableif there exists a finite
[12], we shoyv _that many of the policies we proposed, attain the Same\ | number" such that with probabilityl,
result in a similar class of networks.

T—-1
IIl. SysTEM MODEL limsup > Qi(t)/T <T, i=1,...,N. 1)

We consider scheduling at the MAC layer in a wireless network. T=oo =g ) o )
We assume that time is slotted and the clocks on network nodes ar¥Ve consider a virtual-queug; associated with link that contains
kept synchronized, possibly by a separate algorithm, so that ther@ligpackets Wa_ltlng for tran_smls_smn for all sessions that traverse
a common notion of time among the nodes. The length of each tif¥@te that the virtual queue in a linkmay contain packets of sessions
slot is the time required to send a packet. The topology in a wireld§@versingl in both directions. LetA,(t) and Dy(t) respectively
network can be modeled as a gragh= (V, E), whereV and E denote the number of ar_rlvals and departur_es_ in slan virtual
respectively denote the sets of nodes and links. Each node in f¢ueQ:. Clearly, the arrival proces§A,(¢)} is independent and
network has a unique ID which allows a recipient node to know tHgéntically distributed for allz and for all /,¢, Ai(t) < amax
sender of a received packet. A link exists from a nad® another WHer€ dmax = Namax. Let EAy(t) = A The arrival rate  of
nodew if and only if bothw andwv can receive each others’ signals!ink @ is Ai, i = 1,...,|E|. The arrival rate vector A is an
We assume that the graph modeling the network does not change whh—dimensional vector whose components are the arrl_val rates.
time. Let|E| = N. Each session represents a triplétu, v) where AlS0. Qu(t +1) = Qi(t) + Ai(t) — Di(#), and (1) holds if and
i is the identifier associated with the session anghdv are source O if limsupr_ . 5%, Qi(t)/T is finite.
and destinations of the session, andv) € E. Note that multiple ~ The throughput regionA™ of a scheduling policyr is the set of
sessions may traverse a link. We consider a network Witkessions. arrival rate vectors\ for which the network is stable under. An
Finally, we assume that the nodes have synchronized pseudo-randéfiyal rate vectori is said to befeasibleif it is in the throughput
number generators so that all nodes can generate the same (rand6g{pn of some scheduling policy. Theaximum throughput region
number at a given time slot. A is the set of feasible arrival rate vectors. A scheduling potidg

We now introduce terminologies that we use throughout the paper.
Some of these are well-known in graph theory; we mention them for*Henceforth, unless otherwise stated, a packet will refer to a data packet.



said to approximate the maximum throughput region within a factor ©)
1 — ¢ if for each arrival rate vectoh € A, (1 —e)X € A™. L \?’/ \
1 9‘\ /
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We assume that a link knows the instantaneous virtual queue Ro O/a
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length of any other link’ only when!’ communicates it td. Also, j \@%
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depending on the scheduling polidymay or may not be able to
determine whethel is scheduled in a slot if it only knows the queue

%
length of!’ in the slot, and in the latter cageknows the scheduling S TR TIR TR T T N & N A N S G SR A
decision for!’ only when!’ communicates it td’. A scheduling
policy is said to be inINFORMATION(E) class if each linki can (a) Tree topologies

decidé whether to schedule itself once it knows the queue lengths

and the scheduling decisions of a subset of the links inkiteop

neighborhood:; the subset depends i&nk-hop neighborhood and m‘\‘;f)ﬂj
the policy, and may be different for queue lengths and scheduling g
decisions. Finally, each link may know limited information about the 0 1 23 4 5 6 7 8 9 10
entire topology; the amount of this information will depend on the )

specific policy and does not determine thecORMATION class the L(l)

policy is in. For a few representative policies, we will specify the ~ ~"7°
information each link knows about the topology.

(b) Topologies with limited cyclicity

We now relate our assumptions to those in related papers. T#ig. 1. The figures demonstrate the edge €688, L(1) under the primary
assumption that the grap does not change with time has beerinterference model for (a) a tree and (b) topology_withllimited cyclicity. In
motivated by the fact that queue-length evolution is much fast?r.)’k = 3.1n (b), k = 2, H = 3, and the numbers identify the nodes, e.g.,

. . L . . |? nodel. The spanning tre@ we consider consists of linkg, ¢ + 1) for
than top_olog_lcal changes. This assumption is consistent with severdl _...,9, and the level of node: in T is .
papers in this genre (e.g., [5], [16], [17], [25], [27], [28]). Note that
if the topology changes in the same time scale as queue lengths, the
throughput region must be defined for the case where the gtaph . . . . .
itself is random and sampled freshly in every slot; approximating ghotion of INFORMAT_'ON(k) policies. Finally, |nterfe_rer_1ce _relatlons_
throughput region of such graphs is an interesting topic for futun?tween dlf_fen_ent _Ilnks_need not always be pairwise in prac_tlce,
research. The assumption that each node has a unique identity rﬂ%’ transmission in a link may be successful only when the signal

be too restrictive in some cases (such as sensor networks), bu{qdnterference ratio exceeds a threshold, which may for example

networks where packets must be directed to specific destinations {4@W Pairs of neighboring links to transmit simultaneously but

in an ad hoc network), such unique identities are necessary. TRt t_hree neighboring Iink;, etc. Neverthele_sst pairwise i_nterference
assumption that the time is slotted and the clocks on network nodE!ations capture several important transmission scenarios, and the
are kept synchronized is justified when clock drifts are negligible ¥f€!l-investigated protocol interference model [7] is a special case of
the time scale of control packet transmission; similar assumptioR@inwise interference relations.
have been made in several papers in this genre (e.g., [5], [16], [17],
[25], [27], [28]). Clock synchronization, however, is a challenging V- | NFORMATION(1) POLICY FOR APPROXIMATING THE
problem and an area of active research; addressing the relevant iss{fe§MUM THROUGHPUT REGION ARBITRARILY CLOSELY IN TREE
is beyond the scope of this paper. When the above assumptions TOPOLOGIES
hold, using one time set up schemes or periodic set up schemes (Ve assume thatr is a tree and consider the primary interference
time scales of topological changes), each node can obtain necessavglel. Tree based topologies have been proposed and investigated for
information about the topology, node identities, and can ensure tisatveral resource allocation problems in multihop wireless networks,
the random number generators have the same seed. This justiigs, [1], [15], [22], [23]. Under the primary interference model, two
the assumption that the pseudo-random number generators ofliaks interfere if and only if they have a common node. A matching
nodes are synchronized. Also, in the time scale of queue lengsha set of links such that no two links in the set are adjacent
evolutions, only the queue lengths and the scheduling decisidnseach other. Thus, a valid schedule in a slot is a matching in
need to be communicated among the links. This motivates our
*Note that distributed or local information based policies can be defined in
several ways. The strongest definition is that which characterizes a policy as
distributed only when the policy can be implemented without any entity having
any information about the global topology [5]. To the best of our knowledge,
no policy that attains guaranteed fractions of the throughput region fulfills
this condition. A somewhat weaker definition requires that the policy can
be implemented in networks where nodes do not have unique identities. The
policies proposed in [5], [16] are distributed under this notion. The weakest
notion is that which requires the nodes (or links) to base their decision on
information received from their neighbors. By using broadcasts, any policy can
be made distributed under this notion, and designing such a policy is trivial.
The notion ofINFORMATION(k) that we put forth is intermediate between
+ . . . . _the'abo_ve extremes and diffe_rs from all of the above notions in that it (a)
In an actual implementation, one of the end nodes of a link will determingsinguishes between the attributes (e.g., queue lengths) that change fast and
whether the link is scheduled, and for aFORMATION(K) policy it can arrive  ¢qge (e.g., topology) that change relatively slowly and (b) parameterizes the

at this decision once it knows the queue lengths and the scheduling decisiglisyf nodes a node can communicate with while determining the transmission
of a subset of thé&-hop neighborhood of the link. decisions.
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Fig. 2. The figures illustrate the operation of TR){n an example tree.
Fig. 2(a) shows the initial configuration in time slotThe number on each
link denotes the number of packets waiting on that link, and between any
two sibling links, the one towards the left is the older sibling. Let the random
numberi(t) selected by the links ba. The level of nodes, G, H, I is 3. (b) Geometric graphs under secondary interference

Thus, £3) consists of the links shown in dashed lines; these links do not

contend. Thus, no parent or older sibling of lirfk$, B), (K, N) and(M, P)  Fig 3. The figures demonstrate two grids, gridlsi, and the edge set
contend. Thus, these links schedule themselves first. Thus, (iBK€), L(%) for a geometric graph under (a) primary and (b) secondary interference
(B,D), (B,E), (K,0), (M,Q) do not schedule themselves. Th(§,, F)  models.

and(E, H) schedule themselves. The links scheduled @&me shown in solid

lines in Fig. (b). Let no exogenous packet arrive in gloFig. (c) shows the

new number of packets waiting on each link at the beginning oftstetl.

Let the random numbei(¢ + 1) selected by the links in + 1 be 2. £(2) A formal description ofTPM(k) follows.

consists of the links shown in dashed lines in Fig. (c); these links do not
contend int+ 1. The links scheduled ih+ 1 are shown in solid lines in Fig.
(d). Note that link(A, B) contends in this slot, but does not schedule itself
since it does not have a packet to transmit.

TREE-PARTITION-MATCHING (k)

In slot ¢,, a single integefi(t) in the rangelo, ...,k — 1] is
randomly selected by all links (i.e., all links select the same
integer).Prob(i(t) = m) = 1/kforall 0 < m < k—1. A

i i i (i(8))
the basic graph, and X is the set of all matchings id7. This link I contends if and only it € 2\ ’

interference model is encountered in networks where each node has jink schedules itself if and only if (a) it contends (b) it
a single transceiver and a unique channel (frequency or code) invirtual-queue has packets to transmit, and (c) links/jndo
its neighborhood, e.g., Bluetooth networks, cognitive radio networks,| not schedule themselves.

and has been considered in several related papers [5], [16], [17], [25],
[27]. When a link is scheduled, the head of line packet in the
corresponding virtual queue is served.

2]

We now describe the scheduling policy which we refer to as
TREE-PARTITION-MATCHING(k), and abbreviate a6PM(k). Here,

k is a parameter which determines the throughput region and the 19- 2 illustrates T_PMO using an example. . .
computation time of each schedule TPM (k) belongs in thelNFORMATION (1) class irrespective of

L . . the valuek since each link needs to know the scheduling decisions
We flrs_t |ntroduce_ the fol_lowmg notations. The level of a nod f only its parent and older siblings which are within itshop

l_evel(u) ina tre_e IS its dlstance_from the _roczt of the tre_e. '%eighborhood; no link needs to know the queue lengths, or any other
link I = (u,v) is the parent (child) of a link’ = (v,w) if function thereof, of any other link.

level(u) < level(v) < level(w) (level(w) < level(v) < level(u)). We now evaluate the time required for computing each schedule
Links (u,v1), (u, v?), ... are siblings of each other 1f3V_el(U1) = for TPM(k). Note that in any slot the links that contend constitute
level(vz). Also, different priorities are associated with differenty torest such that those in a tree of the forest do not interfere with
siblings such that betwleen any two siblings one is older and the othgsse in a different tree of the forest. Thus, the scheduling in different
is younger. Let/; = {I" € E : 1" is a parent or older sibling off.  components can be determined in parallel. The maximum length of

Forj = 0,...,k — 1, let L be the set of links(u, v) such that g path in any tree in the forest is Each link that contends decides
levels ofu andwv arej andj + 1 modulo k (Figure 1(a)).




whether to schedule itself immediately after it knows the decisions
of its parents and older siblings that contend. Thus, each link waits
for the scheduling decision of at mosi\¢ links. Thus, the overall
computation time for each schedule(§kA¢).

Theorem 1:If X € Int(A), then(1 — 1/k)X € ATPM(F),

The above theorem is somewhat counter-intuitive as T9Mo6es
not use queue lengths of the links in the schedule computation.
Thus, clearly, TPMK) does not necessarily schedule a set of links
whose sum of queue lengths is within any constant factor of the
maximum possible sum of queue lengths of links in a matching.
Thus, the proof cannot rely on the well-known result that a policy
that schedules a set of links whose sum of queue lengths is within a
factor ¢ of the maximum possible sum of queue lengths of links in a
matching, attains a throughput region which is within the factof
the maximum throughput region [17]. We therefore first outline the
idea behind the proof.

Intuitively a scheduling policyr that schedules a link if and
only if (a) it has a packet to transmit and (b) links i do not
schedule themselves, maximizes the throughput region in a tree. This
is because whenever a linkhas a packet to transmit, schedules
either! or a link in J;; the optimum policy also schedules at most
one link in J; U {l} in each slot. Clearly, the computation time of
each schedule for is O(dA¢) whered is the depth of the tree, and
d is O(|E]). Now, by preventing the contention of a subgét®) of
links in each slot, TPM (k) partitions the graph in a forest where the
depth of each tree is at mokt and uses the above scheduling policy
in each tree of the forest. This reduces the schedule computation
time of TPM (k) to O(kAc). The choice ofL(® ... L*~1 and
different selections of(¢) € {0,...,k — 1} in each slott ensures
that a link contends with probability — 1/k in each slott; this in
turn ensures that the maximum throughput region reduces only by a
factor of 1 — 1/k.

Proof: The result clearly holds ift = 1. ThusL we as-
sume thatk > 1. The arrival rate vector i1 — 1/k)\ where

matchings of the Iinks,zl,ejlu{l} A < 1 [8], [28]. Let 6 =

. l_n‘ale’eJlu{l} Ay
min

,1). Clearly, § > 0. For a link! =

2|E] max;; Ay
(u,v), x; denotes the sum af\¢ min (level(u), level(v)) and the
number of older siblings of. Note thaty; < x;s —1if [ € J». This <

is because if € J;/ [ is either an older sibling of or the parent of
I'. In the first case, the end nodesiofnd!’ have the same levels,
and! has fewer older siblings as compared toln the second case,
the level of the source (end) nodeids 1 less than that of the source
(end) node of’, and! may have at mosf\s — 1 more older siblings
than?’.

<
Observe that the queue lengths of the virtual queues constitute a—
Markov chain. We consider a lyapunov function

> Qv

V(@) =) 0MQi +2) 6MQ
l l UeJ,

Note that the use ofi*'s in the lyapunov function have been

motivated by the asymmetricity af;s (J; is asymmetric in the sense

that if I is in J; thenl is not in J}). We prove that

E (v (Q’ (t+ 1)) —V (c}(t)) 1Q(t) = Q’) < —1 for all suffi-

<
ciently large ||@||, where ||@|| = 1/V(Q). Then, from Foster's
theorem (Theorem 223 in [6]) the Markov chain representing the
gueue length proces;(¢) is positive recurrent. AlscE (Q;(t)) < <
oo for eachl under the s;[(ealdy state distribution for the above Markov
chain. Thuslim o 2= « o The result follows. <

2 %, The
A € Int(A). Since A € Int(A) and X constitutes of all ;¢ j,.

v (Q(t + 1)) —v (Q(t))
= D (@t +1) — Q1) (Qult + 1) + Qu(t))
> Qut+1)

e,

—2) Q) Y Q)

e,

< 2 6 (At) - Di(1) @u(t)
+2 8 (Au(t) - Di(1))”
+2)6MQu(t) Y (Av(t) - Du (1))
l

e,

+2) 8 (Aut) = Di(1) Y Qu(t)

=

+2) Qi+ 1)
l

+257 6% () - Di(t) 3 (Av(t) - Du(t))

ey

IN

Z (A (t) — Dy (1))

I'eJu{l}

23 " 5MQu() (
l

+ > (le”‘lAl,(t)) + 4N o

ey

IN

> (Au(t) = Du(t)

eJu{l}

23 5 Qu(t) (
l

+0 Y Au(t) | + 4N 0fa. (2)
V:edy

last inequality follows sinc® < § < 1, xy < xp — 1 if

From (2),

eHY SB[ S (v - Det)
1 m=0 e u{i}

1:1edy

e u{l}

(2/k) 6N Qu (m —1/k) >0 A —(k—1)
!

+R(1—1/k)5 > Ay) +4AN?al .

ey
(sincel € LY for only onej € {0,...,k— 1} and
Dy (t) = 1 for somel’ € J; U {1} unlessQ;(t) = 0
orl e LUy

21— 1/k) Y 6N Qu (
l

+AN? Q2
~2(1 — 1/k)| E| max Al,azl: XL Q,

PBERVESEXEY M)

e u{l} Ve,

—1 for sufficiently large||@|| (sinced > 0 andk > 1).



The result follows. m in arbitrary networks and interference models (the network and

Thus, TPM ([1/€]) approximates the maximum throughput regiorinterference models are as described in Section Ill). We congider
within a factor of1 — e and computes each schedule@{Ag/e).  subsets of link<.(?), ..., L*~1 such that the links in a component

Finally, we describe one specific implementation T®M(k) for of GY = (V, B \ L(J>) do not interfere with those in other
any k. SinceG is a tree, it has a root. For any nodeother than components ofG\). In every slott, every link selects an integer
the root, there exists only one nogléu), denoted as the parentof in the range[0, ... k — 1]; each integer is selected with probability
such that (a) there is a link betweenandp(u) and (b) the level of 1/k and all links select the same integer. In any slothe weight
p(u) is less than that of.. If there exists a link between andv and  of a link is the number of packets waiting for transmission in the
v is not the parent ofi, thenv is a child ofu. For each link, one end virtual queue associated with the link, and the links that constitute a
node is the parent of the other - the parent node is referred to as thaximum weighted independent set in the interference graph of any
source node. Let the set of links for whiehis the source node be component of5(*)) are scheduled. Without loss of generality, links
C and the set of links for whicl is an end node b&,. Note that with zero weight are not scheduled. When a linis scheduled, the
E, = C,U{(p(u),u)}, and the links irC,, are siblings. For example, virtual queue associated withtransmits a packet.
in Fig. 2(a), A = p(B),Cs = {(B,C),(B,D),(B,E)},Ep = Note thatr (k) is completely specified once®, ..., L+~ are
{(A,B),(B,C),(B,D),(B,E)}. specified. We show that for appropriate choiced.69, ..., L*=1),

We assume that each nodé&nows its level, its parent and childrenﬂ(k) approximates the maximum throughput region within an ap-

nodes in the tree and the ordering among the linkS'in The source proximation factor that depends only dn We first introduce the
node of a link decides whether to schedule the link. Consider a no@flowing definitions.

win G. In each slot, eithefp(u), u), or links inCy,, or all links in E,,

contend;u decides which is the case as per the first stepRM(k). | ot Sy ={l'
(a) If links in C,, do not contend irt, thenwu takes no scheduling

decision. (b) If(p(u),u)) does not contend i, u schedules the  pefinjtion 2: A collection of subsetsZ, .. ., E, of E is said to

oldest sibling inC., that has a packet to transmit, and decides th@f .. -approximate f for (a) any given|E|- dlmen3|onal vector of non-
the rest of the links irC', will not be scheduled irt. (c) If all links negative real numberd” = (W1,..., W) and (b) any collection

in E, contend int, u waits for p(u) to inform it about whether of gpsets off, X . . .. X, such thatXi eXandX; CE;
(p(u),u) is scheduled in the slot (note thatu) decides whether to N

21" =1 or " interferes withl or [ interferes withl'}.

schedule(p(u),w)). If (p(u),u) is scheduled in the slot decides g
that none of the links inC, will be scheduled in the slot; else, Z Z Wi < CE?;%Z Wi
schedules the siblings i@, as in the case thalp(u),v)) does not i=11eX; o lex

We now present the key technical lemma that allows us to obtain
desired throughput guarantees.
Lemma 1:Let L, ..., L%~ be c-approximate. Then,

contend int. In cases (b) and (c), informs each of its children about

the scheduling decision for the link between it and the child node.
Clearly, TPM¢{) is simple to implement. Also, during the com-

putation time of a schedule, each node performs no computation, is

involved in at mostAs communications (a node transmitsbit, or (ZQ ) gl > (1 —c¢/k) maxz Qi(t

rather 1 packet of minimum possible size, to each of its children,

and receives at most bit), and waits for the rest of the time. The intuition behind the resultis as follows. The welght of the links

Clearly, in any scheduling policy that avoids collisions during packécheduled byr(k) differs from the maximum weight of any schedule

transmissions, in the worst case each node needs to communidat&e slot by at most the weight of the maximum weight independent

at least once with each of its neighbors. Thus, among the policiéet among links that do not contend in the slotZif?, ..., L*~1
that avoid collisions, TPMK) minimizes the communications andarec—approximate, then the expected weight of the maximum weight
computations for each node. independent set i, “®) turns out to be at most/k times that of
the weight of the maximum weight independent set in the slot. Thus,
V. INFORMATION(k) POLICIES FOR APPROXIMATING THE the expected weight of the scheduled links is at l¢ast c/k) times
MAXIMUM THROUGHPUT REGION ARBITRARILY CLOSELY that of the weight of the maximum weight of any schedule in the

We first provide a general framework for approximating thelot. The arguments in this proof can be generalized to obtain an
maximum throughput region arbitrarily closely using policies irexpected sense approximation for maximum weighted independent
INFORMATION(k) class (Section V-A). Then we use this frameworksets in geometric graphs using a computation time that depends only
to obtain arbitrary tradeoffs between throughput approximations and the approximation factor and the degree of the graph (Lemma 10);
schedule computation times in several important classes of netwow state and prove this general result in appendix B.
and interference models (Section V-B, V-C, V-D). Specifically, we  Proof: Let i(t) be the integer selected by links in slgtand
prove that in a geometric graph for both primary and secondary intéé{t) = argmax xex Y,y @i(t). Now, >, Q:(t)Di(t) >
ference models the maximum throughput region can be approximated XLt
within a factor of 1 — e using a policy iNINFORMATION(Ag/€?)  (maxxex 3 ey Qi(t) = X;cpq) Qilt )) - Now,
class that computes each scheduleOifAZ /€?) time (Section V-

C). These results can be extended to arbitrary graphs with limited
cyclicity (Section V-B) and quasi-geometric graphs (Section V-D). ( Z Qut \Q = )
We upper bound the expected delays attained by these policies and LEB(t)

prove that the bounds are comparable to the best known guarantees -1

in these networks (Section V-E). = P (i(t) =jl0t)=Q)E (

We describe a policyr(k) that approximates the maximum = (1/k)

A. General Framework
E
throughput region arbitrarily closely for appropriate choiceskof j=0



eachi under the slt(eady state distribution for the above Markov chain.
el
Thus,limgk . o M < 0o. The result follows.
Let IX denote the indicator vector for séf € X. Note that

= /BY max Y@

Jj=0 xcr@) lex

< (¢/k)max E;( Qi(t) ¢ € X. Then,Int(A) can be characterized as follows [28]:
1€
(sinceL”, ... L*~Y arec — approximate). mt(A) = {X:X= Y BxI", where Y pBx =1
. . Xex Xex

Thus, E (Zi Qi(t)Di(1)|Q(t) = Q) > a - and 8x > 0 for eachX € X and 3, > 0}. (3)
c/k)maxXGXZiex Qi(t). [ ]

Lemma 2:Let L©, ..., L*~" be c-approximate. Then, i € ,
Int(A) andk > ¢ > 0, (1 —c/k)X € A™H), Now, E ((A(t)) AW = Q’)

We provide the intuition behind the above result. When o
L L%~ are c-approximate, from lemma 1 it follows that =1 —-c/k)X'Q
m(k) schedules links such that the expected weight of the scheduled < (1—¢/k)(1 - B,) max Z Q:. %)
links in any slot is at leadl —c/k) times the weight of the maximum Xex =~

weight independent set of links in the slot. The throughput guarantee . . . oy
now follows using lyapunov arguments similar to those in [17], [28]1 € inequality follows by using\ = 3 ¢cy AxI7, 3 ,ex @i <
We prove this lemma towards the end of this subsection. maxxex ) e x Qi andEXeX\{(b} Bx =1~ Py

Once we prove that the collectio(®,..., L*~D s ¢- Since 1% (Q(t + 1)) - 1% (Q(t)) =
approximate for some, irrespective of the value of, Lemma 2 - = N\NT /&
allows us to approximate the maximum throughput region WithiéQ(t_‘_ 1= Q(t)) (Q(H' 1 -
a factor of 1 — ¢ for any ¢ > 0 using n(k) for k = [¢/e].  A(t) — D(t) and (/f(t) ,5(,5)) Alt) — 5@)) < Na2,,., we
Then the network designer simply chooses an appropeidiased gptain
on the desired trade-off between performance and computational . . . .
burden (the smaller the, the better the approximation of the E (V (Q(Wr 1)) -V (Q(t)) |Q(t) = Q)
optimal capacity region, but the higher the computational burden) . oONT o L .
and the corresponding guarantees the desired throughput. In the < 2E ((A(t) - D(t)) RIIQM) =@
next subsections we will prove that in large classes of networks )
the collectionZ®, ..., L~ can be selected so as to render it = —2(1—¢/k)fs ?ggﬁz@ + Nomax
c-approximate for different constant factar{lemmas 4, 6, 7). The ieXx
value ofc may however be different for different interference models (from Lemma 1 and (4)) .
and network topologies, and the constants in the expressions for the< —1 for all sufficiently large||Q|| (since 3y > 0,0 < ¢ < k).
schedule computation times will typically increase with increase in

e Finally, we present a lemma that we will use in analyzing the

i i () o i thi i

_ Note that different components in eaci”’ can schedule the oyhecteqd delay of the policies we develop in this section. Recall that
links in parallel as the links in different components do not interferg. “is the arrival rate for session

Thus, 7 (k) can be implemented provided in each slot and in eac Lemma 3:Let the arrival rate vector bél —e’)(l—c//c)X where
component either one, or all links, know the weights of all links iy _ ./ _ | angx ¢ Int(A). Let L9, ..., L= pe c-approximate.
the component. In either case(k) is in INFORMATION(k) class oL

where k is the maximum diameter of any component@f?) for ~Then underr(k) limr— o

—

)+dm). A+ 1) = G +
(

2
+ Nama)u

N——

T N
Pi=125=1 DL;(®) NaZ, . maxicp |Si|
T

max

= 2(1—c/k)e’ ming A,
anyj € {0,...,k —1}* which is upper bounded by the number of The proof uses techniques for bounding first moments kdelileloped
nodes in any component @) for any j € {0,...,k —1}. The in [14], which have subsequently been extensively used in different

computation time for each scheduték) will again be determined contexts, e.g., [19], [11]. .
by the maximum size (number of links or number of nodes or both) Proof:  Let the arrival rate vector bél — ¢/)(1 — c/k)X
of a component irGY) for j € {0, ..., k—1}. We will show that for wWhere 0 < ¢ < 1 and m(k) be used. Since\ € Int(A),
a large class of networks, the size of each component and therefore— €)X € Int(A). Thus, since L,..., L7V is ¢
the overall computation time for each schedule depends onlxen approximate, the proof of lemma 2 shows that the Markov
and k. chain representing the queue length process is positive recurrent.
We now prove lemma 2. Thus, limr e wj limy oo Tica E(%‘GE Q:i(1)
Proof: The result clearly holds wherk = c. We now Tio E(maxxcx Tiex Qi)
assume thatt > ¢ > 0. Let the arrival rate vector bgl —
c/k)X where X € Int(A). Clearly, underr(k), Q(t) constitute

and lim7 oo = exist. Also,
using little’s law, and the strong law of large num-
T 2jl. DL()

an aperiodic irreducible Markov chain. We will consider the lyabers —for i.i.d. . arrivals, limyp oo ===F7—— <
punov function V(Q) = 3, @7, and prove that under(k), —L— limr . Z‘:1E(ZT"€EQ"“))‘ We now show that
- — - — . ming Ag

E(V(G+1)-v(3®0) 181 =Q) < -1 for all suffi- > .1,0i(t) < maxicp |Si|maxxex 3,5 Qit) at eacht.

. = = = . Then, the lemma follows if we can show that

ciently large||Q||, where ||Q|| = 1/V(Q). Then, from Foster's YT E(maxxca Tiex @i(®)) No2_.

theorem (Theorem 2.2.3 in [6]) the Markov chain representing thg"7—o T = 2(1—c/k)e " .

gueue length process is positive recurrent. ABG(Q;(t)) < oo for Consu?er anX’(t) € & which is obtained as follows. Ini-
tially, X'(¢) = E. Now, let link [ have the maximum queue

) R . .

8The tacit assumption we make here is that two adjacent links alwag?sngth ati among tf/]e links inX"(?). Then all links in Sl,\ {u
interfere with each other which usually holds in all wireless networks. No@€ removed fromX'(t). The process is repeated unfi’(t) €
that we allow links to interfere even if they are not adjacent. X. Note that} >, Qi(t) < maxier[Si|3 ;e Qi(t). Now,



since ZieX,(t) Qi(t) < maxxex Y ;ex Qi(t), D,cpQit) <
maxiep |Si| maxxex D, x Qi(t)-
T E(maxxex Tiex Qi(1)

The diameter of any component &) is O(kH). Since a
component ofG"7) consists of at most\& components of"), the
diameter of any component 6#\%) is O(kHAE). Thus, H-LCPM

We now show thatlimr_ e = < e ped
Na?2 . . (k) is in INFORMATION(kHAG) class.
Sa—erme Similar to the deduction of (4), we can show

<

that E((Ea))Tc}(tn@‘(t):Q‘) 1 - ¢m

¢)maxxex Yo x Qi Let V(@) = ¥, Q2. Thus, from lemma 1
and as in the proof of lemma 2, we can show that

E(v(Qt+1)-v(dm)1d® = Q)
< =2(1 —¢/k)e max Z Qi+ Noja ¥ G.

i€ X

Thus,  B(V(Qt+1) -V (Qw))
< =2(1-¢/k){'E (g(ngggz Qi(t)) + Nojax ¥ t.
ence, B (v ((r + 1) - v ()
< =2(1 - ¢/k)e ZTj E (gg;g > Qi(t)> + NT 0 ax-

The last inequality follows using a telescopic sum. The result foIIovx}QH’]‘H}

-

sinceV(Q(t)) > 0 for all ¢ and
limr oo E (V (Q(1)
bounded. ( ( ))

B. Graphs with Limited Cyclicity

/T = 0 if the initial queue lengths are

We now prove the following key result which will be used in
obtaining throughput guarantees fa-LCPM (k).

Lemma 4: L ... L*~1 is 6—approximate.

Proof: Let W be an arbitraryN-dimensional vector of non-

negative real numbers,
X* argmaxxex y_,cx Wi, and Xo,..., Xx—1 be arbitrary
subsets of links such tha; € X" (i.e., X; is a matching) and{; C
LYW, j=0,...,k—1. We need to prove thaE";;g Yiex, Wi <

6 e x- Wi Forany linkl, Wi < 32, . g, Wi Letn?”) = |X;0
Sil- ThuS,Zler Wi < EZ‘EXJ‘ ZiGX*mSl Wi=2iex» m(‘”Wz.

k—1 k—1
Thus, > > W< > (Z nl(j)) Wi.

j=01eX; lex* \j=0

(®)

Hence, we need to show thégg‘f;g nl(j)) < 6 for eachl € X*.
Consider! = (u,v) € FE, and letu be the parent of in T.
There exists a uniqug; such that level ofu in T is in ((;i —
mod kH. Note that! is not adjacent to any link i (?
whereq < (j;—1) mod k org > (j;+1) mod k, i.e.,nl(” = 0 for the
aboveq. Since X ;s are matchings, at mo8tlinks in X; is adjacent
to  for any j, i.e., n\?) < 2 for anyj. Thus, (Zf;& 171(”) < 6 for
eachl € X*. [

Theorem 2:If X € Int(A) and e € (0,1), then (1 — &)X €
AH-LCPM([6/€1))

Using the above general framework, we generalize the tradeoffysing k = [6/¢], ¢ = 6, Theorem 2 follows from lemmas 4 and
between throughput and the time required to compute each schedul@jow, H-LCPM ([6/¢]) is in

to networks with limited cyclicity. Specifically, we assume that therﬁNFORMAHON(O(HAg/E)) class and requireﬁg(f]/s) time to

exists a constant/ such that the maximum length of a cycle G

compute each schedule. ThuE-LCPM will be useful for small

is upper bounded by7. We still consider the primary interferenceygjyes of H.

model.

Finally, note that under the primary interference model,

The setsL®, ..., L(*~!) for the scheduling policy, referred 0 1ax, |S;| < 2A¢ + 1. Now, consider any € (0,1), ¢ € (0, 1),

as H-LIMITED-CYCLICITY-PARTITION-MATCHING(k) and abbre-
viated asH-LCPM(k), are as follows. Consider a spanning tfEe
of G. For H-LCPM(k), LY is the set of links(u,v) such that
the levels ofu andwv in T are (a) less than or equal §d modulo

kH and (b) greater thapH modulokH respectively (Figure 1(b)).
Intuitively, for H-LIMITED-CYCLICITY-PARTITION-MATCHING (k),

wheni(t) = j, levelsjH, jH + kH, jH + 2kH, ... partition the

X € Int(A). Using k = [6/€], ¢ = 6, it follows from lemmas 3
and 4 that when the arrival rate vector {$ — ¢)(1 — €')\ and
H-LCPM ([6/¢]) is used, the sum of the expected delays of the

L L, N, DL . NoZ  (2Amtl
sessiondimy7_, o M is at mostM. In
2(1—e)e/ ming A

other words, for an arrival rate vector in the throughput reg]forﬂ{ef
LCPM ([6/¢]), Int((1 —¢€)A), the above sum is upper bounded by a

graph, andZ®) consists of the links that cross these levels. Cleariuantity that depends on the arrival process (throughy, miny Ak,

the components
not interfere with those in other components.

of/) are such that the links in a component d@nd the parameter that determines the distance of the rate vector

from the boundary of the throughput region B-LCPM ([6/¢])),

We now evaluate the timé/-LCPM(k) needs to compute each"eWork (throughiV, Ac) and the policy parameter (through

schedule. Let the set of edges Thbe E. Note that the maximum

length of a path i) = (V, £\ L\Y) is kH. Thus each component C. Geometric Graphs

in 7Y has O(A%7) nodes. Each component ¢f”) consists of

A graph is said to be geometric if nodes are embedded in the

several components &F). Consider all nodes that are in a givenfirst quadrant of the-dimensional plane, and a link exists between

component ofG), but are in different components @f"). These
nodes have a common ancestor, sain 7. The subtree of” with v
as the root and the above nodes as leaves has diameter atimast
Thus, the number of leaves of this tree is at m§ Hence, at most
A components of ") can constitute the same componentiff).
Thus, each component i@ hasO(A% ™) nodes. Now, each

independent seX of links in each component @&’ is a matching

nodesu andw if and only if the distance between them is less than
a certain value say. The distanceD is referred to as the transmis-
sion range. Geometric graphs have been extensively investigated in
several different contexts in wireless networks (e.g., [2], [24]). We
consider both the primary interference model (Section V-C.1) and the
secondary interference model (Section V-C.2).

1) Geometric Graphs with primary interference mod#le con-

in the corresponding component@f’). The time needed to compute sider a geometric grap@ with primary interference model. The sets
a maximum weighted matching in each such component is therefgré ... L~V for the policy GEOMETRIC-GRAPH-PARTITION-
O(AE" V™). Thus, the overall computation time of each schedulBt ATCHING k), which we abbreviate a6GPM(k), are as follows.

is O(AXFTH) if G is a bipartite graph, the overall computationConsider & different grids each of which consists of a series of

time of each schedule i©(AZ* 1),

horizontal and vertical lines parallel to theandy axes respectively
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and the distance between any two closest horizontal (vertical) linesd 6.GGPM([12/€]) is in |NFORMATION(O(Ag/e2)) class and
is kD. Each grid is specified by its first horizontal and vertical lineccomputes each schedule (A%, /€%) time. In the next subsection,

The first horizontal and vertical lines of gridare given byy = jD
andz = jD respectively forj = 0,...k—1. Now, L) is the set of

we propose a technique that computes each schedul¥ A¢ /)
time while approximating the maximum throughput region within a

links which either cross, or have at least one end node on, a vertitadtor of (1 — ¢).

or a horizontal line of gridj (Figure 3(a)). Note that the links in a

Finally, we upper bound the expected delays of the sessions. Now,

component ofG") do not interfere with those in other componentsconsider any € (0,1), ¢ € (0,1), X € Int(A). Using k = [12/€],
We first evaluate the time for computing each schedule fer= 12, and since under the primary interference modelx; |S;| <

GGPM(k).
worst case computation time in a component. L.dte the maximum
number of nodes in any component@f?”’ = (V, E'\ L'Y) for any

4. We show thats is O(Agk?). Thus, the time for computing each
schedule is the time for computing a maximum weighted matchiﬁBoS

in a component withO(Agk?) nodes, which isO(A%k%). Also,
GGPM(k) is in INFORMATION(O(Agk?)) class.

Lemma 5:For anyj = 0,...,k — 1, a component iYW =
(V, E\ LY) hasO(Agk?) nodes and)(AZk?) links. _
Proof: Consider somg € 0, ...,k — 1. A component inG)

consists of nodes in a square enclosed by the closest horizontal

vertical lines of thejth grid. The side of such a square is at most

kD units. Such a square can be filled wiit{k?) small squares with

sides slightly less tha®/+/2. Let I be a maximal independent set
of nodes in the component, i.e., there does not exist an edge betw

any two nodes in/ and every node in the component is eitherlin

or has an edge to some nodelinSince the distance between any

two points in any small square is less th&y at most one node in
I is present in any small square. Therefdi#,is O(k®). Clearly,
v < |I|Ag. Thus,v is O(Agk?). Also, the maximum number of
links in any component of?") is at mostvA¢ which is O(AZk?).

We now prove the following key result which will be used in

obtaining throughput guarantees fGIGPM(k).
Lemma 6: L, ..., L*~1 is 12—approximate.
Proof:

out the differences. We need to prove th@?;& Zzexj W, <

1237, «« Wi. Relation (5) holds in this case as well. Hence, w

need to show tha(Zf;g nl(j)) < 12 for eachl € X*.

The proof is similar to that for lemma 4. We point

The overall computation time for each schedule is th2Aq + 1, it follows from lemmas 3 and 6 that when the arrival rate

vector is(1 — €)(1 — €)X and GGPM ([12/€]) is used, the sum of

T XL DL (#)
T

the expected delays of the sessititsr—, - is at

NaZ, (2Ag+D)
2(1—e)e’ minyg

2) Geometrické’?aphs with Secondary Interference Modéle
consider a geometric grapgh and the secondary interference model.

In this interference model, a linkinterferes with linkj if one end
point of j is within distanceD from an end point ofi. Note that

if two links interfere under the primary interference model they also
g]ligrfere under the secondary interference model but the converse is
ot true. This model is an abstraction of bidirectional wireless links
where all transmissions use a single channel and equal power. Note
that an independent set of links is no longer a matchingin

We now describeL@, ..., L*=Y for the policy GEOMETRIC-
RAPH-PARTITION-INDEPENDENFSET(k) which we abbreviate as
GPISk). Just as in Section V-C.1, we considedifferent grids.

Now, L) is the set of links for which at least one end point is within

a distanceD of a vertical or horizontal line of grig (Figure 3(b)).

Note that the links in a component 6£7) do not interfere with those

in other components.

We now evaluate the computation time for each schedule for
GGPIgk). From lemma 5, each component@f”) hasO(AZk?)
links. Consider two linkg = (u, v),!’ = (w, z) that do not interfere.
Then no small square in the proof of lemma 5 can contain both,
or both u,z or both v,w or both v,z. Thus, the maximum size
of any independent set of links in a component®f’ is upper-
bounded by the number of such small squares which again(is).

G

%’hus, in any component &), the maximum weighted interference

set can be computed iAZ4%)°**). Thus, each schedule can be

The k grids do not share any common line. Let SUPERGRIRomputed iS(A2Gk'2)O(k2> time. Again, likeGGPM (k), GGPISk)
consist of all lines of all grids. Then SUPERGRID is a grid wherg jn INFORMATION(O(AcK?)) class.

the distance between any two closest horizontal (vertical) linds. is
Clearly,n?”) = 1foranyl € X;nX*. If L € X*\ X;, n" is the

number of links inX; that interferes witH. Since these links are in

X, they do not interfere with each other. Thuﬁ,") < 2 since at

most2 links can be adjacent tbbut are not adjacent to each other.

Thus,n”) < 2 for anyl € X*.

Next, for eachl € X™ we upper-bound the number gk in
{0,...,k — 1} such thaty” > 0. Now, n” > 0 if either [ € L&
orl ¢ LY but!l interferes with a link inL). Note that for anyi,

1 € LY for at most2 js in {0,...,k — 1}. This holds because a
link [ can either cross or have an end node on at nidsbrizontal
and vertical line of SUPERGRIDNext, for any!, [ ¢ L% but!
interferes with (i.e., is adjacent to) a link i) for at most4 js in
{0,...,k —1}. This holds because if ¢ L") both end nodes of
are inside one square of the SUPERGRID, say squaBut, then!
can be adjacent to links iY) if a side of square: is aligned with
at least one horizontal or vertical line of grid which can happen
for at most4 values ofj. Thus, for eachl € X, nf-” > 0 for 6
jsin{0,...,k —1}. Hence,(Z?;& nl(j)) < 2 x 6 = 12 for each
le X~ [

Theorem 3:If X € Int(A) ande € (0,1), then (1 — &)X €

AGGPM([12/€])

Using k = [12/€], ¢ = 12, Theorem 3 follows from lemmas 2

We make the following observations abalt®, ..., L*~=1:

« (Observation 1) Lety; = {j : I € L'9}. Then, || < 6 for
any! € E . This holds because the end nodes of a link can be
at a distance oD from at most 3 vertical and horizontal lines
of SUPERGRID

« (Observation2) For anyl, I ¢ LY but! interferes with a link
in LU for at most4 js in {0, ...,k —1} . This happens only if
one of the end nodes dfis within 2D units of a horizontal or
vertical line of gridj but none of the end nodes bére within a
distance ofD from any line of gridj. This can happen at most
2 times for vertical lines and 2 more times for horizontal lines
of SUPERGRID

We now prove the following key result which will be used in

obtaining throughput guarantees BIGPISk).
Lemma 7: L, ..., L*~1 is 80—approximate.

Proof: The proof is similar to that for lemma 6. Like in lemma 6,
we need to prove tha(zf;g nf‘”) < 80 for eachl € X*. Now,
nf” < 8 for anyl € X* as the number of links that interfere
with [ but do not interfere with each other is at m@s{2]. Next,
from observations 1 and 2, for eaéhe X, nl(]) > 0 for 10 js
in {0,...,k — 1} Hence, (Z_’;;g 771<j>) < 8 x 10 = 80 for each
le X~ [
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Theorem 4:1f X € Int(A) ande € (0,1), then (1 — €)X € component of=\); hence this computation time @(A%k?). Also,

AGGPIS[80/€1)) GGPGIk) is in INFORMATION(O(Agk?)) class.
Using k = [80/€], ¢ = 80, Theorem 4 follows from lemmas 2 Theorem 5:If X € Int(A) and k > 6, then (1 — 6/k)X €
and 7.GGPI[80/¢]) is in AGGPGIK))

INFORMATION(O(Ag/€?)) class and computes each schedule in  Proof: The result clearly holds fok = 6. We therefore assume
(Ac/e)°1/<*) time. Now, consider any € (0,1), ¢ € (0,1), thatk > 6.

X € Int(A). Note that under the secondary interference model, Consider a fictitious system that consists of only the secondary
max; |S;| < 2A% + 1. Using k = [80/¢], ¢ = 80, it follows from  virtual queues; for all I. Let A pe the maximum throughput
lemmas 3 and 7 that when the arrival rate vectoflis- €)(1 —¢')X  region of this fictitious system. Then [28]

andGGPIS([12/¢€]) is used, the sum of the expected delays of the mt(AD) = (XX = Z BT

sessiondimr — oo w is at most%. Zex

We now present a policy, which we denote GEOMETRIC- XCE\{Ligi}
GRAPH-PARTITION-GRADUAL -IMPROVEMENT(k) and abbreviate as where Z Bx =1,8x >0
GGPGIk), that for appropriate choice @fattains the same through- Rex
put guarantee a8 GPIS[80/¢]) but computes each schedule in only XCBE\{L:jgdi}
O(A%/€*) time. Note thalGGP G k) does not belong in the general for eachX € X' and 8, > 0}.

class of policiesr(k) described in Section V-A. The main difference
betweenGGPGIk) and 7(k) (and _henceGG_PIE(k)) is that the sartisfy the following properties.
former does not compute the maximum weight independent set o . ) . o .
links in any component but in each component selects an independen) (%) constitutes an irreducible aperiodic markov chain.
set of links which has a higher weight than that selected in a previoug?) N €ach slott there is a positive probability associated with
epoch. Note that Tassiulas [27] proved that the stability region can sc_:hedt:ling the secondary virtual queues associated with links
be maximized by using a similar selection strategy in the entire | N X () where
grap_h_. We prove that, by app_ropriately partitioning th(_e graph, the X*(t) = arg max ZQlj(t)~
stability region can be approximated arbitrary closely if the above XCE)\({Ez:);giL,}ZEX
selection policy is used in each component. This combination of -
graph partitioning and improvement based selection schemes reduce® If Xo and Xi are the sets of links associated with the
the time required to compute each schedule f@@) attained using secondary virtual queues scheduled in slots 1 and¢ then
only the improvement based selection schemes in [27}tA2 /¢?). Yex, Quit) = 20 x, Qui(t).
In GGPGI(k) each linkl is associated witlk —6 secondary virtual Then 7 stabilizes the fictitious system for any arrival rate vector
queuesR'?, i € {0,...,k—1}\ ¢ wheregy is the union ofy; and X € Int(AY) [27], [5].
max(0, 6 — |¢;]) arbitrary elements of0, ...,k —1}\1;. Whenever _ Let (1 — 6/k)\ be the arrival rate vector in the system and let
a packet arrives in the virtual quew®; it is routed to one of the X € Int(A). Let X) consist of those componentsof X for which
secondary virtual queues with equal probability. The policy divides¢ 1. From (3),A9) € Int(A)).
the time axis in frames of slots. In thejth slot of each frame, for ~ We now sample the secondary virtual quedgs for all [ at slots
different links! € E, the secondary virtual queue@l(js) contend. j,k+j,2k+j,...inthe actual system. Note that in the actual system
Only the secondary virtual queues that contend can be scheduledtf@se secondary virtual queues are scheduled only in these slots. We
transmission and those that are scheduled for transmission transxagume that the number of arrivals in stot: + j in the secondary
their head of line packets if they are non-empty. virtual queue@;; in the sampled system is the number of arrivals
We now describe which contending secondary virtual queues afie@:; in the actual system between sldign — 1)k + j, mk + j]
scheduled for transmission in th¢h slot of each frame. Note that ([0,]) for a positive integern (m = 0). Note that the expected
QZ(J.S) does not exist ifft € L) as thenj € ;, C ;. Thus, in the number of arrivals in secondary virtual quegg; in the sampled
jth slot of each frame, no secondary virtual queue associated wastem in slotmk + j is now k(1/(k — 6))(1 — 6/k)\; = Ai._Thus,
any link{ € L) contends and at most one secondary virtual quetiee arrival rate vector for these secondary virtual queues'is e
associated with each linke £\ LU) contends. A link is said to Int(A")). Now, observe thaGGPG(F) satisfies properties (1) to
contend if one secondary virtual queue associated with it conten(f®). for these secondary virtual queues in the sampled system, since
Thus, for eacty the links that contend in thgth slot of each frame links that contend in different components ©f” do not interfere.
constitute components such that links in different components do fdtus, the sampled system is stable for egchihe result follows. m
interfere. Independent sets can be determined in each component ifhus, for k& = [6/¢], a policy GGPGIk) in
O (Aglog(Ack)) time using existing randomized algorithms [18],/NFORMATION(O(A% /€%)) class, approximates the maximum
[21]; such algorithms select the maximum weighted independent $atoughput region within a factor ol — ¢ and computes each
in each component with a positive probability. The weight of eacschedule inO(AZ /€®) time. Note thatGGPMK) can be similarly
contending link is the number of packets waiting for transmissiofodified to attain the same throughput guarantee uking [4/¢]
in the contending secondary virtual queue associated with it. TRBd computing each schedule @(AZ /¢*) time. More generally,
selected links are scheduled in each component if their total weidht r-ary interference models, i.e., when two links interfere provided
exceeds the total weight of the links scheduled in the same compon@atend node of one is within a distance (f — 1)D of an end
in the jth slot of the previous frame; otherwise the links schedule@pde of the other, similar techniques can be used to approximate
in the same component in thgh slot of the previous frame are the maximum throughput region within a factor af— ¢ while
scheduled again. The contending secondary virtual queues associatedputing each schedule © (f(r)Aé/e)) where f(r) increases
with the scheduled links are scheduled. with increase inr.
The time required byGGPGIk) to compute each schedule is We now sketch one possible implementation@&PGI(k), with
clearly O(y) where v is the maximum number of links in any the goal of elucidating the information each node maintains about the

Consider a policyr that schedules secondary virtual queues that
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topology and analyzing the control message exchange complexitypiopagation conditions, receiver sensitivity, antenna orientations, etc.,
the time scale of packet transmission. Owing to space limitations, \ehe distance between them is betwedn and D and (c) does not
omit several details. We assume that each node knows the gridsdgist between nodes andv if the distance between them is greater
which it is within distanceD of a vertical or horizontal line. Note than or equal toD. Quasi-geometric graphs generalize the notion
that a node can determine this if it knows its location, or it can baf geometric graphs, and become geometric whea 1 and can
informed of this when the network is initialized. Any end node of approximate arbitrary graphs, as long as the nodes are embedded
link can now determine the set of virtual queues associated with timlea plane, for small. and largeD (as in this case, (b) applies
link, and the slots in which each such virtual queue contends, whichfor most edges and thus the existence of the edges do not depend
turn determines which slots of the frame the link contends. Note thatt the distance between the nodes). But, as we discuss next, the
a link always contends in the same slots of every frame as this deetiedule computation times for the proposed policies becomes large
not depend on its queue length. During network initialization, a foreas . becomes small.
F spanning the links that contend in thih slot of each frame  Under primary interference model, as before, two links interfere if
is established for each (depth first search or breadth first searcland only if they are adjacent. Under secondary interference model,
or their variants can be used to determine such forests). Again tte® links /,!" interfere if and only if () they are adjacent and (b)
traversal policies can be used to inform each node of its parent ahdre is an edge between at least one end nodeantl another end
children in each such forest. The resulting control message exchangede ofl’. We first consider the secondary interference model. Now,
occurs in the time scale of topology evolution, and not in the timiinks L(®, ..., L*~Y are selected as in the previous subsection,
scale of packet transmission. and GGPGI(k) attains a throughput region which is— 6/k of the

Now, consider the decisions and the control message exchangeximum throughput region as before. However, each component of
in the time scale of packet transmission (i.e., the control messaged’ hasO(Ack? /%) nodes, and(A%k? /%) links. Thus,GGPGI
that are exchanged for determining each schedule). For gazch (k) computes each schedule M(A%k?/:?) time. Also, GGPGI
node stores the total weight of the links scheduled in its componé#t) is in |NFORMATION(O(Agk2/L2)) class. ThusGGPGI([6/€])
in the jth slot of the previous frame, and which, if any, of its incidengipproximates the maximum throughput region within a factor of
links were scheduled in thgth slot of the previous frame (we explain1 — ¢ while computing each schedule @ (AZ/(:*¢?)) time and
how a node determines these quantities). Considejtthslot of each is in INFORMATION(O (Ag/ (:*€%))) class. Similarly, under the
frame. An existing randomized policy can be used for determining @nimary interference model, a throughput region Iof- ¢ of the
independent set among the links that conten®itAclog(Agk)) maximum throughput region can be attained using a policy in
time [18], [21]; each node exchang€s(Aclog(Agk)) messages INFORMATION(O(Ag/ (1*€?))) class which computes each sched-
during this procedure. Such randomized policies requires each node in O(A% /(¢%:?)) time.
to only know which of its incident links are contending in a slot,
and at the end of the procedure each node knows which, if afy, Delay Guarantees

of its incident links are selected in the independent set. Each nodecharacterizing the tradeoffs between schedule computation time
computes the sum of the weights of its incident links that have begAd other performance attributes such as packet loss in networks
selected in the independent set. The root of each tree in the forgslere nodes have finite buffers, and delay constitute interesting
FU) initiates a message where it inserts the number it computefisections for future research. In fact, characterization of policies
and as the message propagates through the tree, each node addgdbeninimize the expected packet loss in networks where nodes have
sum it computed with the number in the message. The messagéirie buffers, and delay remain open as well. Recently, Jung and Shah
returned to the root after it finishes traversing the entire tree. Wher], [12] obtained policies that attain order optimal expected delays
the message returns to the root, it contains twice the total weighta class of graphs that includes geometric graphs with bounded node
of the newly selected independent set in the component spannedgbsity’. We now show that the policies we propose attain the same
the tree. The root broadcasts the message again in the tree, whighilt as well. The delay guarantees provided after Theorems 2,3,4
informs each node of the weight of the links in the newly selectashow that for constant, ¢, miny j\kyamaxyAGhthe sum of the
|ndependen_t set in the component. Using thls weight, each node ¢an . cted delays of the sessiolSi7_ o S, N, DL for H-
now determine whether the newly selected independent set shoul{ié . T

S . M, GGPM and GGPIS i(N). Thus, sinceN < N, the
scheduled, or the schedule used in jhie slot of the previous frame . -
should be used, and accordingly updates the weight it stores and Bected delay per session 3(1) for these policies. Jung and

identities of the incident links scheduled. Each node thereby knowls?ah (11, .[1.2] prowgled an exqmple which .showe.d that if the
L X ; nettwork satisfies certain characteristics there exists arrival rate vectors
whether any of its incident links belong to the scheduled independen

. . S . such that the sum of the expected delays of the sessiofi§ /)
set, and participates in the transmission accordingly. (Theorem 5 [12]). Networks with primary and secondary interference
Clearly, each node exchang®sAclog(Ack)) control messages ' P y y

: O . and bounded degreA. satisfy the properties needed to construct

for computing each schedule. The computation time and the informga- .
tion class of this implementation are as discussed for the policy. ThES. above example. Thus, the sum of the expected delays in networks
. pier . policy. Tt satisfy the above characteristi€iéN). Thus, H-LCPM, GGPM
above implementation is clearly a naive one, and can be optimized_in . . . . .
: . . . . -and GGPIS attain order optimal expected delays in their respective

several different ways, e.g., using gossip algorithms as in [5], whi . .

. . ; A ._.topologies provided the network degrees are bounded. The degrees

constitutes interesting directions for future research. The policie . : .

qre for example bounded in geometric graphs under primary and

proposed in the previous subsections can be implemented S'm”as)écondary interference constraints when the node density is bounded.

D. Quasi-Geometric Graphs VI. MULTI-HOP SESSIONS

A graph is said to be quasi-geometric if nodes are embeddedtglnwe ndq}/_v all_ow sesspnz t_o tt;laverste multlp(lje lhOD;' W? first descrlbtla
the first quadrant of th&-dimensional plane, and a link (a) exists € modilications required in the System modet and performance goais
between nodes andwv if the distance between them is less thdn 9Node density is the number of nodes per unit area. If the number of nodes
where: < 1 (b) may exist between nodes and v, depending on in any circle of a given radius is bounded, node density is bounded.
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for accommodating this generalization. We subsequently generalize VII. DISCUSSIONS ANDCONCLUSION

the framework presented in Section V for attaining arbitra_ry tradeof'fs-rhe throughput guarantees have been proved under the assump-
between throughput guarantees and schedule computation imeSjqn that the arrival process for each session is independent and
identically distributed across different slots. Using a combination
A. Generalized System Model of graph-partitioning and the lyapunov techniques proposed in [26],
We now assume that the network consistsiofend-to-end ses- the proofs can be generalized to accommodate markov modulated
sions, indexed as, ..., N. Each end-to-end session can be viewedrrival processes. Also, under the weaker notion of rate stability
as a collection of several hop-by-hop connections, one for each linkich only ensures that input rates equal the output rates, the graph
it traverses; each of these hop-by-hop connections is cakkedsion- partitioning techniques may be combined with fluid-limit arguments
link of the session considered. Each session-link is of the farm), so as to obtain similar tradeoffs between throughput and schedule
whereu andv represent the transmitter and the receiver, respectivebgmputation times for all stationary ergodic arrival processes that
of the session-link. We assume that there &fesession-links in the satisfy the strong law of large numbers. Rate stability however does
network (over all sessions), and these are indexed,by., M. The not ensure that the expected queue lengths are finite which is required
interference relations are as in Section Il in many applications and which is the notion of stability we consider
Each session-link corresponds to a separate virtual queue andithehis paper. Obtaining provable throughput guarantees for non-
number of virtual queues associated with each link equals the numbsarkovian arrival processes under the notion of stability that requires
of session-links traversing it; we assume that this number is at mdisat expected queue lengths be finite remains largely open. In a
u. The packet arrival process is the same as before, and only ttempanion paper, we obtain a policy INFORMATION(1) class,
first session-link of each session receives the exogenous arrivétigt approximates the maximum throughput region for non-markovian
Thus, the queue-length and departure vect@i§;), D(t), are M- arrival processes under the above notion of stability within a factor
dimensional vectors representing the queue lengths of the sessimn2/3 in tree topologies under primary interference model and

links and which session-links are served in slot computes each schedule (Ag(logAg)logN) time. The results
Let R be aM x M dimensional matrix such that (d;; = 1 if in these papers compliment each other.
i =3 (b) R;; = —1if 4 andj are session-links of the same session
and+ constitutes the hop aftgrand (c) R;; = 0 otherwise. VIIl. A CKNOWLEDGEMENT
Q(t+1) = Q(t) — RD(t) + A(t). We would like to thank Professors Sudipto Guha at University

e o ~_ of Pennsylvania and Kamesh Munagala at Duke University for nu-
The definition for stability is the same except that session-linkferous discussions on graph partitioning techniques and algorithms
are considered instead of sessions. The definitions for the thrOUghWtapproximating maximum weight independent sets. This research
regions are the same as before. was supported by NSF grants NCR 0238340, CNS-0435306, ECCS

0621782, CNS 0721308.
B. Scheduling policies for approximating the maximum throughput

region arbitrary closely

We now generalize the policy (k) presented in Section V. The
modified policy, denoted as™ (), differs from z(k), in only the . y S
assignment of link weights. For™ (k) in any slott, the weight of We first state and prove lemma 9 foM (k) which will be useful

a session-link (or a virtual-queué)= (u,v) of sessioni, G;(t), is In proving lemma 8.

APPENDIX
A. Proof for lemma 8

(a) the difference between the queue lengths of sessiondikel ~ Lemma 9:Let L, ... L*~Y) be c-approximate. Then,
m wherem is the session-link of originating fromuv, if v is not the . =

destination fori and (b)Q;(t) otherwise. The weight of a link isthe E (Z Gi(t)Di()|Q(t) = Q) > (1—c/k) max Z Gi(t).
maximum weight of a session-link traversing the link. Note that in the i i€X

special case that each session traverses one link, for any virtual-queue P"00f:  Let B(t) = arg max xex 2iex Gi(t). Again,

t)
i = (u,v), v is the destination of the session and hence its weig
’ . . S Gi(t)Dy(t > ; i(t) — 2, i(t)) .
G (t) equalsQ;(t) as in Section V. Whenever a link is scheduled, thé~* G:ODi(t) 2 (maxxeX Liex Gilh) ~ Lienw Gil ))
A . . W,
session-link that has the maximum weight among those that traverse
the link is served. The policies™" (k) and (k) are otherwise the

same. El > Git)/d)
Lemma 8:Let L, ... L* =1 pe c-approximate. Then, if\ € leB()
Int(A) andk > ¢ > 0, then (1 — ¢/k)X € AT (8, L
We prove lemma 8 in appendix. = (/K> max > Gt
We now consider the throughput guaranteesr¥f! for different I=0 xcr@) leX
classes of networks considered in subsections V-B to V-D. The choice (using same arguments as in the proof for lemma 1)
of L, ... L* =Y for different classes of networks remain the k-1
same as in subsections V-B to V-D. Usiig = [4/€], ¢ = 4, = (/k)) max > max (Gi(t),0)
Theorem 2 follows from lemmas 2 and 4 fa-LCPMMH (k). Using =0 XCL0) l€X
k = [12/€], ¢ = 12, Theorem 3 follows from lemmas 2 and 6 for < (c/k) max Z Gi(t)
GGPMH (k). Using k = [80/€], ¢ = 80, Theorem 4 follows from Xex &~

lemmas 2 and 7 fo6GPISM (k).

Clearly, the schedule computation times in each case increase only
by an additive term ofu; this increase is necessary to compute th&he result follows. [ |
weight of each link as the maximum of weights @fvirtual queues  We now prove lemma 8. This proof follows from lemma 9 using
associated with it. techniques similar to those used by Tassidasl. in [28].

(sinceL®, ..., L%*~Y arec — approximate).
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Proof: The result clearly holds ifk = c¢. We there- of subsets of, X;,... X, such thatX; € X and X; C V;
fore assume thak > c. Let the arrival rate vector bdl — .
¢/k)X where X € Int(A). Clearly, under="(k), @(¢) con- S5 Wy <cemax > W
stitutes an aperiodic irreducible Markov chain. We will consider i1 vex T XeX X
the lyapunov functionV (@) = Y. Q?, and prove that under, In the proof of lemma 1, we have not used any specific properties

E (v (Q (t + 1)) v (Q(t)) 10(t) = Q) < _1 for all sufi- of queue lengths and departure vectors, except that (a) independent
- i " sets refer to sets of links rather than vertices (b) the queue lengths
ciently large [|Q, where |[Q|| = 1/V(Q). Then, from Foster's are non-negative, and (c) the departure vedit) is such that it
theorem (Theorem 2.2.3 in [6]) the Markov chain representing th@nstitutes a maximum weighted independent seGf# where j
queue length process is positive recurrent. ABdQ:(t)) < oo for s selected uniformly amonfy, ...,k — 1] and the weight of a link
eachi under the s}gge}dy state distribution for the above Markov chai@. its queue length. Thus, we have actually proved a more general
Thus,limg o Z’%Q(t) < oo. The result follows. result which states that the expected weight of the maximum weight
Let ¢(j) denote the session of session-lifik Let f be anM- independent set i6r?) is greater than or equal {d —c/k) times the
dimensional vector such thaf; = X,;). Then, Int(A) can be Wweight of the maximum weight independent setnif j is selected

characterized as follows [28]: uniformly in [0,..., k& — 1]. We state this result next. Note that in
Lo - this sentence, and henceforth, the term independent set will refer to
Int(A) = {A:A= Z BxRI™, the definition introduced in this subsection.
Xex Lemma 10:Let V@ ... V*~1 pe c-vertex-approximate, and
where Z Bx =1landBx >0 w, be the weight of vertew € V such thatw, > 0. Let j be
fex selected uniformly amongp, ..., k — 1], and X pe a maximum
for eachX € X and B, > 0}. (6) weight independent set i), Then, E (Y, .z wi) > (1 —

c/k)maxy ¥ x Wi
Consider a geometric graph as defined in the first paragraph of
- AT = = = Section V-C. Consider the grids as described in the first paragraph of
Now, E <(A(t)) REM/Q) = Q) Section V-C.1. Let’¥) consist of all nodes that are within distance
D of a vertical or a horizontal line of thgth grid. We next state
and prove the following lemma.
< (I=¢/k)(1 = Bs)max » G (from (6).  (7) Lemma 11:V©® ... V(=1 are 48-vertex-approximate.

ieX Proof: We use the notation of lemmamutatis mutandisThe
. = . . result follows if we show thai 25;1 n)) < 48 for eachv € X*.
E (V Q(t+ 1)) -V (Q(t)) |Q(t) = Q) This holds since there can at most be 6 independent nodes in a given
- o= = node’s neighborhood, and a node’s neighborhood may contain a node
< 2B (A HrM®IR®) = Q) in V9 for at most 8 different grids (for 4 vertical and 4 horizontal
. R ) grid lines). [ |
—2E (Z Gi(t)Di(t)|Q(t) = Q) + Mémax Now consider the following independent set selection policy. Select
K an integer uniformly in the rang@, ...,k — 1]. If j is the selected
< —2(1 - c¢/k)Bp max > Gi+ Mégax integer, then determine the maximum weighted independent set in
i€X G, By lemmas 10 and 11, the expected weight of this set is at least
(from Lemma 9 and (7)) (1 — 48/k) times that of the maximum weight of an independent

< —1 for all sufficiently large||@|| (since3, > 0,0 < ¢ < k). set in G provided each vertex has a non-negative weight. Note
that a maximum weight independent set GH7) is the union of

the maximum weight independent sets among the nodes in each
square of thejth grid, and the maximum weight independent set
B. Arbitrary tradeoffs between computation times and expected seAgeong the nodes in the squares of any grid can be computed in

approximation for maximum weighted independent sets in geome@sallel. Each square of thgh grid hasO(A¢k?) nodes for each
graphs j. Thus, the time required to compute each of the above maximum

dependent sets BC(Ac**) | and since these sets can be computed

We now show that the approximation techniques we use can algl

i i (Agk?)
be used for approximating maximum weighted independent sets"i‘npara"el’ the overall computation time %’ as well. Thus,

an expected sense arbitrarily closely in geometric graphs usingb)éselecnngk = [48/6]’. the maximum we|ghted independent set
computation time which depends only on the degree of the graﬁﬂ,n beoz?gpr/(z);;mated Wlthm gfactor 0f— ¢ in an expected sense
and the desired approximation factor. using 277 computation time.

Consider a grapli = (V, E). Let a set of nodes be independent
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