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Arbitrary Throughput Versus Complexity Tradeoffs in
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Abstract— Several policies have recently been proposed for attaining
the maximum throughput region, or a guaranteed fraction thereof,
through dynamic link scheduling. Among these policies, the ones that
attain the maximum throughput region require a computation time
which is linear in the network size, and the ones that require constant
or logarithmic computation time attain only certain fractions of the
maximum throughput region. In contrast, in this paper we propose
policies that can attain any desirable fraction of the maximum throughput
region using a computation time that is largely independent of the
network size. First, using a combination of graph partitioning techniques
and lyapunov arguments, we propose a simple policy for tree topologies
under the primary interference model that requires each link to exchange
only 1 bit information with its adjacent links and approximates the
maximum throughput region using a computation time that depends only
on the maximum degree of nodes and the approximation factor. Then
we develop a framework for attaining arbitrary close approximations
for the maximum throughput region in arbitrary networks, and use this
framework to obtain any desired tradeoff between throughput guarantees
and computation times for a large class of networks and interference
models. Specifically, given anyε > 0, the maximum throughput region
can be approximated in these networks within a factor of1− ε using a
computation time that depends only on the maximum node degree and
ε.

I. I NTRODUCTION

Attaining the maximum throughput region, or a guaranteed fraction
thereof, through dynamic link scheduling is a key design goal
in multihop wireless networks. The scheduling problem involves
determination of which links should transmit packets at a given time
so as to avoid packet collisions. Moreover, the transmission schedules
cannot be pre-computed as the number of packets waiting at nodes as
well as the transmission conditions in the wireless medium vary with
time, and the statistics of these temporal variations are oftentimes
not known a priori. The transmission schedules need to be computed
at every transmission epoch. Thus, the schedule computation time
is a key performance metric for any dynamic scheduling policy.
The contribution of this paper is to characterize tradeoffs between
throughput guarantees and computation times for scheduling policies
for different classes of wireless networks.

The lack of a central controller dictates that each link needs
to determine at every transmission epoch whether or not it would
transmit based on its own state and the information it acquires about
the states of other nodes. The state of a node or link comprises of
attributes that change in the time scale of packet transmission: e.g.,
queue lengths and scheduling decisions. The time required for each
link (or rather the node which is the source of the link) to decide
whether to transmit or not at any given time depends on the time
required (a) to exchange messages with other links to learn their
states and (b) to compute the decision based on the information
acquired. We refer to the total time required in both parts as the
computation time of each schedule, or simply the computation time.
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The throughput guarantees usually improve with increase in the
information each link acquires about the states of other links, but
fetching information about distant links (nodes) require longer time.
Thus, an important question is how much information a link should
acquire about the states of other links.

The scheduling policies that have been widely investigated can
be classified into two broad classes: the policies that require each
link to know attributes that depend on the states of (a) all links
in the network [4], [27], [28] and (b) only the links that interfere
with it (1-hop interferers) [2], [16], [17], [23], [29]. We refer to
the two classes asINFORMATION(N) andINFORMATION(1) policies
respectively, whereN refers to the number of links in the network.
By this nomenclature, then,INFORMATION(k) is the class of policies
that require each link to learn the states of theirk-hop interferers.
A seminal result shows that theINFORMATION(N) class contains
policies that attain the maximum possible throughput region in arbi-
trary wireless networks while computing each schedule inO(N) time
[27]. Recently, it has been shown that a policy inINFORMATION(1)
class can attain a guaranteed fraction of the maximum throughput
region usingO(∆GlogN) time for computing each schedule where
∆G is the maximum degree, or the maximum number of neighbors
of any given node, in the network [2]. The contribution of this paper
is to show that in certain important classes of wireless networks,
for appropriate selection ofk between1 and N , policies can be
designed inINFORMATION(k) class so as to obtain arbitrary close
approximations for the maximum throughput region, while computing
each schedule in an amount of time that depends only on∆G and
the desired approximation factor and is otherwise independent of the
size of the network.

We first consider the primary interference model where any set
of links that contains no two links with a common node can
be simultaneously scheduled. Under this interference model and
tree network topology, given any positive constantε, we obtain a
scheduling policy inINFORMATION(1) class that (a) approximates
the throughput region within a factor of1 − ε and (b) requires
a computation time ofO(∆G/ε) for each schedule (Section IV).
This policy requires no actual computation! Each link with a packet
to transmit simply waits until its parent and older siblings (all of
which are adjacent to the link) take scheduling decisions, and if
all of them decide not to transmit, it transmits. Thus, a link need
only communicate its scheduling decision to its children and younger
siblings, and no queue length information is communicated.

Next we present a general framework for designing
INFORMATION(k) policies for approximating the throughput
region arbitrarily closely (Section V). We subsequently use this
framework for obtaining arbitrary tradeoffs between throughput
guarantees and computation times for large classes of networks: (i)
graphs with limited cyclicity under the primary interference model
(Section V-B) and (ii) geometric and quasi-geometric graphs under
both primary and secondary interference models (Sections V-C,V-D).
For example, for geometric graphs, givenε > 0, we obtain a
scheduling policy in INFORMATION

�
O(∆G/ε2)

�
class that (a)

approximates the throughput region within a factor of1− ε and (b)
computes each schedule inO(∆2

G/ε2) time. We upper bound the
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expected delays attained by these policies and prove that the bounds
are comparable to the best known guarantees in these networks. The
throughput and computation time guarantees extend to networks
where sessions traverse multiple links (Section VI).

We now briefly describe the design of the proposed policies
and provide the intuition behind the performance guarantees. The
proposed policies partition the network in a collection of components;
the size of the components depend only on∆G andε. The links in one
component that interfere with those in another component are “shut
down” i.e., not scheduled. Hence, scheduling among the residual
links in different components can now be determined in parallel.
Thus, the time required to compute the overall schedule now depends
only on the size of each component and can be determined only by
∆G andε. The links that are scheduled in each component maximize
the throughput region of the component; the reduction in the overall
throughput region may happen only because of the “shut down” links.
This reduction in throughput is kept small using different partitioning
schemes at different times that ensure that each link is shut down
only a small fraction of time and the size of the components in each
partition is large enough.

The proofs for the throughput guarantees rely on a combination
of graph-partitioning techniques and lyapunov arguments. A major
challenge in proving the analytical results has been that standard
results in graph partitioning and approximation of throughput regions
do not apply owing to this combination. For example, the following
result is often used for approximating the throughput region: if a
scheduling policy ensures that the sum of the queue lengths of the
links that transmit packets is within a factorc of the maximum sum
of the queue lengths of the links in any valid schedule, then the
throughput region of the policy is within a factorc of the maximum
throughput region [17]. Since a valid schedule in a network with
N links can oftentimes be represented as an independent set in a
graph withN links, such schedules can be computed if the maximum
weighted independent set in such graphs can be approximated within
a factor of c. Existing graph partitioning schemes can be used for
attaining the above in geometric graphs and secondary interference
model for c arbitrarily close to1, and existing matching algorithms
can attain the above in trees under primary interference model for
c = 1. But, all such schemes need aΩ(N) computation time [9],
[13], [20]. Thus, such schemes can not be directly used to obtain
arbitrary tradeoffs between throughput guarantees and computation
times for each schedule. We circumvent this difficulty by proving
that in a large class of networks, given anyε > 0, simple randomized
partitioning schemes can be used to (a) obtain independent sets such
that the expected weight of such an independent set is within1− ε
of the maximum weight of an independent set for any allocation of
non-negative weights, (b) while requiring a computation time that
depends only on∆G and ε. The above property may be useful
for approximating maximum weighted independent sets in expected
sense in other contexts as well, and is therefore an interesting result
in its own right (appendix B). It also turns out that if the scheduling
policy ensures that the expected sum of the queue lengths of the links
that transmit packets is within a factorc of the maximum sum of the
queue lengths of the links in any valid schedule, then the throughput
region of the policy is within a factorc of the maximum throughput
region. Together, these results have enabled the design of scheduling
policies that obtain arbitrary tradeoffs between throughput guarantees
and computation times for each schedule. Finally, note that the simple
scheduling scheme we proposed for trees does not approximate, even
in expected sense, the maximum weighted schedule within any factor
in any slot. The proof in this case relies on an appropriate choice of
a lyapunov function that captures artifacts introduced by the policy
and the graph partitioning techniques.

II. RELATED L ITERATURE

Tassiulaset al. characterized the maximum throughput region and
provided a policy that attains this throughput region in an arbitrary
wireless network [28]. This policy schedules the maximum weighted
independent set of links in each slot, and hence requiresΘ(2N ) time
for computing each schedule unlessP = NP. A minor modification
of the proof shows that if the schedule is computed as above once
every T slots and subsequently used for transmittingT packets,
then the throughput region does not change as long asT is finite.
Thus, by usingT = Θ(2N ), the maximum throughput region can be
obtained while devotingO(1) fraction of total time in computing the
schedules. This infrequent schedule computation is however likely to
substantially increase packet delays and packet loss when nodes have
finite buffers. Schedules can be computed frequently if the time for
computing each schedule is reasonable. Thus, subsequent research
attempted to maximize the throughput region subject to constraints
on the computation time of each schedule.

Tassiulas [27] provided randomized scheduling schemes that attain
the maximum achievable throughput region while requiringΘ(N)
time to compute each schedule for arbitrary interference models. In
each slot, this policy randomly selects an independent set of links,
compares its weight with the weight of the set of links scheduled in
the previous slot and schedules the set that has the larger weight.
Modiano et al. [5] have shown that gossip based algorithms can
be used to implement the above policy for arbitrary interference
models in networks where nodes do not have unique identities and
know only limited information about the global topology such as
path lengths, number of nodes in the network etc. Dimakiset al.
[4] have shown that a greedy maximal weight scheduling, which
requiresΘ(N) time to compute each schedule, attains the maximum
throughput region in several different networks. All the above policies
are in theINFORMATION(N) class.

Chaporkar et al. [2] proved that a simple greedy scheduling
scheme, maximal independent set selection, which can be com-
puted inΘ(∆GlogN) time [10], attains guaranteed fraction of the
maximum throughput region for arbitrary interference models. The
guarantees depend on the interference model, e.g.,1/2 for primary
interference [3], [17], [29],1/8 for geometric graphs under secondary
interference model [2], etc., and can not be made arbitrarily close to1
[2]. Sarkaret al. [23] proved that for the primary interference model
and tree graphs, a queue length dependent maximal matching attains
2/3 of the throughput region while usingΘ(∆G(log∆G)logN) time
for computing each schedule. Linet al. [16] proved that a random
access scheme, where links access the medium with a probability that
depends on their and their interferers’ queue lengths, attains1/3 and
1/∆G the throughput region for arbitrary networks under primary and
secondary interference models, respectively, while requiringO(∆G)
time for computing each schedule. All these policies are in the
INFORMATION(1) class.

Our contribution is to introduce the class ofINFORMATION(k)
policies and prove that for appropriate choices ofk, policies can
be designed in theINFORMATION(k) class so as to obtain arbitrary
tradeoffs between the best throughput guarantees and the computation
times obtained so far.

The design of our policies rely on the use of graph partitioning
techniques. Huntet al. [9], Kuhn et al. [13], Nieberget al. [20] have
devised graph partitioning techniques for approximating maximum
weighted independent sets in geometric graphs within a factor of1−ε
using policies inINFORMATION (N) class which have computation

times ofΘ
�
N + ∆

Θ(1/ε2)
G

�
. The computation time depends onN

as the policies consider several different partitions of the graph, com-
putes the maximum weighted independent set for each partition, and
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selects the independent set that has the maximum weight among the
above. Thus selecting the links using these approximation techniques
require central control andΘ(N + ∆

Θ(1/ε2)
G ) time for computing

each schedule. The partitioning technique used in [13] however
requires∆Θ(1/ε2)

G time for computing a maximum size independent
set which does not depend onN , but this technique approximates
a maximum weighted independent set arbitrarily closely only when
the weights are all equal. Since different links have different queue
lengths in a network, this partitioning technique does not provide
throughput guarantees. Brzezinskiet al. [1] and Sharmaet al. [24]
have recently used graph partitioning schemes for spectrum allocation
and maximum weight independent set selection in wireless networks.

For geometric graphs, our framework yields a policy in the
INFORMATION

�
O(∆G/ε2)

�
class that computes each schedule in

O(∆2
G/ε2) time using a simpler partitioning technique, and still

attains desired approximation guarantees for the maximum through-
put region. Our design is based on the following result which may
become useful for approximating maximum weighted independent
sets in an expected sense in several different contexts, and therefore
constitutes a contribution of the paper in its own right. We show
that for geometric graphs, given anyε > 0 and any allocation of
non-negative weights, the expected weight of the maximum weighted
independent set in a randomly selected partition approximates the
overall maximum weighted independent set within a factor of1−ε for
appropriate random selection strategies, and the maximum weighted
independent set in any such partition can be computed inO(∆2

G/ε2)
time (appendix B). Thus, if the goal is to approximate the maximum
weighted independent set in an expected sense, which incidentally
suffices for approximating the maximum throughput region, the
computation time need not depend onN given ∆G, ε. For trees
under the primary interference model, we show that the schedules
that approximate the throughput regions arbitrarily closely need not
approximate, even in the expected sense, the maximum weighted
schedule within any guaranteed factor. Performance guarantees in
this case has been attained by combining similar simple partitioning
schemes with properties of trees and matchings.

Finally, recently, Jung and Shah [11], [12] obtained policies that
attain order optimal expected delays in a class of graphs that includes
geometric graphs with bounded node density. Using results from [11],
[12], we show that many of the policies we proposed, attain the same
result in a similar class of networks.

III. SYSTEM MODEL

We consider scheduling at the MAC layer in a wireless network.
We assume that time is slotted and the clocks on network nodes are
kept synchronized, possibly by a separate algorithm, so that there is
a common notion of time among the nodes. The length of each time
slot is the time required to send a packet. The topology in a wireless
network can be modeled as a graphG = (V, E), whereV and E
respectively denote the sets of nodes and links. Each node in the
network has a unique ID which allows a recipient node to know the
sender of a received packet. A link exists from a nodeu to another
nodev if and only if bothu andv can receive each others’ signals.
We assume that the graph modeling the network does not change with
time. Let |E| = N. Each session represents a triplet(i, u, v) where
i is the identifier associated with the session andu andv are source
and destinations of the session, and(u, v) ∈ E. Note that multiple
sessions may traverse a link. We consider a network withN̂ sessions.
Finally, we assume that the nodes have synchronized pseudo-random
number generators so that all nodes can generate the same (random)
number at a given time slot.

We now introduce terminologies that we use throughout the paper.
Some of these are well-known in graph theory; we mention them for

completeness. A nodei is a neighbor of a nodej, if there exists
a link from i to j, i.e., (i, j) ∈ E. The degree of a nodeu is the
number of neighbors ofu. We denote the maximum degree of any
node inG as∆G. Two links (sessions) areadjacent to each other if
they have common nodes. By definition, a link is adjacent to itself.
A link i interferes with link j if j can not successfully transmit
a packet wheni is transmitting. A subset of links is said to be
independentif no two links in the subset interfere with each other.
Let X be the collection of independent sets of links. Theinterference
graph IN = (V N

I , EN
I ) of a networkN is an undirected graph in

which the vertex setV N
I corresponds to the set of links and there

is an edge between two verticesi and j if either i interferes withj
or j interferes withi. The distance between linksl1 and l2 is the
distance between the corresponding nodes in the interference graph
of the network, and ak-hop neighborhoodof a link l is the set of
links whose distance froml is at mostk.

We now describe the data packet∗ arrival process. We assume that
at most α̂max ≥ 1 packets arrive for any session in any slot. Let
Âi(t) be the number of packets that sessioni generates in slott. We
assume that a packet arriving in a slot arrives at the end of the slot,
and may not be transmitted in the slot. The arrival process{Âi(t)}
is independent and identically distributed for allt.

A subset of sessions can transmit packets in a slot if no two
sessions traverse the same link and the links the sessions traverse
constitute an independent setX, i.e., if X ∈ X . Every packet has
length1 slot. Thus, if a session is scheduled in a slot, it transmits a
packet in the slot. Ascheduling policyis an algorithm that decides
in each slot the subset of sessions that would transmit packets in the
slot.

Let D̂i(t) be the number of packets that sessioni transmits in slot
t, i = 1, . . . , . . . , N̂ . D̂i(t) ∈ {0, 1} and depends on the scheduling
policy. Let Q̂i(t) be the queue length before the arrivals and the
transmissions in slott. Then Q̂i(t + 1) = Q̂i(t) + Âi(t)− D̂i(t).

Let DLi(t) be the delay, or the number of slots that elapsed
between the arrival and transmission of thetth arriving packet in
the queue of sessionj. Thus, theexpected delayfor sessioni is

limT→∞
PT

t=1 DLi(t)

T
. The expected delays for the sessions depend

on the scheduling policy.
Definition 1: The network is said to bestableif there exists a finite

real numberΓ such that with probability1,

lim sup
T→∞

T−1X
t=0

Q̂i(t)/T ≤ Γ, i = 1, . . . , N̂ . (1)

We consider a virtual-queueQl associated with linkl that contains
all packets waiting for transmission for all sessions that traversel.
Note that the virtual queue in a linkl may contain packets of sessions
traversing l in both directions. LetAl(t) and Dl(t) respectively
denote the number of arrivals and departures in slott in virtual
queueQl. Clearly, the arrival process{Al(t)} is independent and
identically distributed for allt and for all l, t, Al(t) ≤ αmax

where αmax = N̂α̂max. Let EAl(t) = λl. The arrival rate of
link i is λi, i = 1, . . . , |E|. The arrival rate vector ~λ is an
|E|−dimensional vector whose components are the arrival rates.
Also, Ql(t + 1) = Ql(t) + Al(t) − Dl(t), and (1) holds if and
only if lim supT→∞

PT−1
t=0 Qi(t)/T is finite.

The throughput regionΛπ of a scheduling policyπ is the set of
arrival rate vectors~λ for which the network is stable underπ. An
arrival rate vector~λ is said to befeasibleif it is in the throughput
region of some scheduling policy. Themaximum throughput region
Λ is the set of feasible arrival rate vectors. A scheduling policyπ is

∗Henceforth, unless otherwise stated, a packet will refer to a data packet.
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said to approximate the maximum throughput region within a factor
1− ε if for each arrival rate vector~λ ∈ Λ, (1− ε)~λ ∈ Λπ.

We assume that a linkl knows the instantaneous virtual queue
length of any other linkl′ only whenl′ communicates it tol. Also,
depending on the scheduling policy,l may or may not be able to
determine whetherl′ is scheduled in a slot if it only knows the queue
length of l′ in the slot, and in the latter casel knows the scheduling
decision for l′ only when l′ communicates it tol′. A scheduling
policy is said to be inINFORMATION(k) class if each linkl can
decide† whether to schedule itself once it knows the queue lengths
and the scheduling decisions of a subset of the links in itsk-hop
neighborhood; the subset depends onl’s k-hop neighborhood and
the policy, and may be different for queue lengths and scheduling
decisions. Finally, each link may know limited information about the
entire topology; the amount of this information will depend on the
specific policy and does not determine theINFORMATION class the
policy is in. For a few representative policies, we will specify the
information each link knows about the topology.

We now relate our assumptions to those in related papers. The
assumption that the graphG does not change with time has been
motivated by the fact that queue-length evolution is much faster
than topological changes. This assumption is consistent with several
papers in this genre (e.g., [5], [16], [17], [25], [27], [28]). Note that
if the topology changes in the same time scale as queue lengths, the
throughput region must be defined for the case where the graphG
itself is random and sampled freshly in every slot; approximating the
throughput region of such graphs is an interesting topic for future
research. The assumption that each node has a unique identity may
be too restrictive in some cases (such as sensor networks), but in
networks where packets must be directed to specific destinations (as
in an ad hoc network), such unique identities are necessary. The
assumption that the time is slotted and the clocks on network nodes
are kept synchronized is justified when clock drifts are negligible at
the time scale of control packet transmission; similar assumptions
have been made in several papers in this genre (e.g., [5], [16], [17],
[25], [27], [28]). Clock synchronization, however, is a challenging
problem and an area of active research; addressing the relevant issues
is beyond the scope of this paper. When the above assumptions
hold, using one time set up schemes or periodic set up schemes (in
time scales of topological changes), each node can obtain necessary
information about the topology, node identities, and can ensure that
the random number generators have the same seed. This justifies
the assumption that the pseudo-random number generators of all
nodes are synchronized. Also, in the time scale of queue length
evolutions, only the queue lengths and the scheduling decisions
need to be communicated among the links. This motivates our

†In an actual implementation, one of the end nodes of a link will determine
whether the link is scheduled, and for anINFORMATION(k) policy it can arrive
at this decision once it knows the queue lengths and the scheduling decisions
of a subset of thek-hop neighborhood of the link.

L(0)

L(1)

(a) Tree topologies

0 1 2 3 4 5 6 7 8 9 10

L(0)

L(1)

(b) Topologies with limited cyclicity

Fig. 1. The figures demonstrate the edge setsL(0), L(1) under the primary
interference model for (a) a tree and (b) topology with limited cyclicity. In
(a), k = 3. In (b), k = 2, H = 3, and the numbers identify the nodes, e.g.,
1 is node1. The spanning treeT we consider consists of links(i, i + 1) for
i = 0, . . . , 9, and the level of nodeu in T is u.

notion of INFORMATION(k) policies‡. Finally, interference relations
between different links need not always be pairwise in practice,
e.g., transmission in a link may be successful only when the signal
to interference ratio exceeds a threshold, which may for example
allow pairs of neighboring links to transmit simultaneously but
not three neighboring links, etc. Nevertheless, pairwise interference
relations capture several important transmission scenarios, and the
well-investigated protocol interference model [7] is a special case of
pairwise interference relations.

IV. I NFORMATION(1) POLICY FOR APPROXIMATING THE

MAXIMUM THROUGHPUT REGION ARBITRARILY CLOSELY IN TREE

TOPOLOGIES

We assume thatG is a tree and consider the primary interference
model. Tree based topologies have been proposed and investigated for
several resource allocation problems in multihop wireless networks,
e.g., [1], [15], [22], [23]. Under the primary interference model, two
links interfere if and only if they have a common node. A matching
is a set of links such that no two links in the set are adjacent
to each other. Thus, a valid schedule in a slot is a matching in

‡Note that distributed or local information based policies can be defined in
several ways. The strongest definition is that which characterizes a policy as
distributed only when the policy can be implemented without any entity having
any information about the global topology [5]. To the best of our knowledge,
no policy that attains guaranteed fractions of the throughput region fulfills
this condition. A somewhat weaker definition requires that the policy can
be implemented in networks where nodes do not have unique identities. The
policies proposed in [5], [16] are distributed under this notion. The weakest
notion is that which requires the nodes (or links) to base their decision on
information received from their neighbors. By using broadcasts, any policy can
be made distributed under this notion, and designing such a policy is trivial.
The notion of INFORMATION(k) that we put forth is intermediate between
the above extremes and differs from all of the above notions in that it (a)
distinguishes between the attributes (e.g., queue lengths) that change fast and
those (e.g., topology) that change relatively slowly and (b) parameterizes the
set of nodes a node can communicate with while determining the transmission
decisions.
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(a) Initial configuration
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(b) Computed Schedule
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(c) New configuration
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(d) Next Schedule

Fig. 2. The figures illustrate the operation of TPM(6) in an example tree.
Fig. 2(a) shows the initial configuration in time slott. The number on each
link denotes the number of packets waiting on that link, and between any
two sibling links, the one towards the left is the older sibling. Let the random
numberi(t) selected by the links be3. The level of nodesF, G, H, I is 3.
Thus,L(3) consists of the links shown in dashed lines; these links do not
contend. Thus, no parent or older sibling of links(A, B), (K, N) and(M, P )
contend. Thus, these links schedule themselves first. Thus, links(B, C),
(B, D), (B, E), (K, O), (M, Q) do not schedule themselves. Thus,(C, F )
and(E, H) schedule themselves. The links scheduled int are shown in solid
lines in Fig. (b). Let no exogenous packet arrive in slott. Fig. (c) shows the
new number of packets waiting on each link at the beginning of slott + 1.
Let the random numberi(t + 1) selected by the links int + 1 be 2. L(2)

consists of the links shown in dashed lines in Fig. (c); these links do not
contend int+1. The links scheduled int+1 are shown in solid lines in Fig.
(d). Note that link(A, B) contends in this slot, but does not schedule itself
since it does not have a packet to transmit.

the basic graphG, andX is the set of all matchings inG. This
interference model is encountered in networks where each node has
a single transceiver and a unique channel (frequency or code) in
its neighborhood, e.g., Bluetooth networks, cognitive radio networks,
and has been considered in several related papers [5], [16], [17], [25],
[27].

We now describe the scheduling policy which we refer to as
TREE-PARTITION-MATCHING(k), and abbreviate asTPM(k). Here,
k is a parameter which determines the throughput region and the
computation time of each schedule.

We first introduce the following notations. The level of a node
level(u) in a tree is its distance from the root of the tree. A
link l = (u, v) is the parent (child) of a linkl′ = (v, w) if
level(u) < level(v) < level(w) (level(w) < level(v) < level(u)).
Links (u, v1), (u, v2), . . . are siblings of each other iflevel(v1) =
level(v2). Also, different priorities are associated with different
siblings such that between any two siblings one is older and the other
is younger. LetJl = {l′ ∈ E : l′ is a parent or older sibling ofl}.
For j = 0, . . . , k − 1, let L(j) be the set of links(u, v) such that
levels ofu andv are j and j + 1 modulok (Figure 1(a)).

(0)L

GRID

GRID

0

1

D

(a) Geometric graphs under primary interference

GRID

GRID

(0)L

0

1

D

(b) Geometric graphs under secondary interference

Fig. 3. The figures demonstrate two grids, grids0, 1, and the edge set
L(0) for a geometric graph under (a) primary and (b) secondary interference
models.

A formal description ofTPM(k) follows.

TREE-PARTITION-MATCHING (k)

In slot t,, a single integeri(t) in the range[0, . . . , k − 1] is
randomly selected by all links (i.e., all links select the same
integer).Prob(i(t) = m) = 1/k for all 0 ≤ m ≤ k − 1. A
link l contends if and only ifl ∈ E \ L(i(t)).

A link schedules itself if and only if (a) it contends (b) its
virtual-queue has packets to transmit, and (c) links inJl do
not schedule themselves.

When a link is scheduled, the head of line packet in the
corresponding virtual queue is served.

Fig. 2 illustrates TPM(6) using an example.
TPM (k) belongs in theINFORMATION (1) class irrespective of

the valuek since each link needs to know the scheduling decisions
of only its parent and older siblings which are within its1-hop
neighborhood; no link needs to know the queue lengths, or any other
function thereof, of any other link.

We now evaluate the time required for computing each schedule
for TPM(k). Note that in any slot the links that contend constitute
a forest such that those in a tree of the forest do not interfere with
those in a different tree of the forest. Thus, the scheduling in different
components can be determined in parallel. The maximum length of
a path in any tree in the forest isk. Each link that contends decides
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whether to schedule itself immediately after it knows the decisions
of its parents and older siblings that contend. Thus, each link waits
for the scheduling decision of at mostk∆G links. Thus, the overall
computation time for each schedule isO(k∆G).

Theorem 1:If ~λ ∈ Int(Λ), then(1− 1/k)~λ ∈ ΛTPM(k).

The above theorem is somewhat counter-intuitive as TPM(k) does
not use queue lengths of the links in the schedule computation.
Thus, clearly, TPM(k) does not necessarily schedule a set of links
whose sum of queue lengths is within any constant factor of the
maximum possible sum of queue lengths of links in a matching.
Thus, the proof cannot rely on the well-known result that a policy
that schedules a set of links whose sum of queue lengths is within a
factor c of the maximum possible sum of queue lengths of links in a
matching, attains a throughput region which is within the factorc of
the maximum throughput region [17]. We therefore first outline the
idea behind the proof.

Intuitively a scheduling policyπ that schedules a linkl if and
only if (a) it has a packet to transmit and (b) links inJl do not
schedule themselves, maximizes the throughput region in a tree. This
is because whenever a linkl has a packet to transmit,π schedules
either l or a link in Jl; the optimum policy also schedules at most
one link in Jl ∪ {l} in each slot. Clearly, the computation time of
each schedule forπ is O(d∆G) whered is the depth of the tree, and
d is O(|E|). Now, by preventing the contention of a subsetL(i(t)) of
links in each slott, TPM (k) partitions the graph in a forest where the
depth of each tree is at mostk, and uses the above scheduling policy
in each tree of the forest. This reduces the schedule computation
time of TPM (k) to O(k∆G). The choice ofL(0), . . . , L(k−1), and
different selections ofi(t) ∈ {0, . . . , k − 1} in each slott ensures
that a link contends with probability1 − 1/k in each slott; this in
turn ensures that the maximum throughput region reduces only by a
factor of 1− 1/k.

Proof: The result clearly holds ifk = 1. Thus, we as-
sume thatk > 1. The arrival rate vector is(1 − 1/k)~λ where
~λ ∈ Int(Λ). Since ~λ ∈ Int(Λ) and X constitutes of all
matchings of the links,

P
l′∈Jl∪{l} λl′ < 1 [8], [28]. Let δ =

min

�
1−max

P
l′∈Jl∪{l} λl′

2|E|maxl′ λl′
, 1

�
. Clearly, δ > 0. For a link l =

(u, v), χl denotes the sum of∆G min (level(u), level(v)) and the
number of older siblings ofl. Note thatχl ≤ χl′ −1 if l ∈ Jl′ . This
is because ifl ∈ Jl′ l is either an older sibling ofl′ or the parent of
l′. In the first case, the end nodes ofl and l′ have the same levels,
and l has fewer older siblings as compared tol′. In the second case,
the level of the source (end) node ofl is 1 less than that of the source
(end) node ofl′, andl may have at most∆G−1 more older siblings
than l′.

Observe that the queue lengths of the virtual queues constitute a
Markov chain. We consider a lyapunov function

V ( ~Q) =
X

l

δχlQ2
l + 2

X
l

δχlQl

X
l′∈Jl

Ql′ .

Note that the use ofδχls in the lyapunov function have been
motivated by the asymmetricity ofJls (Jl is asymmetric in the sense
that if l′ is in Jl then l is not in J ′l ). We prove that
E
�
V
�

~Q (t + 1)
�
− V

�
~Q(t)

�
| ~Q(t) = ~Q

�
< −1 for all suffi-

ciently large || ~Q||, where || ~Q|| =

q
V ( ~Q). Then, from Foster’s

theorem (Theorem 2.2.3 in [6]) the Markov chain representing the
queue length process~Ql(t) is positive recurrent. Also,E (Ql(t)) <
∞ for eachl under the steady state distribution for the above Markov

chain. Thus,limK→∞
PK−1

t=0 Ql(t)

K
< ∞. The result follows.

V
�

~Q(t + 1)
�
− V

�
~Q(t)

�
=

X
l

δχl (Ql(t + 1)−Ql(t)) (Ql(t + 1) + Ql(t))

+2
X

l

δχlQl(t + 1)
X
l′∈Jl

Ql′(t + 1)

−2
X

l

δχlQl(t)
X
l′∈Jl

Ql′(t)

≤ 2
X

l

δχl (Al(t)−Dl(t)) Ql(t)

+2
X

l

δχl (Al(t)−Dl(t))
2

+2
X

l

δχlQl(t)
X
l′∈Jl

(Al′(t)−Dl′(t))

+2
X

l

δχl (Al(t)−Dl(t))
X
l′∈Jl

Ql′(t)

+2
X

l

δχl (Al(t)−Dl(t))
X
l′∈Jl

(Al′(t)−Dl′(t))

≤ 2
X

l

δχlQl(t)

0@ X
l′∈Jl∪{l}

(Al′(t)−Dl′(t))

+
X

l′:l∈Jl′

δχl′−χlAl′(t)

1A+ 4N2α2
max

≤ 2
X

l

δχlQl(t)

0@ X
l′∈Jl∪{l}

(Al′(t)−Dl′(t))

+ δ
X

l′:l∈Jl′

Al′(t)

1A+ 4N2α2
max. (2)

The last inequality follows since0 < δ ≤ 1, χl ≤ χl′ − 1 if
l ∈ Jl′ . From (2),

E
�
V
�

~Q (t + 1)
�
− V

�
~Q(t)

�
| ~Q(t) = ~Q

�
≤ (2/k)

X
l

δχl

k−1X
m=0

E

0@Ql(t)

0@ X
l′∈Jl∪{l}

(Al′(t)−Dl′(t))

+ δ
X

l′:l∈Jl′

Al′(t)

1A | ~Q(t) = ~Q, i(t) = m

1A+ 4N2α2
max

≤ (2/k)
X

l

δχlQl

0@k(1− 1/k)
X

l′∈Jl∪{l}
λl′ − (k − 1)

+ k(1− 1/k)δ
X

l′:l∈Jl′

λl′

1A+ 4N2α2
max

(sincel ∈ L(j) for only onej ∈ {0, . . . , k − 1} and

Dl′(t) = 1 for somel′ ∈ Jl ∪ {l} unlessQl(t) = 0

or l ∈ L(i(t)))

≤ 2(1− 1/k)
X

l

δχlQl

0@ X
l′∈Jl∪{l}

λl′ − 1 + δ
X

l′:l∈Jl′

λl′

1A
+4N2α2

max

≤ −2(1− 1/k)|E|max
l

λl′δ
X

l

δχlQl

< −1 for sufficiently large|| ~Q|| (sinceδ > 0 andk > 1).
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The result follows.
Thus,TPM (d1/εe) approximates the maximum throughput region

within a factor of1− ε and computes each schedule inO(∆G/ε).
Finally, we describe one specific implementation forTPM(k) for

any k. SinceG is a tree, it has a root. For any nodeu other than
the root, there exists only one nodep(u), denoted as the parent ofu,
such that (a) there is a link betweenu andp(u) and (b) the level of
p(u) is less than that ofu. If there exists a link betweenu andv and
v is not the parent ofu, thenv is a child ofu. For each link, one end
node is the parent of the other - the parent node is referred to as the
source node. Let the set of links for whichu is the source node be
Cu and the set of links for whichu is an end node beEu. Note that
Eu = Cu∪{(p(u), u)}, and the links inCu are siblings. For example,
in Fig. 2(a), A = p(B), CB = {(B, C), (B, D), (B, E)}, EB =
{(A, B), (B, C), (B, D), (B, E)}.

We assume that each nodeu knows its level, its parent and children
nodes in the tree and the ordering among the links inCu. The source
node of a link decides whether to schedule the link. Consider a node
u in G. In each slot, either(p(u), u), or links inCu, or all links inEu

contend;u decides which is the case as per the first step ofTPM(k).
(a) If links in Cu do not contend int, then u takes no scheduling
decision. (b) If (p(u), u)) does not contend int, u schedules the
oldest sibling inCu that has a packet to transmit, and decides that
the rest of the links inCu will not be scheduled int. (c) If all links
in Eu contend int, u waits for p(u) to inform it about whether
(p(u), u) is scheduled in the slot (note thatp(u) decides whether to
schedule(p(u), u)). If (p(u), u) is scheduled in the slot,u decides
that none of the links inCu will be scheduled in the slot; else,u
schedules the siblings inCu as in the case that(p(u), u)) does not
contend int. In cases (b) and (c),u informs each of its children about
the scheduling decision for the link between it and the child node.

Clearly, TPM(k) is simple to implement. Also, during the com-
putation time of a schedule, each node performs no computation, is
involved in at most∆G communications (a node transmits1 bit, or
rather 1 packet of minimum possible size, to each of its children,
and receives at most1 bit), and waits for the rest of the time.
Clearly, in any scheduling policy that avoids collisions during packet
transmissions, in the worst case each node needs to communicate
at least once with each of its neighbors. Thus, among the policies
that avoid collisions, TPM(k) minimizes the communications and
computations for each node.

V. I NFORMATION(k) POLICIES FOR APPROXIMATING THE

MAXIMUM THROUGHPUT REGION ARBITRARILY CLOSELY

We first provide a general framework for approximating the
maximum throughput region arbitrarily closely using policies in
INFORMATION(k) class (Section V-A). Then we use this framework
to obtain arbitrary tradeoffs between throughput approximations and
schedule computation times in several important classes of networks
and interference models (Section V-B, V-C, V-D). Specifically, we
prove that in a geometric graph for both primary and secondary inter-
ference models the maximum throughput region can be approximated
within a factor of1 − ε using a policy inINFORMATION(∆G/ε2)
class that computes each schedule inO

�
∆2

G/ε2
�

time (Section V-
C). These results can be extended to arbitrary graphs with limited
cyclicity (Section V-B) and quasi-geometric graphs (Section V-D).
We upper bound the expected delays attained by these policies and
prove that the bounds are comparable to the best known guarantees
in these networks (Section V-E).

A. General Framework

We describe a policyπ(k) that approximates the maximum
throughput region arbitrarily closely for appropriate choices ofk

in arbitrary networks and interference models (the network and
interference models are as described in Section III). We considerk
subsets of linksL(0), . . . , L(k−1) such that the links in a component
of G(j) = (V, E \ L(j)) do not interfere with those in other
components ofG(j). In every slot t, every link selects an integer
in the range[0, . . . k − 1]; each integer is selected with probability
1/k and all links select the same integer. In any slott, the weight
of a link is the number of packets waiting for transmission in the
virtual queue associated with the link, and the links that constitute a
maximum weighted independent set in the interference graph of any
component ofG(i(t)) are scheduled. Without loss of generality, links
with zero weight are not scheduled. When a linkl is scheduled, the
virtual queue associated withl transmits a packet.

Note thatπ(k) is completely specified onceL(0), . . . , L(k−1) are
specified. We show that for appropriate choices ofL(0), . . . , L(k−1),
π(k) approximates the maximum throughput region within an ap-
proximation factor that depends only onk. We first introduce the
following definitions.

Let Sl = {l′ : l′ = l or l′ interferes withl or l interferes withl′}.

Definition 2: A collection of subsetsE1, . . . , Eq of E is said to
bec-approximate if for (a) any given|E|-dimensional vector of non-
negative real numbers~W = (W1, . . . , W|E|) and (b) any collection
of subsets ofE, X1, . . . Xq such thatXi ∈ X andXi ⊆ Ei

qX
i=1

X
l∈Xi

Wl ≤ c max
X∈X

X
l∈X

Wl.

We now present the key technical lemma that allows us to obtain
desired throughput guarantees.

Lemma 1:Let L(0), . . . , L(k−1) be c-approximate. Then,

E

 X
i

Qi(t)Di(t)| ~Q(t) = ~Q

!
≥ (1− c/k) max

X∈X

X
i∈X

Qi(t).

The intuition behind the result is as follows. The weight of the links
scheduled byπ(k) differs from the maximum weight of any schedule
in the slot by at most the weight of the maximum weight independent
set among links that do not contend in the slot. IfL(0), . . . , L(k−1)

arec−approximate, then the expected weight of the maximum weight
independent set inL(i(t)) turns out to be at mostc/k times that of
the weight of the maximum weight independent set in the slot. Thus,
the expected weight of the scheduled links is at least(1−c/k) times
that of the weight of the maximum weight of any schedule in the
slot. The arguments in this proof can be generalized to obtain an
expected sense approximation for maximum weighted independent
sets in geometric graphs using a computation time that depends only
on the approximation factor and the degree of the graph (Lemma 10);
we state and prove this general result in appendix B.

Proof: Let i(t) be the integer selected by links in slott, and
B(t) = arg max X∈X

X⊆L(i(t))

P
l∈X Ql(t). Now,

P
i Qi(t)Di(t) ≥�

maxX∈X
P

i∈X Qi(t)−
P

i∈B(t) Qi(t)
�

. Now,

E

0@ X
l∈B(t)

Ql(t)| ~Q(t) = ~Q

1A
=

k−1X
j=0

P
�
i(t) = j| ~Q(t) = ~Q

�
E

0@ X
l∈B(t)

Ql(t)| ~Q(t) = ~Q, i(t) = j

1A
= (1/k)

k−1X
j=0

E

0@ X
l∈B(t)

Ql(t)| ~Q(t) = ~Q, i(t) = j

1A
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= (1/k)

k−1X
j=0

max
X∈X

X⊆L(j)

X
l∈X

Ql(t)

≤ (c/k) max
X∈X

X
i∈X

Qi(t)

(sinceL(0), . . . , L(k−1) arec− approximate).

Thus, E
�P

i Qi(t)Di(t)| ~Q(t) = ~Q
�

≥ (1 −
c/k)maxX∈X

P
i∈X Qi(t).

Lemma 2:Let L(0), . . . , L(k−1) be c-approximate. Then, if~λ ∈
Int(Λ) andk ≥ c > 0, (1− c/k)~λ ∈ Λπ(k).

We provide the intuition behind the above result. When
L(0), . . . , L(k−1) are c-approximate, from lemma 1 it follows that
π(k) schedules links such that the expected weight of the scheduled
links in any slot is at least(1−c/k) times the weight of the maximum
weight independent set of links in the slot. The throughput guarantee
now follows using lyapunov arguments similar to those in [17], [28].
We prove this lemma towards the end of this subsection.

Once we prove that the collectionL(0), . . . , L(k−1) is c-
approximate for somec, irrespective of the value ofc, Lemma 2
allows us to approximate the maximum throughput region within
a factor of 1 − ε for any ε > 0 using π(k) for k = dc/εe.
Then the network designer simply chooses an appropriateε based
on the desired trade-off between performance and computational
burden (the smaller theε, the better the approximation of the
optimal capacity region, but the higher the computational burden)
and the correspondingk guarantees the desired throughput. In the
next subsections we will prove that in large classes of networks
the collectionL(0), . . . , L(k−1) can be selected so as to render it
c-approximate for different constant factorsc (lemmas 4, 6, 7). The
value ofc may however be different for different interference models
and network topologies, and the constants in the expressions for the
schedule computation times will typically increase with increase in
c.

Note that different components in eachG(j) can schedule the
links in parallel as the links in different components do not interfere.
Thus, π(k) can be implemented provided in each slot and in each
component either one, or all links, know the weights of all links in
the component. In either case,π(k) is in INFORMATION(k̂) class
where k̂ is the maximum diameter of any component ofG(j) for
any j ∈ {0, . . . , k − 1}§ which is upper bounded by the number of
nodes in any component ofG(j) for any j ∈ {0, . . . , k − 1}. The
computation time for each scheduleπ(k) will again be determined
by the maximum size (number of links or number of nodes or both)
of a component inG(j) for j ∈ {0, . . . , k−1}. We will show that for
a large class of networks, the size of each component and therefore
the overall computation time for each schedule depends only on∆G

andk.

We now prove lemma 2.
Proof: The result clearly holds whenk = c. We now

assume thatk > c > 0. Let the arrival rate vector be(1 −
c/k)~λ where ~λ ∈ Int(Λ). Clearly, underπ(k), ~Q(t) constitute
an aperiodic irreducible Markov chain. We will consider the lya-
punov function V ( ~Q) =

P
i Q2

i , and prove that underπ(k),

E
�
V
�

~Q (t + 1)
�
− V

�
~Q(t)

�
| ~Q(t) = ~Q

�
< −1 for all suffi-

ciently large || ~Q||, where || ~Q|| =

q
V ( ~Q). Then, from Foster’s

theorem (Theorem 2.2.3 in [6]) the Markov chain representing the
queue length process is positive recurrent. Also,E (Qi(t)) < ∞ for

§The tacit assumption we make here is that two adjacent links always
interfere with each other which usually holds in all wireless networks. Note
that we allow links to interfere even if they are not adjacent.

eachi under the steady state distribution for the above Markov chain.

Thus, limK→∞
PK−1

t=0 Qi(t)

K
< ∞. The result follows.

Let ~IX denote the indicator vector for setX ∈ X . Note that
φ ∈ X . Then,Int(Λ) can be characterized as follows [28]:

Int(Λ) = {~λ : ~λ =
X
~X∈X

βX
~IX , where

X
~X∈X

βX = 1

andβX ≥ 0 for eachX ∈ X andβφ > 0}. (3)

Now, E

��
~A(t)

�T
~Q(t)| ~Q(t) = ~Q

�
= (1− c/k)~λT ~Q

≤ (1− c/k)(1− βφ) max
X∈X

X
i∈X

Qi. (4)

The inequality follows by using~λ =
P

~X∈X βX
~IX ,

P
i∈X Qi ≤

maxX∈X
P

i∈X Qi and
P

X∈X\{φ} βX = 1− βφ.

Since V
�

~Q(t + 1)
�

− V
�

~Q(t)
�

=�
~Q(t + 1)− ~Q(t)

�T �
~Q(t + 1) + ~Q(t)

�
, ~Q(t + 1) = ~Q(t) +

~A(t) − ~D(t) and
�

~A(t)− ~D(t)
�T �

~A(t)− ~D(t)
�
≤ Nα2

max, we
obtain

E
�
V
�

~Q(t + 1)
�
− V

�
~Q(t)

�
| ~Q(t) = ~Q

�
≤ 2E

��
~A(t)− ~D(t)

�T
~Q(t)| ~Q(t) = ~Q

�
+ Nα2

max,

≤ −2(1− c/k)βφ max
X∈X

X
i∈X

Qi + Nα2
max

(from Lemma 1 and (4))

< −1 for all sufficiently large|| ~Q|| (sinceβφ > 0, 0 < c < k).

Finally, we present a lemma that we will use in analyzing the
expected delay of the policies we develop in this section. Recall that
λ̂j is the arrival rate for sessionj.

Lemma 3:Let the arrival rate vector be(1− ε′)(1− c/k)~λ where
0 < ε′ < 1 and~λ ∈ Int(Λ). Let L(0), . . . , L(k−1) be c-approximate.

Then underπ(k) limT→∞
PT

t=1
PN̂

j=1 DLj(t)

T
≤ Nα2

max maxl∈E |Sl|
2(1−c/k)ε′mink λ̂k

.

The proof uses techniques for bounding first moments developed
in [14], which have subsequently been extensively used in different
contexts, e.g., [19], [11].

Proof: Let the arrival rate vector be(1 − ε′)(1 − c/k)~λ
where 0 < ε′ < 1 and π(k) be used. Since~λ ∈ Int(Λ),
(1 − ε′)~λ ∈ Int(Λ). Thus, since L(0), . . . , L(k−1) is c-
approximate, the proof of lemma 2 shows that the Markov
chain representing the queue length process is positive recurrent.

Thus, limT→∞
PT

t=1
PN̂

j=1 DLj(t)

T
, limT→∞

PT
t=1 E(

P
i∈E Qi(t))

T

and limT→∞
PT

t=1 E(maxX∈X
P

i∈X Qi(t))
T

exist. Also,
using little’s law, and the strong law of large num-

bers for i.i.d. arrivals, limT→∞
PT

t=1
PN̂

j=1 DLj(t)

T
≤

1

mink λ̂k
limT→∞

PT
t=1 E(

P
i∈E Qi(t))

T
. We now show thatP

i∈E Qi(t) ≤ maxl∈E |Sl|maxX∈X
P

i∈X Qi(t) at each t.
Then, the lemma follows if we can show that

limT→∞
PT

t=1 E(maxX∈X
P

i∈X Qi(t))
T

≤ Nα2
max

2(1−c/k)ε′ .

Consider anX ′(t) ∈ X which is obtained as follows. Ini-
tially, X ′(t) = E. Now, let link l have the maximum queue
length at t among the links inX ′(t). Then all links in Sl \ {l}
are removed fromX ′(t). The process is repeated untilX ′(t) ∈
X . Note that

P
i∈LQi(t) ≤ maxl∈E |Sl|

P
i∈X′(t) Qi(t). Now,
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since
P

i∈X′(t) Qi(t) ≤ maxX∈X
P

i∈X Qi(t),
P

i∈E Qi(t) ≤
maxl∈E |Sl|maxX∈X

P
i∈X Qi(t).

We now show that limT→∞
PT

t=1 E(maxX∈X
P

i∈X Qi(t))
T

≤
Nα2

max
2(1−c/k)ε′ . Similar to the deduction of (4), we can show

that E

��
~A(t)

�T
~Q(t)| ~Q(t) = ~Q

�
≤ (1 − c/k)(1 −

ε′)maxX∈X
P

i∈X Qi. Let V ( ~Q) =
P

i Q2
i . Thus, from lemma 1

and as in the proof of lemma 2, we can show that

E
�
V
�

~Q(t + 1)
�
− V

�
~Q(t)

�
| ~Q(t) = ~Q

�
≤ −2(1− c/k)ε′ max

X∈X

X
i∈X

Qi + Nα2
max ∀ ~Q.

Thus, E
�
V
�

~Q(t + 1)
�
− V

�
~Q(t)

��
≤ −2(1− c/k)ε′E

 
max
X∈X

X
i∈X

Qi(t)

!
+ Nα2

max ∀ t.

Hence, E
�
V
�

~Q(T + 1)
�
− V

�
~Q(1)

��
≤ −2(1− c/k)ε′

TX
t=1

E

 
max
X∈X

X
i∈X

Qi(t)

!
+ NTα2

max.

The last inequality follows using a telescopic sum. The result follows
sinceV ( ~Q(t)) ≥ 0 for all t and

limT→∞E
�
V
�

~Q(1)
��

/T = 0 if the initial queue lengths are
bounded.

B. Graphs with Limited Cyclicity

Using the above general framework, we generalize the tradeoff
between throughput and the time required to compute each schedule
to networks with limited cyclicity. Specifically, we assume that there
exists a constantH such that the maximum length of a cycle inG
is upper bounded byH. We still consider the primary interference
model.

The setsL(0), . . . , L(k−1) for the scheduling policy, referred to
as H -L IMITED -CYCLICITY-PARTITION-MATCHING(k) and abbre-
viated asH -LCPM(k), are as follows. Consider a spanning treeT
of G. For H -LCPM(k), L(j) is the set of links(u, v) such that
the levels ofu andv in T are (a) less than or equal tojH modulo
kH and (b) greater thanjH modulokH respectively (Figure 1(b)).
Intuitively, for H -L IMITED -CYCLICITY-PARTITION-MATCHING(k),
when i(t) = j, levels jH, jH + kH, jH + 2kH, . . . partition the
graph, andL(j) consists of the links that cross these levels. Clearly,
the components ofG(j) are such that the links in a component do
not interfere with those in other components.

We now evaluate the timeH -LCPM(k) needs to compute each
schedule. Let the set of edges inT be Ê. Note that the maximum
length of a path inT (j) = (V, Ê\L(j)) is kH. Thus each component
in T (j) has O(∆kH

G ) nodes. Each component ofG(j) consists of
several components ofT (j). Consider all nodes that are in a given
component ofG(j), but are in different components ofT (j). These
nodes have a common ancestor, sayv, in T. The subtree ofT with v
as the root and the above nodes as leaves has diameter at mostH−1.
Thus, the number of leaves of this tree is at most∆H

G . Hence, at most
∆H

G components ofT (j) can constitute the same component inG(j).
Thus, each component inG(j) hasO(∆

(k+1)H
G ) nodes. Now, each

independent setX of links in each component ofG(j) is a matching
in the corresponding component ofG(j). The time needed to compute
a maximum weighted matching in each such component is therefore
O(∆

3(k+1)H
G ). Thus, the overall computation time of each schedule

is O(∆
3(k+1)H
G ). If G is a bipartite graph, the overall computation

time of each schedule isO(∆
2(k+1)H
G ).

The diameter of any component ofT (j) is O(kH). Since a
component ofG(j) consists of at most∆H

G components ofT (j), the
diameter of any component ofG(j) is O(kH∆H

G ). Thus,H -LCPM
(k) is in INFORMATION(kH∆H

G ) class.
We now prove the following key result which will be used in

obtaining throughput guarantees forH -LCPM (k).
Lemma 4:L(0), . . . , L(k−1) is 6−approximate.

Proof: Let ~W be an arbitraryN -dimensional vector of non-
negative real numbers,
X∗ = arg maxX∈X

P
l∈X Wl, and X0, . . . , Xk−1 be arbitrary

subsets of links such thatXj ∈ X (i.e., Xi is a matching) andXj ⊆
L(j), j = 0, . . . , k − 1. We need to prove that

Pk−1
j=0

P
l∈Xj

Wl ≤
6
P

l∈X∗ Wl. For any linkl, Wl ≤
P

i∈X∗∩Sl
Wi. Let η(j)

l = |Xj∩
Sl|. Thus,

P
l∈Xj

Wl ≤
P

l∈Xj

P
i∈X∗∩Sl

Wi =
P

l∈X∗ η
(j)
l Wl.

Thus,
k−1X
j=0

X
l∈Xj

Wl ≤
X

l∈X∗

 
k−1X
j=0

η
(j)
l

!
Wl. (5)

Hence, we need to show that
�Pk−1

j=0 η
(j)
l

�
≤ 6 for eachl ∈ X∗.

Considerl = (u, v) ∈ E, and let u be the parent ofv in T.
There exists a uniquejl such that level ofu in T is in ((jl −
1)H, jlH] mod kH. Note thatl is not adjacent to any link inL(q)

whereq < (jl−1) mod k or q > (jl+1) mod k, i.e.,η(q)
l = 0 for the

aboveq. SinceXjs are matchings, at most2 links in Xj is adjacent
to l for any j, i.e., η(j)

l ≤ 2 for any j. Thus,
�Pk−1

j=0 η
(j)
l

�
≤ 6 for

eachl ∈ X∗.
Theorem 2:If ~λ ∈ Int(Λ) and ε ∈ (0, 1), then (1 − ε)~λ ∈

ΛH-LCPM(d6/εe)).
Using k = d6/εe, c = 6, Theorem 2 follows from lemmas 4 and

2. Now, H-LCPM (d6/εe) is in
INFORMATION

�
O(H∆H

G/ε)
�

class and requires∆O(H/ε)
G time to

compute each schedule. Thus,H-LCPM will be useful for small
values ofH.

Finally, note that under the primary interference model,
maxl |Sl| ≤ 2∆G + 1. Now, consider anyε ∈ (0, 1), ε′ ∈ (0, 1),
~λ ∈ Int(Λ). Using k = d6/εe, c = 6, it follows from lemmas 3
and 4 that when the arrival rate vector is(1 − ε)(1 − ε′)~λ and
H-LCPM (d6/εe) is used, the sum of the expected delays of the

sessionslimT→∞
PT

t=1
PN̂

j=1 DLj(t)

T
is at most Nα2

max(2∆G+1)

2(1−ε)ε′mink λ̂k
. In

other words, for an arrival rate vector in the throughput region ofH-
LCPM (d6/εe), Int((1−ε)Λ), the above sum is upper bounded by a
quantity that depends on the arrival process (throughαmax, mink λ̂k,
and the parameterε′ that determines the distance of the rate vector
from the boundary of the throughput region ofH-LCPM (d6/εe)),
network (throughN, ∆G) and the policy parameter (throughε).

C. Geometric Graphs

A graph is said to be geometric if nodes are embedded in the
first quadrant of the2-dimensional plane, and a link exists between
nodesu andv if and only if the distance between them is less than
a certain value sayD. The distanceD is referred to as the transmis-
sion range. Geometric graphs have been extensively investigated in
several different contexts in wireless networks (e.g., [2], [24]). We
consider both the primary interference model (Section V-C.1) and the
secondary interference model (Section V-C.2).

1) Geometric Graphs with primary interference model:We con-
sider a geometric graphG with primary interference model. The sets
L(0), . . . , L(k−1) for the policy GEOMETRIC-GRAPH-PARTITION-
MATCHING(k), which we abbreviate asGGPM(k), are as follows.
Considerk different grids each of which consists of a series of
horizontal and vertical lines parallel to thex andy axes respectively
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and the distance between any two closest horizontal (vertical) lines
is kD. Each grid is specified by its first horizontal and vertical lines.
The first horizontal and vertical lines of gridj are given byy = jD
andx = jD respectively forj = 0, . . . k−1. Now, L(j) is the set of
links which either cross, or have at least one end node on, a vertical
or a horizontal line of gridj (Figure 3(a)). Note that the links in a
component ofG(j) do not interfere with those in other components.

We first evaluate the time for computing each schedule for
GGPM(k). The overall computation time for each schedule is the
worst case computation time in a component. Letν be the maximum
number of nodes in any component ofG(j) = (V, E \L(j)) for any
j. We show thatν is O(∆Gk2). Thus, the time for computing each
schedule is the time for computing a maximum weighted matching
in a component withO(∆Gk2) nodes, which isO(∆3

Gk6). Also,
GGPM(k) is in INFORMATION

�
O(∆Gk2)

�
class.

Lemma 5:For any j = 0, . . . , k − 1, a component inG(j) =
(V, E \ L(j)) hasO(∆Gk2) nodes andO(∆2

Gk2) links.
Proof: Consider somej ∈ 0, . . . , k − 1. A component inG(j)

consists of nodes in a square enclosed by the closest horizontal and
vertical lines of thejth grid. The side of such a square is at most
kD units. Such a square can be filled withO(k2) small squares with
sides slightly less thanD/

√
2. Let I be a maximal independent set

of nodes in the component, i.e., there does not exist an edge between
any two nodes inI and every node in the component is either inI
or has an edge to some node inI. Since the distance between any
two points in any small square is less thanD, at most one node in
I is present in any small square. Therefore,|I| is O(k2). Clearly,
ν ≤ |I|∆G. Thus, ν is O(∆Gk2). Also, the maximum number of
links in any component ofG(j) is at mostν∆G which isO(∆2

Gk2).

We now prove the following key result which will be used in
obtaining throughput guarantees forGGPM(k).

Lemma 6:L(0), . . . , L(k−1) is 12−approximate.
Proof: The proof is similar to that for lemma 4. We point

out the differences. We need to prove that
Pk−1

j=0

P
l∈Xj

Wl ≤
12
P

l∈X∗ Wl. Relation (5) holds in this case as well. Hence, we

need to show that
�Pk−1

j=0 η
(j)
l

�
≤ 12 for eachl ∈ X∗.

The k grids do not share any common line. Let SUPERGRID
consist of all lines of all grids. Then SUPERGRID is a grid where
the distance between any two closest horizontal (vertical) lines isD.

Clearly,η(j)
l = 1 for any l ∈ Xj ∩X∗. If l ∈ X∗ \Xj , η

(j)
l is the

number of links inXj that interferes withl. Since these links are in
Xj , they do not interfere with each other. Thus,η

(j)
l ≤ 2 since at

most2 links can be adjacent tol but are not adjacent to each other.
Thus,η(j)

l ≤ 2 for any l ∈ X∗.
Next, for eachl ∈ X∗ we upper-bound the number ofjs in

{0, . . . , k − 1} such thatη(j)
l > 0. Now, η

(j)
l > 0 if either l ∈ L(j)

or l 6∈ L(j) but l interferes with a link inL(j). Note that for anyl,
l ∈ L(j) for at most2 js in {0, . . . , k − 1}. This holds because a
link l can either cross or have an end node on at most1 horizontal
and vertical line of SUPERGRID. Next, for any l, l 6∈ L(j) but l
interferes with (i.e., is adjacent to) a link inL(j) for at most4 js in
{0, . . . , k − 1}. This holds because ifl 6∈ L(j) both end nodes ofl
are inside one square of the SUPERGRID, say squarea. But, thenl
can be adjacent to links inL(j) if a side of squarea is aligned with
at least one horizontal or vertical line of gridj, which can happen
for at most4 values ofj. Thus, for eachl ∈ X∗, η

(j)
l > 0 for 6

js in {0, . . . , k − 1}. Hence,
�Pk−1

j=0 η
(j)
l

�
≤ 2 × 6 = 12 for each

l ∈ X∗.
Theorem 3:If ~λ ∈ Int(Λ) and ε ∈ (0, 1), then (1 − ε)~λ ∈

ΛGGPM(d12/εe).
Using k = d12/εe, c = 12, Theorem 3 follows from lemmas 2

and 6.GGPM(d12/εe) is in INFORMATION
�
O(∆G/ε2)

�
class and

computes each schedule inO(∆3
G/ε6) time. In the next subsection,

we propose a technique that computes each schedule inO(∆2
G/ε2)

time while approximating the maximum throughput region within a
factor of (1− ε).

Finally, we upper bound the expected delays of the sessions. Now,
consider anyε ∈ (0, 1), ε′ ∈ (0, 1), ~λ ∈ Int(Λ). Using k = d12/εe,
c = 12, and since under the primary interference model,maxl |Sl| ≤
2∆G + 1, it follows from lemmas 3 and 6 that when the arrival rate
vector is(1− ε)(1− ε′)~λ and GGPM (d12/εe) is used, the sum of

the expected delays of the sessionslimT→∞
PT

t=1
PN̂

j=1 DLj(t)

T
is at

most Nα2
max(2∆G+1)

2(1−ε)ε′mink λ̂k
.

2) Geometric Graphs with Secondary Interference Model:We
consider a geometric graphG and the secondary interference model.
In this interference model, a linki interferes with linkj if one end
point of j is within distanceD from an end point ofi. Note that
if two links interfere under the primary interference model they also
interfere under the secondary interference model but the converse is
not true. This model is an abstraction of bidirectional wireless links
where all transmissions use a single channel and equal power. Note
that an independent set of links is no longer a matching inG.

We now describeL(0), . . . , L(k−1) for the policy GEOMETRIC-
GRAPH-PARTITION-INDEPENDENT-SET(k) which we abbreviate as
GGPIS(k). Just as in Section V-C.1, we considerk different grids.
Now, L(j) is the set of links for which at least one end point is within
a distanceD of a vertical or horizontal line of gridj (Figure 3(b)).
Note that the links in a component ofG(j) do not interfere with those
in other components.

We now evaluate the computation time for each schedule for
GGPIS(k). From lemma 5, each component ofG(j) hasO(∆2

Gk2)
links. Consider two linksl = (u, v), l′ = (w, x) that do not interfere.
Then no small square in the proof of lemma 5 can contain bothu, w,
or both u, x or both v, w or both v, x. Thus, the maximum size
of any independent set of links in a component ofG(j) is upper-
bounded by the number of such small squares which again isO(k2).
Thus, in any component ofG(j), the maximum weighted interference
set can be computed in(∆2

Gk2)O(k2). Thus, each schedule can be
computed is(∆2

Gk2)O(k2) time. Again, likeGGPM (k), GGPIS(k)
is in INFORMATION

�
O(∆Gk2)

�
class.

We make the following observations aboutL(0), . . . , L(k−1):

• (Observation 1) Let ψl = {j : l ∈ L(j)}. Then, |ψl| ≤ 6 for
any l ∈ E . This holds because the end nodes of a link can be
at a distance ofD from at most 3 vertical and3 horizontal lines
of SUPERGRID.

• (Observation2) For anyl, l 6∈ L(j) but l interferes with a link
in L(j) for at most4 js in {0, . . . , k−1} . This happens only if
one of the end nodes ofl is within 2D units of a horizontal or
vertical line of gridj but none of the end nodes ofl are within a
distance ofD from any line of gridj. This can happen at most
2 times for vertical lines and 2 more times for horizontal lines
of SUPERGRID.

We now prove the following key result which will be used in
obtaining throughput guarantees forGGPIS(k).

Lemma 7:L(0), . . . , L(k−1) is 80−approximate.
Proof: The proof is similar to that for lemma 6. Like in lemma 6,

we need to prove that
�Pk−1

j=0 η
(j)
l

�
≤ 80 for eachl ∈ X∗. Now,

η
(j)
l ≤ 8 for any l ∈ X∗ as the number of links that interfere

with l but do not interfere with each other is at most8 [2]. Next,
from observations 1 and 2, for eachl ∈ X∗, η

(j)
l > 0 for 10 js

in {0, . . . , k − 1} Hence,
�Pk−1

j=0 η
(j)
l

�
≤ 8 × 10 = 80 for each

l ∈ X∗.



11

Theorem 4:If ~λ ∈ Int(Λ) and ε ∈ (0, 1), then (1 − ε)~λ ∈
ΛGGPIS(d80/εe)).

Using k = d80/εe, c = 80, Theorem 4 follows from lemmas 2
and 7.GGPIS(d80/εe) is in
INFORMATION

�
O(∆G/ε2)

�
class and computes each schedule in

(∆G/ε)O(1/ε2) time. Now, consider anyε ∈ (0, 1), ε′ ∈ (0, 1),
~λ ∈ Int(Λ). Note that under the secondary interference model,
maxl |Sl| ≤ 2∆2

G + 1. Using k = d80/εe, c = 80, it follows from
lemmas 3 and 7 that when the arrival rate vector is(1− ε)(1− ε′)~λ
andGGPIS(d12/εe) is used, the sum of the expected delays of the

sessionslimT→∞
PT

t=1
PN̂

j=1 DLj(t)

T
is at most Nα2

max(2∆2
G+1)

2(1−ε)ε′mink λ̂k
.

We now present a policy, which we denote asGEOMETRIC-
GRAPH-PARTITION-GRADUAL -IMPROVEMENT(k) and abbreviate as
GGPGI(k), that for appropriate choice ofk attains the same through-
put guarantee asGGPIS(d80/εe) but computes each schedule in only
O(∆2

G/ε2) time. Note thatGGPGI(k) does not belong in the general
class of policiesπ(k) described in Section V-A. The main difference
betweenGGPGI(k) and π(k) (and henceGGPIS(k)) is that the
former does not compute the maximum weight independent set of
links in any component but in each component selects an independent
set of links which has a higher weight than that selected in a previous
epoch. Note that Tassiulas [27] proved that the stability region can
be maximized by using a similar selection strategy in the entire
graph. We prove that, by appropriately partitioning the graph, the
stability region can be approximated arbitrary closely if the above
selection policy is used in each component. This combination of
graph partitioning and improvement based selection schemes reduces
the time required to compute each schedule fromΘ(N) attained using
only the improvement based selection schemes in [27] toO(∆2

G/ε2).

In GGPGI(k) each linkl is associated withk−6 secondary virtual
queues:Q(S)

li , i ∈ {0, . . . , k−1}\ψ̂l whereψ̂l is the union ofψl and
max(0, 6−|ψl|) arbitrary elements of{0, . . . , k−1}\ψl. Whenever
a packet arrives in the virtual queueQl it is routed to one of the
secondary virtual queues with equal probability. The policy divides
the time axis in frames ofk slots. In thejth slot of each frame, for
different links l ∈ E, the secondary virtual queuesQ(S)

lj contend.
Only the secondary virtual queues that contend can be scheduled for
transmission and those that are scheduled for transmission transmit
their head of line packets if they are non-empty.

We now describe which contending secondary virtual queues are
scheduled for transmission in thejth slot of each frame. Note that
Q

(S)
lj does not exist ifl ∈ L(j) as thenj ∈ ψl ⊆ ψ̂l. Thus, in the

jth slot of each frame, no secondary virtual queue associated with
any link l ∈ L(j) contends and at most one secondary virtual queue
associated with each linkl ∈ E \ L(j) contends. A link is said to
contend if one secondary virtual queue associated with it contends.
Thus, for eachj the links that contend in thejth slot of each frame
constitute components such that links in different components do not
interfere. Independent sets can be determined in each component in
O (∆Glog(∆Gk)) time using existing randomized algorithms [18],
[21]; such algorithms select the maximum weighted independent set
in each component with a positive probability. The weight of each
contending link is the number of packets waiting for transmission
in the contending secondary virtual queue associated with it. The
selected links are scheduled in each component if their total weight
exceeds the total weight of the links scheduled in the same component
in the jth slot of the previous frame; otherwise the links scheduled
in the same component in thejth slot of the previous frame are
scheduled again. The contending secondary virtual queues associated
with the scheduled links are scheduled.

The time required byGGPGI(k) to compute each schedule is
clearly O(γ) where γ is the maximum number of links in any

component ofG(j); hence this computation time isO(∆2
Gk2). Also,

GGPGI(k) is in INFORMATION
�
O(∆Gk2)

�
class.

Theorem 5:If ~λ ∈ Int(Λ) and k ≥ 6, then (1 − 6/k)~λ ∈
ΛGGPGI(k)).

Proof: The result clearly holds fork = 6. We therefore assume
that k > 6.

Consider a fictitious system that consists of only the secondary
virtual queuesQlj for all l. Let Λ̂(j) be the maximum throughput
region of this fictitious system. Then [28]

Int(Λ̂(j)) = {~λ : ~λ =
X
~X∈X

X⊆E\{l:j 6∈ψ̂l}

βX
~IX ,

where
X
~X∈X

X⊆E\{l:j 6∈ψ̂l}

βX = 1, βX ≥ 0

for eachX ∈ X andβφ > 0}.
Consider a policyπ that schedules secondary virtual queues that

satisfy the following properties.

1) Qlj(t) constitutes an irreducible aperiodic markov chain.
2) In each slott there is a positive probability associated with

scheduling the secondary virtual queues associated with links
l in X∗(t) where

X∗(t) = arg max
X∈X

X⊆E\{l:j 6∈ψ̂l}

X
l∈X

Qlj(t).

3) If X0 and X1 are the sets of links associated with the
secondary virtual queues scheduled in slotst − 1 and t thenP

l∈X1
Qlj(t) ≥

P
l∈X0

Qlj(t).

Then π stabilizes the fictitious system for any arrival rate vector
~λ′ ∈ Int(Λ̂(j)) [27], [5].

Let (1 − 6/k)~λ be the arrival rate vector in the system and let
~λ ∈ Int(Λ). Let ~λ(j) consist of those componentsl of ~λ for which
j 6∈ ψ̂l. From (3),~λ(j) ∈ Int(Λ(j)).

We now sample the secondary virtual queuesQlj for all l at slots
j, k+j, 2k+j, . . . in the actual system. Note that in the actual system
these secondary virtual queues are scheduled only in these slots. We
assume that the number of arrivals in slotmk + j in the secondary
virtual queueQlj in the sampled system is the number of arrivals
in Qlj in the actual system between slots((m − 1)k + j, mk + j]
([0, j]) for a positive integerm (m = 0). Note that the expected
number of arrivals in secondary virtual queueQlj in the sampled
system in slotmk + j is now k(1/(k− 6))(1− 6/k)λl = λl. Thus,
the arrival rate vector for these secondary virtual queues is~λ(j) ∈
Int(Λ(j)). Now, observe thatGGPGI(k) satisfies properties (1) to
(3) for these secondary virtual queues in the sampled system, since
links that contend in different components ofG(j) do not interfere.
Thus, the sampled system is stable for eachj. The result follows.

Thus, for k = d6/εe, a policy GGPGI(k) in
INFORMATION

�
O(∆2

G/ε2)
�

class, approximates the maximum
throughput region within a factor of1 − ε and computes each
schedule inO(∆2

G/ε2) time. Note thatGGPM(k) can be similarly
modified to attain the same throughput guarantee usingk = d4/εe
and computing each schedule inO(∆2

G/ε2) time. More generally,
for r-ary interference models, i.e., when two links interfere provided
an end node of one is within a distance of(r − 1)D of an end
node of the other, similar techniques can be used to approximate
the maximum throughput region within a factor of1 − ε while
computing each schedule inO

�
f(r)∆2

G/ε)
�

wheref(r) increases
with increase inr.

We now sketch one possible implementation ofGGPGI(k), with
the goal of elucidating the information each node maintains about the
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topology and analyzing the control message exchange complexity in
the time scale of packet transmission. Owing to space limitations, we
omit several details. We assume that each node knows the grids for
which it is within distanceD of a vertical or horizontal line. Note
that a node can determine this if it knows its location, or it can be
informed of this when the network is initialized. Any end node of a
link can now determine the set of virtual queues associated with the
link, and the slots in which each such virtual queue contends, which in
turn determines which slots of the frame the link contends. Note that
a link always contends in the same slots of every frame as this does
not depend on its queue length. During network initialization, a forest
F (j) spanning the links that contend in thejth slot of each frame
is established for eachj (depth first search or breadth first search
or their variants can be used to determine such forests). Again tree
traversal policies can be used to inform each node of its parent and
children in each such forest. The resulting control message exchange
occurs in the time scale of topology evolution, and not in the time
scale of packet transmission.

Now, consider the decisions and the control message exchanges
in the time scale of packet transmission (i.e., the control messages
that are exchanged for determining each schedule). For eachj, each
node stores the total weight of the links scheduled in its component
in thejth slot of the previous frame, and which, if any, of its incident
links were scheduled in thejth slot of the previous frame (we explain
how a node determines these quantities). Consider thejth slot of each
frame. An existing randomized policy can be used for determining an
independent set among the links that contend inO (∆Glog(∆Gk))
time [18], [21]; each node exchangesO (∆Glog(∆Gk)) messages
during this procedure. Such randomized policies requires each node
to only know which of its incident links are contending in a slot,
and at the end of the procedure each node knows which, if any,
of its incident links are selected in the independent set. Each node
computes the sum of the weights of its incident links that have been
selected in the independent set. The root of each tree in the forest
F (j) initiates a message where it inserts the number it computed,
and as the message propagates through the tree, each node adds the
sum it computed with the number in the message. The message is
returned to the root after it finishes traversing the entire tree. When
the message returns to the root, it contains twice the total weight
of the newly selected independent set in the component spanned by
the tree. The root broadcasts the message again in the tree, which
informs each node of the weight of the links in the newly selected
independent set in the component. Using this weight, each node can
now determine whether the newly selected independent set should be
scheduled, or the schedule used in thejth slot of the previous frame
should be used, and accordingly updates the weight it stores and the
identities of the incident links scheduled. Each node thereby knows
whether any of its incident links belong to the scheduled independent
set, and participates in the transmission accordingly.

Clearly, each node exchangesO (∆Glog(∆Gk)) control messages
for computing each schedule. The computation time and the informa-
tion class of this implementation are as discussed for the policy. The
above implementation is clearly a naive one, and can be optimized in
several different ways, e.g., using gossip algorithms as in [5], which
constitutes interesting directions for future research. The policies
proposed in the previous subsections can be implemented similarly.

D. Quasi-Geometric Graphs

A graph is said to be quasi-geometric if nodes are embedded in
the first quadrant of the2-dimensional plane, and a link (a) exists
between nodesu andv if the distance between them is less thanιD
where ι < 1 (b) may exist between nodesu and v, depending on

propagation conditions, receiver sensitivity, antenna orientations, etc.,
if the distance between them is betweenιD andD and (c) does not
exist between nodesu andv if the distance between them is greater
than or equal toD. Quasi-geometric graphs generalize the notion
of geometric graphs, and become geometric whenι = 1 and can
approximate arbitrary graphs, as long as the nodes are embedded
in a plane, for smallι and largeD (as in this case, (b) applies
for most edges and thus the existence of the edges do not depend
on the distance between the nodes). But, as we discuss next, the
schedule computation times for the proposed policies becomes large
as ι becomes small.

Under primary interference model, as before, two links interfere if
and only if they are adjacent. Under secondary interference model,
two links l, l′ interfere if and only if (a) they are adjacent and (b)
there is an edge between at least one end node ofl and another end
node ofl′. We first consider the secondary interference model. Now,
links L(0), . . . , L(k−1) are selected as in the previous subsection,
andGGPGI(k) attains a throughput region which is1− 6/k of the
maximum throughput region as before. However, each component of
G(j) hasO(∆Gk2/ι2) nodes, andO(∆2

Gk2/ι2) links. Thus,GGPGI
(k) computes each schedule inO(∆2

Gk2/ι2) time. Also, GGPGI
(k) is in INFORMATION

�
O(∆Gk2/ι2)

�
class. Thus,GGPGI(d6/εe)

approximates the maximum throughput region within a factor of
1 − ε while computing each schedule inO

�
∆2

G/(ι2ε2)
�

time and
is in INFORMATION

�
O
�
∆G/

�
ι2ε2

���
class. Similarly, under the

primary interference model, a throughput region of1 − ε of the
maximum throughput region can be attained using a policy in
INFORMATION

�
O(∆G/

�
ι2ε2

�
)
�

class which computes each sched-
ule in O(∆2

G/(ε2ι2)) time.

E. Delay Guarantees

Characterizing the tradeoffs between schedule computation time
and other performance attributes such as packet loss in networks
where nodes have finite buffers, and delay constitute interesting
directions for future research. In fact, characterization of policies
that minimize the expected packet loss in networks where nodes have
finite buffers, and delay remain open as well. Recently, Jung and Shah
[11], [12] obtained policies that attain order optimal expected delays
in a class of graphs that includes geometric graphs with bounded node
density¶. We now show that the policies we propose attain the same
result as well. The delay guarantees provided after Theorems 2,3,4
show that for constantε, ε′, mink λ̂k, αmax, ∆G, the sum of the

expected delays of the sessionslimT→∞
PT

t=1
PN̂

j=1 DLj(t)

T
for H-

LCPM, GGPM and GGPIS isO(N). Thus, sinceN̂ ≤ N, the
expected delay per session isO(1) for these policies. Jung and
Shah [11], [12] provided an example which showed that if the
network satisfies certain characteristics there exists arrival rate vectors
such that the sum of the expected delays of the sessions isΩ(N)
(Theorem 5 [12]). Networks with primary and secondary interference
and bounded degree∆G satisfy the properties needed to construct
the above example. Thus, the sum of the expected delays in networks
that satisfy the above characteristic isΩ(N). Thus, H-LCPM, GGPM
and GGPIS attain order optimal expected delays in their respective
topologies provided the network degrees are bounded. The degrees
are for example bounded in geometric graphs under primary and
secondary interference constraints when the node density is bounded.

VI. M ULTI -HOP SESSIONS

We now allow sessions to traverse multiple hops. We first describe
the modifications required in the system model and performance goals

¶Node density is the number of nodes per unit area. If the number of nodes
in any circle of a given radius is bounded, node density is bounded.
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for accommodating this generalization. We subsequently generalize
the framework presented in Section V for attaining arbitrary tradeoffs
between throughput guarantees and schedule computation times.

A. Generalized System Model

We now assume that the network consists ofN̂ end-to-end ses-
sions, indexed as1, . . . , N̂ . Each end-to-end session can be viewed
as a collection of several hop-by-hop connections, one for each link
it traverses; each of these hop-by-hop connections is called asession-
link of the session considered. Each session-link is of the form(u, v),
whereu andv represent the transmitter and the receiver, respectively,
of the session-link. We assume that there areM session-links in the
network (over all sessions), and these are indexed by1, . . . , M . The
interference relations are as in Section III.

Each session-link corresponds to a separate virtual queue and the
number of virtual queues associated with each link equals the number
of session-links traversing it; we assume that this number is at most
µ. The packet arrival process is the same as before, and only the
first session-link of each session receives the exogenous arrivals.
Thus, the queue-length and departure vectors,~Q(t), ~D(t), are M -
dimensional vectors representing the queue lengths of the session-
links and which session-links are served in slott.

Let R be aM ×M dimensional matrix such that (a)Rij = 1 if
i = j (b) Rij = −1 if i andj are session-links of the same session
and i constitutes the hop afterj and (c)Rij = 0 otherwise.

~Q(t + 1) = ~Q(t)−R ~D(t) + ~A(t).

The definition for stability is the same except that session-links
are considered instead of sessions. The definitions for the throughput
regions are the same as before.

B. Scheduling policies for approximating the maximum throughput
region arbitrary closely

We now generalize the policyπ(k) presented in Section V. The
modified policy, denoted asπMH(k), differs from π(k), in only the
assignment of link weights. ForπMH(k) in any slott, the weight of
a session-link (or a virtual-queue)l = (u, v) of sessioni, Gi(t), is
(a) the difference between the queue lengths of session-linksl and
m wherem is the session-link ofi originating fromv, if v is not the
destination fori and (b)Qi(t) otherwise. The weight of a link is the
maximum weight of a session-link traversing the link. Note that in the
special case that each session traverses one link, for any virtual-queue
i = (u, v), v is the destination of the session and hence its weight
Gi(t) equalsQi(t) as in Section V. Whenever a link is scheduled, the
session-link that has the maximum weight among those that traverse
the link is served. The policiesπMH(k) andπ(k) are otherwise the
same.

Lemma 8:Let L(0), . . . , L(k−1) be c-approximate. Then, if~λ ∈
Int(Λ) andk ≥ c > 0, then (1− c/k)~λ ∈ ΛπMH (k).

We prove lemma 8 in appendix.
We now consider the throughput guarantees ofπMH for different

classes of networks considered in subsections V-B to V-D. The choice
of L(0), . . . , L(k−1) for different classes of networks remain the
same as in subsections V-B to V-D. Usingk = d4/εe, c = 4,
Theorem 2 follows from lemmas 2 and 4 forH-LCPMMH(k). Using
k = d12/εe, c = 12, Theorem 3 follows from lemmas 2 and 6 for
GGPMMH(k). Using k = d80/εe, c = 80, Theorem 4 follows from
lemmas 2 and 7 forGGPISMH(k).

Clearly, the schedule computation times in each case increase only
by an additive term ofµ; this increase is necessary to compute the
weight of each link as the maximum of weights ofµ virtual queues
associated with it.

VII. D ISCUSSIONS ANDCONCLUSION

The throughput guarantees have been proved under the assump-
tion that the arrival process for each session is independent and
identically distributed across different slots. Using a combination
of graph-partitioning and the lyapunov techniques proposed in [26],
the proofs can be generalized to accommodate markov modulated
arrival processes. Also, under the weaker notion of rate stability
which only ensures that input rates equal the output rates, the graph
partitioning techniques may be combined with fluid-limit arguments
so as to obtain similar tradeoffs between throughput and schedule
computation times for all stationary ergodic arrival processes that
satisfy the strong law of large numbers. Rate stability however does
not ensure that the expected queue lengths are finite which is required
in many applications and which is the notion of stability we consider
in this paper. Obtaining provable throughput guarantees for non-
markovian arrival processes under the notion of stability that requires
that expected queue lengths be finite remains largely open. In a
companion paper, we obtain a policy inINFORMATION(1) class,
that approximates the maximum throughput region for non-markovian
arrival processes under the above notion of stability within a factor
of 2/3 in tree topologies under primary interference model and
computes each schedule inO (∆G(log∆G)logN) time. The results
in these papers compliment each other.
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APPENDIX

A. Proof for lemma 8

We first state and prove lemma 9 forπMH(k) which will be useful
in proving lemma 8.

Lemma 9:Let L(0), . . . , L(k−1) be c-approximate. Then,

E

 X
i

Gi(t)Di(t)| ~Q(t) = ~Q

!
≥ (1− c/k) max

X∈X

X
i∈X

Gi(t).

Proof: Let B(t) = arg max X∈X
X⊆L(i(t))

P
l∈X Gl(t). Again,P

i Gi(t)Di(t) ≥
�
maxX∈X

P
i∈X Gi(t)−

P
i∈B(t) Gi(t)

�
.

Now,

E

0@ X
l∈B(t)

Gl(t)/ ~Q(t)

1A
= (1/k)

k−1X
j=0

max
X∈X

X⊆L(j)

X
l∈X

Gl(t)

(using same arguments as in the proof for lemma 1)

= (1/k)

k−1X
j=0

max
X∈X

X⊆L(j)

X
l∈X

max (Gl(t), 0)

≤ (c/k) max
X∈X

X
i∈X

Gi(t)

(sinceL(0), . . . , L(k−1) arec− approximate).

The result follows.
We now prove lemma 8. This proof follows from lemma 9 using

techniques similar to those used by Tassiulaset al. in [28].
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Proof: The result clearly holds ifk = c. We there-
fore assume thatk > c. Let the arrival rate vector be(1 −
c/k)~λ where ~λ ∈ Int(Λ). Clearly, underπMH(k), ~Q(t) con-
stitutes an aperiodic irreducible Markov chain. We will consider
the lyapunov functionV ( ~Q) =

P
i Q2

i , and prove that underπ,

E
�
V
�

~Q (t + 1)
�
− V

�
~Q(t)

�
| ~Q(t) = ~Q

�
< −1 for all suffi-

ciently large || ~Q||, where || ~Q|| =

q
V ( ~Q). Then, from Foster’s

theorem (Theorem 2.2.3 in [6]) the Markov chain representing the
queue length process is positive recurrent. Also,E (Qi(t)) < ∞ for
eachi under the steady state distribution for the above Markov chain.

Thus, limK→∞
PK−1

t=0 Qi(t)

K
< ∞. The result follows.

Let q(j) denote the session of session-linkj. Let ~f be anM -
dimensional vector such thatfi = λq(i). Then, Int(Λ) can be
characterized as follows [28]:

Int(Λ) = {~λ : ~λ =
X
~X∈X

βXR~IX ,

where
X
~X∈X

βX = 1 andβX ≥ 0

for eachX ∈ X andβφ > 0}. (6)

Now, E

��
~A(t)

�T
~Q(t)/ ~Q(t) = ~Q

�
= (1− c/k)~λT ~Q

≤ (1− c/k)(1− βφ) max
X∈X

X
i∈X

Gi (from (6)). (7)

E
�
V
�

~Q(t + 1)
�
− V

�
~Q(t)

�
| ~Q(t) = ~Q

�
≤ 2E

�
~AT (t) ~Q(t)| ~Q(t) = ~Q

�
−2E

 X
i

Gi(t)Di(t)| ~Q(t) = ~Q

!
+ Mα̂2

max

≤ −2(1− c/k)βφ max
X∈X

X
i∈X

Gi + Mα̂2
max

(from Lemma 9 and (7))

< −1 for all sufficiently large|| ~Q|| (sinceβφ > 0, 0 < c < k).

B. Arbitrary tradeoffs between computation times and expected sense
approximation for maximum weighted independent sets in geometric
graphs

We now show that the approximation techniques we use can also
be used for approximating maximum weighted independent sets in
an expected sense arbitrarily closely in geometric graphs using a
computation time which depends only on the degree of the graph
and the desired approximation factor.

Consider a graphG = (V, E). Let a set of nodes be independent
if there does not exist links between any two nodes in the set.
Note that this is the usual notion of independence used in graphs,
and is similar to the notion of independence we used for links. Let
V (0), V (1), . . . , V (k) be subsets ofV , andĜ(j) be the graph obtained
by removingV (k) from V and the links incident to nodes inV (k)

from E.

Definition 3: Let X̂ be the collection of independent sets ofG.
A collection of subsetsV1, . . . , Vq of V is said to bec-vertex-
approximate if for (a) any given |V |-dimensional vector of non-
negative real numbers~W = (W1, . . . , W|V |) and (b) any collection

of subsets ofV , X1, . . . Xq such thatXi ∈ X̂ andXi ⊆ Vi

qX
i=1

X
v∈Xi

Wv ≤ c max
X∈X̂

X
v∈X

Wv.

In the proof of lemma 1, we have not used any specific properties
of queue lengths and departure vectors, except that (a) independent
sets refer to sets of links rather than vertices (b) the queue lengths
are non-negative, and (c) the departure vector~D(t) is such that it
constitutes a maximum weighted independent set inG(j) where j
is selected uniformly among[0, . . . , k − 1] and the weight of a link
is its queue length. Thus, we have actually proved a more general
result which states that the expected weight of the maximum weight
independent set in̂G(j) is greater than or equal to(1−c/k) times the
weight of the maximum weight independent set inG, if j is selected
uniformly in [0, . . . , k − 1]. We state this result next. Note that in
this sentence, and henceforth, the term independent set will refer to
the definition introduced in this subsection.

Lemma 10:Let V (0), . . . , V (k−1) be c-vertex-approximate, and
wv be the weight of vertexv ∈ V such thatwv ≥ 0. Let j be
selected uniformly among[0, . . . , k − 1], and X̂(j) be a maximum
weight independent set in̂G(j). Then, E

�P
i∈X̂(j) wi

� ≥ (1 −
c/k) maxX∈X̂

P
i∈X wi.

Consider a geometric graph as defined in the first paragraph of
Section V-C. Consider the grids as described in the first paragraph of
Section V-C.1. LetV (j) consist of all nodes that are within distance
D of a vertical or a horizontal line of thejth grid. We next state
and prove the following lemma.

Lemma 11:V (0), . . . , V (k−1) are48-vertex-approximate.
Proof: We use the notation of lemma 4mutatis mutandis. The

result follows if we show that
�Pk−1

j=0 η
(j)
v

�
≤ 48 for eachv ∈ X∗.

This holds since there can at most be 6 independent nodes in a given
node’s neighborhood, and a node’s neighborhood may contain a node
in V (j) for at most 8 different grids (for 4 vertical and 4 horizontal
grid lines).

Now consider the following independent set selection policy. Select
an integer uniformly in the range[0, . . . , k − 1]. If j is the selected
integer, then determine the maximum weighted independent set in
Ĝ(j). By lemmas 10 and 11, the expected weight of this set is at least
(1 − 48/k) times that of the maximum weight of an independent
set in G provided each vertex has a non-negative weight. Note
that a maximum weight independent set in̂G(j) is the union of
the maximum weight independent sets among the nodes in each
square of thejth grid, and the maximum weight independent set
among the nodes in the squares of any grid can be computed in
parallel. Each square of thejth grid hasO(∆Gk2) nodes for each
j. Thus, the time required to compute each of the above maximum
independent sets is2O(∆Gk2), and since these sets can be computed
in parallel, the overall computation time is2O(∆Gk2) as well. Thus,
by selectingk = d48/εe, the maximum weighted independent set
can be approximated within a factor of1 − ε in an expected sense
using2O(∆G/ε2) computation time.
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