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Abstract

We consider a class of queueing networks referred to as fghred constrained queueing networks” which
form the basis of several different communication netwahkd information systems. These networks consist of a
collection of queues such that only certain sets of queueseaconcurrently served. Whenever a queue is served,
the system receives a certain reward. Different reward®brained for serving different queues, and furthermore,
the reward obtained for serving a queue depends on the senhofioently served queues. We demonstrate that the
dependence of the rewards on the schedules alter funddmedateons between performance metrics like throughput
and stability. Specifically, maximizing the throughput @ lbnger equivalent to maximizing the stability region; we
therefore need to maximize one subject to certain conssrain the other. Since stability is critical for bounding
packet delays and buffer overflow, we focus on maximizing ttireughput subject to stabilizing the system. We
design provably optimal scheduling strategies that attiaiid goal by scheduling the queues for service based on
the queue lengths and the rewards provided by differenttetes. The proposed scheduling strategies are however
computationally complex. We subsequently develop tearescto reduce the complexity and yet attain the same
throughput and stability region. We demonstrate that oaméwork is general enough to accommodate random
rewards and random scheduling constraints.
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. INTRODUCTION

Constrained queueing networks have been extensively asaddel several systems of practical interest including
wireless networks [35], [34], [25], [27], input queued sthies [23] and database systems [34]. A constrained
gueueing network is a collection of queues such that onliatesets of queues can be concurrently served; these
“schedulable sets” depend on the underlying system. Wiegree\queue is served, the system receives a certain
reward. In such systems, queues need to be selected focessih that (i) the total reward earned by the system
per unit time (“throughput”) is maximized and (ii) each qeeis served often enough such that the mean queue
length in each queue is bounded (“system stability”). The g@als turn out to be equivalent if the service of each
gueue (i.e., the transmission of each packet) fetches the saward. The performances of such networks are now
reasonably well-understood owing to several seminal dmrttons [1], [3], [4], [6], [24], [25], [26], [35].

We now investigate constrained queueing networks wheferdiit rewards are obtained for transmitting packets
from different queues, and furthermore, the reward obthine serving a queue depends on the set of concurrently
served queues. Sudfeneralized constrained queueing netwofkam the basis of several communication and
information systems of practical interest, but have noenrexd adequate attention in the research community.
We first provide examples of such systems, and subsequesrihpmistrate that new resource allocation goals and
technigues are required for capturing the trade-off betwdiferent performance metrics in these systems.

First, consider one-to-many communications in wirelessaeks. Here, a sender may wish to transmit its packets
to multiple receivers in its communication range. Due toliteadcast property of the wireless transmission, a single
transmission may reach all these receivers. Here, eaclesendstitutes a queue, and the reward attained by a
transmission is the number of receivers who successfutlgive it. Since different multicast groups have different
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Fig. 1. Figure shows an example to demonstrate the aplicafigeneralized constrained queueing networks in omaany communication

in wireless networks. There are two sendéfs S2 and 6 receiversk; to Rs. The dashed circles indicate the communication ranges of
the senders. A single transmission frdfn can reach all its receivers?s, ..., Rs. Here, R is S2's receiver. Each _sender corresponds to
a queue. Heref = {{; = [0 0], 42 = [1 0]¢z = [0 1], s = [1 1]}. Here,rx(f1) = 0, k € {1,2}, r1(f2) = 5, r2(¢2) = 0, r1(€3) = 0,

ra(fs) =1, r1(1) = 3, r2(fy) = 1.
1 T2 T3 T4

Fig. 2. Figure shows a database system with four tables .., T4 that are accessed by three applicatiéhs U2 andU3. The arrows
indicate the tables each application updates. When thereasrcurrent requests for updates in the same table, thesefjam an application
with the lowest id is honored. Note that if all three applicas try to simultaneously update the database, iénU2 and U3 achieve
rewards 3, 1 and O respectively. If orllj2 andU3 try to simultaneously update the database, then they axhésvards 2 and 1 respectively.

number of receivers, the reward attained by serving diffegueues will be different. Furthermore, whether a
receiver can successfully decode a transmission dependaghen transmissions in its neighborhood. Thus, the
reward associated with each transmission depends on tloé getues served concurrently. For example in Figure 1
when S; is transmitting toRg, R; and Ry cannot receive a transmission frafy as both the transmissions will
collide at these receivers. Hencg, receives a reward of 5 whe$} alone is served, and it receives a reward of 3
when S; and S, are served together. Thus, the reward $9rdepends on the set of queues served.

Now, consider one-to-one communication in wireless netaoBSuccess of each transmission depends upon
the interference due to concurrent transmissions in theiorktand the channel state. Let the reward for each
transmission bé if the transmission is successful. Thus, different traissions attain different rewards depending
on the set of queues served. Furthermore, here, the sanatigelef sessions may generate different rewards at
different times as the interferences randomly change ddading - rewards may therefore be random.

Next, in many database systems, a single update operationdn application involves updates in many tables.
Here, each application constitutes a queue, and the rewtaidexd by an update operation is the number of tables
that are successfully updated. Since different applioatiequire to update different number of tables, rewards
received by serving different queues will be different. Blover, if many applications try to update the same table,
then only one of them can do so, as the access to these tabtagtislled to avoid inconsistencies due to concurrent
updates. Thus, the reward for a queue depends on the set wésiserved. We demonstrate this using a specific
application in Figure 2.

Our contribution is to provide a mathematical frameworkr@ydeling and optimizing key performance attributes
in generalized constrained queueing networks. First, vilng@ppropriate performance metrics (Section Il). Next,
we demonstrate that the fundamental relations betweeonmeahce metrics such as throughput and stability change
due to the dependence of the rewards on the set of queuesd g&wetion Ill). Specifically, maximizing the
throughput is no longer equivalent to maximizing the stgbiiegion; we therefore need to maximize one subject
to certain constraints on the other. Since stability idaaitfor bounding packet delays and buffer overflow, we focus
on maximizing the throughput subject to stabilizing thetegs We design provably optimal scheduling strategies
that attain this goal by scheduling the queues for servicedban the queue lengths and the rewards provided
by different selections (Section IV). These schedulingtsgies are however computationally complex. We next
develop a framework to reduce the computational complexity yet attain the optimum performance (Section V).



Finally, we consider some possible generalizations (8edfil) and describe the related work (Section VII).

I[l. SYSTEM MODEL

We consider a queueing network withqueues. We assume that time is slotted. In each qieudl,... ,n}
packets arrive as per arrival procesy (t)}5°,, whereA(t) is the number of arrivals in queueduring slott.
Arrivals for the same session in different slots are indelean and identically distributed. The arrival processes

for different sessions are independent but not identicdityributed. We assume that.(¢) < Ap.x in each slott

and for anyk. Let \; = E[A,(t)] andX = (A1, ..., \,) denote the arrival rate vector. Each packet can be served

in at most one slot, and it departs the system at the end ofl¢iénswhich it is served. This assumption has
been motivated by the fact that in wireless networks mutiphnsmissions of the same packet consume additional
energy and increase the interference for other transmissioVe denote by, (t) the queue length of thét"
queue at the beginning of slot Also, G(t) = [Q1(t) --- Qn(t)]-

A queue can only be served if it has a packet to transmit, anghgh slot in which it is served it transmits
one packet. The indicataf,(t) = 1 if the k' queue is served in slat and isO otherwise. The vectof(t) =

[¢(1(t) --- £,(t)] denotes the service vector in slotThe system constraints may prohibit simultaneous service
of certain queues. Thus, &' n-dimensional binary vectors may not constitute a valid iserwector. LetC =
{¢1,...,4,} denote the set of all valid service vectors, @jddenote theith element of!; € L. Clearlym < 2.

For example, Figure 1 elucidates a constrained queueingorietwith n = 2 andm = 4. Now, if the system has
an additional constraint that all the receivers should ivecevery packet, then both; and S, can not be served

concurrently. Thus, in this casg, = {Fl =[00],6,=[10],65=10 1]} andm = 3.

We assume the following about. If 7 € £, then every?l < [ also belongs tal, where the inequality is
element-wise. In other words, if a certain set of queues @aisdrved simultaneously, then any subset of these
gueues can also be served simultaneously. Note that thisnasien holds in wireless networks. For eakhe £
and queue length vectap, we define an:-dimensional vector;(Q) as follows. Thekth component off;(G)
equalst;, if Q; > 0, and is0 otherwise. Clearly, for each € £ and@, ;(Q) € L.

The system receives a reward for serving each queue, anéweed obtained for serving thigh queue in slot
t, re(£(t)), is a function of the service vectdtt) in slot ¢, for eachk. We assume that;,(£(t)) < G, < oo for
eachk. We initially assume that the reward for each queue is a aétéstic function of the service vector, and
later generalize to allow the reward to randomly depend ensttrvice vector (Section VI). Refer to Figure 1 for
some example rewards.

We assume the following properties of the reward functidrstfif ¢, = 0 then rk(ﬁ) = 0. Thus, if a queue is
not served then it does not receive any reward. Next, fOI‘f@D@Q e Lif El < Eg and/y; > 0, rk(zl) > rk(ﬁg)
Thus, 7, (¢(Q)) > r1,(¢) for any @, 7 € £ andk such thatQ,, > 0. We justify this assumption in context of one of
the application scenarios, wireless networks. In wiretestsvorks, when fewer queues transmit, the interference is
less in the system and therefore, usually, the queues Hrarit receive higher reward. If this is not the case, e.g.,
when the probability of success increases with increasatarference due to the use of sophisticated decoding
strategies, then if an empty queue is selected, it can tiaressignal so as to ensure that other queues do not
receive less reward because it is empty. This may increasewbrall energy consumption, but our focus here is
to maximize the throughput. Joint minimization of the eeognsumption and maximization of the throughput
consists of interesting topics for future research. Themagsgion can also be similarly justified for database systems

Next, we present some important definitions.

Definition 1 (Scheduling Policy)A scheduling policyA decides the service vecté?(t) in each slot > 1 such
that/2(t) € £ and (2 (t) = 0 if Qi(t) = 0.

This class includesffline policies that decide their service vectors based on the laume of packet arrivals in
each past, present and even future slots.

Sincery (2 (u)) = 0 if £2(u) = 0, andl2 (u) = 0 if Qr(u) = 0, rx(F2(u)) = 0 if Qx(u) = 0. Thus, irrespective
of the scheduling policy, no queue receives any reward irogislwhich it is empty.

*Transmission of a signal from an empty queue is not considseevice for the empty queue.



Definition 2 (Throughput):For an arrival rate vectok, the throughput under a scheduling poligdy QA(X), is
the reward it receives per unit time. Mathematically,

QA —hril;if ZZT’C KA

u=1 k=1
Sincery (62 (u)) = 0 if ¢2(u) =0, and (2 (u) € {0, 1},
QA = 11tfn1nf ZZT’“ KA (u). 1)
u=1 k=1

Note that if the reward () is the number of receivers of sessibrthat receive a packet when the service
vector is?, the throughput undeA is the sum, over all receivers, of the number of packets eachiver receives
per unit time. This is consistent with the usual definitionttwfoughput in a communication network.

Definition 3 (Loss): The loss under a scheduling policy at any slott is the difference between the sum of the
maximum possible rewards of the queues it servesaatd the reward it obtains at The loss under a scheduling
policy A, LA(X), is its total loss per unit time. Mathematically,

LA _h?llo%f ZZ( k—Tk; ))>€A( )-

In a communication network, usually, the loss experlen(;eal teceiver denotes the number of packets transmitted
by its source that it does not receive per unit time, and tiork loss denotes the sum of the losses of all receivers.
Again, if the rewardr;,(¢) is the number of receivers of sessibrihat receive a packet when the service vector is
7, then the formal definition of loss in Definition 3 has the sarnanotation as above.

Definition 4 (System Stability)The queuelng system is said to be stable if the time averageaie lengths is
finite for each queue, i.elimsup,_, ., M < oo with probability (w.p.)1 for each:. A scheduling policy
that stabilizes the system is called a stable schedulinigypdlhe stability region of a scheduling policy is the set
of arrival rate vectors for which the system is stable undergolicy. The stability region of the syste@is the
union of the stability regions of all scheduling policies séheduling policy whose stability region equélss said
to maximize the stability region.

Let C denote the convex hull of the vectors fhandC denote the interior of. In their seminal work, Tassiulas
et al (Theorem3.2, [35]) showed that? C © C C.

Definition 5 (Stabilizable Arrival Rate Vector)Ve denote the arrival rate vectaras stabilizable ifx € C.

Definition 6 (Throughput Optimality)A stable scheduling polic\ is said to be throughput optimal if w.p.
it attains the maximum throughput among all the stable selivegipolicies. We denote the throughput attained by
such a policy for arrival rate vector vectare © by Qax(X).

Definition 7 €-Throughput Optimality):A scheduling policyA is said to bee-throughput optimal for @ > 0 if
(a) it is stable, and (D)2 (X) > Qmax(X) — € W.p. 1.

In the next section, we show that in generalized constrafuedieing networks maximizing the stability region is
not equivalent to maximizing the throughput. Since stgbib imperative for guaranteeing bounded delay and for
limiting packet drop due to buffer overflowye aim to maximize the throughput subject to stabilizingpgtem
Specifically, our goal is to designthroughput optimal policies.

We now investigate the relation between the throughput haddss.

Now, LA (X ZGk hmlnf ZKA —Q4(X).

Note that if a system is stable under polidy lim;_... + S 08 (u) = A\ wep. 1. Thus JLAX) = Py 1 MG —
QA(X) w.p. 1. Thus, if X is in the stability region of pohmegxl, Ag, QA (X) + LA (X) = Q22 (X) 4+ L2 (X) w.p.

1. Thus, for any stabilizable arrival rate vectdr a throughput optimal policy must also minimize the lossj an
an e-throughput optimal policy attains a loss which is at mestore than the loss of any stable policy. Thus, we
focus on obtaining-throughput optimal policies.



[1l. RELATION BETWEEN THROUGHPUT AND STABILITY

First, we examine what decisions policies are likely to mikhey want to maximize only the stability region,
or if they want to maximize only the throughput. A policy tfeins to maximize the stability region serves as many
packets as possible in a slot while giving priority to longeeues. If the policy aims to maximize the throughput,
then it may wait and transmit only when the reward is high sat #sach packet fetches the maximum possible
reward. Thus, the control decisions for maximizing the ifitglregion and for maximizing the throughput are not
equivalent.

Using an example that is motivated by one-to-many commtibitdn wireless networks (Figure 1), we next
demonstrate that a policy that maximizes the stabilityaegloes not maximize the throughput.

Example 1:Consider the system shown in Figure 1. Det (1/2—¢,1/2—¢), wheree is a small positive real
number. Now, consider a polic that serves each queue whenever it is non-empty. Thus,yf®n(S;, resp.) is
non-empty, them will select service vectof2 (63, resp.) and achieve a reward of 5 (1, resp.). If both queues ar
non-empty in a slot, therd will select 7, and achieve a reward of 4. Clear& maximizes the stability region.
Now, the service process f¢f; is independent of that fof,. Using Little’s law, the fraction of slots in whicl§;

(S2, resp.) is non-empty angh (5. resp.) is empty id /4 — €2 (1/4— €2, resp.), and the fraction of slots in which
both queues are non-empty (is/2 — €). Thus, QA()\) (54+1)(1/4 — €2) +4(1/2 — €)? = 10/4. Now, consider
a policy A’ that serves only5; when Sy is non-empty, and serves onl if S; is empty andS; is non-empty.
Note thatA’ is stable as\; + Ay = 1. Thus, whenevef; (Ss, resp.) is served, the service vectow}s(ig,, resp.)
and the reward i$ (1, resp.). Since the queues are stableand .S, are served il /2 — e fraction of slots each.
Thus, Q%" = (5+1)(1/2 — €) ~ 3. Thus, QA (X) < Q& (N).

Note thatA in Example 1 always transmits the maximum number of packetsatch slot and also chooses the
set of queues whose sum of queue lengths is the maximumumeessi al [35] showed that a policy that satisfies
the latter property maximizes the stability region in adry constrained queueing networks. But, Example 1 shows
that A does not maximize the throughput. This is becaisdoes not consider the reward structure in deciding
the service vector. So, the policies designed to maximieestability region of the constrained queueing system
(e.g. see [1], [5], [19], [34], [35]) need not maximize thedhghput. Thus, we need alternate mechanism to design
throughput optimal policies.

Now, we consider two policies);, A,, that seek to maximize the reward in a greedy fashibn.serves each
gueue only when the queue can obtain its maximum possiblardevandA, selects in each slot the service vector
that attains the maximum possible reward among all valigiservectors in the slot. Simply put\; maximizes
the reward per packet, anl; greedily maximizes the reward in each slot. We show thatdoes not stabilize the
system even when the arrival rate vector is stabilizabld, ap does not attain the maximum throughput among
all stable policies.

Example 2:Consider the system shown in Figure 1. Let = (3/4,1/2). Clearly, X € C and policy A in
Example 1 stabilizes the system. Note thgt will never concurrently serve both queues. Hence, the suitthef
service rates provided to the two queues is at most 1. Those & + Ay > 1, A; does not stabilize the system.

Note thatA; maximizes the reward per packet while serving queues a satwller than their arrival rates and
thereby compromises stability.

Example 3:Consider the system shown in Figure 1 with the difference théfs) = ra(fy) = 3. Let X =
(1/4,1/4). Note that for the above rewardd, selects the same service vectors/msThus, A, stabilizes the
system. Now, the service process for is independent of that fof,. Using Little’s law, the fraction of slots in
which Sy (S2, resp.) is non-empty anél; (S:. resp.) is empty ig1/4)(3/4) ((1/4)(3/4)), resp.), and the fraction
of slots in which both queues are non-empty(ig4)2. Thus, QA()\) (5+3)(3/16) + 6(1/16) = 15/8. Now,
considerA’ described in Example 1. Agaid)’ is stable as\; + A\ < 1. Thus, whenevef; (S, resp.) is served,
the service vector ig, (53, resp.) and the reward (3, resp.). Since the queues are stableand .S, are served
in 1/4 fraction of slots each. Thu§®' = (5 + 3)(1/4) = 2. Thus, A, does not attain the maximum throughput
among all stable policies.

The limitation of A5 is that it myopically bases its decision in a slot solely oe #ygregate reward in the slot.
Thus, even when it is possible to wait and serve queues inattytdisjoint slots and achieve a higher reward per
packet,A, serves the queues in the same slot.

The examples demonstrate that (1) a policy that maximizestbility region need not maximize the throughput



(2) myopically maximizing the reward in each slot or the resvaer packet may not maximize the throughput
or stabilize the system (3) the optimal policy should wagtjlong enough so as to achieve the highest possible
reward per packet while serving each queue at a rate higheritk arrival rate.

IV. OPTIMAL POLICIES

In this section, we propose two policies and prove that thiey-¢hroughput optimal for every stabilizable arrival
rate vector\ ande > 0.

A. Linear program based optimal policyA()
The scheduling policyA* selects/; € £ w.p. w; in every slot. If/; is chosen in slot, then?2" (t) = /; (Q(t)),

i.e., thek!™ queue transmits a packetdf, = 1 and Q,(t) > 0. Recall that/2"(¢) is the indicator vector for the
set of queues served k* in slot ¢.

Let A* select/; in a slott. Then/®"(t) < Z;. The inequality is strict only when some queuedjrare empty
in ¢, and then, as discussed in SectionrJ(/2" (¢)) > r,(¢;) for eachk for which Q(t) > 0.

The probability distributions = [w; --- w,,] is computed using the following linear program IZ\PAE). Here,d
is a parameter.

LP(X,6) :- Maximize: U(X,8) = 32, 3, wilirri (£:)

Subject to:

1) >, w; =1 andw; > 0 for everyi

2) Yo wilyy = A\ + 0 for everyk.

Constraint 1) ensures thatis a valid probability distribution. Whe# > 0, constraint 2) ensures that each queue
is selected for service at a rate higher than the arrivaliratee queue. Thus, constraint 2) ensures stability.

Note thatw and henceA* depend om and the chosed. We indicate this dependence by using the notations
@(X,8) and A*(X, 8).

Now, althoughL P(X, 0) is well-defined, it need not have any feasible sqution,afdritraryX € R™andj € R.
Theorem 1 shows that for all stabilizableand sufficiently small positive, LP(X, 0) is feasible andA*(X, J)
is e-throughput optimal. Note that allowing arbitraﬁg/ € R"andd € R in LP(X, 0) simplifies the proof for
Theorem 1.

Theorem 1:Let X be any stabilizable arrival rate vector. Then, for every 0 there exists @ such that for
everys € (0,8), LP(X,d) is feasible andA*(X, §) is e-throughput optimal. Furthermore,

QA*(X,J) > U(X, §) — 52Gk > QmaX(X) —€e wp. 1l (2)

k=1
We prove Theorem 1 in the appendix.

Finally, the stability region can be maximized using adoyrfeasible solutions oIf.P(X, 0) [5]. Specifically, if
A*(X, 9) selects the service vectors as per any probability digtdbuhat constitutes a feasible squtionLdfP(X, d)
for any positived, it stabilizes the system provid&dis stabilizable [5]. But, for attaining the maximum throyogit
among all stable policies, an optimal solution loIP(X, 0) must be used. Specifically, for any stabilizableand
€ >0, A*(X,6) is e-optimal for anys € (0, min{dmax(X), ¢/ 327, Gx}], whered ., (X) is the maximum value of
o0 for which LP(X, 0) has a feasible solution (follows from Theorem 1 and Lemma the appendix).

B. Queue length based optimal policix4)

The poIicyA*(X ) requires the knowledge of in order to obtain the optimaU(X ). The system may not
however knowX. We now design a policAo that attains the maximum throughput among all stable pslieind
stabilizes the system for any stabilizablavithout knowmg>\

Recall that an optimal policy should wait as long as posdiblachieve the highest possible reward per packet
without violating system stability (Section III). Novxz;*(X, 0) uses the knowledge ofto ensure the above, whereas
Ao ensures the above by using only the valueécﬁf).



We now describedo. In slot¢, A selects the service vectéfo (¢) such that

(R (t) = arg max {Z <ka(t) - Vx(Gy — Tk(_‘))) Ek} , 3)
=i{dm) =

whereV is a constant. Note that the constraint Z(@(t)) implies thaté;, = 0 if Qx(t) = 0 and/¢; € {0,1}
otherwise.

Theorem 2:Let X be any stabilizable arrival rate vector. Then, for evéty> 0, Ao stabilizes the system.
Moreover, for every > 0, there exists/ such that for every > V, Ao is e-throughput optimal.

The above result implies that any stable off-line policyt tlakes transmission decisions based on the knowledge
of past, present and future arrivals can not attain throughgignificantly more thamAO(X) for every stabilizable
X. This holds even though takes transmission decisions based only on the currentejlengths.

Now, we describe the intuition behind this result. Let
N (Qute =V x (G — D)) (4)

k=1
n
def
> Quly.
k=1

Note that intuitivelyG), — r4(?) is the loss of reward of théth queue when serwce vectgns used. Thus, in
each slott, Ao selects the service vectdrthat maximizes the dot produdty’ Qﬁt , of 7 and the dlfference
between the queue Iength vect@r(t) and a scaled loss vector assouated vs[th\lote that a policy A) that
selects the service vectdrthat maximizes the dot produdty; (Q(t), ¢), of ¢ and the queue length vectq(t)
stabilizes the system for every stab|I|zabI({31] [18], [35]. This is because undeX the gueue length process has a
negative drift whenzk_ Qr(t) is sufficiently large for every stablllzablle When} ), Qi(t) >>V > p_, G,
W(Q(t),0) ~ Wy(Q(t t), 6) for every? € £, and thereforeA o andA select similar service vectors. Thus, intuitively,
for every stabilizable\, the queue length process undep should also have a negative drift wh&n,_, Qx(t) is
sufficiently large. Hencelo also stabilizes the system for any stabilizahle

We have however shown that all stable policies do not attgirakthroughput (Example 1). So, it is not obvious
that Ap maximizes the throughput among all policies that stabitize system; we now provide the intuition
behind why this is the case. Note that when the queue lengghsmaall, high throughput can be attained without
violating stability by serving the queues only when theyeiee high rewards. On the other hand, stability can be
ensured by selecting the queues with higher queue lengithdwarserving a large number of packets when the
gueue lengths are large. We now demonstrate thatfollows both the above principles. For simplicity, assume
that V, Gy, 7 (£) are integers for alk,? € £. Now, whenQ,(t) < V, Qu(t) — V <G;C —rk(f)) > 0 only if
r,(€) = Gj. Then, sinceA, maximizesW (Q(t), 0), it will serve the k™ queue only if the maximum possible
reward is achievable. Now, i), € {V,...,2V — 1}, thenQ(t) — V (Gk - rk(5)> > 0 only if r,(¢) > Gj, — 1.
Thus Ao will serve thek! queue only if the achievable reward is greater than or equél;t— 1. Similarly, if

Qr(t) € {(Gr —w)V,...,(Gr, —u+ 1)V — 1}, thenAp will serve thek!” queue only if the achievable reward is
greater than or equal tm Summarily,Ao attains the maximum possible reward for every packet whataining
stability by dynamically selecting the service vectorsdshen the queue lengths. Thuseo attains the maximum
throughput among all stable policies.

Now, we prove Theorem 2 using a combination of optimizatind Byapunov theories. Neebt al. [27] proposed
this proof technique in a different context.

Proof: Consider a stabilizabla. For any policyA,

Qr(t+1) = Qu(t) + Ak(t) — 2 (1) 5)

Now for Ao, {Q(t)}:>1 is an irreducible, aperiodic and countable Markov chainwNconsider the Lyapunov
function

Q)
!
I

w(

Y

=
I

Wl(év

n

FQ) =D (Qu(1))*. (6)

k=1



Let, M ¥ n(42, +1). From (5) and (6), it follows that

—

£+ 1) — £ Q)
< M+ QA — 20006 (1))

k=1

Thus,E | £(G(t +1) ~ £(@0) | G(1)]

<4 320N - B 320020 é(t)] )
Y ,; 2Qu(0 — 2 [W(G(0). 20 (1) | GO0

—2E ; (QuBER M) = VIG = re( P @R (1)) ré<t>]

VB[S G-l | é(t)] . ®

Now, sincel is stabilizable, we can obtain small enough positiv&ich thatA*(X, 0) is €/2-throughput optimal

(Theorem 1). We considek* (X, §) for such ad. Here, /2" (A9) () is the service vectoA*(X, §) would have used
at¢ if it had a queue length vector @p(¢) at¢.
From definition of Ap (equation (3)), for evenA andt,

E[W (@), 1) | G = E W@, (1) | 4]
Thus, from (8), for every

E[£(@(t+1) - £(@) | G|
< M +Y 204N — 2B [W(G(), P 011G (1))
k=1

—2VE

> (G — (R ()]0 (t) | @(t)] : (9)

k=1

Now A*(X, §) chooses each service vectomw.p. w;(X, §) independent of the queue lengths, and subsequently serves
only those queues that are included in the selected sereic®and are also non-empty. Thus, @ (¢t) > 0,

E {gkA*(M)(t) | @(t)} = ieikwi(x 6) = A, + 6. (10)
i=1

In addition, recall that ifA* selects?;, and if thekth gueue is nonempty it receives a reward of at Ie@e@).
Thus, if Qx(t) > 0,

E[(Ge =@ 39@) 6 M) | Go)]

< D w9 (Gk - Tk(f:)) Cik
1=1
= G\ +0) =Y wi(X, 0)re(li)i.
1=1

If Qk(t) =0, -
E|(Ge =@ V@) 60 | )| =0.



Now, "7 wi(X, 8)r(€) i, < Gr(Mi + 6) sincery(€;) < Gy, and S-™, w;(X, )l = Mg + 6. Thus,

E[(Gr— @ A9@)) )| G

< Gre+0) = > wilX, 6)r (L) i (11)

=1
From (4), (10), and (11), it follows that

E [W(@0). 2 50 w) | )]

> (Qk(t) — VGE) (A + 8) + VU(X,9).
k=1

Hence, from (9)

=
=
<
+

—_

) - 1(QW) | G|

< M- f: 20Qk(t) + 2V f: Gr(\i + 6) — 2VU(X, 6)
k=1 k=1
D Gk = r(@e W) (t) | Q)| -

k=1

_9VE (12)

—

_ 1) Stability ofAp: From (12), since < ry(¢) < Gy, ¢ > 0 for all k.0 € L, it follows that for every stabilizable
A and every non-negative

E|£(Q(t+1) - £@1) | G)]

< M= 20Qk(t) +2)  VGr(Ak +9).
k=1 k=1

Let A= {Q: X7 Qr < ¥ S0, Gr(\ +0) + 4EL} Then,

E[£(@(+1) - 7@®) | G) <{ X rSL't)i(a’.

Thus, sincelA| is finite, by Foster's Theorem (Theorem 2.2.3 in [Zm@(t)}tzl Is positive recurrent, and for
each queué the expected queue length under its stationary distribudinite. Thus, the system is stable under
Ao.

2) e—ThroughQut Optimality ofAp: Taking expectation on both sides of (12) with respect to ttatiohary
distribution of {Q(¢)}+>1, we obtain

E[£(@(t+1) - /(@)

< M= 2E[Qr(t)] +2V Y Gr(A + ) — 2VU(X,0)
k=1 k=1

> Gy — (@ @))ege (1) | -

k=1

_OVE (13)

Now, ¢, ékAO (t) is the number of departures from queué (0,t) underAp. Since the queue length process
{Q(t)}+>1 underAyp is a positive recurrent Markov chain, for every

E[(00(t)] = lim % D 4o (v) = wp. 1 (14)
v=1
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and > E[rg(£2° ()45 (1)]

k=1

— UILIEOEZZQ EAO EAO( ) w.p. 1

v=1 k=1
= Q%°(X) (from (1)). (15)

Moreover, since the expectations are with respect to th@stay distribution of@(t), it follows that
E[f(Q(t +1))] = E[f(Q())]. (16)
From (13), (14), (15) and (16), it follows that

Q2 (X) > U(X,0) —52@——

- M
> R
> Qupax(A) 2 5V (from Theorem 1) @a7)
> Qnax(A) —eif V> M/e.
The result follows. |

Finally, we comment on the role of the paramekein determining the throughput aky. From (17), it can be
seen that ifi < M/e = n(A2,. + 1)/¢, then no throughput guarantee can be providedXpr Note thatA,,.

determines the burstiness of the arrival process. Thuanthenum required value o¥ is higher for more bursty
arrival processes.

C. Computation time foA* and Ao

In the worst case, cardinality af can be2” as it may contain alk-dimensional binary vectors. Them*(X, J)
can be computed by solving a linear program wi#2") variables and0(n) constraints. Thus, the time and
the memory required to computk* (X, §) is O(2") in the worst case. Undeho, we need to find & € £ that
maximizesW (Q(t), ) for everyt. Since|L| is O(2"), the time required to compute the optimal service vector in
each slot is als@(2") unless some additional structure on the queueing systessisred. We next propose two
optimal policies which require polynomial computation ¢irim every slot.

V. COMPUTATIONALLY SIMPLE OPTIMAL POLICIES

We provide a general framework for designing computatignsimple policies for maximizing the throughput
subject to attaining stability by considering the notioririfccurate scheduling (Subsection V-A). We subsequently
utilize this framework to design two computationally simpbolicies for maximizing the throughput subject to
stabilizing the system (Subsections V-B,V-C). Finally, discuss how these policies can be implemented using
distributed computation (Subsection V-D).

A. Inaccurate scheduling for maximizing the throughputjectoto stabilizing the system

We first describe a class of scheduling policies referredstdirmaccurate scheduling.” Note that the notion of
inaccurate scheduling has earlier been proposed for dagigomputationally simple policies for maximizing the
stability region [23], [32], [34]. Our contribution here is generalize this notion to attain the goal of maximizing
the throughput subject to stabilizing the system while gsirmple computations.

We consider policies\ for which the state{Y (¢) = (Q( ), 08 (¢ ))}e>1 constitutes an irreducible, aperiodic and
countable Markov chain. This assumption holds wii@t) is computed iteratively based @p(¢) and /2 (t — 1).
Note that then{Q(t)},>; may not be a Markov process.

Definition 8 ¢-Inaccurate Policy): A policy A, is called-inaccurate if in each slatit selects a service vector
/A (t) such that

—,

W@, A1) = max W (G0).7) - X(F(0). (18)

1(G(0)
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where X (Y (t)) is a random variable that depends Bit) (i.e., the distribution orX (Y (¢)) is determined by
the current system staté(t)), and if {?(t)}tzl has a stationary distribution then the expectafibi (Y)] under
the stationary distribution is less than or equahtoAny service vector that satisfies (18) is called-inaccurate
service vector.

Note that ify is large, then the number gfinaccurate service vectors will be large and hence the tieeded
to find one such service vector may be smée show that for appropriate choices of all stable y-inaccurate
policies aree- throughput optimal.

Theorem 3:Let X be any stab|llzable arrival rate vector am:L be an arbitraryy-inaccurate policy. Then, for
everye > 0 and~ < oo, there exists/ such that for every > v,

1) if {Y(¢ )}t>1 is a positive recurrent Markov chain, then, is e-throughput optimal, and

2) if E[X(Y) | Y(t) = Y] < ~ for everyY, then {Y (¢ )}¢>1 is @ positive recurrent Markov chain, anl,

stabilizes the system.

Now, we provide the intuition. For simplicity of explanatiowe assume thaX (Y q) < ~ for every)7 and hence
the condition in (2) of Theorem 3 holds. We first explain wiynaccurate poI|C|es maximize the stablhty region
[34]. For large queue lengthsjax .. W(Q,¢) >> v, and hence from (18)¥ (@, /A7) ~ max Fec W (Q,0).

1= I=i{
Thus,Ap and A, select similar ser<\ﬁ():e vectors when the queue lengths &ge.l&Ve have shown Ci%at for every
stabilizableX, AO has a negative drift when the queue Iengths are large. ThugJso has a negative drift for large
queue lengths. Hencéy,, stabilizes the system whenevkis stabilizable. Incidentally, other approxmate policie
may also maximize the stablllty region. For example anyicgol that satisfies (18) WltH/V(Q( ), BA( t)) and
W (Q(t), ) replaced byW,(Q(t), /2 (t)) and Wy (Q(t),£) respectively, maximize the stability region [23], [32],
[34].

The key difference between only stabilizing the system t@athiag the maximum possible throughput subject to
stabilizing the system is that whereas for the former it icant to appropriately select the service vector when
the queue lengths are large, but for the latter appropriaéestion of service vectors is required for all values of
queue lengthsHence, it is not clear thah, maximizes the throughput as well; we now explain why thisnigaict

somewhat counter-intuitive. Note that for small queue tkagnax ., W(@,E) may be smaller or comparable

1=
with ~. Then, (18) does not guarantee that the service vectorstsé(lqtzayA7 and Ao are similar. Hence, it is not
clear thatA, achieves the same throughputag, which attains the maximum throughput.

We now explain why Theorem 3 holds. We argue that for propercehof parameters the queue lengths and the
service vectors undekp andA., become similar. Clearly, in the first slot, both systems htheesame queue length
vector, @. Now, note that for IargeV W(Q El) and W (Q, 65) significantly differ if 7, and/, are significantly
different. Thus, due to (18), and sing8(Q, /) ~ max ec W (Q,0), A+ ~ (Ao Thus, the queue lengths in
I=I
the next slot are also similar in both systems. Recursiveo %Zae same argument shows that the queue lengths and

the service vectors selected in each slot are similar in bg#items. Thus, both policies attain similar throughput.
Thus, A, is throughput optimal for largé’”.
Next, we prove Theoremﬁ3.
Proof: We assume thak is stabilizable. We define the following Lyapunov function:
FY (1) =D _(@x().
k=1
Using analysis similar to that for obtaining (8),

E[f(V(t+1) = f(V () | V(1))
< M3 200N - 2E WG, P @) | V(1)

k=1
n

SIGk — (@ ()6 () | V()

k=1

_OVE (19)
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From (18) and (19), it follows that
E[f(V(t+1) - f(F(®) | )]

< M+Z2Qk Ak + 2B [X(V(1)) | (1)
k=1

—

—2F | max W(Q(t),0) | Y(¢)

I=I(Q®))

n

SIGk — (@ ()] (t) | Y (2)

k=1
Using arguments similar to those in the proof of (12) from (8% can prove that

E[f(V(t+1) - f(F() | ﬁt)}

—2VE

< M+2E[XFT@)V()] - ZQéQk

+2V) " Grl(A +6) — 2VU (X, 0)
k=1

S G — (@ ()] () | Y1)

k=1

whereé is such thatA*(X, ) is ¢/2-throughput optimal.
1) Proof for (1): Let the procesqY (¢)}:>1 be a positive recurrent Markov chain. Then this process has a

stationary distribution. Taking expectation on both sidég20) with respect to this stationary distribution, we
obtain

—9VE (20)

{ (t+1)) (?(t))}

n

< M+2E[X(Y(1)] - D 20E[Qs +2VZGk (A +0)
k=1 k=1
—2VU(X,8) — 2VE | > [Gr — mi(0™ (£))]6 (¢) | - (21)
k=1

Since{Y (¢)};>1 is a positive recurrent Markov chain,

E[¢; (1)] = Jim_ % S0 (W) = A wp. 1, (22)

and 3" Efr (0% (1))6, (1)

k=1

= UILH;OEZZWEA (v) w.p. 1

v=1 k=1
= Q2 (X) (from (1)). (23)

From stationarityE[f (Y (t + 1))] = E[f(Y (2))]. (24)
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From (21), (22), (23) and (24), and since from Definition @)[X(?(t))] < v, it follows that

o) > UX,) —5ZGR—M+2’Y

o M+ 2
> Qmax(A) — % - ;{/ i (from Theorem 1)
M + 2y

> Qnax(X) —eif V>

€

The result follows. . . . .
2) Proof for (2): Now, letE [X(Y(t))|Y(t) =Y | <~ forall Y. Thus, from (20), for everyy andV > 0,

E[f(V(t+1) - f(F(0) | T ()]

< M+2y—) 26Qi(t) +2V Y Gr(Me +9).
k=1 k=1

—

Let B={Y = (Q,0): £ € L, 7, Qr < ¥ 37 Gr(Ag + 6) + M2+ Thys,

E [f(?(H 1) — f(Y (1) | V(t)} < { iol :ch rgl(lt)é(tzs)’f

Thus, since B is finite, by Foster's Theorem (Theorem 2.2.3 in [24]Y,(t)}+> is positive recurrent, and the
expectations of the queue lengths under its stationaryilaliion are finite. Hence)\, stabilizes the system. m

The main challenge in computingrinaccurate service vectors is thﬁf@, ZAO) may not be known and in
most cases its computation is complex. Thus, even the \aidit of whether a giverf iS y-inaccurate may
be computationally complex. We circumvent this challengedbsigning a computationally simple approach that
obtains~-inaccurate service vectors without requiring the know@de(@,EAO).

B. Periodic Computation of Optimal Schedule
We divide the time axis in intervals of lengfh, i.e., in intervals of the formKT, (K + 1)T — 1].

Let °PT(¢) def arg max W(Q( ),Z)

el

=I(Q()

We consider a policyAr that computesbeT(t) at the beginning of each interval, i.e., in the sl&tg" for
K >0, and throughout the interval serves each selected quede ivig non-empty.

The time needed to computir is O(2"/T) in the amortized sense, i.ewp,~,{>.",_, c(u)/t} is O(2"/T)
on every sample path, wheréu) is the computational complexity is slat [17]. Thus, if we choosd to be
sufficiently large & 2™), then A requiresO(1) computation time in the amortized sense.

In the following lemma, we show that (Y) < ~ for all ¥ wherey = nT(Amax + 2).

Lemma 1:Let Q(t) be the queue length vector und&r in ¢. Then,

W@, )= max W (Q(1).F) — nT(Amax +2).
=i(Q)
Proof: Without loss of generality let € [KT, (K + 1)T — 1] for some K. Now, from (5),

DB <D QUET)+ > Y Ar(w)
k=1

k=1 u=KT k=1

< En: Qk(KT) + nTAmax- (25)
k=1
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Similarly, from (5),

Sty = Y QuET) - > > e (u)
k=1 k=1 u=KT k=1
> ZQk(KT)—nT. (26)

k=1
Now, from (4), (25) and (26), we obtain
max W (G0).2) - w (0.7 (1))

= Z(Q(t )

< D Qr(KT) = V(G — (PP T(0)))e7 (1)

k=1

- Z[ka) — V(G — ri (PP (0)))]€27 ()
k=1
+nT (Amax + 1)
= W(Q(KT),°"T(t)) - W(Q(KT), (~(t))
+nT (Amax + 1) (27)

n

Now, from (3),
W(Q(KT),i°%T(t)) < W(Q(KT), (PPT(KT)). (28)

Also, since the service vector selectedyy changes in the interval only if some queues empty during ér®g
and then the change is to not serve théft; (1) < [PPT(KT) and if (27 (t) < (QPT(KT) then Qi(KT) < T.

Thus, 4, (ZAT (t)) > rp (ZOPT(KT)) for all k for which Qy(t) > 0. Hence,

W(Q(KT), 02 (t)) > W(Q(KT), (PPY(KT)) — nT. (29)

The result follows from (27), (28) and (29). [ |

But, Y(t) is not a Markov chain. Thus, in spite of LemmaZl; is noty—accurate. Novv?(tT) is an irreducible,
aperiodic, Markov chain, and the framework fginaccurate scheduling can be generalized to such casesmite
this generalization for brevity. But, using Lemma 1 and aoprgimilar to that for Theorem 3, we can prove that
whenX is stabilizable Ay is - throughput optimal for every > 0. We formally state this in the following theorem,
and prove it in the appendix.

Theorem 4:Let X be any stabilizable arrival rate vector. Then, for every 0, there existd’ such that for every
V >V the policy A7 is e-throughput optimal.

The main challenge in usind is that it needs to periodically compute the optimal serwieetor. Since the
time required in each such computation is exponential,ifor largen, such computations may become infeasible.
We next propose an optimal randomized policy which requiP¢s) computation time in every slot.

C. Optimal Randomized PolicyA(z)

We now propose a randomized polidy which has been inspired by a randomized policy proposed bygilas
[34]. The policy in [34] attains the maximum possible stapiregion in a constrained queueing network using
linear time computations in each slot. Our contributionehisr to show that linear-time computable randomized
policies can also maximize the throughput subject to stabg the system.

We now describé\ . In every slott > 0, Ar generates a service veclﬁt) randomly among all service vectors

(e £ such thatf(@(t)) — ( as per a distributiorPQ»(-). In every slott > 1, once a random vector is generated
as above Ay obtains/2=(t) iteratively as follows.

. ) :w (), (Pre-1) (dw) ) <w (G, &)
e~ (t){ <EAR(t— 1)) ( ()) otherwise
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Thus, in any slotAr uses a new service vector only when it increases the valu& ©f; otherwise it continues
with the service vector used in the previous slot. It is ies#ing to observe that the randomized policy proposed by
Tassiulas [34], which maximizes the stability region uslingar computation time in each slot, uses a new service
vector only when it increases the valueldf (-).

Note that the distributioWQ»(~) may depend on the current queue length vector. We only cendidtributions

P (-) such that for every), P5({°"T) >y for somey > 0.

Lemma 2:Let X be a stabilizable arrival rate vector. Théli (t) = (Q(t), /2 (t))};>1 is a positive recurrent
Markov chain, andAy stabilizes the system.

We prove Lemma 2 in appendix. Now, we show thgg is %(Am3LX + 2)-inaccurate.
Lemma 3:Let Q(t) be the queue length vector und&; in ¢. Then, for any initial distribution of(¢),

B | max W (Q0).0) - WG, 1) | <7 (Anas +2)
=)
Proof: Since P+ (/°FT) > 1 for every @, 27 (t) = (°PT(¢t) infinitely often w.p. 1. Let{sx }x>1 be the slots
in which (2= (t) = (°PT(t). Again, sinceP5((°PT) > p. for every@, Elsx 1 — kx| < 1/p.
Consider theK for whicht € [kx, kx+1 — 1]. Like in Lemma 1, we obtain

mae W (Q(0). £) = W(@(0). (1)
=(Q)
S n("ﬁK-‘rl - HK)(AmaX + 2)

Thus, the result follows SinCB|kx+1 — kx| < 1/p. [

Now, from part 1 of Theorem 3 and Lemmas 2 and 3, it follows thatis e-throughput-optimal for any.. We
formally state this in the following theorem.

Theorem 5:Let X be a stabilizable arrival rate vector. Then, for every 0, there existd/ such that for every
V >V the policy Ar is e-throughput optimal.

Now, if © = 27", Ar can be computed i®(n) time in each slot. Each non-empty queue can be selected w.p.
1/2. If the resulting vector is not irC, then no queue is served.

D. Distributed Implementation chr and A

Distributed scheduling can be defined in different ways. @eagnition is to consider a policy as distributed if
each node selects its action based on its observation,astdtéhe information it acquires by exchanging messages
with its neighbors. Such policies are then evaluated on #wshof their performance and the frequency and the
amount of message exchange. Another definition is to conaigelicy as distributed if each node selects its action
based on its observation, state and the states and actiorle$ in a certain neighborhood.

We first describe howA z and Ap can be implemented as per the first definition. The time axisbeadivided
in periods of lengthl’. Each node can broadcast its queue length at the beginningeoy eeriod. The period
lengthT should be selected so that the broadcasts in a period reaehraides in the same period. For executing
Arp, each node computes the optimal service vector at the hiegiroi every period based on the broadcasts it
receives in the previous period. For executiig, each node randomly selects a service vector at the beginnin
of each period, and subsequently chooses between the eserators selected in the current and previous periods
based on the broadcasts it receives in the previous penatifiaally uses the chosen service vector throughout
the period. All nodes use the same seeds in the random numherajors and therefore obtain the same random
selections. For both policies, each node’s computatiopemig on the queue lengths of other nodes in the previous
period. Theorems 4 and 5 still hold. The message exchangplerity can be made arbitrarily small in both cases
by increasindr".

Determination of an optimal policy which is distributed aer phe second definition for distributed scheduling
remains open. Note that the design of such scheduling pslici the precursor problem, that of maximizing the
stability region, is still not completely understood, altiygh some illuminating results have been obtained recently
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[10], [29], [36]. We hope that the optimality results in thpaper and the recent advances in context of distributed
scheduling will motivate further exploration of the abovgea problem.

Finally, Rosset. al. has obtained local search based policies, which are likelyet computationally simple in
practice, for maximizing the stability region of certairastes of constrained queueing networks [31]. It will be
interesting to determine whether the throughput can be mmagd subject to stabilizing the system using similar
local search policies, and how the computation time reduing the~y-accurate policies we propose compare with
those for the resulting local search policies.

VI. DISCUSSIONS ANDGENERALIZATIONS

We now generalize our framework so as to obtain optimal psiavhen some of the assumptions made in
Section Il do not hold. First, we have so far assumed that &gtds discarded only after it is transmitted. We
discuss how our framework can be generalized to allow a qteedescard some or all packets before transmitting
them, and examine the advantages and disadvantages ofptitis: gSubsection VI-A). We next describe how
our framework can be generalized to accommodate randonrdsveand random sets of valid service vectdrs
(Subsection VI-B). Finally, we discuss hafvand reward functions can be chosen so as to attain certdorpance
goals in an important application domain for this framewtrlt of wireless networks (Subsection VI-C).

A. Discarding packets before transmission

In Section Il, we have assumed that each packet is discardedifs queue only after it is served once. However,
in practice, a packet may be discarded from its queue evemebitfis served. The availability of this option enhances
the stability region, and its judicious use increases tlmu@]hput For example, in Examplein Section Ill, when
X = (1—¢1—¢) wheree is a small positive numbef),,.(X) ~ 4 (QA ~ 4). Now, if Sy can discard packets
before serving them)\’ is stable and attains a throughput closét®ut, clearly, indiscriminate use of this option
substantially reduces the throughput.

We now show that appropriate augmentationCodllows us to design policies that attain the maximum possibl
throughput in presence of this option. Lét be the original system that does not allow packets to be kisda
before transmission, and I be the new system which allows the above(ra queue is said to be served when
a packet is removed from its queue. The service vector8 imave2n 0 — 1 components. The first components
denote which queues are being served and the remaining cenfsodenote whether the packets from the queues
that are being served are transmitted or discarded befamsrtrission. We obtain the sétof valid service vectors
of O from the corresponding set of O as follows. Let/ € £ and let havei 0 components wheré < i < n.
Now, ¢ corresponds t@ service vectors inC, and each of these service vectors (a) transmit packets tinem
queues€ were serving in0 and (b) discard packets from a certain (possibly empty) etublsqueues whictf were
not serving inO. Note that the set of queuéswere not serving ir® has2’ subsets. Thus, the number of service

vectors generated bg/ls 2j. Let El be one such service vector generatedﬁby;lncee and 61 transmit packets

from the same queue&@l) = r(0) for eachk € {1,...,n}.

The stability region ofD is a (possibly improper) superset of that®@f This is because as long as the arrival rate
of a queue is less thanit can be stabilized ir© by simply discarding all its packets before transmissidmg the
stability region of® is a superset of X : 0 < \; <1i=1,...,n} and asubsetofX : 0< \; <1i=1,...,n}.

For anyX that is stabilizable irO, the maximum throughput of a stable policy@his less than or equal to that of
the maximum throughput of a stable policy@h This is because every polick in O is a valid policy inO, since

for each? € £ there exists € £ that does not discard packets from any queue before trasiemjsand transmits
packets from the same queues whitkerves. Note thaf*, Ao, A, Ar and A can be defined similar to that
in O; the only difference is thal must be substituted bxl The performance guarantees for these generalized
versions, i.e., Theorems 1 to 5, hold dh are the same as those 6x

However, note that higher throughput and stability regi@m de attained in® while sacrificing fairness.
Specifically, for anﬁ that is stabilizable ir®, if an e—throughput optimal policyA in O attains a throughput which
is higher than that of am—throughput optimal policy in®, A discards packets before transmission from some
queues. ThusA attains higher throughput by being unfair to some queueso,Ah communication networks, in
presence of this option, some receivers may only receiveadl fiaction of packets transmitted by the corresponding



17

sources, which will in turn prevent them from successfulgading the transmitted information. Thus, this option
is not likely to be widely used (refer to Section VI-C).

B. Random rewards and randoth

We have so far assumed that the reward received by:thgueue int is completely determined by the service
vector chosen irt. We now allow the rewards to be random variables (r.v.’s} thepend on an external random
component in addition to the service vector (SubsectioB)IThis generalization is relevant in context of wireless
networks, where the success of a transmission is a randont ey@se probability depends on the fading state of
the channels. Thus, in one-to-many or one-to-one commtimicéhe reward is a r.v. whose distribution depends
on the service vector and the channel fading state betwesnsesmder-receiver pair. We generalixg, Ao, A,

Ar and Ay so as to maximize the throughput subject to stabilizing §etesn in presence of random rewards.

We first formally describe the generalization. We considesradom proces$S(t)}:>1 which in any slott is in
stateS; with probability b;, i = 1,2, ..., z, independent of its state in any other slot and also indeperafethe
arrival process in any slot. Herg, > 0 for each: € {1,...,z}. The policy knowsS(t) at the beginning of slot.

The reward received by the” queue wher? is the service vector and the procesg) is in stateS is a random

variable, R, (7, S), whose distribution depends dnand S. Let r; (¢, S). = E[Rk(é S)] < G, for every? and S.

We assume thaRy (7, S) = 0 if ¢, = 0, andrk(él,S) > r(ly, S) if 01 < 5 and ¢y, > 0. Thus, the throughput
QA( ) under a policyA and arrival rate vectok is

QA(X) = hnigéf ZZRk KA (u))

u=1 k=1
= liminf Z Z Ry (05 (u), S(u)) 05 (). (30)
u=1 k=1

Finally, when the arrival rate vector i8, the maximum throughput of any stable pollcstnaX( ) We next
elucidate the above formalisms with a specific example.

Example 4:In Fig.1 assume that the channel to each receiver is in goad, (fesp.) state w.[.8 (0.2), and
each receiver can decode the packet w.p. (0.2, resp.) when its channel is in good (bad, resp.) state argl it i
not in the range of any other sender that is transmitting @&ck he state of a channel in a slot is independent of
that in other slots and also independent of the states of ati@nnels in any slot. In each slot, the system knows
the states of all channels, but does not know whether a mrcean decode the packet its sender transmits. Thus,
the system haé4 states corresponding to different combinations of chastetes. Now, iff = 5 (¢ = (4, resp.)
Ri(7,S) equals the number of receivers in the §&, .. s R5} ({Rs, R4, R}, resp.) that can decode the packet
S transmits and if(¢ € {f1,43}), Ri(f,S) = 0. Next, Rg(ﬁ S) = 1if £, = 1 and R can decode the packet,
Ry(Z,S) = 0 otherwise. ThusR; (7, S), Ry(Z,S) are random variables whose distributions depend.a For
example rl(ﬁg,S) = 4.5 if S is such that the channels #®,, ..., R; are in good stater2(£ S)=091if lo =1
and S is such that the channel 8¢ is in good state.

First, note that sinc&€ does not depend of(t), the stability region of the system remains the same. Now, we
present the optimality results. We first describe rm\(A 0) can be generalized. In any sloin which S(t) = S.,
the generallzed pohc;@ ()\ 5) selects/; w. p. w;,. If 7; is selected in slot, then the system selects service vector
‘; (Q( )) (e, By =7; (Qt ))). The probability distributions, = [w1. --- w,,.] for everyz =1,...,Z
is computed using the following linear program.

CP(,0) - Maximize: U(X,6) = 7 b. [ X0 Sy wislisri (T, S2)

Subject to:

1) Y wi, =1foreveryze{1,...,Z}

2) w;, >0 foreveryie {1,...,m}andz € {1,..., 7}

3) 7 b, [ winbi] = Mg, + 6 for everyk € {1,...,n}.

Note that[l\D(X, 0) is similar to LP(X 0); the only difference is that the distribution for selegtithe service
vectors depends on the stafét) of the system.



18

Theorem 6 (Generalization al*):ALe/t\que any stabilizable arrival rate vector. Then, for every 0 there
exists ad such that for every € (0,6), LP()\, ) is feasible, and\*(\, d) is e-throughput optimal. Furthermore,

Q8O0 > T(X,6) =63 G = (V) — ¢ wp. 1 (31)

k=1
Both the statement and proof for Theorem 6 are similar toftratheorem 1. Hence, we do not prove Theorem 6.

Theorem 7 (Generallzatlon fahp): Consider a stabilizable arrival rate vectorand a scheduling pohcon
that chooses service vectﬁ‘?‘O( t) such that

Po (1)
= arg max {Z(Qw)—w(Gk—m@sa))))ek} (32)
7=1(G(r)) F=1

in every slott > 1. Then, for everyV” > 0, Ao stabilizes the system. Moreover, for every- 0, there exists)/
such that for every” > V, Ao is e throughput optimal.
Note that the only difference betweéﬁO( ) and /2o (¢) is that the former considers, (7, S(t)) in selecting the
service vector while the latter considesg?) in selecting the service vector. The statement of Theoresnsihiilar
to that of Theorem 7. Using the fact théfj(¢)},>; constitutes a Markov chain, Theorem 7 can be proved using
similar arguments and the same Lyapunov function as The@reWwle omit the proof for Theorem 7 for brevity.
We now generalize the framework for designing computatigrsample policies for maximizing the throughput
subject to stabilizing the system. We first generalize thiionoof inaccurate scheduling.

0if S(u) #SVu<t,

def
Let7(t,S) = { max{u <t : S(u) =S} otherwise.

Note thatr(¢, ;) is the last time instant beforesuch that the procesS was in stateS;. Thus, for everyu €
{r(t,S;)+1,...,t =1}, S(u) # S;. L $

We consider policiesA for which {I(t) = (Q(t),2(t), (2 (r(t,51)),...,02(r(t,S.)))}i>1 are irreducible,
aperiodic and countable Markov chains. Let

W(@.28) > (@ =V x (G~ 1h(L9))) (33)
k=1

Note that the only difference betweeW(@ ,S) and W (@, 7) is that the former depends on the expected
rewards associated with bothand S, whereas the latter depends on the deterministic rewastsased with?.

Definition 9 (Generalized-Inaccurate Policy): A policy A, is called generalizeg-inaccurate if in each slat
it selects a service vectdf (t) such that

W (G, (1))

> max W (QW),0sw) - X (1), (34)

Lerl,

=(G(0)

where X (f(t)) is a random variable that depends &ft) and if I(¢) has a stationary distribution, then the

expectatioriE[)A((f(t))] with respect to the stationary distribution, is upper baahdy .
The main difference betweemainaccurate policy and a generalizednaccurate policy is that the former seeks
to approximatenax ., W (Q(t),?) and the latter seeks to approximatex ., W <@(t),ZS(t)) at
_ =0(Q() =(Q)
every timet.

We next show that for appropriate choice ©f all stable generalizeg-inaccurate policies are—throughput
optimal.

Theorem 8:Let X be any stabilizable arrlval rate vector am an arbltrary generalizeg-inaccurate policy.
Then, for everye > 0 andy < oo, there exists/ such that for every > v,
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1) if {f( )}t>1 is a posmve recurrent Markov chain, the‘ny is e-throughput optimal, and

2) if E[X(I) | I(t) = I] < ~ for every[, then{I(t )}+>1 is a positive recurrent Markov chain, am, stabilizes

the system.

Both the statement and proof for Theorem 8 are similar to filmaiTheorem 3; the only difference is that we
consider/(t) as the system state in the former an¢t) as the system state in the latter. We omit the proof for
Theorem 8 for brevity.

Both A7 and A can be generalized using the framework of generalizéthccurate policies. For brevity, we
only describe howA i can be generalized. We denote the generalized versidvzofs Ag.

The policy A obtains the service VeCtC{tﬂ_ﬁR(t)}tzl as follows. In every slot > 0, A generates a random

service vector(t) among all service vector§e £ such thatZ(@(t)) — [ as per a d|str|but|orP Q). S(t)( ) that

may depend or)(¢) andS(t). In every slott > 1, after generating the random service vectdy; obtalnseAR(t)
using the following iterative algorithm:

—~

lﬁR =ar max w(Q ,E,S . 35
O =8 o, (@) @O (a0 @0) (G2 s) )

—

We only consider distribution£ 5 s(+) such that for every), S, P (BAO) > p for somey > 0.

First, we point out the key dlfference betwedn, andA . In each slot, Ar comparegV (-) for the randomly
generated service vectéft) with W (- ) under the service vector used in siot 1. Now, Ag compareshV/(-) for
the randomly generated service vecta) with W( ) under the service vectors used in slots 1 and (¢, S(t)).
For example, recall that there afé system states in Example 4. L&tt) = Ss, andty, ..., ts be the times at
which stated, ..., 64 were last encountered beforeThenA comparedV (-) for the randomly generated service
vector /(t) with W( ) under the service vectors used in slots 1, 5. This additional comparison is necessary as
the reward in the generalized system also depends on tleeddtétte process(¢). Hence, a service vectdrthat
maximizesIV (-) for some state5; may not do so for some other statg.

Theorem 9 (Generalization fcmR) Consider a stabilizable arrival rate vecforThen AR stabilizes the system
for every V' > 0. Moreover, for every > 0, there exists a such that for everyy > V, AR is e-throughput
optimal.

The statement of Theorem 9 is similar to that for Theorem 5.p¢éve Theorem 9 in the appendix.

Note that we have so far assumed that the maximum number &epamivals in each slat in any queuek is
upper bounded by a finite constasf,.,. But, even when the above assumption is relaxed, as longeaartival
distribution has finite second moment, all the results, pxtemmas 1, 3 and Theorems 4, 5, 9 hold.

We finally consider the case where the set of allowed seraotovs evolves randomly. SpecificallyC(t) }+>1
evolves as per a finite state random process whose state isl@nig independent of that in any other slot and
independent of the number of arrivals in any queue in any $hue stability region is now different from that when
L does not change. We refer to the interior of this new stgbiligion asC’. We assume that the policy knows
L(t) at the beginning of slot. All policies can be generalized to this case as well, udiregftamework of random
rewards. Here, consider a new system in which the set of atlogervice vectors is the power-set of the set of
queues, and the reward for serving each queugiis a slot if the service vector is not id(¢). The system is
otherwise similar to the actual system. Theorems 7, 8 and®fbo all = C’, and forﬁo and KR computed in
the new system. For smad| these policies rarely select service vectorsCi £(t) if X € C'.

C. Choice of£ and rewards in wireless networks

Our model allows each packet to be delivered to a subset efvers, and therefore induces some packet loss.
We can appropriately design the sétso as to ensure that the receivers can successfully decedpattkets
in presence of packet loss. For example, we can eliminatkepdass by restrictingC to consist of only those
service vectors that serve a queue only when its packet caelbered to all receivers. For example, in Figure 1,

L= {?1 =[00],l5=[10,05=[1 0]} will accomplish the above goal. But, observe thatif) C £2) then the

stability region in a system wher = £(1) is a subset of that in a system whete= £(2). Also, for anyX which
is in the stability region of both systems, the maximum tlgfgout (minimum loss, resp.) of a stable policy in the
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former is greater than or equal to (less than or equal to, yé&sat in the latter. Thus, such restrictions Srshould
be imposed only when the system can not tolerate any loss.

Many applications, e.qg., real time applications like audioleo, and some data applications like anytcasin
inherently tolerate certain amount of packet loss. Appilice can recover the information present in lost packets
when they use coding redundancy (forward error correc@8f, [30] or digital fountain [8]), path diversity (multipl
transmissions of the same packet in different paths [2&]yansmissions at higher layérg.g., TCP or RTCP
resend a packet at the transport layer if an end-to-end adkdgement is not received within a time-out period).
Also, for multicast transmissions a receiver may recovet [mackets by requesting transmission from another
receiver that has received the packet [9]. This “local recgVis often useful if receivers are clustered and the
distance between receivers in each cluster is significéesly than that between a receiver and the seddsinould
be larger in all the above cases.

Thus, £ must be chosen in accordance with application requiremants system design. The loss tolerant
applications and also the mechanisms for recovering loskgia are effective only when either each packet is
delivered to a certain minimum number of receivers, or eagfeiver receives a certain minimum fraction of
packets transmitted by its source. The former is useful fircast applications and local recovery mechanisms.
The latter is useful for real time traffic, and in presenceasfsl recovery schemes like forward error correction,
path diversity and retransmissions at higher layers. Infiisé case,L may be designed to consist of only those
service vectors that deliver each packet of quéete at leastd; receivers, wheréds, ..., d,) can be determined
based on application requirements and recovery mechanigsaglly,d; > 0 for eachi, which in turn implies that
packets can not be discarded from the queues before trasismis

In the second case&;, may be designed to consist of only those service vectorsethatire that each receiver
receives a packet transmitted by its source with a certaiminmim probability, which can in turn be determined
in accordance with application requirements and systeriguée.g., the amount of coding redundancy, multi-path
diversity and local recovery used). Note that the desigd @inder this requirement may be computationally hard
as in the worst case each subset of the posa&iblgervice vectors may need to be examined to determine whether
the desired policy, e.g., one amonyg, Ap, A,, Ar andAg, attains the above goal. But, this computation need
be performed once every time nodes move, and hence only orstatic networks, and in-frequently in networks
where nodes move slowly. Furthermore, heuristic selecttoategies may be used to ensure fast computation, e.g.,
heuristics for the coverage problems [22] may be used if vgeras the knowledge of the probability that a service
vector inL is selected by the given policy. Designing computationsitgple algorithms for appropriately selecting
L given the requirements of the application and the higheerlgyotocols and the service vector selection policy
(e.g., one among\*, Ap, A,, A7) is a topic of future research.

Finally, the reward functions can also be appropriatelgcteld so as to ensure that optimal policies prefer service
vectors that facilitate successful decoding of informatieor example, if a receiver has limited loss tolerance gwin
to application requirements and/or the nature of its lossevery schemes, the reward associated with service vectors
that deliver packets to this receiver can be made high. Apfate selection of reward functions constitutes a topic
for future research.

VIl. RELATED WORK

Tassiulaset al have characterized the stability region of constraineduqimy networks, and have obtained a
scheduling policy that maximizes the stability region [3SEkveral interesting generalizations of this basic result
have been obtained in context of mild assumptions on aramelservice processes [1], [5], [18] and a diverse class
of systems including wireless networks [19], [34], inpueged switches [23], parallel processing systems [6] and
manufacturing systems [2]. We consider constrained qugueetworks where different queues receive different
rewards for service, and more importantly, the reward olethiby the same queue may be different depending on
the set of concurrently served queues. An important pedioea goal in such networks is to maximize the reward
per unit time or the throughput subject to stabilizing thetegn. Our contribution has been to design a scheduling

fIn anycast, a packet need only be delivered to a certain mimimumber of receivers. An example application of anycaatdkent-server
query system. When a client needs to locate a service, itsnégduery packet to reach a certain minimum number of server
iThese retransmissions are treated as separate packetgeatdgers.
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policy that attains this goal. We have earlier designed &duling policy that attains the same goal but only in a
system with a single queue [12], [16].

Recently, Neely has considered a queueing system in whielaéh slot different queues can be simultaneously
served at different rates [27]. The rate vector can be sslerhong some given choices, and different selections have
different costs. In this scenario, Neely has proposed adsdimg policy that minimizes the cost while stabilizing
the system. In our case, in each slot all queues that aredserust be served at the same rate, but receive different
rewards depending on the service vector. We maximize tlad evard achieved per unit time subject to stabilizing
the system. Thus, in some sense, we study the dual of thegonosiudied in [27]. Concurrent with our work,
Stolyar has investigated a similar problem, and has prapogéimal policies similar toA*(X, §) and Ao [33]5.

Our proof techniques are however significantly differemt also simpler, than that used by Stolyar. Furthermore,
the optimal policies proposed by Stolyar, and also the bagtonal poIiciesA*(X, 0), Ap we propose, turn out
to be computationally complex. One of our important conttitns has been to provide a general framework for
designing optimal policies that are also computationdhlypde. The design of this general framework in turn relies
on the techniques used for proving the optimalitym*f(X, 0) and Ap.

Bonaldet al also showed that a policy that maximizes the instantandwosighput does not attain the system
stability region [7]. But, while they focus on a wire-lineta@rk we consider more general scheduling constraints.
Also, they assume that flows arrive as per an arrival proaeg®ach flow arrives with a random number of packets,
whereas we assume that the set of flows do not change but pakee in each flow as per an arrival process.
Finally, the most important difference is that they invgated the tradeoff between fairness and stability, whereas
we maximize the average throughput subject to stability.

We now describe some interesting open problems, and how sximtng results can be used to solve these
problems. We have assumed that the arrivals and the randeand® are temporally independent, and every packet
can be served in slot. An interesting direction for future research is to g&tize our results for all stationary,
ergodic arrival, service and reward processes. Seversdasaof policies have been shown to maximize the stability
region in constrained queueing networks under the above assumptions on the arrival and service processes
[1], [5], [18]. The analytical techniques proposed in th@sgers may be useful for the above generalizations in
our context.

We have assumed that a packet can be transmitted at mostMoigethat since each additional transmission
increases the energy consumption, and the interferenceti@r transmissions, several existing medium access
policies, e.g., IEEE 802.11, transmit a packet only a bodmdember of times, and subsequently discard the packet
even if it has not reached some, or all, of its receivers. Vgairag this bound to be one which corresponds to a
special case of the above. Note that in the broadcast mode 88E11 transmits every packet only once at the
MAC layer, which is consistent with our assumption. An iet&ting open problem is to maximize the throughput
subject to stabilizing the system when each packet can hertrited up tok times wherek > 1. We have recently
proposed a policy that minimizes, in a network consistingaafingle multicast sender, the amount of time each
packets waits at the head of line position of the queue béfasdransmitted, when each packet can be transmitted
up to k times wherek is a parameter [13]. It will be interesting to investigateetier similar results can be
obtained for a network consisting of multiple queues andtidrethe guarantee on the waiting time at the head of
line position can be used to obtain guarantees on the thpuigind the stability region.
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APPENDIX
PROOF OFTHEOREM 1

First, we prove two supporting lemmas (Section A) and subsetly prove Theorem 1 using these lemmas
(Section B). In Lemma 4, we show thatXfis stabilizable, then there exisis> 0 such that LR\, §) has a feasible
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solution. Thus, poIic;A*(X, 0) is well defined. In Lemma 5, we upper bound the throughput pfstiable scheduling
policy. For stating these lemmas, we generalize the defistof LPQ, 8) andU(X, ). Let§ = (01,...,8,).
LP(X,8) :- Maximize: U(X,8) = 32, 3, wilirri (£:)
Subject to:
1) >, w; =1 andw; > 0 for every:
2) S wiliy = Mg, + 0y, for everyk.

A. Supporting Lemmas

Lemma 4: Let/\ € C. Then, there exists a neighborhat aroundX such that LPX, 6) is feasible ifX+4 € Aj.
Proof: Let )\1 € C. SinceC is the interior of the convex hull of,

Z cil;, wheree; >0, Vi anchl_l
=1 i=1

Thus,é=[c; -+ ¢n] is a valid distribution. Moreove; is a feasible solution for LR, — & 5/) for everyd'.
Now, consider a glver)\ € C. SinceC is an open set, there exists an open ball centered (@enoted by\o)

such that\, € C. Thus,X + 6 € C for every X + d € Ny. Now, as shown above, this implies that (2P5) has a
feasible solution. [ |

Lemma 5:For every stabilizable\, Qunax(X) < U(X,0) w.p. 1
Proof: Consider any policyA that stabilizes\. .
Let gf(t) denote the number of slots in whiekh usest; as the service vector till timg i.e.,

t
= 2—21 1{ZA(u) 7

Now, £2(t) > 0, for everyt > 1, (36)
m A
M = 1, for everyt > 1, (37)
N
Jim M = Az wW.p. 1 for everyk. (38)

The last equality follows sincé is stable.
Consider anyt, and let for eachk,

Sl 6 () ik

t
Let & = (cit,...,cnt). Since from (36), (37) and (39§:‘Atﬂ is a feasible solution of Lﬁ,c}),

D i Eﬁzlff(t)&m(&) < U G).

Chyt = — Ak (39)

(40)

We will show that glven any > 0, w.p. 1 there exists (a) a such that) < &; < . for all 4, 1 < i < n, and (b)
t such that for every > ¢
Dot ke 15 (t)ligre(l ) <

sup {U(X,E’)}. (41)
—6<8 <8
From Lemma 4, there exists a neighborhobig aroundX such that LIPX,5) is feasible ifX + & € . Thus,
gi\ien any. > 0, thereqexﬁists @ such that0 géi < ¢ for allz', 1 <i<n, and )\ + & € N for all & such that
—§ < 0" < 6. Thus,U(\,d") is defined for allé’ such that-6 < ¢’ < 6. From (38), w.p.1 there existg such that
for everyk, t > t, =0 < ¢kt < 0. Thus, for everyt > 1, U()\ G) <sup_ <5< {U(A 5/)}. Now, (41) follows
from (40). o

Now, from (41) and by the continuity df(A,9), w.p. 1,

hItTllnf ZZ IZk lé. ( ) Zkrk( ) S U(X, 0)

Since A is an arbitrary stable policy, the lemma foIIows from the @dmequality, (1) and Definition 6. ®
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B. Proof of Theorem 1
Proof: From Lemma 4, there exists a neighborhadglaroundX such that LRX, §) is feasible ifX+ 5 € Nj.
Thus, there exists & > 0 such that\ + (4,...,0) € A for all §, 0 < § < 6;. Thus, by Lemma 4, LR\, §) has a
feasible solution for every, 0 <4 < 4;.
Now, from continuity ofU (A, ) it follows that

lim (U(\, 6
6—0

- 5§:Gk
k=1

Thus, from Lemma 5 it follows that for every> 0 there exists) > 0 such that for every) < < 3, U(X, J) is
well-defined and

UX,8) =38 Gi = Qunax(X) — e wp. 1 (42)
k=1
Selectd such thatd) < § < 5. Now, A*(),0) is well-defined. SinceA*(\,d) selects thekth queue for service
w.p. A\, + 4, the rate at which thé&th queue is offered service is greater than its arrival MEJCe,{Q(t)}tzl
underA*(X, 0) constitutes a positive recurrent Markov chain, and the etguequeue lengths under the stationary
distribution of this Markov chain are finite. Thud*(X, ) is stable.
Let v;(u) = 1 if A*(X,8) selectsf; in slotu, and0 otherwise. Thus,

g;ngotZ% = w;(X,6) w.p. 1 (43)
Jim ZZ% Mik1(Q, (w)>0) = Ak W.p. 1, (44)
u=1i=1
t m
!
and lim — ; ;%(u)&k =X\ +0wp. 1 (45)

Relation (44) follows becausA*(X,d) is stable and>! _ S yiu u)lir1{,w)>0y iS the number of packets

)
departing from the:*" queue in(0,t). Relation (45) follows from (43) and LR, §). Now,

QA*(X,&)(X)
o T T S i@t (Q) e (4 (Gw))
% t

(the limit exists w.p. 1 sincéQ(t)},>; underA*(X, )
constitutes a positive recurrent Markov chain)

. PR DD S ’Yz'(u)&km(@)l{czk(u)>0}

t—oo

(sincery () > ri(f;) |f 0; < 0; and £y, > 0)

Zu:l Zk:l Zi:l yi(u)l z’krk(gi)
¢
S op o ’Yz'(u)&krk(&)l{qzk(u)zo}

= lim
t—o0

— lim

t—o0

Zu 1 2k=1 G ZZ 1 Yi(Wlik1Q, (w)=o)
t
(from (43), LR, 8) and sincer,(4;) < Gj, Vi)

> U(X,6)— l

> U(X,0) =) Gy w.p. 1 (from (44) and (45)) (46)
k=1
The result follows from (42) and (46). |



PROOF OFTHEOREM 4
Proof: Let X be stabilizable and

n

FEY() =D (Qu(1))*.

k=1
Using an analysis similar to that for obtaining (8),

E /(YT +1)1) - f(¥(T1) | T(T1)]

< MT? + nApaxT + T 2Qu(Tt) Mg

k=1
T—-1
23 E [ G(Tt + K), P27 (Tt + K)) | ?(Tt)]

K=

k=1
From Lemma 1 and (47), it foIIows that

B [J(V((T + 1)) — F(P(T0) | V(T)]

< MT? 4 nAmaxT + 20T (Amax +2) + T > 2Q1(H) M

k=1
T-1
—2) E max ~ W(Q(Tt+ K),l) | Y(Tt)
K—0 Lec,

| (=0(Q(Tt+K))

—2VY E Zn:[Gk—rk(FAT(Tt—FK))]KkAT(Tt+K)]}7'(Tt) .

k=1
Using arguments similar to those in the proof of (12) from (8% can prove that

E|f(P((T + 1)t) = f(V(T1) | ¥(T0)]
< MT? 4+ nApaxT + 20nT%(Apax + 2) — 2T Zn: 5Qu(1)
k=1

+2VT > " Gr(Me +6) — 2VTU(X,0)
k 1

-2V ZE

K=0

Zn: G —rr((P7 (Tt+ K))ea™ (Tt+K) Y (Tt) |
k=1

whered is such thatA*(X, §) is ¢/2-throughput optimal.
1) Proof for stability ofAr: : From (48), for everyy” > 0,

E[f(P((T +1)0) - F(7(T8) | ¥(T0)]

< MT? 4 nApaxT + 20T (Amax +2) — 21> Qu(t)

k=1

+2VT Y Gr(A +6).
k=1

1
—2VZIE [Z (Gl =1 ((P7 (Tt + K)o (Tt+K)|Y (Tt) | .

25

(47)

(48)
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Let By = {V = (Q,0) : 1€ L, 5o Qk < %5 Sy Gr(\ + 0) 4 M Anact Bl et DLy Thys,

E [f(?((T +1)t) — F(Y(T1)) | ?(t)]
{ co forall Y(Tt),

—1 if Y(Tt) & Br.

Thus, sincelBr| is finite, by Foster's Theorem (Theorem 2.2.3 in [20]), (T't)};>1 is positive recurrent and
the expectations of the queue lengths under the statioriafgbdtion of {Y (7't)};,~, are finite. Thus, since the

queue lengths in consecutive slots can differ only by a @msfAr stabilizes the system.
2) Proof thatQ27(\) > Quax(X) — e Taking expectation on both sides of (48) with respect to tatianary

distribution for {Y (T't)};>1, we obtain
E[£(7((T +1)1) - F(F(T1))]

< MT? + nAmaxT + 20T? (Amax + 2) — 2T Z SE[Q(Tt)]

k=1
+2VT > " Gr(Mi +6) — 2VTU(X, )
k 1
—2V Z E | Y [Gr — rp(f27 (Tt + K)ep (Tt + K) | . (49)
k=1

Since {Y (Tt)}¢>1 is a positive recurrent markov chain, afitf (t),t%7T};>; is a periodic markov chain with

period T,
T-1

E[¢S™(Tt+ K)] =T lim — ZBAT =Tl W.p. 1, (50)
u—00 U
K=0 v=1
T—1 n .
and > > E[ry (027 (Tt + K))lp" (Tt + K)]
K=0k=1

= T lim EZZW (0P (v EAT( ) w.p. 1
v=1 k=1

= TOAT(X)  (from (1)). (51)
From stationarityE[f (Y (T + 1)t))] = E[f (Y (Tt))]. (52)

From (49), (50), (51) and (52), it follows that
Q4 (X)
- & MT 4 nAmax + 20T (Apax + 2)
> _ —
> U(X6) =6 ; Gr, %

o € MT+nApax + 2nT (Ampax + 2)
> _t_
- Qmax()\) 5 2V
(from Theorem 1)
2 Qmax( ) —eif V> MT + nAmax + 2nT(Amax + 2) .
€

The result follows since\ stabilizes the system as well.
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PROOF OFLEMMA 2

Here, we outline the proof, but provide the complete prooflif]. _
Let the system usé\; and the arrival rate vectox be stabilizable. Let (t) = (Q(t ,(2n (1)) represent the
system state undek . Consider a Lyapunov functionf(Y (t)) = f1(Y (t)) + f2(Y (t)), where

n

hEY ) = Y (@Q1)?

k=1
2
LY ®) = [ZQk (OPT eAR())].

Using similar technique as that in the proof of Propositiasf [34], we show thafi[f (Y (t+1))— f(Y (¢ DY Y (t) =
] < 0 for all but the finite number of 's. Thus, by Foster's theorem (Theorem 2.2.3 in [20]), thecpss(Y () }+>1
is a positive recurrent markov chain. Hence, the systemaislestunderA . [ |

PROOF OFTHEOREM 9

Let the system usA r and the arrival rate vector be stabilizable. Lef (t) be the system state undarg. Using
similar arguments as in the proof of Lemma 2, we can prove {tﬁett)}tzl IS a positive recurrent markov chain.
Next, we outline the proof.

Let EﬁO(t) denote the service vector selected&gg; in slott if the queue length vector and the random process
S at the beginning ot are @(t) and S(t). As in the proof of Lemma 2, we consider the Lyapunov function

FU(1) = fH1T(1) + fo(I(t)), where
ATE) = D (Qr®)?,

k=1
2
RU1) = [ZQk (ere —ﬁ,?f*(t))] :

Using/W (@( ), S(t )) instead ofiV/ (Q( ) ) and the same arguments as in the proof of Lemma 2, we can show

that (a) there exists a constaRi > 0 such thatE[f(I(t + 1)) — f(I(t)) | I(t)] < B, for all I(t), and (b) there
exists a constanBz > 0, such thatE[f(I(t +1)) — f(I(t) 1 I(t)] < 0 for all I(t) such thaty}_, Qx(t) > Bs.
Thus, since {7 : Y1 Qr < BQ}] is finite, the stability of Ay follows from Foster's theorem (Theorem 2.2.3 in
[20]). Thus, the first part of Theorem 9 follows.

We now prove thalV (Q(t), EAO( t),S(t)) — W(Q(t),éﬁR(t),S(t)) < i (
part of Theorem 9 follows from the first part of Theorem 8.

Recall thatP (S(t) = S;) = b; for eachi € {1,...,z}. SincePQs(F&)) > p for every @, S, andb; > 0
for eachi € {1,...,z2}, (EﬁR(t),S(t)) = (FAO(t),Si) infinitely often w.p. 1 for eachi € {1,...,z}. Let

{EKk,i}Kk>1 be the slots in Whicl”(eﬁR(t),S(t)) = (FAO (t),S,-). Again, sinceP@S(?AO) >y for everyQ, S,
E[R\K+1,i — R\Kﬂ'] < 1/(1)@#) for eachs ¢ {1, c. ,Z}.
Without loss of generality, leS(t) = S; andt € [k, Kx+1,; — 1] for someK, i. Now,
Qr(t) < Qr(Fk,)+ Amax(Kr+1,i — RKi) V k. (53)
Qr(t) = Qu(t—1)—1Vk. (54)

TNote that henceforth all expectations are under the statjodistribution of the processI(t)}.

Amax + 1), Then, the second
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o~

W(@(), 0% (1), S())
< W(Q(RK), 020 (1), S(1)) + nAmax(Ric+1i — Frci)
(from (33) and (53) and since for evefyc L£,i=1,...,2
W(G1,7,8) — W(G1,0,5) < 3 (Qu — Q27)5)
j=1
< W (Q@xa), (o) (AFna))  S0)
+nAmax(k\K+1,i - 7%K z)
(sinceW (§, 7, 8;) < W(G,
< max W (Q(Hm) ‘,
I=0(QFx.))
= W(QFEr), 10 Rrci), S(1)) + nAmax (Rici— i)
(from (32) sinceS(t) = S(kk.i))- (55)

—

(Q)v z)ngﬂ_l )

14
S(t) max(ﬁK—i-l,i_ﬁK,i)

Next,

—

t
A0y, (P (r(t,5()) (G®)) ,S1)) (from (35))

G(r (LSW)), B (7 (1.8(1), SW))
—n(t—7(t,8(t))) (from (54)).

Thus, sinceky; = 7(7(...7(t,5;),Si...),Si),
W@, 2 (1), S())
> W (Q(,{KZ) Pr(Fgea), S(t)) — n(Rrs1i — Frci). (56)

—

Thus, from (55) and (56), and since from the definitiorn=af;, ZER(RKJ) =029 (KK ),
W(Q(1), 23 (1), 8(1)) = W(Q(2), £7(2), S(1))
S n(AmaX + 1)(EK+1,7; - EK,i)'

The result follows sinc& Kk 11 — ki) < 1/(bip) for eachi € {1,...,z}. [ |
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