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Spectrum Auction Framework for Access Allocation
in Cognitive Radio Networks
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Abstract

In cognitive radio networks, there are two categories of networks on different channels: primary networks, which have high-
priority access, and secondary networks, which have low-priority access. We develop an auction-based framework that allows
networks to bid for primary and secondary access based on their utilities and traffic demands. The bids are used to solve the
access allocation problem, which is that of selecting the primary and secondary networks on each channel either to maximize the
auctioneer’s revenue or to maximize the social welfare of the bidding networks, while enforcing incentive compatibility. We first
consider the case when the bids of a network depend on which other networks it will share channels with. When there is only one
secondary network on each channel, we design an optimal polynomial-time algorithm for the access allocation problem based on
reduction to a maximum matching problem in weighted graphs. When there can be two or more secondary networks on a channel,
we show that the optimal access allocation problem is NP-Complete. Next, we consider the case when the bids of a network are
independent of which other networks it will share channels with. We design a polynomial-time dynamic programming algorithm
to optimally solve the access allocation problem when the number of possible cardinalities of the set of secondary networks on
a channel is upper-bounded. Finally, we design a polynomial-time algorithm which approximates the access allocation problem
within a factor of 2 when the above upper bound does not exist.

Index Terms

Cognitive Radio Networks, Spectrum Auctions, Algorithms

I. INTRODUCTION

With the proliferation of different wireless network technologies like cellular networks, Wireless Local Area Networks,
Wireless Meteropolitan Area networks etc., demand for radio spectrum is increasing. Currently, spectrum is regulated by a
government agency like the Federal Communications Commission (FCC) and it allocates spectrum by assigning exclusive
licenses to users to operate their networks in different geographical regions.

There is a widespread belief that radio spectrum is becoming increasingly crowded. However, spectrum measurements
indicate that the allocated spectrum is under-utilized, i.e., at any given time and location, much of the spectrum is unused [2].
Cognitive radio networks are emerging as a promising solution to this dilemma. In these networks, there are two levels of
networks on a channel– primary networks and secondary networks. A primary or secondary network is a network of multiple
wireless devices, which we call primary and secondary nodes respectively. A primary node has priortized access to the channel,
i.e., it can transmit on the channel regardless of the transmissions of secondary nodes. On the other hand, a secondary node
can transmit on the channel provided primary nodes are not transmitting. So whenever a secondary node wants to transmit
on the channel, it senses the channel to check for ongoing transmissions. It initiates a transmission only if a primary node is
not transmitting. Cognitive radio technology [4] allows secondary nodes to detect which channel is not being used by primary
nodes, share this channel with other nodes and vacate the channel when a primary node is detected. Surveys on cognitive radio
networks can be found in [1] and [4].

An important question faced by a spectrum regulator is how to allocate the rights to be primary and secondary networks on
its channels. Different networks may attach different value to being primary and secondary. A network may wish to mainly
transmit delay-sensitive traffic like voice or video. Such a network will attach a high value to the rights to be primary. On
the other hand, a network may be mainly interested in transmitting delay-insensitive traffic like email or file transfer. Such
a network would not need primary rights and would prefer secondary rights since the latter would be priced lower than the
former. Also, a network whose traffic is a mixture of delay-sensitive and delay-insensitive traffic would want primary rights
on some channels and secondary rights on some channels.

Auctions are suitable for selling the rights to be primary and secondary on the channels. Since the regulator need not know
the values that bidders attach to primary and secondary rights, auctions provide a mechanism for the regulator to get a higher
revenue than that obtainable through static pricing [6]. Auctions are also beneficial for the bidders since in general they assign
goods to the bidders who value them most [6]. FCC has been conducting spectrum auctions since 1994 to allocate licenses
for radio spectrum [3] (however, so far, no auctions have been conducted for cognitive radio networks).

Spectrum auctions have been studied in [6], [7], [8], [9], [22]. In [6], a framework is developed to distribute spectrum in
real-time to a set of wireless users. Channel allocation is done under interference constraints, in which the same channel cannot
be allocated to two or more users whose transmissions interfere with each other. In [7], there is a set of bidders and multiple
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chunks of spectrum. The paper investigates sequential and concurrent auction mechanisms to allocate the chunks of spectrum
to the bidders such that each bidder is allocated at most one chunk. In [8], a set of spread spectrum users is considered, who
share the spectrum with the owner of the spectrum. The goal is to design auctions to allocate the transmit power to each user
subject to a limit on the interference at a measurement location. In [9], there are multiple primary users who own the licenses
to channels in a region and multiple secondary users who are interested in leasing the unused portions of the channels of
the primaries. The paper proposes a double auction mechanism with multiple sellers (the primaries) and multiple buyers (the
secondaries). In [22], a knapsack based auction model is proposed to allocate spectrum to providers while maximizing revenue
and spectrum usage.

We now explain how our work differs from previous work. In some of the existing work on spectrum auctions [6], [7], [22]
each channel is assigned to a single network, i.e., there is no notion of primary and secondary networks on a single channel. We
consider the case when there is a primary network and one or more secondary networks on each channel. Now, there are two
possibilities for allocating secondary rights on the channels [10]. In one possibility, which we refer to as two-step allocation,
the regulator allocates channels to primary networks and the primary networks independently allocate unused portions on their
channels to the secondary networks. Auctions have been designed for this scenario in [8] and [9]. In the other possibility,
which we refer to as one-step allocation, the regulator allocates the rights to be the primary and secondary networks on the
channels in a single allocation [10]. To the best of our knowledge, no work has been done in designing auctions for this
scenario. In this paper, we develop a comprehensive auction framework for the one-step allocation scenario, using which a
regulator can simultaneously allocate the rights to be primary and secondary on the channels. One-step allocation may be more
desirable than its two-step counterpart in certain cases. For example, one-step allocation gives a greater degree of control to
the regulator. In particular, it allows the regulator to choose a “socially beneficial” channel allocation that maximizes the social
welfare. Note that in one-step allocation, a network can bid for, and can even be granted, primary and secondary access to
more than one or even all channels. Also, the allocation resulting from two-step allocation may indeed turn out to be that for
one-step allocation but only when it is the most socially beneficial allocation.

We consider a scenario in which the regulator conducts an auction to sell the rights to be primary and secondary networks
on a set of channels. Networks can bid for these rights based on their utilities and traffic demands. The regulator uses these
bids to solve the access allocation problem, i.e., the problem of deciding which networks will be the primary and secondary
networks on each channel. The goal of the regulator may be either to maximize its revenue or to maximize the social welfare
of the bidding networks. Now, networks can have utilities or valuations that are functions of the number of channels on which
they get primary and secondary rights, how many and which other networks they share these channels with etc. The number of
valuations of a network may be large and an exponential amount of space may be required to express a bid for each valuation.
So we design bidding languages, that is, compact formats for networks to express bids for their valuations. For different bidding
languages, we design algorithms for the access allocation problem.

The paper is organized as follows. We describe the system model in Section II. In Section III, we describe how the bidding
languages and algorithms that we design in the paper can be used to maximize the auctioneer’s revenue or to maximize social
welfare. In Section IV, we describe a model in which the bids of a network depend on which other networks it shares a
channel with. In Section IV-A, we design an optimal algorithm for the access allocation problem for a simple case with only
one secondary network on each channel. We show the intractability (NP-Competeness of the access allocation problem or
exponential size of bids) of the extensions of this simple case in Section IV-B. In Section V, we consider the case in which the
bids of a network are independent of which networks it shares a channel with and provide an optimal dynamic programming
algorithm for the access allocation problem in Section VI. The algorithm is polynomial-time when the number of possible
cardinalities of the set of secondary networks on a channel is upper-bounded. In Section VII, we describe a bidding language
that can be used for the independent bids case for an arbitrary number of cardinalities of the set of secondary networks on a
channel and provide a greedy 2-approximation algorithm for the access allocation problem. In Section VIII, using simulations,
we show that the above approximation algorithm in fact performs optimally in a variety of scenarios.

II. SYSTEM MODEL

We consider a scenario in which there are M identical orthogonal channels in a region. A regulator conducts an auction to
sell the rights to be the primary and secondary networks on the channels. N bidders participate in the auction. Each bidder
is an independent network of multiple wireless nodes. Each bidding network submits bids to the regulator and based on the
bids, the latter allocates the rights to be the primary and secondary networks on the channels.

A primary network on a channel must have priortized access to the channel. If two or more independent networks were to
be the primary networks on a single channel, then the access of each one of them would be constrained by the transmissions
of the other primary networks, which would transmit at the same priority level. To avoid this, we assume that there is exactly
one primary network on each channel. However, we allow multiple networks to have secondary rights on a channel.

We assume that all the secondary networks on a channel have equal rights on the channel. This is because complicated
multiple access protocols [5] would be required to grant access at different priority levels to different secondary networks on
a channel (with all of them getting lower priority access than the primary network). On the other hand, simple multiple access
protocols would suffice if all secondary networks have equal rights on the channel.

Now, since a primary network has priortized access on a channel, the average delay of its traffic is low. On the other hand,
the average delay of a secondary network’s traffic is high. Hence, primary rights (respectively secondary rights) are suitable for
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communicating delay-sensitive (respectively delay-insensitive) traffic. We assume that each network has two kinds of traffic:
(a) delay-sensitive traffic like voice, video etc. and (b) delay-insensitive or elastic traffic like email, file-transfer etc. A network
uses its primary rights to transmit its delay-sensitive traffic and its secondary rights to transmit its elastic traffic.

A single network i may be both the primary network and one of the secondary networks on a channel. In this case, we
assume that it transmits its delay-sensitive traffic as a primary network, i.e., with high-priority, and when it does not have any
delay-sensitive traffic to transmit, it transmits its elastic traffic as a secondary network. Also, the other secondary networks on
the channel can transmit whenever network i is not transmitting its delay-sensitive traffic.

Let K be the set of all possible ways in which the M channels can be allocated to the N bidders. For example, consider
the simple case in which M = 3, N = 9 and there can be at most four secondary networks on a channel. An example of an
allocation of the channels is one in which network 1 becomes the primary network on channels 1 and 2, network 2 becomes
primary on channel 3, network 3 becomes the sole secondary network on channel 1, networks 4 and 5 become secondary
networks on channel 2, networks 1, 4, 6 and 7 become secondary networks on channel 3 and networks 8 and 9 do not become
primary or secondary networks on any channel.

Let xi(k) be network i’s valuation or utility from the channel allocation k ∈ K, i.e., the value that it conjectures or expects
to derive from the allocation k when it submits the bids. Note that since network i will share channels with other networks in
the allocation k, the actual utility that network i will derive from an allocation k after the networks start using the allocated
channels depends on the transmission patterns of the other networks that are not completely known to network i when it
submits the bids. So a network can only submit bids based on the expected utilities xi(k), which reflect its expectations about
the actual utilities that it will eventually get. Henceforth, we use the terms valuation or utility for xi(k), but they should be
understood to mean the conjectured utility or valuation of network i for the channel allocation k.

The valuations xi(.) of network i for the allocations in K depend on its traffic demands, i.e., the volumes of delay-sensitive
and elastic traffic that it wants to transmit. Now, for given traffic demands, the valuation of a network i for a channel allocation
k ∈ K may depend upon the number of channels on which network i has primary and secondary rights in the allocation k,
how many and which other networks have rights on each of the channels on which network i has primary or secondary rights
etc. For example, a network that wants to transmit a lot of delay-sensitive traffic will ascribe a high valuation to an allocation
in which it is primary on several channels. Note that network i may have the same valuation for different allocations k ∈ K.

Network i’s net utility is of the form:
ui(k, τi, xi) = xi(k)− τi (1)

where τi is the payment that network i makes to the auctioneer. The auctioneer determines the channel allocation and the
payment τi that each network i makes to the auctioneer. The social welfare of an allocation k is defined to be the quantity:

N∑
i=1

xi(k)

Thus, the social welfare is the sum of utilities of all bidders from the allocation k.
Now, there could be two goals for designing the auction: revenue maximization and maximizing social welfare. In the first

goal, based on its valuations, each network submits a set of bids to the auctioneer. Let zi(k) be the bid of network i for the
allocation k ∈ K, i.e., the amount of money it is willing to pay if the allocation k ∈ K is chosen. Let k∗ be the channel
allocation that maximizes the revenue of the auctioneer, given the bids zi(.) for bidders 1, . . . , N . That is, k∗ satisfies:

N∑
i=1

zi(k
∗) ≥

N∑
i=1

zi(k) ∀k ∈ K (2)

In the second goal of maximizing social welfare, zi(.) are not the bids of the networks, but have a different interpretation:
they are the declared valuations of the networks (explained in Section III). In this case, the channel allocation that maximizes
the social welfare of the N networks can again be found by finding the k∗ satisfying equation (2).

For both goals, the access allocation problem is to determine the channel allocation k∗ satisfying (2). Depending on the
interpretation of zi(.), this allocation k∗ either maximizes the auctioneer’s revenue or the social welfare of the N networks.

Now, the set K of possible channel allocations may be exponential in size. Hence, the total number of different valuations of
network i may be exponential in general. However, it is not computationally tractable to communicate a bid for each valuation
in this large set. So we introduce bidding languages for the auction models that we consider. A bidding language [12] is a
format to compactly encode the bid information of a bidder. When there are an exponential number of valuations, a bidding
language expresses the bids approximately, not exactly.

We now remark on some implementation issues: (i) One way in which the regulator can implement the auction is by
deploying a central controller in the region, which would periodically collect bids that are sent by the bidding networks over a
common control channel, compute the channel allocation and payments and send them to the bidders over the control channel.
(ii) The frequency at which auctions are conducted is determined by the following tradeoff: the higher the frequency, the more
responsive is the channel allocation to changes in traffic demands and higher is the spectrum utilization, but the overhead
is also higher. Hence, the inverval between successive auctions is chosen to be as small as possible while ensuring that the
overhead is below an acceptable limit.
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III. SOLUTION FRAMEWORK

As stated earlier, an auction could be designed for two different objectives. In our context, the first objective is to choose the
channel allocation that maximizes the regulator’s revenue for a given set of bids of the bidders. This can be done by choosing
the allocation k∗ satisfying (2) when zi(k) is the bid of network i for the channel allocation k.

The second possible objective for the auction could be to achieve efficiency, that is, to choose the allocation that maximizes
social welfare. To this end, each bidder is asked to declare its valuation function xi(.). With an abuse of notation, let zi(k)
denote the declared valuation of network i for the allocation k, which may be different from xi(k) if bidder i believes that
falsely declaring its valuations will improve its net utility. Truth-telling is said to be a weakly-dominant strategy [18] for
network i, if for any possible declarations of networks other than i, the net utility of network i is maximized when it sets
zi(k) = xi(k) ∀k ∈ K. It follows from the revelation principle [18] that to maximize social welfare, it is sufficient to consider
mechanisms in which the payments τi are chosen such that for each bidder i, truth-telling is a weakly dominant strategy. Such
a mechanism is called incentive compatible.

To date, the Vickrey-Clarke-Groves (VCG) mechanism [18] is the only known general incentive compatible mechanism that
can be used to maximize social welfare. Under this mechanism, given the declared valuation functions zi(.) of the bidders, the
allocation k∗ satisfying (2) is chosen. Let k∗−i be the allocation which would have maximized the social welfare if network i
did not participate in the auction. That is, k∗−i satisfies:

N∑
j=1,j 6=i

zj(k
∗
−i) ≥

N∑
j=1,j 6=i

zj(k) ∀k ∈ K (3)

Under the VCG mechanism, the payment made by network i to the auctioneer is given by:

τi =

N∑
j=1,j 6=i

zj(k
∗
−i)−

N∑
j=1,j 6=i

zj(k
∗) (4)

The key to implementing the VCG mechanism is to find the allocations k∗ and k∗−i, i = 1, . . . , N . Now, k∗ can be found
using an algorithm for the access allocation problem (2) and k∗−i can be found by running the same algorithm on the set of
bidders {1, . . . , N}\i.

Now, in general, the set of different valuations of a bidding network is exponential in size. First, we consider the special
case when the number of different valuations of each bidding network is of poynomial space complexity. But K can still
be exponential in size. This is because a bidder may have the same valuation for two or more allocations in K. Even in
this case, it is sometimes computationally intractable to devise an algorithm to find the optimal allocation k∗ satisfying (2),
possibly because this is NP-hard, but instead an approximation algorithm for the access allocation problem can be devised. In
this case, if the payments are chosen according to the VCG formula (4) with sub-optimal allocations instead of k∗ and k∗−i,
then truth-telling is no longer a weakly dominant strategy for the bidders. To address this problem, Nisan and Ronen [20]
devised the second-chance mechanism under which, the auctioneer publishes the sub-optimal algorithm that it will use for
the access allocation problem. Each bidder submits its (declared) valuations zi(.) and a so-called appeal function (see [20])
to the auctioneer. Each bidder optimizes the valuations and the appeal functions to submit so as to maximize its own utility.
The auctioneer specifies a time limit by which the valuations and appeal functions must be submitted. The auctioneer uses
the sub-optimal algorithm for the access allocation problem to find the channel allocation using the submitted valuations and
appeal functions. The VCG formula (4) is used to determine the payment that each bidder will make. Now, the strategic
knowledge of a bidder i is a function that for a set of valuations submitted by the other bidders, gives the valuation that bidder
i must declare so as to get the maximum utility. It is shown in [20] that when there is a bound on the time each bidder i can
take to compute its strategic knowledge and when the time limit allowed to each bidder to compute the valuations and appeal
functions to submit is at least as much as this bound, then truthfully declaring the valuation function is a dominant strategy
for each bidder under the second-chance mechanism. Moreover, the social welfare attained by the second-chance mechanism
is at least as good as the social welfare of the sub-optimal algorithm used for the access allocation problem.

Now, in some cases, the set of valuations of a bidder takes an exponential amount of space and hence bidders have to use
incomplete bidding languages (see Section II) to convey their valuations. In this case as well, incentive compatibility does not
hold if the VCG formula (4) is used for payments. As a solution to this problem, Ronen [21] devised the extended second-
chance mechanism. In these mechanisms, each bidder submits a description of its set of valuations in some bidding language,
an appeal function, and an oracle [21], which is a program that can be queried by the auctioneer for the bidder’s valuation.
The auctioneer determines an allocation based on the above submitted quantities using a (possibly sub-optimal) algorithm for
the access allocation problem. It is shown in [21] that under reasonable assumptions (see [21]), truth-telling is a dominant
strategy for the bidders under the extended second-chance mechanism.

Note that in addition to incentive compatibility, the VCG, second-chance and extended second-chance mechanisms have the
desirable property of individual rationality [18], i.e., bidders get a non-negative utility when they participate in the auction.

In this paper, we propose several spectrum auction models and design bidding languages and algorithms for the access
allocation problem. These can be used for the objective of maximizing the revenue of the auctioneer or for maximizing
the social welfare of the bidders in conjunction with the VCG, second-chance or extended second-chance mechanism, as
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appropriate. In particular, in Section IV-A, we describe an auction model that allows networks to completely express their bids
under certain assumptions (Assumptions 1 and 2). We provide a polynomial-time algorithm that finds the optimal solution in
the access allocation problem. This algorithm can be used to maximize the auctioneer’s revenue or, in conjunction with the
VCG mechanism, to maximize the social welfare of the bidders. In the auction model in Section V, we provide a bidding
language that allows bidders to completely express their bids when they have no knowledge of the channel usage behavior
(defined in Section IV) on a channel of the other bidders and approximately express their bids when they have this knowledge.
Section VI provides a polynomial-time algorithm to optimally solve the access allocation problem for the model in Section V
when the number of cardinalities of the set of secondary networks on a channel is upper-bounded. When bidders have no
knowledge of the channel usage behavior of other bidders, this algorithm can be used to maximize the auctioneer’s revenue or
to maximize social welfare in conjunction with the VCG mechanism. When bidders have this knowledge, the algorithm can be
used to maximize the auctioneer’s revenue or in conjunction with the extended second-chance mechanism to maximize social
welfare. Finally, in the auction model in Section VII, we provide a bidding language and a 2-approximation algorithm for the
access allocation problem that is polynomial-time for an arbitrary number of cardinalities of the set of secondary networks
on a channel. This algorithm can be used to approximate the maximum revenue of the auctioneer or in conjunction with the
extended second-chance mechanism to approximate the maximum social welfare.

For notational convenience, throughout the paper, we assume that zi(.) are the bids expressed by bidder i and view the
access allocation problem as the problem of maximizing the revenue of the auctioneer. However, our framework applies without
change to the problem of maximizing social welfare.

IV. AUCTION WITH DEPENDENT BIDS

A primary or secondary network on a channel shares the channel with other networks and hence its actual utility from the
channel depends on the transmissions of those networks. A network may have some knowledge or beliefs about the typical
transmission patterns of the other bidding networks. For example, the agency owning the network may conduct a survey on the
typical transmission patterns of the other networks in its region or, if auctions are periodically conducted to allocate spectrum
in the region, the agency may gain this knowledge about the networks with whom it shared channels previously. Thus, the
conjectured utilities and hence the bids of a network would depend on which networks it will share different channels with.

A. Basic Model
In the basic model with dependent bids, we consider the model described in Section II with the following additional

assumptions.
Assumption 1: There is only one secondary network on each channel.
Assumption 2: Each network can be either the primary or the secondary network on only one channel.
We explore the effect of relaxing either of these assumptions in Section IV-B. We assume that N ≥ 2M , so that all M

channels can be allocated.
A secondary network on a channel can use the channel whenever the primary network is not using it. So the throughput

and delay of the secondary network on the channel depends on the channel usage behavior of the primary on the channel,
i.e., on the rate of its transmissions on the channel and how these transmissions are spread over time. On the other hand, the
primary network on a channel has priortized access to the channel. That is, when the secondary network wants to transmit on
the channel, it senses the channel and can transmit only if it finds that the primary network is not transmitting. However, due
to the imperfect nature of sensing, the secondary network will sometimes transmit while the primary network is transmitting,
resulting in a collision. Hence the primary network’s utility depends on the channel usage behavior of the secondary network
on the channel. Thus, the actual utility of a primary or secondary network depends on which network it shares a channel with.
As explained above, a network may in general have certain beliefs about the channel usage behavior of other networks and
hence may wish to express bids dependent on the network with whom it shares the channel. To model this, let

zpi (j), j ∈ {1, . . . , N}\{i}

be the bid of network i for the case when it is the primary network on a channel and network j is the secondary network on
the channel. Similarly, let

zsi (j), j ∈ {1, . . . , N}\{i}

be the bid of network i for the case when it is the secondary network on a channel and network i is the primary network.
Let

k = {(i1, j1), . . . , (iM , jM )}

be an allocation of the M channels to a set of networks. k is a set of M orderered pairs (it, jt) such that network it is the
primary network on channel t and network jt is the secondary network on channel t. Note that the revenue of the allocation
k is:

M∑
t=1

(zpit(jt) + zsjt(it))
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We describe an algorithm for determining k∗, the allocation that maximizes the revenue, by reduction to a maximum weight
matching problem in a graph. Let G be a weighted undirected graph with N nodes, one node corresponding to each network.
G is a complete graph, i.e., between every pair of nodes, there is an edge. Let the weight of the edge joining nodes i and j be

wij = max(zpi (j) + zsj (i), z
p
j (i) + zsi (j)) (5)

Note that the weights are nonnegative real numbers. The interpretation of the weights wij is as follows. If network i (respectively,
network j) is the primary network on a channel and network j (respectively, network i) is the secondary network, then the
sum of the amounts paid by networks i and j is zpi (j) + zsj (i) (respectively, zsi (j) + zpj (i)). So wij , the greater of these two
quantities, is the maximum sum of payments of networks i and j if they are the two networks on the same channel.

A matchingM in a graph is defined to be a subset of the edges such that no two edges in the subset share a common node.
The weight of a matching is the sum of the weights of its edges.

The following algorithm finds the channel allocation k∗ that maximizes the revenue:
STEP1: In graph G, find a matching M∗M of maximum weight among matchings with exactly M edges 1 (we say how

later).
STEP2: Let e1, . . . , eM be the M edges in the matchingM∗M . Let e1t and e2t be the two endpoints of edge et. The allocation

k∗ is chosen such that for t = 1, . . . ,M , networks e1t and e2t become the two networks (primary and secondary) on channel
t. If

zp
e1t
(e2t ) + zse2t

(e1t ) ≥ z
p
e2t
(e1t ) + zse1t

(e2t )

then network e1t becomes the primary network on channel t and network e2t becomes the secondary network, otherwise network
e2t becomes the primary network on channel t and network e1t becomes the secondary network.

Theorem 1: The allocation k∗ found from the matchingM∗M in the above algorithm is the one that maximizes the revenue.
Proof: There is a many-to-one correspondence between the set of channel allocations and the set of matchings with

exactly M edges. (It is many-to-one since the allocations obtained from any allocation by swapping the roles of the primary
and secondary networks on one or more channels correspond to the same matching). From the interpretation of the weight
of an edge given above, it follows that the weight of a matching MM has the maximum revenue among the revenues of the
channel allocations that correspond to it. Therefore, the weight of the maximum weight matching M∗M equals the maximum
revenue among the revenues of all the channel allocations. Also, note that Step 2 of the above algorithm ensures that we select
the channel allocation k∗, whose revenue is the same as the weight of M∗M . It follows that the allocation k∗ found from the
matching M∗M is the one that maximizes the revenue.

Now, it remains to show how to find the matching M∗M . Edmonds [14] gave a polynomial-time algorithm for finding
the maximum weight matching (with any number of edges) in a graph. However, we are interested in a maximum weight
matching among matchings with M edges, which cannot be directly obtained by Edmonds’ algorithm. It can be obtained in
O(M4 +M2N2) time 2 using White’s modification [15], [16] to Edmonds’ algorithm.

B. Intractability of Extensions
We now explore the effect of relaxing either one of Assumptions 1 and 2. Suppose Assumption 1 is relaxed and Assumption 2

is retained. That is, we assume that each network can be the primary or a secondary network on only one channel. However,
there can be multiple secondary networks on a channel. We show that even if there are two secondary networks on a channel,
the problem of finding a channel allocation that maximizes the revenue is NP-complete.

Let zpi (j1, . . . , jv−1) be the bid of network i for the case in which it is primary on a channel and networks j1, . . . , jv−1
are secondary. Let zsj1(i, j2, . . . , jv−1) be the bid of network j1 for the case in which network i is the primary and networks
j1, . . . , jv−1 are the secondary networks. Also, let zpi be the bid of network i for the case in which it is primary on a channel
with no secondary on the channel. We now define the r-Network Dependent Bid Access Allocation Problem (r-DBA).

Definition 1 (The r-DBA Problem): Suppose M channels are to be allocated to N bidders such that on each channel, one
network is primary and at most r−1 networks are secondary, where r is a fixed positive integer. Each bidder can be a primary
or secondary network on at most one channel and the bids of networks are as given above. Find the allocation that maximizes
the revenue.
We show that r-DBA is NP-Complete. To this end, we first show that a simpler version of r-DBA, which we call the Exactly
r-Network Dependent Bid Access Allocation Problem (r-EDBA) is NP-Complete. The r-EDBA problem is defined in the
same way as r-DBA, except that on each channel, exactly r − 1 networks are secondary, instead of at most r − 1 networks.

Note that if in an instance of r-EDBA, N < rM , then there is no channel allocation with r networks on each channel. In
this case, we define the optimal revenue of the r-EDBA instance to be −∞.

The decision version of r-DBA or r-EDBA is as follows: given a bound D, is there a channel allocation such that the
revenue under the allocation is at least D? We next show that (the decision version of) 3-EDBA is NP-Complete.

Lemma 1: 3-EDBA is NP-Complete.

1Note that there exists a matching with exactly M edges since there are N ≥ 2M nodes and G is a complete graph.
2Recall that a function f(n) is said to be O(g(n)) if there exist positive constants c and n0 such that f(n) ≤ cg(n) for all n ≥ n0 [13].
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Proof: Given an allocation of the M channels, we can verify in polynomial time whether the revenue under the allocation
is at least D. This shows that 3-EDBA is in the class NP.

Next, we show that the 3-Dimensional Matching problem (3DM), which is known to be NP-complete [19], is polynomial-
time reducible to 3-EDBA, i.e., 3DM ≤p 3-EDBA. An instance of 3DM is as follows [19]: Given disjoint sets A, B, C of m
elements each and a set T of ordered triples of the form (a, b, c), where a ∈ A, b ∈ B and c ∈ C, does there exist a set of m
triples in T so that each element of A ∪B ∪ C is contained in exactly one of these triples?

From this instance of 3DM, we construct an instance of 3-EDBA as follows. Let there be M = m channels and 3m networks–
one network corresponding to each element of A∪B ∪C. We now design the bids, which will complete the construction. For
every set {i, j, l} of three networks such that (i, j, l) (or one of its permutations (j, l, i), (l, j, i) etc.) is a triple in T , define all
of the following bids to be equal to 1

3 : zpi (j, l), z
p
j (i, l), z

p
l (i, j), z

s
i (j, l), z

s
i (l, j), z

s
j (i, l), z

s
j (l, i), z

s
l (i, j), z

s
l (j, i). For every

set {i, j, l} of three networks such that no permutation of (i, j, l) is a triple in T , let all of the above bids be equal to 1
6 . In

this 3-EDBA problem, we ask: is there a channel allocation of the m channels with revenue of at least D = m? We claim
that the answer is yes if and only if the answer in the original 3DM problem is yes.

To prove sufficiency, suppose there exists a subset T ′ ⊆ T of m triples such that each element of A ∪B ∪ C is contained
in exactly one of these triples. Let

T ′ = {(at, bt, ct) : t = 1, . . . ,m}

Then allocate the m channels such that network at is the primary network and networks bt and ct are the secondary networks
on channel t, t = 1, . . . ,m. The revenue of this allocation is:

m∑
t=1

{zpat(bt, ct) + zsbt(at, ct) + zsct(at, bt)}

=

m∑
t=1

{
1

3
+

1

3
+

1

3

}
= m

Hence, the answer in the 3-EDBA problem is yes.
Conversely, suppose there exists an allocation of the m channels with revenue of at least m. In this allocation, let at be the

primary and bt and ct be the secondary networks on channel t, t = 1, . . . ,m. If (at, bt, ct) or its permutation is a triple in T ,
then the sum of payments of networks at, bt and ct is 1, else it is

{
1
6 + 1

6 + 1
6

}
= 1

2 . Since there are m channels and the
revenue of the allocation is at least m, it follows that the revenue is exactly m and that for each t, (at, bt, ct) or one of its
permutations is a triple in T . Moreover, since each network can be the primary or a secondary network on only one channel,
it follows that each of the 3m networks is a primary or secondary network on exactly one channel. Hence, the m triples in T
corresponding to (at, bt, ct) or its permutation for t = 1, . . . ,m are such that each element of A∪B∪C is contained in exactly
one of the triples. So the answer to the 3DM problem is yes. This shows that 3DM ≤p 3-EDBA and hence that 3-EDBA is
NP-Complete.

By an analogous reduction from r-Dimensional Matching, it can be shown that r-EDBA is NP-Complete for fixed r > 3.
Note that for r > 3, r-Dimensional Matching is NP-Complete, which follows from a trivial reduction from 3-Dimensional
Matching.

Now we show that for any fixed r ≥ 3, (the decision version of) r-DBA is NP-Complete by a reduction from r-EDBA.
Theorem 2: For r ≥ 3, r-DBA is NP-Complete.

Proof: Clearly, r-DBA is in the class NP.
Now we show that r-EDBA ≤p r-DBA. From any instance of r-EDBA with given M , N , D and bid functions zpi (.) and

zsi (.), we construct an instance of r-DBA as follows. The number of channels, number of networks and the bound on revenue
are the same as in the original r-EDBA instance (M , N and D respectively). The bids of network i are given by:

z̃pi (j1, . . . , jv−1) =

{
zpi (j1, . . . , jv−1) if v = r
0 if 2 ≤ v < r

z̃si (j1, . . . , jv−1) =

{
zsi (j1, . . . , jv−1) if v = r
0 if 2 ≤ v < r

and
z̃pi = 0

Recall that if N < rM , then there is no channel allocation in the r-EDBA instance with exactly r networks on each channel.
Hence, the answer to the decision version is negative. Thus, let N ≥ rM . We now show that there exists a channel allocation
with revenue at least D in the r-EDBA instance if and only if there exists one such in the r-DBA instance. If there is a
channel allocation with revenue at least D in the r-EDBA instance, then by construction of the bids in the r-DBA instance,
the revenue of that channel allocation is the same in the r-DBA instance and hence at least D.
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Conversely, suppose there is a channel allocation k with revenue at least D in the r-DBA problem. From this channel
allocation, construct a channel allocation k′ for the r-EDBA instance as follows: if there are r − 1 secondary networks on a
channel in k, let the primary and secondary networks on the channel be the same in k′. From the construction of bids in the
r-DBA instance, it follows that the sum of payments of the networks on this channel in k′ is the same as that in k. If there
are v − 1 secondary networks on a channel l in k, where v < r, then on channel l in k′, let the same v networks be primary
and secondary and in addition, let r− v more networks be secondaries, which were not primary or secondary on any channel
in k. Such networks exist since N ≥ rM . By the construction of the bids in the r-DBA instance, the sum of payments of the
networks on channel l in k is 0, whereas that in k′ is at least 0. Thus, the revenue of allocation k′ is at least as much as the
revenue of channel k and hence is at least D.

This shows that r-EDBA ≤p r-DBA. Since r-EDBA is NP-Complete as shown above, it follows that r-DBA is NP-Complete.

Note that in the r-DBA problem, if r is unbounded, then each bidder i would have to submit an exponential number of bids
zpi (j1, . . . , jv−1) and zsi (j1, . . . , jv−1).

Now, suppose we relax Assumption 2 and retain Assumption 1. Then each network can become a primary or secondary
network on up to M channels. As explained above, the utility of a network from the primary or secondary rights on a given
channel depends upon the channel usage behavior of the network it shares the channel with. However, the channel usage
behavior of this network on the channel may in turn depend upon the number of channels on which it has primary and
secondary rights and the channel usage behavior of the networks it shares those channels with and so on. Thus, in general, the
utility of a network may depend upon which networks are the primary and secondary networks on each channel. The number
of possible ways of choosing the primary and secondary networks on the M channels is clearly exponential. Thus, relaxing
Assumption 2 would require each network to express an exponential number of bids in the auction with dependent bids, which
is computationally intractable.

V. AUCTION WITH INDEPENDENT BIDS

In Section IV, we noted that when networks have some knowledge of the channel usage behavior of other networks, they
would like to express bids dependent on which networks they will share channels with. However, it is quite possible in some
scenarios that networks have no knowledge of the channel usage behavior of the other bidding networks. In this case, their
conjectures about the utility that they will actually get from a channel allocation would be based only on the number of
channels on which they will get primary and secondary rights and the number of other networks they will share these channels
with in the allocation and would be independent of which other networks they will share channels with. Thus, they would
submit bids, based on these conjectured utilities, that are independent of which networks share different channels with them.

Moreover, in Section IV-B, we showed that bids of exponential size are needed in the auction with dependent bids when
Assumptions 1 and 2 are relaxed. This motivates the idea that even when networks have some knowledge of the channel usage
behavior of the other networks, we can obtain a compact bidding language, that is, a means for networks to approximately
convey their bids, by imposing the restriction that the bids of a network be independent of which other networks it shares
different channels with. We study the auction resulting from imposing this restriction in this section.

A. Model
Consider the model in Section II with the following additions. On each channel, one network can be the primary network

and m1, m2, . . . , m(n−1) or mn networks can be the secondary networks, where 1 ≤ m1 < m2 < . . . < mn. Note that n is
the number of possible cardinalities of the set of secondary networks on a channel.

When the results of the auction are declared, let ni,0 be the number of channels on which bidder i is the primary network.
Let ni,j , j = 1, . . . , n be the number of channels on which bidder i is a secondary network along with mj −1 other secondary
networks.

Suppose there are mj secondary networks on a channel. Recall from Section II that each of these mj secondary networks
have equal rights on the channel. The share of each of these networks in the secondary rights on the channel is called a
secondary part of type j. Also, the channel is said to be divided into mj secondary parts of type j. Similarly, since exactly
one network becomes a primary network on a channel, if a network is the primary network on l channels, we say that it is
allocated l primary parts. Also, we refer to the throughput received by a network as a secondary network as its secondary
throughput.

In general, network i’s utility may depend not only on the total expected secondary throughput that it gets, but also on
the distribution of this secondary throughput over the M channels. For example, it may get the same expected secondary
throughput (a) if it is the secondary network on two channels with one other secondary network on each and (b) if it is the
sole secondary network on one channel. But it may prefer one of these scenarios over the other. This is because a network
has to sense different channels on which it has secondary rights for ongoing transmissions and also communicate on them.
There may be costs due to delays for switching the antennas of the network’s nodes between different channels. To take into
account this possibility, in this section, we assume that the utility of network i depends not just on the expected secondary
throughput (and the number of primary parts) it receives, but on the vector (ni,0, ni,1, . . . , ni,n). We allow bidder i to submit
bids as a function of this vector.
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Each bidder i submits the following bid vector to the auctioneer:

{zi(ni,0, ni,1, . . . ni,n) : 0 ≤ ni,0, ni,1, . . . ni,n ≤M,

ni,1 + ni,2 + . . .+ ni,n ≤M ;ni,j integer, j = 0, 1, . . . n}

where zi(ni,0, ni,1, . . . ni,n) is network i’s bid for becoming the primary network on ni,0 channels and becoming a secondary
network on ni,j channels along with mj − 1 other secondary networks, for j = 1, 2, . . . n.

B. Feasible Allocation
We say that an allocation {ni,j : i = 1, . . . , N ; j = 0, . . . , n} is feasible if it is possible to assign to networks, the rights

to be primary and secondary on each of the M channels such that network i, i = 1, . . . , N is allocated ni,0 primary parts
and ni,j secondary parts of type j for j = 1, . . . , n. The following lemma describes necessary and sufficient conditions for an
allocation to be feasible.

Lemma 2: An allocation {ni,j : i = 1, . . . , N ; j = 0, . . . , n} is feasible if and only if ni,0, ni,1 . . . ni,n for i = 1, . . . , N are
integers such that for some nonnegative integers Mj , j = 1, . . . n satisfying M1 + . . .+Mn =M :

0 ≤ ni,0 ≤M, i = 1, . . . , N (6)
N∑
i=1

ni,0 =M (7)

0 ≤ ni,j ≤Mj , i = 1, . . . , N ; j = 1, . . . , n (8)
N∑
i=1

ni,j = mjMj , j = 1, . . . , n (9)

Note that the integer Mj in the above lemma corresponds to the number of channels that are divided into mj secondary parts
of type j. We assume that the number of bidders is at least m1 so that a feasible allocation exists.

Proof: The necessity of all conditions is obvious. Now we show sufficiency. Suppose all the above conditions are satisfied.
We construct a feasible allocation. Allocate ni,0 primary parts to network i for i = 1, . . . , N . Since

∑N
i=1 ni,0 = M , each

primary part is allocated exactly once. Now consider the Mj channels divided into mj secondary parts. Label the mj secondary
parts of type j on each of these channels from 1 to mj . Also, label the Mj channels from 1 to Mj . Now consider the following
order of the mjMj secondary parts of type j: secondary part 1 of channel 1, part 1 of channel 2, . . . , part 1 of channel Mj ,
part 2 of channel 1, part 2 of channel 2, . . . , part 2 of channel Mj , . . . , part mj of channel 1, part mj of channel 2, . . . , part
mj of channel Mj . Now, with secondary parts in the above order, first allocate n1,j secondary parts to network 1, then n2,j
parts to network 2, . . . , then nN,j parts to network N . Since

∑N
i=1 ni,j = mjMj , in this way it is possible to allocate each

secondary part of type j exactly once. Also, since ni,j ≤Mj∀i, it is clear that no network is assigned two or more secondary
parts on the same channel. Hence the allocation is feasible.

From a feasible allocation {ni,j : i = 1, . . . , N ; j = 0, . . . , n}, it is easy to construct a consistent specification of the
primary and secondary networks on each channel. Hence, the access allocation problem reduces to finding a feasible allocation
{ni,j : i = 1, . . . , N ; j = 0, . . . , n} that maximizes the auctioneer’s revenue given the submitted bid vectors zi(.).

Let

k = {ni,j : i = 1, . . . N ; j = 0, . . . , n} (10)

denote a feasible allocation. Let K be the set of all feasible allocations.

VI. OPTIMAL SOLUTION OF ACCESS ALLOCATION PROBLEM

In this section, we present an algorithm for optimally solving the access allocation problem for the auction described in
Section V. The algorithm is polynomial-time when n, the number of possible cardinalities of the set of secondary networks
on a channel, is fixed (and mn is allowed to grow with the problem size). This special case can be useful in practice because
even with small n, flexibility in channel allocation can be achieved by choosing m1, . . . , mn judiciously. For example, with
n = 3, we can choose m1 = 1, m2 = 4 and m3 = 8. In this case, large chunks of secondary throughput can be allocated
to a network by having it the sole secondary network on several channels and small chunks can be allocated to networks by
having 4 or 8 networks share a channel.

A. Algorithm Description
A dynamic programming algorithm is given in [11] and [12] for the winner determination problem in a combinatorial auction

with multiple units of a fixed number of different types of objects. We generalize the algorithm in [11], [12] in two directions:
(a) the objects in a combinatorial auction are indivisible, whereas we need to decide into how many secondary parts to divide
each channel and (b) in our auction, the allocation has to be feasible according to the conditions in Lemma 2.
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We first summarize the algorithm. Given the bids zi(.), our goal is to find the allocation k∗ that maximizes revenue. For
each set of nonnegative integers M1, . . . , Mn such that M1 + . . .+Mn = M , a dynamic programming algorithm is used to
find out the maximum revenue and the maximizing channel allocation when Mj channels are divided into mj secondary parts,
j = 1, . . . , n. Then we maximize over all sets of M1, . . . ,Mn to find the optimal set M∗1 , . . . ,M

∗
n.

We now give the details of the algorithm. Fix M1, . . . ,Mn such that M1+ . . .+Mn =M . Let T (j0, j1, . . . jn, i) denote the
maximum possible revenue from all participating networks when j0 primary parts and jt secondary parts of type t, t = 1, . . . , n,
are to be allocated and networks 1, . . . , i are participating in the auction. More precisely, let K(j0, j1, . . . , jn, i) be the set
of allocations ki = {nv,t : v = 1, . . . , i; t = 0, . . . , n} satisfying the following conditions, which parallel the conditions in
Lemma 2:

0 ≤ nv,0 ≤M, v = 1, . . . , i (11)
i∑

v=1

nv,0 = j0 (12)

0 ≤ nv,t ≤Mt, v = 1, . . . , i; t = 1, . . . , n (13)
i∑

v=1

nv,t = jt, t = 1, . . . , n (14)

Then:

T (j0, j1, . . . jn, i) = max{
i∑

v=1

zv(nv,0, nv,1, . . . , nv,n) :

ki ∈ K(j0, j1, . . . , jn, i)}

Thus, T (M,m1M1, . . .mnMn, N) is the maximum revenue from networks 1, . . . , N when Mj channels are divided into mj

secondary parts of type j, for j = 1, . . . , n. We now give a dynamic programming algorithm to find T (M,m1M1, . . .mnMn, N).
The following expression is used for finding the values of T (j0, j1, . . . jn, 1).

T (j0, j1, . . . jn, 1) =

 z1(j0, j1, . . . , jn)
if j0 ≤M, jt ≤Mt, t = 1, . . . , n
−∞ otherwise

(15)

The reason the above equation holds is as follows. Since there is only one network (network 1), the only possibility is to
allocate all parts to network 1. But if j0 > M , then n1,0 > M , which violates condition (11). Similarly, if jt > Mt, then
n1,t > Mt, which violates condition (13). Hence if j0 > M or jt > Mt, then T (.) is set to −∞.

The following recursion is used for finding the values of T (j0, j1, . . . jn, i) for i ≥ 2.

T (j0, j1, . . . , jn, i) = max(

T (j0 − l0, j1 − l1, . . . , jn − ln, i− 1) + zi(l0, l1, . . . , ln) :

l0 ∈ {0, 1, . . . ,min(j0,M)}, lv ∈ {0, 1, . . . ,min(jv,Mv)},
v = 1, . . . , n) (16)

In the above recursion, if l0 primary parts and lv secondary parts of type v, v = 1, . . . , n are allocated to network i, then it
is willing to pay zi(l0, . . . , ln) and the maximum revenue obtainable from networks 1, . . . , i − 1 for the remaining parts is
by definition T (j0 − l0, j1 − l1, . . . , jn − ln, i − 1). Moreover, lv ≤ jv since jv secondary parts of type v are available and
lv ≤Mv by (13). So lv ≤ min(jv,Mv) for v = 1, . . . , n and similarly l0 ≤ min(j0,M). Equation (16) follows by maximizing
the revenue from networks 1, . . . , i− 1 over all possible values of l0, l1, . . . , ln.

A feasible channel allocation that achieves the maximum revenue T (M,m1M1, . . .mnMn, N) for the fixed values M1, . . . ,Mn

considered, can be found from the array T (.) by repeatedly finding the l0, l1, . . . , ln that achieve the maximum in the right
side of (16).

For all sets M1, . . . ,Mn such that M1+. . .+Mn =M , T (M,m1M1, . . .mnMn, N) and the revenue maximizing allocation
are found as explained above. Then the optimal set (M∗1 , . . . ,M

∗
n) is found as follows:

(M∗1 , . . . ,M
∗
n) = argmax

M1+...+Mn=M
T (M,m1M1, . . .mnMn, N) (17)

The revenue maximizing allocation with M1 = M∗1 , . . . , Mn = M∗n is the one that maximizes revenue over all channel
allocations.
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B. Running Time
The maximum in (16) is taken over O(MM1M2 . . .Mn) values. Moreover, T (j0, j1, . . . , jn, i) is calculated for i from 1

to N , j0 from 0 to M , j1 from 0 to m1M1, . . . , jn from 0 to mnMn, that is (since mj = O(mn) for j = 1, . . . , n), for
O(MM1M2 . . .Mnm

n
nN) values. Finally, this process is carried out for all M1, . . . ,Mn such that M1 + . . . +Mn = M .

Hence, the time to compute k∗ is: ∑
M1+...Mn=M

O((MM1 . . .Mn)
2mn

nN)

≤
M∑

M1=0

. . .

M∑
Mn=0

O((MM1 . . .Mn)
2mn

nN)

= O(M3n+2mn
nN)

Thus, the running time is O(M3n+2mn
nN), which is polynomial for fixed n.

C. Space Complexity
Each network i submits its bid zi(ni,0, ni,1, . . . , ni,n) for ni,0 ∈ {0, 1, . . . ,M} and all sets ni,1, . . . , ni,n satisfying∑n
j=1 ni,j ≤ M . There are O(Mn+1) such bids. Summing over the N networks, the storage requirement for bids is

O(Mn+1N).
To find the revenue maximizing allocation for a fixed set M1, . . . ,Mn, we need to store the array T (j0, j1, . . . , jn, i),

j0 ∈ {0, 1, . . . ,M}, jt ∈ {0, 1, . . . ,mtMt}, t = 1, . . . , n, i = 1, . . . , N . This requires O(Mn+1mn
nN) amount of storage.

Once the allocation has been found, only the allocation and the value of T (M,m1M1, . . .mnMn, N) can be stored, which
require O(nN) and O(1) storage respectively, and the rest of the array T (j0, j1, . . . , jn, i) can be discarded.

We need to store the revenue maximizing allocation and the value T (M,m1M1, . . .mnMn, N) for all sets (M1, . . . ,Mn)
such that M1 + . . .+Mn =M . The number of such sets is O(Mn). So the storage required is O(MnNn).

Thus, the maximum amount of storage required at any given time during the entire algorithm to compute k∗ is O(Mn+1mn
nN).

VII. A GREEDY 2-APPROXIMATION ALGORITHM

The scheme described in Section VI is computationally tractable for fixed n, the number of possible cardinalities of the set
of secondary networks on a channel. However, if n is allowed to grow, the set of bids of a network is exponential in size as
shown in Section VI-C and hence the scheme is computationally intractable. In this section, we first provide a compact bidding
language for the case with large n. We conjecture that under this bidding language, the access allocation problem is NP-hard.
We give a basis for this conjecture in Section IX. We provide a polynomial-time algorithm that approximates the maximum
revenue of the auctioneer within a factor of 2.

We describe the bidding language in Section VII-A. In Section VII-B, we introduce residual bid functions, a concept used
in the approximation algorithm. We describe the algorithm in Section VII-C and prove that it achieves an approximation ratio
of 2 in Section VII-D. Finally, in Section VII-E, we describe an efficient implementation of the algorithm.

A. Bidding Language
Consider the model in Section V with the following changes. Let the bandwidth of each of the M channels be W bps. We

assume that the primary network on a channel uses the channel for an expected fraction of time α, where 0 < α < 1. When
auctions are repeated periodically to assign spectrum, α can be estimated based on long-term measurements of the primary
networks’ channel usage. Alternatively, it can be estimated via simulations. Since secondary networks can use the channel
whenever the primary is not using it, an expected bandwidth of W (1−α) is available on a channel for the secondary networks.
So when mj secondary networks share a channel, each one of them can get an expected secondary throughput of W (1−α)

mj
on

the channel. 3

In this section, we allow a network to express bids as a function of the number of channels ni,0 on which it is primary and
its total expected secondary throughput T si on all M channels. Note that:

T si =

n∑
j=1

ni,jW (1− α)
mj

(18)

In the sequel, for brevity, we simply say secondary throughput instead of expected secondary throughput. Moreover, we assume
that the utility, and hence the bid zi(ni,0, T

s
i ), of each network i when it is primary on ni,0 channels and has T si units of

secondary throughput, is separable, i.e., of the form:

zi(ni,0, T
s
i ) = wi(ni,0) + yi(T

s
i ) (19)

3Note that an expected bandwidth of at least W (1−α)
mj

is available to each of the mj secondary networks. If some of them do not use this full bandwidth,

then more than W (1−α)
mj

is available to the other networks.
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where wi(ni,0) is its bid for being primary on ni,0 channels and yi(T si ) is its bid for T si units of throughput as a secondary
network. This assumption is a good approximation since networks transmit different kinds of traffic (delay-sensitive and elastic
respectively) as a primary and secondary network.

Under this assumption, the access allocation problem separates out into two independent problems– allocating the primary
parts and allocating the secondary parts. The problem of allocating the primary parts can be optimally solved in O(M2N) time
using the dynamic programming algorithm in Section VI with n = 0. In this section, we focus on giving a 2-approximation
algorithm for the problem of allocating the secondary parts. In the rest of the section, “revenue” refers to the auctioneer’s
revenue from selling the secondary rights on the M channels.

Assume that yi(.) is a concave increasing function for each network i. We use piecewise linear concave functions to compactly
represent the bid functions of the networks. They can be used to closely approximate arbitrary concave functions [17] and
have been previously used in the context of spectrum auctions in [6]. Each network i specifies its bid for at most P different
levels of secondary throughput, for a positive integer P . More precisely, let Pi ≤ P be a positive integer and let:

0 = qi,1 < qi,2 < . . . < qi,Pi
(20)

For v = 1, . . . , Pi, network i specifies yi(qi,v), which is its bid for qi,v units of secondary throughput. Network i’s bid for q
units of secondary throughput, where qi,v < q < qi,v+1 is found by linear interpolation:

yi(q) = yi(qi,v) +

(
yi(qi,v+1)− yi(qi,v)

qi,v+1 − qi,v

)
(q − qi,v) (21)

Note that qi,1, . . . , qi,Pi
are the breakpoints of the piecewise linear function yi(.).

We assume that for each network i, qi,1 = 0, that yi(qi,1) = yi(0) = 0 and that

qi,Pi
≥MW (1− α). (22)

Since MW (1−α) is the total secondary throughput available on the M channels, the second assumption means that network
i’s bid for any amount of secondary throughput on the M channels can be found by linear interpolation.

B. Residual Bid Functions
Our algorithm uses the following concept.
Definition 2: Let q̃ ≥ 0. The q̃-residual bid function of network i is the function ỹi(.) given by:

ỹi(q) = yi(q̃ + q)− yi(q̃) (23)

We will sometimes say, “the residual bid function after accounting for q̃” instead of the q̃-residual bid function. Informally,
once network i has been allocated q̃ units of secondary throughput, ỹi(.) acts as its bid function for allocations of additional
secondary throughput. The following lemma gives some simple properties about the q̃-residual bid function.

Lemma 3: Let ỹi(q) be the q̃-residual bid function of network i for some q̃ ≥ 0. Then
1) ỹi(q) ≤ yi(q) ∀q ≥ 0.
2) ỹi(q) is a piecewise-linear concave increasing function of q.

Proof:
yi(q + q̃) ≤ yi(q) + yi(q̃), ∀q ≥ 0

by concavity of yi(.). Hence,
ỹi(q) = yi(q + q̃)− yi(q̃) ≤ yi(q) ∀q ≥ 0

which proves part 1.
Now, yi(q) is piecewise-linear, concave and increasing by assumption. Thus, yi(q + q̃) is a piecewise-linear, concave and

increasing function of q as well. Part 2 follows by (23).
The significance of the q̃-residual bid function is given by the following lemma.
Lemma 4: Suppose the bid function of network i is yi(.) and it is successively allocated secondary throughputs of q1, q2, . . . , qf .

Let yvi (.) denote the (q1 + . . .+ qv)-residual bid function of network i, for v = 1, . . . , f . Then

yi(q1 + . . .+ qf ) = yi(q1) + y1i (q2) + . . .+ yf−1i (qf ) (24)

Proof: By definition:
y1i (q2) = yi(q1 + q2)− yi(q1)

which implies that:
yi(q1 + q2) = yi(q1) + y1i (q2) (25)

Similarly,

yi(q1 + q2 + q3) = yi(q1 + q2) + y2i (q3) (26)
= yi(q1) + y1i (q2) + y2i (q3) (27)
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where the second step follows from (25). Similarly proceeding for f steps, we get the desired result (24).
Thus, the significance of the residual bid function is that if a network i is successively allocated chunks q1, . . . , qf of secondary
throughput (e.g. by successive steps of an algorithm), then we can keep track of its residual bid function after every allocation
so that the extra money that network i is willing to pay for the v’th allocation qv is simply yv−1i (qv). Moreover, this tracking
can be done using the update rule in part 1 of the following lemma to calculate yv+1

i (.) from yvi (.).
Lemma 5: Let ỹi(.) and y+i (.) be the q̃-residual bid function and (q̃ + q̂)-residual bid function of network i respectively.

Then
1) y+i (q) = ỹi(q + q̂)− ỹi(q̂) ∀q ≥ 0
2) y+i (q) ≤ ỹi(q) ∀q ≥ 0.

Proof:

ỹi(q + q̂)− ỹi(q̂)
= (yi(q + q̂ + q̃)− yi(q̃))− (yi(q̂ + q̃)− yi(q̃))
= yi(q + q̂ + q̃)− yi(q̂ + q̃)

= y+i (q)

Hence, y+i (.) is the q̂-residual bid function corresponding to the bid function ỹi(.). So by Lemma 3, y+i (q) ≤ ỹi(q) ∀q ≥ 0.

C. Algorithm Description
We now describe the greedy 2-approximation algorithm. The algorithm determines SGl , the set of secondary networks on

channel l for l = 1, . . . ,M . Denote by qGi,l, the amount of secondary throughput allocated by the greedy algorithm to network
i in the l’th channel. Since each network in SGl equally shares the secondary throughput on channel l, we have:

qGi,l =

{
W (1−α)
|SG

l |
if i ∈ SGl

0 else
(28)

Let yli(.) be the (qGi,1 + . . .+ qGi,l)-residual bid function of network i, that is, its residual bid function after accounting for the
secondary throughput allocated to it in channels 1 to l. Note that for each network i, y0i (.) is the bid function yi(.).

The greedy algorithm successively determines SGl , for l = 1, . . . ,M , one channel at a time. Suppose the algorithm has
determined SG1 , S

G
2 , . . . , S

G
l−1 and for each network i, has found the residual bid function yl−1i (.). It assigns channel l using

the following steps:
STEP1: For j = 1, . . . , n, find the maximum increase in revenue Rlj obtainable from channel l by dividing the channel into

mj secondary parts using the following rule. Sort the set of numbers yl−1i

(
W (1−α)
mj

)
, i = 1, . . . , N into decreasing order. Let

yl−1(v)

(
W (1−α)
mj

)
denote the v’th largest element. Then Rlj is given by:

Rlj =

mj∑
v=1

yl−1(v)

(
W (1− α)

mj

)
STEP2: Find the maximum among Rl1, . . . , R

l
n. Suppose Rlj is the maximum. Then divide the l’th channel into mj secondary

parts. On the l’th channel, the mj networks with the mj largest values yl−1(1)

(
W (1−α)
mj

)
, . . . , yl−1(mj)

(
W (1−α)
mj

)
, which were

determined in STEP1, become secondary networks. This determines SGl .
STEP3: For each i ∈ SGl , find the function yli(.) from its bid function yi(.) and qGi,1, . . . , q

G
i,l. Note that qGi,l is given by (28).

Comments on Algorithm:
1) Once channels 1, . . . , l − 1 have been allocated, steps 1 and 2 allocate channel l so as to obtain the maximum possible

increase in revenue over the revenue from channels 1, . . . , l−1. This property will be crucial in proving the approximation
ratio of 2.

2) In Step 3, for conceptual clarity, we have not presented the most efficient implementation. Specifically, the function yli(.)
need not be computed from scratch. It can be found iteratively from yl−1i (.) using the update rule in part 1 of Lemma 5.
See Section VII-E for details.

D. Approximation Ratio
Theorem 3: Let R∗ be the maximum possible revenue under any allocation of the rights to be secondary networks on the

M channels and let RG be that achieved by the above greedy algorithm. Then RG ≥ R∗

2 .
Proof: Let Rl be the increase in revenue obtained by the greedy algorithm from allocating the l’th channel. By part 2 of

Lemma 5:
yli(q) ≤ yl−1i (q) ∀q ≥ 0 (29)



14

From the discussion after Lemma 4, it follows that after channels 1, . . . , l were allocated, the extra money network i was
willing to pay for its share in channel (l+1) is yli(q

G
i,l+1). Moreover, if the greedy algorithm were to allocate the l’th channel

to the same set of networks, SGl+1, to whom it actually allocated the (l + 1)’st channel, then:

1) each network in SGl+1 would have received on the l’th channel, a throughput of W (1−α)
|SG

l+1|
, which equals qGi,l+1 by (28),

2) after channels 1, . . . , l− 1 were allocated, the extra money network i would be willing to pay for its share in channel l
would have been yl−1i (qGi,l+1) and hence by (29),

3) the increase in revenue from the l’th channel would have been at least Rl+1.
But the actual increase in revenue from the l’th channel, Rl, is by definition of the greedy rule, the maximum possible from
allocating the l’th channel. Hence Rl ≥ Rl+1. Thus, we get:

R1 ≥ R2 ≥ . . . ≥ RM .

Since RG = R1 + . . .+RM , we get:

RM ≤ RG

M
(30)

Now, let q∗i be the total secondary throughput allocated by the optimal algorithm to network i and qGi be that allocated
by the greedy algorithm. Also, let S∗l be the set of secondary networks on the l’th channel, l = 1, . . . ,M , in the optimal
allocation. Next, we will upper bound R∗ − RG, the excess revenue of the optimal allocation over the greedy allocation. To
this end, for each network i, we account for its payment for max(q∗i − qGi , 0), the excess secondary throughput if any, of the
optimal allocation over the greedy algorithm’s allocation, by accounting for its payments for the chunks qei,l, l = 1, . . . ,M .
Here, qei,l is the contribution of channel l to the excess max(q∗i − qGi , 0), once the contributions of channels 1, . . . , l− 1 have
been accounted for and is given by:

qei,l = min

(
W (1− α)
|S∗l |

,

max(q∗i − qGi − qei,1 − . . .− qei,l−1, 0)
)
, i ∈ S∗l (31)

qei,l = 0, i /∈ S∗l (32)

We motivate the expressions above. The second term in the min in (31) is equal to the as yet unaccounted for excess,
if any, obtained by subtracting the contributions qei,1, . . . , q

e
i,l−1 of channels 1, . . . , l − 1 from the total excess throughput

max(q∗i − qGi , 0). Also, since channel l is shared by |S∗l | networks, qei,l ≤
W (1−α)
|S∗

l |
. Hence, qei,l is the minimum of the two

terms in (31).
From (31) and (32), it can be shown using a simple, yet tedious, case by case analysis that:

q∗i − qGi ≤
M∑
l=1

qei,l, i = 1, . . . , N (33)

Let yei,l(.) be the (qGi + qei,1 + . . .+ qei,l)-residual bid function of network i.
Now,

R∗ =

N∑
i=1

yi(q
∗
i )

≤
N∑
i=1

yi(q
G
i +

M∑
l=1

qei,l)

(by (33) and since yi(.) is increasing)

=

N∑
i=1

(
yi(q

G
i ) +

M∑
l=1

yei,l−1(q
e
i,l)

)
(by Lemma 4)

= RG +

M∑
l=1

N∑
i=1

yei,l−1(q
e
i,l)

= RG +

M∑
l=1

∑
i∈S∗

l

yei,l−1(q
e
i,l) (34)

where the last step follows since qei,l = 0 if i /∈ S∗l by (32) and since yei,l−1(0) = 0.
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Now, by the definitions of yM−1i (.) and yei,l−1(.), part 2 of Lemma 5 and (34), we get:

R∗ −RG ≤
M∑
l=1

∑
i∈S∗

l

yM−1i (qei,l)

 (35)

Now, qei,l ≤
W (1−α)
|S∗

l |
by (31) and (32), and since yM−1i (.) is increasing by part 2 of Lemma 3, we get the following inequality

from (35):

R∗ −RG ≤
M∑
l=1

∑
i∈S∗

l

yM−1i

(
W (1− α)
|S∗l |

) (36)

Now, we have: ∑
i∈S∗

l

yM−1i

(
W (1− α)
|S∗l |

)
≤ RM (37)

because when the greedy algorithm was about to allocate channel M , the increase in revenue it would have got from the
channel if it allocated the channel to the |S∗l | networks in the set S∗l is equal to the expression on the left hand side of (37)
(refer to Lemma 4 and the discussion immediately following it). This expression is at most RM , since the greedy algorithm
allocates the M ’th channel so as to maximize the increase in revenue from it.

By (36) and (37), we get:

R∗ −RG ≤
M∑
l=1

RM

≤ RG (from (30))

The result follows.

E. Efficient Implementation
We now describe an efficient implementation of the greedy algorithm.
We first discuss how to store the function yli(.) so that yli(q) can be found for any q in O(logP ) time. Recall from part 2

of Lemma 3 that yli(.) is piecewise linear. Similar to the representation of the bid function yi(.), yli(.) is stored by storing
its value at P li values qli,1, . . . , ql

i,P l
i
, which are the breakpoints of the piecewise linear function yli(.). Also, yli(q), where

qli,v < q < qli,v+1 is found by linear interpolation similar to (21):

yli(q) = yli(q
l
i,v) +

(
yli(q

l
i,v+1)− yli(qli,v)
qli,v+1 − qli,v

)
(q − qli,v) (38)

Now, the numbers qli,1, . . . , q
l
i,P l

i
and the numbers yli(q

l
i,1), . . . , y

l
i(q

l
i,P l

i
) can be stored in two sorted arrays, so that for any v,

qli,v and yli(q
l
i,v) can be accessed in constant time. Also, since P li ≤ Pi ≤ P (see the last step in the steps below), given any

q, we can find v such that qli,v ≤ q < qli,v+1 by binary search [13] in O(logP ) time. Once this v is found, we can find yli(q)
in constant time using (38).

Suppose the algorithm has allocated the first l − 1 channels and hence has computed yl−1i (.) and ql−1i,v , v = 1, . . . , P l−1i .
Also, suppose the l’th channel has been divided into mj secondary parts. While allocating channel l, in Step 3 , yli(.) can be
found as follows from yl−1i (.) using the update rule in part 1 of Lemma 5. For network i, first find out v such that:

ql−1i,v ≤
W (1− α)

mj
< ql−1i,v+1.

Then find yl−1i

(
W (1−α)
mj

)
using equation (38). Next, perform the following steps:

qli,1 = 0
yli(q

l
i,1) = 0

for t = 2, 3, . . . , P l−1i − v + 1 do
qli,t = ql−1i,t+v−1 −

W (1−α)
mj

yli(q
l
i,t) = yl−1i (ql−1i,t+v−1)− y

l−1
i

(
W (1−α)
mj

)
end for
P li = P l−1i − v + 1
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The second statement in the for loop implements the update rule in part 1 of Lemma 5. Also, it can be checked that the first
statement in the for loop appropriately sets the breakpoints of the function yli(.).

It can be shown that the running time of the greedy algorithm is O(nMN logNP+MPmn) when the above implementation
is used.

VIII. SIMULATIONS

In Section VII-D, we proved that the greedy approximation algorithm achieves an approximation ratio of 2. In this section,
we show via simulations, that in fact, for a variety of scenarios, the greedy algorithm achieves the optimal revenue.

In all our simulations, we used the values n = 2, m1 = 1, m2 = 4 and W (1−α) = 4 units. First, we simulated the case in
which the bid function of every network is different and is a piecewise linear approximation of a quadratic function. Let Cmin,
Cmax and MAX be parameters such that Cmax > Cmin > 0 and MAX > 0. Consider the following quadratic function:

ŷi(q) = ci

(
1− (q −MAX)2

(MAX)2

)
, i = 1, . . . , N (39)

The bid function yi(q) of network i is chosen to be a piecewise-linear approximation of the above function, where the parameters
ci, i = 1, . . . , N are uniformly spaced in the interval [Cmin, Cmax]:

ci = Cmin + (i− 1)
(Cmax − Cmin)

N − 1
, i = 1, . . . , N (40)

With these bid functions, we found the revenue using the greedy approximation algorithm and the optimal revenue using
the dynamic programming algorithm in Section VI. We used small values for n and M since the running time of the dynamic
programming algorithm grows rapidly with these parameters (see Section VI-B). For different values of the parameters N ,
Cmin, Cmax and MAX , we evaluated the revenues of the greedy algorithm and the optimal revenue for M varying from 5
to 60 and found that the greedy algorithm achieves the optimal revenue.

Next, we considered the case in which there are two classes of networks and the bid function of each network in the same
class is the same. The bid functions yi(q) of networks i = 1, . . . , N1 and of networks i = N1 +1, . . . , N are piecewise linear
approximations of the following exponential functions respectively:

ŷi(q) = B1(1− exp(−a1q)), i = 1, . . . , N1 (41)

ŷi(q) = B2(1− exp(−a2q)), i = N1 + 1, . . . , N (42)

where a1, a2, B1, B2 and N1 are parameters. For different values of these parameters, we evaluated the revenues of the greedy
algorithm and the optimal revenue for M varying from 5 to 60 and found that the greedy algorithm achieves the optimal
revenue.

Thus, although the worst-case approximation ratio of the greedy algorithm is 2, in a variety of scenarios, it achieves the
optimal revenue.

Nevertheless, we could construct some pathological examples in which the greedy algorithm achieves a revenue equal to
5
6 times the optimal revenue and is therefore strictly sub-optimal. We now describe one such example. Let M = 2, N = 3,
n = 2, m1 = 2, m2 = 3 and W (1− α) = 6. The bid function of network i, i ∈ {1, 2, 3} is given by:

yi(q) =

{
qβi if q ≤ 4
4βi if q > 4

(43)

where β1 = β2 = 1, β3 = 1− ε and ε is a small positive constant. It can be checked that the greedy algorithm assigns channel
1 to networks 1 and 2 and channel 2 to networks 1, 2 and 3 and achieves a revenue of RG = (10−2ε). The optimal algorithm
assigns each one of channels 1 and 2 to networks 1, 2 and 3 and achieves a revenue of R∗ = (12− 4ε). Note that RG

R∗ equals
5
6 in the limit as ε tends to 0.

In summary, the greedy algorithm is sub-optimal only for pathological input instances, and is optimal for a large variety of
“well-behaved” inputs; thus, it performs well in practice.

IX. FUTURE WORK

We now describe some directions for future research. We conjecture that the access allocation problem described in
Section VII-A is NP-hard. Our conjecture is motivated by the facts that (a) the bid function of each network can be an
arbitrary real-valued function satisfying the conditions in Section VII-A, (b) the number of secondary networks on each
channel can be selected from a possibly large set {m1, . . . ,mn} and (c) the set of secondary networks on each channel can
be an arbitrary subset of the set of all N networks. The proof of the conjecture remains an open problem for future research.

Also, we considered the case when the M channels are identical. The extension to non-identical channels remains an open
problem.

When the auctioneer’s objective is to maximize its revenue, note that the algorithms that we designed for the access allocation
problem can be used to maximize the auctioneer’s revenue given the bids zi(.) of the bidders. To compute its bid, a bidder
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i may use different strategies, which it thinks will maximize its net utility in (1). For example, when auctions are conducted
periodically, a bidder may compute its bid based on its knowledge of the outcomes of previous auctions. An open problem
is the design of allocation strategies for the auctioneer and bidding strategies for the bidders when each player chooses its
strategies based on the outcomes of previous auctions in order to influence the other players to act to its own advantage.
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