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Abstract

We consider a class of queueing networks referred to as “generalized constrained queueing networks” which
form the basis of several different communication networksand information systems. These networks consist of a
collection of queues such that only certain sets of queues can be concurrently served. Whenever a queue is served,
the system receives a certain reward. Different rewards areobtained for serving different queues, and furthermore,
the reward obtained for serving a queue depends on the set of concurrently served queues. We demonstrate that the
dependence of the rewards on the schedules alter fundamental relations between performance metrics like throughput
and stability. Specifically, maximizing the throughput is no longer equivalent to maximizing the stability region; we
therefore need to maximize one subject to certain constraints on the other. Since stability is critical for bounding
packet delays and buffer overflow, we focus on maximizing thethroughput subject to stabilizing the system. We
design provably optimal scheduling strategies that attainthis goal by scheduling the queues for service based on
the queue lengths and the rewards provided by different selections. The proposed scheduling strategies are however
computationally complex. We subsequently develop techniques to reduce the complexity and yet attain the same
throughput and stability region. We demonstrate that our framework is general enough to accommodate random
rewards and random scheduling constraints.

Index Terms

Constrained queueing networks, stability, throughput, optimization, wireless, multicast, randomized algorithms

I. INTRODUCTION

Constrained queueing networks have been extensively used to model several systems of practical interest including
wireless networks [35], [34], [25], [27], input queued switches [23] and database systems [34]. A constrained
queueing network is a collection of queues such that only certain sets of queues can be concurrently served; these
“schedulable sets” depend on the underlying system. Whenever a queue is served, the system receives a certain
reward. In such systems, queues need to be selected for service such that (i) the total reward earned by the system
per unit time (“throughput”) is maximized and (ii) each queue is served often enough such that the mean queue
length in each queue is bounded (“system stability”). The two goals turn out to be equivalent if the service of each
queue (i.e., the transmission of each packet) fetches the same reward. The performances of such networks are now
reasonably well-understood owing to several seminal contributions [1], [3], [4], [6], [24], [25], [26], [35].

We now investigate constrained queueing networks where different rewards are obtained for transmitting packets
from different queues, and furthermore, the reward obtained for serving a queue depends on the set of concurrently
served queues. Suchgeneralized constrained queueing networksform the basis of several communication and
information systems of practical interest, but have not received adequate attention in the research community.
We first provide examples of such systems, and subsequently demonstrate that new resource allocation goals and
techniques are required for capturing the trade-off between different performance metrics in these systems.

First, consider one-to-many communications in wireless networks. Here, a sender may wish to transmit its packets
to multiple receivers in its communication range. Due to thebroadcast property of the wireless transmission, a single
transmission may reach all these receivers. Here, each sender constitutes a queue, and the reward attained by a
transmission is the number of receivers who successfully receive it. Since different multicast groups have different
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Fig. 1. Figure shows an example to demonstrate the application of generalized constrained queueing networks in one-to-many communication
in wireless networks. There are two sendersS1, S2 and 6 receiversR1 to R6. The dashed circles indicate the communication ranges of
the senders. A single transmission fromS1 can reach all its receivers,R1, . . . , R5. Here,R6 is S2’s receiver. Each sender corresponds to
a queue. Here,L = {~ℓ1 = [0 0], ~ℓ2 = [1 0]~ℓ3 = [0 1], ~ℓ4 = [1 1]}. Here, rk(~ℓ1) = 0, k ∈ {1, 2}, r1(~ℓ2) = 5, r2(~ℓ2) = 0, r1(~ℓ3) = 0,
r2(~ℓ3) = 1, r1(~ℓ4) = 3, r2(~ℓ4) = 1.

T1 T2 T3 T4

U1 U2 U3

Fig. 2. Figure shows a database system with four tablesT1, . . . , T4 that are accessed by three applicationsU1, U2 andU3. The arrows
indicate the tables each application updates. When there are concurrent requests for updates in the same table, the request from an application
with the lowest id is honored. Note that if all three applications try to simultaneously update the database, thenU1, U2 and U3 achieve
rewards 3, 1 and 0 respectively. If onlyU2 andU3 try to simultaneously update the database, then they achieve rewards 2 and 1 respectively.

number of receivers, the reward attained by serving different queues will be different. Furthermore, whether a
receiver can successfully decode a transmission depends onother transmissions in its neighborhood. Thus, the
reward associated with each transmission depends on the setof queues served concurrently. For example in Figure 1
whenS2 is transmitting toR6, R1 andR2 cannot receive a transmission fromS1 as both the transmissions will
collide at these receivers. Hence,S1 receives a reward of 5 whenS1 alone is served, and it receives a reward of 3
whenS1 andS2 are served together. Thus, the reward forS1 depends on the set of queues served.

Now, consider one-to-one communication in wireless networks. Success of each transmission depends upon
the interference due to concurrent transmissions in the network and the channel state. Let the reward for each
transmission be1 if the transmission is successful. Thus, different transmissions attain different rewards depending
on the set of queues served. Furthermore, here, the same selection of sessions may generate different rewards at
different times as the interferences randomly change due tofading - rewards may therefore be random.

Next, in many database systems, a single update operation from an application involves updates in many tables.
Here, each application constitutes a queue, and the reward attained by an update operation is the number of tables
that are successfully updated. Since different applications require to update different number of tables, rewards
received by serving different queues will be different. Moreover, if many applications try to update the same table,
then only one of them can do so, as the access to these tables iscontrolled to avoid inconsistencies due to concurrent
updates. Thus, the reward for a queue depends on the set of queues served. We demonstrate this using a specific
application in Figure 2.

Our contribution is to provide a mathematical framework formodeling and optimizing key performance attributes
in generalized constrained queueing networks. First, we define appropriate performance metrics (Section II). Next,
we demonstrate that the fundamental relations between performance metrics such as throughput and stability change
due to the dependence of the rewards on the set of queues served (Section III). Specifically, maximizing the
throughput is no longer equivalent to maximizing the stability region; we therefore need to maximize one subject
to certain constraints on the other. Since stability is critical for bounding packet delays and buffer overflow, we focus
on maximizing the throughput subject to stabilizing the system. We design provably optimal scheduling strategies
that attain this goal by scheduling the queues for service based on the queue lengths and the rewards provided
by different selections (Section IV). These scheduling strategies are however computationally complex. We next
develop a framework to reduce the computational complexityand yet attain the optimum performance (Section V).
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Finally, we consider some possible generalizations (Section VI) and describe the related work (Section VII).

II. SYSTEM MODEL

We consider a queueing network withn queues. We assume that time is slotted. In each queuek ∈ {1, . . . , n}
packets arrive as per arrival process{Λk(t)}

∞
t=1, whereΛk(t) is the number of arrivals in queuek during slott.

Arrivals for the same session in different slots are independent and identically distributed. The arrival processes
for different sessions are independent but not identicallydistributed. We assume thatΛk(t) ≤ Amax in each slott

and for anyk. Let λk
def
= E[Λk(t)] and~λ = (λ1, . . . , λn) denote the arrival rate vector. Each packet can be served

in at most one slot, and it departs the system at the end of the slot in which it is served. This assumption has
been motivated by the fact that in wireless networks multiple transmissions of the same packet consume additional
energy and increase the interference for other transmissions. We denote byQk(t) the queue length of thekth

queue at the beginning of slott. Also, ~Q(t) = [Q1(t) · · · Qn(t)].
A queue can only be served if it has a packet to transmit, and ineach slot in which it is served it transmits

one packet. The indicatorℓk(t) = 1 if the kth queue is served in slott, and is0 otherwise. The vector~ℓ(t) =
[ℓ1(t) · · · ℓn(t)] denotes the service vector in slott. The system constraints may prohibit simultaneous service
of certain queues. Thus, all2n n-dimensional binary vectors may not constitute a valid service vector. LetL =
{~ℓ1, . . . , ~ℓm} denote the set of all valid service vectors, andℓik denote thekth element of~ℓi ∈ L. Clearly m ≤ 2n.
For example, Figure 1 elucidates a constrained queueing network with n = 2 andm = 4. Now, if the system has
an additional constraint that all the receivers should receive every packet, then bothS1 andS2 can not be served
concurrently. Thus, in this case,L =

{
~ℓ1 = [0 0], ~ℓ2 = [1 0], ~ℓ3 = [0 1]

}
andm = 3.

We assume the following aboutL. If ~ℓ ∈ L, then every~ℓ1 ≤ ~ℓ also belongs toL, where the inequality is
element-wise. In other words, if a certain set of queues can be served simultaneously, then any subset of these
queues can also be served simultaneously. Note that this assumption holds in wireless networks. For each~ℓi ∈ L
and queue length vector~Q, we define ann-dimensional vector~ℓi(~Q) as follows. Thekth component of~ℓi( ~Q)
equalsℓik if Qk > 0, and is0 otherwise. Clearly, for each~ℓi ∈ L and ~Q, ~ℓi(~Q) ∈ L.

The system receives a reward for serving each queue, and the reward obtained for serving thekth queue in slot
t, rk(~ℓ(t)), is a function of the service vector~ℓ(t) in slot t, for eachk. We assume thatrk(~ℓ(t)) ≤ Gk < ∞ for
eachk. We initially assume that the reward for each queue is a deterministic function of the service vector, and
later generalize to allow the reward to randomly depend on the service vector (Section VI). Refer to Figure 1 for
some example rewards.

We assume the following properties of the reward function. First, if ℓk = 0 thenrk(~ℓ) = 0. Thus, if a queue is
not served then it does not receive any reward. Next, for any~ℓ1, ~ℓ2 ∈ L if ~ℓ1 ≤ ~ℓ2 and ℓ1k > 0, rk(~ℓ1) ≥ rk(~ℓ2).
Thus,rk(~ℓ( ~Q)) ≥ rk(~ℓ) for any ~Q, ~ℓ ∈ L andk such thatQk > 0. We justify this assumption in context of one of
the application scenarios, wireless networks. In wirelessnetworks, when fewer queues transmit, the interference is
less in the system and therefore, usually, the queues that transmit receive higher reward. If this is not the case, e.g.,
when the probability of success increases with increase in interference due to the use of sophisticated decoding
strategies, then if an empty queue is selected, it can transmit a signal∗ so as to ensure that other queues do not
receive less reward because it is empty. This may increase the overall energy consumption, but our focus here is
to maximize the throughput. Joint minimization of the energy consumption and maximization of the throughput
consists of interesting topics for future research. The assumption can also be similarly justified for database systems.

Next, we present some important definitions.
Definition 1 (Scheduling Policy):A scheduling policy∆ decides the service vector~ℓ∆(t) in each slott ≥ 1 such

that ~ℓ∆(t) ∈ L andℓ∆
i (t) = 0 if Qi(t) = 0.

This class includesoffline policies that decide their service vectors based on the knowledge of packet arrivals in
each past, present and even future slots.

Sincerk(~ℓ
∆(u)) = 0 if ℓ∆

k (u) = 0, andℓ∆
k (u) = 0 if Qk(u) = 0, rk(~ℓ

∆(u)) = 0 if Qk(u) = 0. Thus, irrespective
of the scheduling policy, no queue receives any reward in a slot in which it is empty.

∗Transmission of a signal from an empty queue is not considered service for the empty queue.
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Definition 2 (Throughput):For an arrival rate vector~λ, the throughput under a scheduling policy∆, Ω∆(~λ), is
the reward it receives per unit time. Mathematically,

Ω∆(~λ) = lim inf
t→∞

1

t

t∑

u=1

n∑

k=1

rk(~ℓ
∆(u)).

Sincerk(~ℓ
∆(u)) = 0 if ℓ∆

k (u) = 0, andℓ∆
k (u) ∈ {0, 1},

Ω∆(~λ) = lim inf
t→∞

1

t

t∑

u=1

n∑

k=1

rk(~ℓ
∆(u))ℓ∆

k (u). (1)

Note that if the rewardrk(~ℓ) is the number of receivers of sessionk that receive a packet when the service
vector is~ℓ, the throughput under∆ is the sum, over all receivers, of the number of packets each receiver receives
per unit time. This is consistent with the usual definition ofthroughput in a communication network.

Definition 3 (Loss):The loss under a scheduling policy∆ at any slott is the difference between the sum of the
maximum possible rewards of the queues it serves att and the reward it obtains att. The loss under a scheduling
policy ∆, L∆(~λ), is its total loss per unit time. Mathematically,

L∆(~λ) = lim inf
t→∞

1

t

t∑

u=1

n∑

k=1

(
Gk − rk(~ℓ

∆(u))
)

ℓ∆
k (u).

In a communication network, usually, the loss experienced by a receiver denotes the number of packets transmitted
by its source that it does not receive per unit time, and the network loss denotes the sum of the losses of all receivers.
Again, if the rewardrk(~ℓ) is the number of receivers of sessionk that receive a packet when the service vector is
~ℓ, then the formal definition of loss in Definition 3 has the sameconnotation as above.

Definition 4 (System Stability):The queueing system is said to be stable if the time average ofqueue lengths is
finite for each queue, i.e.,lim supt→∞

P
t
u=1

Qi(u)
t

< ∞ with probability (w.p.)1 for eachi. A scheduling policy
that stabilizes the system is called a stable scheduling policy. The stability region of a scheduling policy is the set
of arrival rate vectors for which the system is stable under the policy. The stability region of the systemΘ is the
union of the stability regions of all scheduling policies. Ascheduling policy whose stability region equalsΘ is said
to maximize the stability region.

Let C denote the convex hull of the vectors inL andC denote the interior ofC. In their seminal work, Tassiulas
et al (Theorem3.2, [35]) showed thatC ⊆ Θ ⊆ C.

Definition 5 (Stabilizable Arrival Rate Vector):We denote the arrival rate vector~λ as stabilizable if~λ ∈ C.
Definition 6 (Throughput Optimality):A stable scheduling policy∆ is said to be throughput optimal if w.p.1

it attains the maximum throughput among all the stable scheduling policies. We denote the throughput attained by
such a policy for arrival rate vector vector~λ ∈ Θ by Ωmax(~λ).

Definition 7 (ǫ-Throughput Optimality):A scheduling policy∆ is said to beǫ-throughput optimal for aǫ > 0 if
(a) it is stable, and (b)Ω∆(~λ) ≥ Ωmax(~λ) − ǫ w.p. 1.

In the next section, we show that in generalized constrainedqueueing networks maximizing the stability region is
not equivalent to maximizing the throughput. Since stability is imperative for guaranteeing bounded delay and for
limiting packet drop due to buffer overflow,we aim to maximize the throughput subject to stabilizing thesystem.
Specifically, our goal is to designǫ-throughput optimal policies.

We now investigate the relation between the throughput and the loss.

Now, L∆(~λ) =

n∑

k=1

Gk lim inf
t→∞

1

t

t∑

u=1

ℓ∆
k (u) − Ω∆(~λ).

Note that if a system is stable under policy∆, limt→∞
1
t

∑t
u=1 ℓ∆

k (u) = λk w.p. 1. Thus,L∆(~λ) =
∑n

k=1 λkGk −

Ω∆(~λ) w.p. 1. Thus, if ~λ is in the stability region of policies∆1, ∆2, Ω∆1(~λ) + L∆1(~λ) = Ω∆2(~λ) + L∆2(~λ) w.p.
1. Thus, for any stabilizable arrival rate vector~λ, a throughput optimal policy must also minimize the loss, and
an ǫ-throughput optimal policy attains a loss which is at mostǫ more than the loss of any stable policy. Thus, we
focus on obtainingǫ-throughput optimal policies.
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III. R ELATION BETWEEN THROUGHPUT AND STABILITY

First, we examine what decisions policies are likely to makeif they want to maximize only the stability region,
or if they want to maximize only the throughput. A policy thataims to maximize the stability region serves as many
packets as possible in a slot while giving priority to longerqueues. If the policy aims to maximize the throughput,
then it may wait and transmit only when the reward is high so that each packet fetches the maximum possible
reward. Thus, the control decisions for maximizing the stability region and for maximizing the throughput are not
equivalent.

Using an example that is motivated by one-to-many communication in wireless networks (Figure 1), we next
demonstrate that a policy that maximizes the stability region does not maximize the throughput.

Example 1:Consider the system shown in Figure 1. Let~λ = (1/2− ǫ, 1/2− ǫ), whereǫ is a small positive real
number. Now, consider a policŷ∆ that serves each queue whenever it is non-empty. Thus, if only S1 (S2, resp.) is
non-empty, then̂∆ will select service vector~ℓ2 (~ℓ3, resp.) and achieve a reward of 5 (1, resp.). If both queues are
non-empty in a slot, then̂∆ will select ~ℓ4 and achieve a reward of 4. Clearly,̂∆ maximizes the stability region.
Now, the service process forS1 is independent of that forS2. Using Little’s law, the fraction of slots in whichS1

(S2, resp.) is non-empty andS2 (S1. resp.) is empty is1/4− ǫ2 (1/4− ǫ2, resp.), and the fraction of slots in which
both queues are non-empty is(1/2− ǫ)2. Thus,Ω

b∆(~λ) = (5 + 1)(1/4 − ǫ2) + 4(1/2 − ǫ)2 ≈ 10/4. Now, consider
a policy ∆′ that serves onlyS1 whenS1 is non-empty, and serves onlyS2 if S1 is empty andS2 is non-empty.
Note that∆′ is stable asλ1 + λ2 = 1. Thus, wheneverS1 (S2, resp.) is served, the service vector is~ℓ2 (~ℓ3, resp.)
and the reward is5 (1, resp.). Since the queues are stable,S1 andS2 are served in1/2 − ǫ fraction of slots each.
Thus,Ω∆′

= (5 + 1)(1/2 − ǫ) ≈ 3. Thus,Ω
b∆(~λ) < Ω∆′

(~λ).
Note that∆̂ in Example 1 always transmits the maximum number of packets in each slot and also chooses the

set of queues whose sum of queue lengths is the maximum. Tassiulaset al [35] showed that a policy that satisfies
the latter property maximizes the stability region in arbitrary constrained queueing networks. But, Example 1 shows
that ∆̂ does not maximize the throughput. This is because∆̂ does not consider the reward structure in deciding
the service vector. So, the policies designed to maximize the stability region of the constrained queueing system
(e.g. see [1], [5], [19], [34], [35]) need not maximize the throughput. Thus, we need alternate mechanism to design
throughput optimal policies.

Now, we consider two policies,∆1, ∆2, that seek to maximize the reward in a greedy fashion.∆1 serves each
queue only when the queue can obtain its maximum possible reward, and∆2 selects in each slot the service vector
that attains the maximum possible reward among all valid service vectors in the slot. Simply put,∆1 maximizes
the reward per packet, and∆2 greedily maximizes the reward in each slot. We show that∆1 does not stabilize the
system even when the arrival rate vector is stabilizable, and ∆2 does not attain the maximum throughput among
all stable policies.

Example 2:Consider the system shown in Figure 1. Let~λ = (3/4, 1/2). Clearly, ~λ ∈ C and policy ∆̂ in
Example 1 stabilizes the system. Note that∆1 will never concurrently serve both queues. Hence, the sum ofthe
service rates provided to the two queues is at most 1. Thus, sinceλ1 + λ2 > 1, ∆1 does not stabilize the system.

Note that∆1 maximizes the reward per packet while serving queues at rates smaller than their arrival rates and
thereby compromises stability.

Example 3:Consider the system shown in Figure 1 with the difference that r2(~ℓ3) = r2(~ℓ4) = 3. Let ~λ =
(1/4, 1/4). Note that for the above rewards,∆2 selects the same service vectors as∆̂. Thus,∆2 stabilizes the
system. Now, the service process forS1 is independent of that forS2. Using Little’s law, the fraction of slots in
which S1 (S2, resp.) is non-empty andS2 (S1. resp.) is empty is(1/4)(3/4) ((1/4)(3/4)), resp.), and the fraction
of slots in which both queues are non-empty is(1/4)2. Thus,Ω

b∆(~λ) = (5 + 3)(3/16) + 6(1/16) = 15/8. Now,
consider∆′ described in Example 1. Again,∆′ is stable asλ1 + λ2 < 1. Thus, wheneverS1 (S2, resp.) is served,
the service vector is~ℓ2 (~ℓ3, resp.) and the reward is5 (3, resp.). Since the queues are stable,S1 andS2 are served
in 1/4 fraction of slots each. Thus,Ω∆′

= (5 + 3)(1/4) = 2. Thus,∆2 does not attain the maximum throughput
among all stable policies.

The limitation of∆2 is that it myopically bases its decision in a slot solely on the aggregate reward in the slot.
Thus, even when it is possible to wait and serve queues in mutually disjoint slots and achieve a higher reward per
packet,∆2 serves the queues in the same slot.

The examples demonstrate that (1) a policy that maximizes the stability region need not maximize the throughput
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(2) myopically maximizing the reward in each slot or the reward per packet may not maximize the throughput
or stabilize the system (3) the optimal policy should wait just long enough so as to achieve the highest possible
reward per packet while serving each queue at a rate higher than its arrival rate.

IV. OPTIMAL POLICIES

In this section, we propose two policies and prove that they are ǫ-throughput optimal for every stabilizable arrival
rate vector~λ andǫ > 0.

A. Linear program based optimal policy (∆∗)

The scheduling policy∆∗ selects~ℓi ∈ L w.p. wi in every slot. If~ℓi is chosen in slott, then~ℓ∆∗

(t) = ~ℓi

(
~Q(t)

)
,

i.e., thekth queue transmits a packet ifℓik = 1 andQk(t) > 0. Recall that~ℓ∆∗

(t) is the indicator vector for the
set of queues served by∆∗ in slot t.

Let ∆∗ select~ℓi in a slot t. Then~ℓ∆∗

(t) ≤ ~ℓi. The inequality is strict only when some queues in~ℓi are empty
in t, and then, as discussed in Section II,rk(~ℓ

∆∗

(t)) ≥ rk(~ℓi) for eachk for which Qk(t) > 0.
The probability distribution~w = [w1 · · · wm] is computed using the following linear program LP(~λ, δ). Here,δ

is a parameter.
LP(~λ, δ) :- Maximize: U(~λ, δ) =

∑
i

∑
k wiℓikrk(~ℓi)

Subject to:
1)

∑m
i=1 wi = 1 andwi ≥ 0 for every i

2)
∑m

i=1 wiℓik = λk + δ for everyk.

Constraint 1) ensures that~w is a valid probability distribution. Whenδ > 0, constraint 2) ensures that each queue
is selected for service at a rate higher than the arrival ratein the queue. Thus, constraint 2) ensures stability.

Note that ~w and hence∆∗ depend on~λ and the chosenδ. We indicate this dependence by using the notations
~w(~λ, δ) and∆∗(~λ, δ).

Now, althoughLP(~λ, δ) is well-defined, it need not have any feasible solution, forarbitrary~λ ∈ Rn andδ ∈ R.
Theorem 1 shows that for all stabilizable~λ and sufficiently small positiveδ, LP(~λ, δ) is feasible and∆∗(~λ, δ)
is ǫ-throughput optimal. Note that allowing arbitrary~λ ∈ Rn and δ ∈ R in LP(~λ, δ) simplifies the proof for
Theorem 1.

Theorem 1:Let ~λ be any stabilizable arrival rate vector. Then, for everyǫ > 0 there exists âδ such that for
everyδ ∈ (0, δ̂), LP(~λ, δ) is feasible and∆∗(~λ, δ) is ǫ-throughput optimal. Furthermore,

Ω∆∗(~λ,δ) ≥ U(~λ, δ) − δ

n∑

k=1

Gk ≥ Ωmax(~λ) − ǫ w.p. 1. (2)

We prove Theorem 1 in the appendix.
Finally, the stability region can be maximized using arbitrary feasible solutions ofLP(~λ, δ) [5]. Specifically, if

∆∗(~λ, δ) selects the service vectors as per any probability distribution that constitutes a feasible solution ofLP(~λ, δ)
for any positiveδ, it stabilizes the system provided~λ is stabilizable [5]. But, for attaining the maximum throughput
among all stable policies, an optimal solution ofLP(~λ, δ) must be used. Specifically, for any stabilizable~λ and
ǫ > 0, ∆∗(~λ, δ) is ǫ-optimal for anyδ ∈ (0,min{δmax(~λ), ǫ/

∑n
k=1 Gk}], whereδmax(~λ) is the maximum value of

δ for which LP(~λ, δ) has a feasible solution (follows from Theorem 1 and Lemma 5 in the appendix).

B. Queue length based optimal policy (∆O)

The policy ∆∗(~λ, δ) requires the knowledge of~λ in order to obtain the optimal~w(~λ, δ). The system may not
however know~λ. We now design a policy∆O that attains the maximum throughput among all stable policies and
stabilizes the system for any stabilizable~λ without knowing~λ.

Recall that an optimal policy should wait as long as possibleto achieve the highest possible reward per packet
without violating system stability (Section III). Now,∆∗(~λ, δ) uses the knowledge of~λ to ensure the above, whereas
∆O ensures the above by using only the value of~Q(t).
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We now describe∆O. In slot t, ∆O selects the service vector~ℓ∆O(t) such that

~ℓ∆O(t) = arg max
~ℓ∈L,

~ℓ=~ℓ( ~Q(t))

{
n∑

k=1

(
Qk(t) − V×(Gk − rk(~ℓ))

)
ℓk

}
, (3)

whereV is a constant. Note that the constraint~ℓ = ~ℓ
(

~Q(t)
)

implies thatℓk = 0 if Qk(t) = 0 and ℓk ∈ {0, 1}

otherwise.
Theorem 2:Let ~λ be any stabilizable arrival rate vector. Then, for everyV ≥ 0, ∆O stabilizes the system.

Moreover, for everyǫ > 0, there existŝV such that for everyV ≥ V̂ , ∆O is ǫ-throughput optimal.
The above result implies that any stable off-line policy that takes transmission decisions based on the knowledge

of past, present and future arrivals can not attain throughput significantly more thanΩ∆O(~λ) for every stabilizable
~λ. This holds even though∆O takes transmission decisions based only on the current queue lengths.

Now, we describe the intuition behind this result. Let

W ( ~Q, ~ℓ)
def
=

n∑

k=1

(
Qkℓk − V × (Gk − rk(~ℓ))ℓk

)
. (4)

W1( ~Q, ~ℓ)
def
=

n∑

k=1

Qkℓk.

Note that intuitivelyGk − rk(~ℓ) is the loss of reward of thekth queue when service vector~ℓ is used. Thus, in
each slott, ∆O selects the service vector~ℓ that maximizes the dot product,W ( ~Q(t), ~ℓ), of ~ℓ and the difference
between the queue length vector~Q(t) and a scaled loss vector associated with~ℓ. Note that a policy (̂∆) that
selects the service vector~ℓ that maximizes the dot product,W1( ~Q(t), ~ℓ), of ~ℓ and the queue length vector~Q(t)
stabilizes the system for every stabilizable~λ [1], [18], [35]. This is because under̂∆ the queue length process has a
negative drift when

∑n
k=1 Qk(t) is sufficiently large for every stabilizable~λ. When

∑n
k=1 Qk(t) >> V

∑n
k=1 Gk,

W ( ~Q(t), ~ℓ) ≈ W1( ~Q(t), ~ℓ) for every~ℓ ∈ L, and therefore,∆O and∆̂ select similar service vectors. Thus, intuitively,
for every stabilizable~λ, the queue length process under∆O should also have a negative drift when

∑n
k=1 Qk(t) is

sufficiently large. Hence,∆O also stabilizes the system for any stabilizable~λ.
We have however shown that all stable policies do not attain equal throughput (Example 1). So, it is not obvious

that ∆O maximizes the throughput among all policies that stabilizethe system; we now provide the intuition
behind why this is the case. Note that when the queue lengths are small, high throughput can be attained without
violating stability by serving the queues only when they receive high rewards. On the other hand, stability can be
ensured by selecting the queues with higher queue lengths and by serving a large number of packets when the
queue lengths are large. We now demonstrate that∆O follows both the above principles. For simplicity, assume
that V,Gk, rk(~ℓ) are integers for allk, ~ℓ ∈ L. Now, whenQk(t) < V , Qk(t) − V

(
Gk − rk(~ℓ)

)
≥ 0 only if

rk(~ℓ) = Gk. Then, since∆O maximizesW ( ~Q(t), ~ℓ), it will serve thekth queue only if the maximum possible
reward is achievable. Now, ifQk ∈ {V, . . . , 2V − 1}, thenQk(t) − V

(
Gk − rk(~ℓ)

)
≥ 0 only if rk(~ℓ) ≥ Gk − 1.

Thus,∆O will serve thekth queue only if the achievable reward is greater than or equal to Gk − 1. Similarly, if
Qk(t) ∈ {(Gk − u)V, . . . , (Gk − u + 1)V − 1}, then∆O will serve thekth queue only if the achievable reward is
greater than or equal tou. Summarily,∆O attains the maximum possible reward for every packet while maintaining
stability by dynamically selecting the service vectors based on the queue lengths. Thus,∆O attains the maximum
throughput among all stable policies.

Now, we prove Theorem 2 using a combination of optimization and Lyapunov theories. Neelyet al. [27] proposed
this proof technique in a different context.

Proof: Consider a stabilizable~λ. For any policy∆,

Qk(t + 1) = Qk(t) + Λk(t) − ℓ∆
k (t). (5)

Now for ∆O, {~Q(t)}t≥1 is an irreducible, aperiodic and countable Markov chain. Now, consider the Lyapunov
function

f( ~Q(t)) =

n∑

k=1

(Qk(t))
2. (6)
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Let, M
def
= n(A2

max + 1). From (5) and (6), it follows that

f( ~Q(t + 1)) − f( ~Q(t))

≤ M +
n∑

k=1

[
2Qk(t)Λk(t) − 2Qk(t)ℓ

∆O

k (t)
]
.

Thus,E
[
f( ~Q(t + 1)) − f( ~Q(t)) | ~Q(t)

]

≤ M +

n∑

k=1

2Qk(t)λk − E

[
n∑

k=1

2Qk(t)ℓ
∆O

k (t) | ~Q(t)

]
(7)

= M +
n∑

k=1

2Qk(t)λk − 2E

[
W ( ~Q(t), ~ℓ∆O(t)) | ~Q(t)

]

−2E

[
n∑

k=1

(
Qk(t)ℓ

∆
k (t) − V [Gk − rk(~ℓ

∆(t))]ℓ∆
k (t)

)
| ~Q(t)

]

−2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆O(t))]ℓ∆O

k (t) | ~Q(t)

]
. (8)

Now, since~λ is stabilizable, we can obtain small enough positiveδ such that∆∗(~λ, δ) is ǫ/2-throughput optimal
(Theorem 1). We consider∆∗(~λ, δ) for such aδ. Here,~ℓ∆∗(~λ,δ)(t) is the service vector∆∗(~λ, δ) would have used
at t if it had a queue length vector of~Q(t) at t.

From definition of∆O (equation (3)), for every∆ andt,

E

[
W ( ~Q(t), ~ℓ∆O(t)) | ~Q(t)

]
≥ E

[
W ( ~Q(t), ~ℓ∆(t)) | ~Q(t)

]
.

Thus, from (8), for everyδ

E

[
f( ~Q(t + 1)) − f( ~Q(t)) | ~Q(t)

]

≤ M +
n∑

k=1

2Qk(t)λk − 2E

[
W ( ~Q(t), ~ℓ∆∗(~λ,δ)(t))| ~Q(t)

]

−2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆O(t))]ℓ∆O

k (t) | ~Q(t)

]
. (9)

Now ∆∗(~λ, δ) chooses each service vector~ℓi w.p.wi(~λ, δ) independent of the queue lengths, and subsequently serves
only those queues that are included in the selected service vector and are also non-empty. Thus, ifQk(t) > 0,

E

[
ℓ
∆∗(~λ,δ)
k (t) | ~Q(t)

]
=

m∑

i=1

ℓikwi(~λ, δ) = λk + δ. (10)

In addition, recall that if∆∗ selects~ℓi, and if thekth queue is nonempty it receives a reward of at leastrk(~ℓi).
Thus, if Qk(t) > 0,

E

[(
Gk − rk(~ℓ

∆∗(~λ,δ)(t))
)

ℓ
∆∗(~λ,δ)
k (t) | ~Q(t)

]

≤
m∑

i=1

wi(~λ, δ)
(
Gk − rk(~ℓi)

)
ℓik

= Gk(λk + δ) −
m∑

i=1

wi(~λ, δ)rk(~ℓi)ℓik.

If Qk(t) = 0,

E

[(
Gk − rk(~ℓ

∆∗(~λ,δ)(t))
)

ℓ
∆∗(~λ,δ)
k (t) | ~Q(t)

]
= 0.
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Now,
∑m

i=1 wi(~λ, δ)rk(~ℓi)ℓik ≤ Gk(λk + δ) sincerk(~ℓi) ≤ Gk and
∑m

i=1 wi(~λ, δ)ℓik = λk + δ. Thus,

E

[(
Gk − rk(~ℓ

∆∗(~λ,δ)(t))
)

ℓ
∆∗(~λ,δ)
k (t) | ~Q(t)

]

≤ Gk(λk + δ) −
m∑

i=1

wi(~λ, δ)rk(~ℓi)ℓik. (11)

From (4), (10), and (11), it follows that

E

[
W ( ~Q(t), ~ℓ∆∗(~λ,δ)(t)) | ~Q(t)

]

≥
n∑

k=1

(Qk(t) − V Gk)(λk + δ) + V U(~λ, δ).

Hence, from (9)

E

[
f( ~Q(t + 1)) − f( ~Q(t)) | ~Q(t)

]

≤ M −
n∑

k=1

2δQk(t) + 2V
n∑

k=1

Gk(λk + δ) − 2V U(~λ, δ)

−2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆O(t))]ℓ∆O

k (t) | ~Q(t)

]
. (12)

1) Stability of∆O: From (12), since0 ≤ rk(~ℓ) ≤ Gk, ℓk ≥ 0 for all k, ~ℓ ∈ L, it follows that for every stabilizable
~λ and every non-negativeV

E

[
f( ~Q(t + 1)) − f( ~Q(t)) | ~Q(t)

]

≤ M −
n∑

k=1

2δQk(t) + 2
n∑

k=1

V Gk(λk + δ).

Let A = {~Q :
∑n

k=0 Qk ≤ V
δ

∑n
k=0 Gk(λk + δ) + M+1

2δ
}. Then,

E

[
f( ~Q(t + 1)) − f( ~Q(t)) | ~Q(t)

]
<

{
∞ for all ~Q(t),

−1 if ~Q(t) /∈ A.

Thus, since|A| is finite, by Foster’s Theorem (Theorem 2.2.3 in [20]),{~Q(t)}t≥1 is positive recurrent, and for
each queuek the expected queue length under its stationary distribution is finite. Thus, the system is stable under
∆O.

2) ǫ-Throughput Optimality of∆O: Taking expectation on both sides of (12) with respect to the stationary
distribution of{~Q(t)}t≥1, we obtain

E

[
f( ~Q(t + 1)) − f( ~Q(t))

]

≤ M−
n∑

k=1

2δE[Qk(t)] + 2V
n∑

k=1

Gk(λk + δ) − 2V U(~λ, δ)

−2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆O(t))]ℓ∆O

k (t)

]
. (13)

Now,
∑t

u=1 ℓ∆O

k (t) is the number of departures from queuek in (0, t) under∆O. Since the queue length process
{~Q(t)}t≥1 under∆O is a positive recurrent Markov chain, for everyt

E[ℓ∆O

k (t)] = lim
u→∞

1

u

u∑

v=1

ℓ∆O

k (v) = λk w.p. 1, (14)
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and
n∑

k=1

E[rk(~ℓ
∆O(t))ℓ∆O

k (t)]

= lim
u→∞

1

u

u∑

v=1

n∑

k=1

rk(~ℓ
∆O(v))ℓ∆O

k (v) w.p. 1

= Ω∆O(~λ) (from (1)). (15)

Moreover, since the expectations are with respect to the stationary distribution of~Q(t), it follows that

E[f( ~Q(t + 1))] = E[f( ~Q(t))]. (16)

From (13), (14), (15) and (16), it follows that

Ω∆O(~λ) ≥ U(~λ, δ) − δ

n∑

k=1

Gk −
M

2V

≥ Ωmax(~λ) −
ǫ

2
−

M

2V
(from Theorem 1) (17)

≥ Ωmax(~λ) − ǫ if V ≥ M/ǫ.

The result follows.
Finally, we comment on the role of the parameterV in determining the throughput of∆O. From (17), it can be

seen that ifV < M/ǫ = n(A2
max + 1)/ǫ, then no throughput guarantee can be provided for∆O. Note thatAmax

determines the burstiness of the arrival process. Thus, theminimum required value ofV is higher for more bursty
arrival processes.

C. Computation time for∆∗ and ∆O

In the worst case, cardinality ofL can be2n as it may contain alln-dimensional binary vectors. Then,∆∗(~λ, δ)
can be computed by solving a linear program withO(2n) variables andO(n) constraints. Thus, the time and
the memory required to compute∆∗(~λ, δ) is O(2n) in the worst case. Under∆O, we need to find a~ℓ ∈ L that
maximizesW ( ~Q(t), ~ℓ) for everyt. Since|L| is O(2n), the time required to compute the optimal service vector in
each slot is alsoO(2n) unless some additional structure on the queueing system is assumed. We next propose two
optimal policies which require polynomial computation time in every slot.

V. COMPUTATIONALLY SIMPLE OPTIMAL POLICIES

We provide a general framework for designing computationally simple policies for maximizing the throughput
subject to attaining stability by considering the notion ofinaccurate scheduling (Subsection V-A). We subsequently
utilize this framework to design two computationally simple policies for maximizing the throughput subject to
stabilizing the system (Subsections V-B,V-C). Finally, wediscuss how these policies can be implemented using
distributed computation (Subsection V-D).

A. Inaccurate scheduling for maximizing the throughput subject to stabilizing the system

We first describe a class of scheduling policies referred to as ”inaccurate scheduling.” Note that the notion of
inaccurate scheduling has earlier been proposed for designing computationally simple policies for maximizing the
stability region [23], [32], [34]. Our contribution here isto generalize this notion to attain the goal of maximizing
the throughput subject to stabilizing the system while using simple computations.

We consider policies∆ for which the state{~Y (t) = (~Q(t), ~ℓ∆(t))}t≥1 constitutes an irreducible, aperiodic and
countable Markov chain. This assumption holds when~ℓ∆(t) is computed iteratively based on~Q(t) and~ℓ∆(t − 1).
Note that then{~Q(t)}t≥1 may not be a Markov process.

Definition 8 (γ-Inaccurate Policy):A policy ∆γ is calledγ-inaccurate if in each slott it selects a service vector
~ℓ∆(t) such that

W ( ~Q(t), ~ℓ∆(t)) ≥ max
~l∈L

~l=~l( ~Q(t))

W
(

~Q(t), ~ℓ
)
− X(~Y (t)), (18)
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where X(~Y (t)) is a random variable that depends on~Y (t) (i.e., the distribution orX(~Y (t)) is determined by
the current system state~Y (t)), and if {~Y (t)}t≥1 has a stationary distribution then the expectationE[X(~Y )] under
the stationary distribution is less than or equal toγ. Any service vector that satisfies (18) is called aγ-inaccurate
service vector.

Note that ifγ is large, then the number ofγ-inaccurate service vectors will be large and hence the timeneeded
to find one such service vector may be small.We show that for appropriate choices ofV all stableγ-inaccurate
policies areǫ-throughput optimal.

Theorem 3:Let ~λ be any stabilizable arrival rate vector and∆γ be an arbitraryγ-inaccurate policy. Then, for
everyǫ > 0 andγ < ∞, there existŝV such that for everyV ≥ V̂ ,

1) if {~Y (t)}t≥1 is a positive recurrent Markov chain, then∆γ is ǫ-throughput optimal, and
2) if E[X(~Y ) | ~Y (t) = ~Y ] ≤ γ for every ~Y , then {~Y (t)}t≥1 is a positive recurrent Markov chain, and∆γ

stabilizes the system.
Now, we provide the intuition. For simplicity of explanation, we assume thatX(~Y ) ≤ γ for every ~Y , and hence

the condition in (2) of Theorem 3 holds. We first explain whyγ-inaccurate policies maximize the stability region
[34]. For large queue lengths,max ~l∈L

~l=~l( ~Q)
W ( ~Q, ~ℓ) >> γ, and hence from (18),W ( ~Q, ~ℓ∆γ ) ≈ max ~l∈L

~l=~l( ~Q)
W ( ~Q, ~ℓ).

Thus,∆O and∆γ select similar service vectors when the queue lengths are large. We have shown that for every
stabilizable~λ, ∆O has a negative drift when the queue lengths are large. Thus,∆γ also has a negative drift for large
queue lengths. Hence,∆γ stabilizes the system whenever~λ is stabilizable. Incidentally, other approximate policies
may also maximize the stability region. For example, any policy ∆ that satisfies (18) withW ( ~Q(t), ~ℓ∆(t)) and
W ( ~Q(t), ~ℓ) replaced byW1( ~Q(t), ~ℓ∆(t)) and W1( ~Q(t), ~ℓ) respectively, maximize the stability region [23], [32],
[34].

The key difference between only stabilizing the system and attaining the maximum possible throughput subject to
stabilizing the system is that whereas for the former it is sufficient to appropriately select the service vector when
the queue lengths are large, but for the latter appropriate selection of service vectors is required for all values of
queue lengths.Hence, it is not clear that∆γ maximizes the throughput as well; we now explain why this is in fact
somewhat counter-intuitive. Note that for small queue lengths max ~l∈L

~l=~l( ~Q)
W ( ~Q, ~ℓ) may be smaller or comparable

with γ. Then, (18) does not guarantee that the service vectors selected by∆γ and∆O are similar. Hence, it is not
clear that∆γ achieves the same throughput as∆O, which attains the maximum throughput.

We now explain why Theorem 3 holds. We argue that for proper choice of parameters the queue lengths and the
service vectors under∆O and∆γ become similar. Clearly, in the first slot, both systems havethe same queue length
vector, ~Q. Now, note that for largeV , W ( ~Q, ~ℓ1) and W ( ~Q, ~ℓ2) significantly differ if ~ℓ1 and ~ℓ2 are significantly
different. Thus, due to (18), and sinceW ( ~Q, ~ℓ∆γ ) ≈ max ~l∈L

~l=~l( ~Q)
W ( ~Q, ~ℓ), ~ℓ∆γ ≈ ~ℓ∆O . Thus, the queue lengths in

the next slot are also similar in both systems. Recursive useof the same argument shows that the queue lengths and
the service vectors selected in each slot are similar in bothsystems. Thus, both policies attain similar throughput.
Thus,∆γ is throughput optimal for largeV.

Next, we prove Theorem 3.
Proof: We assume that~λ is stabilizable. We define the following Lyapunov function:

f(~Y (t)) =

n∑

k=1

(Qk(t))
2.

Using analysis similar to that for obtaining (8),

E

[
f(~Y (t + 1)) − f(~Y (t)) | ~Y (t)

]

≤ M +
n∑

k=1

2Qk(t)λk − 2E

[
W ( ~Q(t), ~ℓ∆γ (t)) | ~Y (t)

]

−2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆γ (t))]ℓ

∆γ

k (t) | ~Y (t)

]
. (19)
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From (18) and (19), it follows that

E

[
f(~Y (t + 1)) − f(~Y (t)) | ~Y (t)

]

≤ M +
n∑

k=1

2Qk(t)λk + 2E

[
X(~Y (t)) | ~Y (t)

]

−2E


 max

~l∈L

~l=~l( ~Q(t))

W ( ~Q(t), ~ℓ) | ~Y (t)




−2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆γ (t))]ℓ

∆γ

k (t) | ~Y (t)

]
.

Using arguments similar to those in the proof of (12) from (8), we can prove that

E

[
f(~Y (t + 1)) − f(~Y (t)) | ~Y (t)

]

≤ M + 2E

[
X(~Y (t))|~Y (t)

]
−

n∑

k=1

2δQk(t)

+2V

n∑

k=1

Gk(λk + δ) − 2V U(~λ, δ)

−2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆γ (t))]ℓ

∆γ

k (t) | ~Y (t)

]
, (20)

whereδ is such that∆∗(~λ, δ) is ǫ/2-throughput optimal.
1) Proof for (1): Let the process{~Y (t)}t≥1 be a positive recurrent Markov chain. Then this process has a

stationary distribution. Taking expectation on both sidesof (20) with respect to this stationary distribution, we
obtain

E

[
f(~Y (t + 1)) − f(~Y (t))

]

≤ M + 2E

[
X(~Y (t))

]
−

n∑

k=1

2δE[Qk(t)] + 2V

n∑

k=1

Gk(λk + δ)

−2V U(~λ, δ) − 2V E

[
n∑

k=1

[Gk − rk(~ℓ
∆γ (t))]ℓ

∆γ

k (t)

]
. (21)

Since{~Y (t)}t≥1 is a positive recurrent Markov chain,

E[ℓ
∆γ

k (t)] = lim
u→∞

1

u

u∑

v=1

ℓ
∆γ

k (v) = λk w.p. 1, (22)

and
n∑

k=1

E[rk(~ℓ
∆γ (t))ℓ

∆γ

k (t)]

= lim
u→∞

1

u

u∑

v=1

n∑

k=1

rk(~ℓ
∆γ (v))ℓ

∆γ

k (v) w.p. 1

= Ω∆γ (~λ) (from (1)). (23)

From stationarity,E[f(~Y (t + 1))] = E[f(~Y (t))]. (24)
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From (21), (22), (23) and (24), and since from Definition (8),E

[
X(~Y (t))

]
≤ γ, it follows that

Ω∆γ (~λ) ≥ U(~λ, δ) − δ

n∑

k=1

Gk −
M + 2γ

2V

≥ Ωmax(~λ) −
ǫ

2
−

M + 2γ

2V
(from Theorem 1)

≥ Ωmax(~λ) − ǫ if V ≥
M + 2γ

ǫ
.

The result follows.
2) Proof for (2): Now, let E

[
X(~Y (t))|~Y (t) = ~Y

]
≤ γ for all ~Y . Thus, from (20), for everyγ andV ≥ 0,

E

[
f(~Y (t + 1)) − f(~Y (t)) | ~Y (t)

]

≤ M + 2γ −
n∑

k=1

2δQk(t) + 2V
n∑

k=1

Gk(λk + δ).

Let B = {~Y = (~Q, ~ℓ) : ~ℓ ∈ L,
∑n

k=0 Qk ≤ V
δ

∑n
k=0 Gk(λk + δ) + M+2γ+1

2δ
}. Thus,

E

[
f(~Y (t + 1)) − f(~Y (t)) | ~Y (t)

]
<

{
∞ for all ~Y (t),

−1 if ~Y (t) 6∈ B.

Thus, since|B| is finite, by Foster’s Theorem (Theorem 2.2.3 in [20]),{~Y (t)}t≥1 is positive recurrent, and the
expectations of the queue lengths under its stationary distribution are finite. Hence,∆γ stabilizes the system.

The main challenge in computingγ-inaccurate service vectors is thatW ( ~Q, ~ℓ∆O) may not be known and in
most cases its computation is complex. Thus, even the verification of whether a given~ℓ is γ-inaccurate may
be computationally complex. We circumvent this challenge by designing a computationally simple approach that
obtainsγ-inaccurate service vectors without requiring the knowledge of W ( ~Q, ~ℓ∆O).

B. Periodic Computation of Optimal Schedule

We divide the time axis in intervals of lengthT , i.e., in intervals of the form[KT, (K + 1)T − 1].

Let ~ℓOPT(t)
def
= arg max

~l∈L

~l=~l( ~Q(t))

W
(

~Q(t), ~ℓ
)

.

We consider a policy∆T that computes~ℓOPT(t) at the beginning of each interval, i.e., in the slotsKT for
K ≥ 0, and throughout the interval serves each selected queue while it is non-empty.

The time needed to compute∆T is O(2n/T ) in the amortized sense, i.e.,supt≥1{
∑t

u=1 c(u)/t} is O(2n/T )
on every sample path, wherec(u) is the computational complexity is slotu [17]. Thus, if we chooseT to be
sufficiently large (≈ 2n), then∆T requiresO(1) computation time in the amortized sense.

In the following lemma, we show thatX(~Y ) ≤ γ for all ~Y whereγ = nT (Amax + 2).
Lemma 1:Let ~Q(t) be the queue length vector under∆T in t. Then,

W ( ~Q(t), ~ℓ∆T (t)) ≥ max
~l∈L

~l=~l( ~Q(t))

W
(

~Q(t), ~ℓ
)
− nT (Amax + 2).

Proof: Without loss of generality lett ∈ [KT, (K + 1)T − 1] for someK. Now, from (5),

n∑

k=1

Qk(t) ≤
n∑

k=1

Qk(KT ) +

t∑

u=KT

n∑

k=1

Λk(u)

≤
n∑

k=1

Qk(KT ) + nTAmax. (25)
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Similarly, from (5),
n∑

k=1

Qk(t) ≥
n∑

k=1

Qk(KT ) −
t∑

u=KT

n∑

k=1

ℓ∆T

k (u)

≥
n∑

k=1

Qk(KT ) − nT. (26)

Now, from (4), (25) and (26), we obtain

max
~l∈L

~l=~l( ~Q(t))

W
(

~Q(t), ~ℓ
)
− W

(
~Q(t), ~ℓ∆T (t)

)

≤
n∑

k=1

[Qk(KT ) − V (Gk − rk(~ℓ
OPT(t)))]ℓOPT

k (t)

−
n∑

k=1

[Qk(KT ) − V (Gk − rk(~ℓ
∆T (t)))]ℓ∆T

k (t)

+nT (Amax + 1)

= W ( ~Q(KT ), ~ℓOPT(t)) − W ( ~Q(KT ), ~ℓ∆T (t))

+nT (Amax + 1) (27)

Now, from (3),
W ( ~Q(KT ), ~ℓOPT(t)) ≤ W ( ~Q(KT ), ~ℓOPT(KT )). (28)

Also, since the service vector selected by∆T changes in the interval only if some queues empty during the period
and then the change is to not serve them,~ℓ∆T (t) ≤ ~ℓOPT(KT ) and if ℓ∆T

k (t) < ℓOPT
k (KT ) then Qk(KT ) ≤ T.

Thus,rk

(
~ℓ∆T (t)

)
≥ rk

(
~ℓOPT(KT )

)
for all k for which Qk(t) > 0. Hence,

W ( ~Q(KT ), ~ℓ∆T (t)) ≥ W ( ~Q(KT ), ~ℓOPT(KT )) − nT. (29)

The result follows from (27), (28) and (29).
But, ~Y (t) is not a Markov chain. Thus, in spite of Lemma 1,∆T is notγ−accurate. Now,~Y (tT ) is an irreducible,

aperiodic, Markov chain, and the framework forγ-inaccurate scheduling can be generalized to such cases. Weomit
this generalization for brevity. But, using Lemma 1 and a proof similar to that for Theorem 3, we can prove that
when~λ is stabilizable,∆T is ǫ-throughput optimal for everyǫ > 0. We formally state this in the following theorem,
and prove it in the appendix.

Theorem 4:Let ~λ be any stabilizable arrival rate vector. Then, for everyǫ > 0, there existŝV such that for every
V ≥ V̂ the policy∆T is ǫ-throughput optimal.

The main challenge in using∆T is that it needs to periodically compute the optimal servicevector. Since the
time required in each such computation is exponential inn, for largen, such computations may become infeasible.
We next propose an optimal randomized policy which requiresO(n) computation time in every slot.

C. Optimal Randomized Policy (∆R)

We now propose a randomized policy∆R which has been inspired by a randomized policy proposed by Tassiulas
[34]. The policy in [34] attains the maximum possible stability region in a constrained queueing network using
linear time computations in each slot. Our contribution here is to show that linear-time computable randomized
policies can also maximize the throughput subject to stabilizing the system.

We now describe∆R. In every slott ≥ 0, ∆R generates a service vector~ℓ(t) randomly among all service vectors
~ℓ ∈ L such that~ℓ

(
~Q(t)

)
= ~ℓ as per a distributionP ~Q

(·). In every slott ≥ 1, once a random vector is generated

as above,∆R obtains~ℓ∆R(t) iteratively as follows.

~ℓ∆R(t)=






~ℓ(t) : W
(

~Q(t),
(
~ℓ∆R(t−1)

) (
~Q(t)

))
<W

(
~Q(t), ~ℓ(t)

)

(
~ℓ∆R(t − 1)

) (
~Q(t)

)
: otherwise.
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Thus, in any slot,∆R uses a new service vector only when it increases the value ofW (·); otherwise it continues
with the service vector used in the previous slot. It is interesting to observe that the randomized policy proposed by
Tassiulas [34], which maximizes the stability region usinglinear computation time in each slot, uses a new service
vector only when it increases the value ofW1(·).

Note that the distributionP ~Q
(·) may depend on the current queue length vector. We only consider distributions

P ~Q
(·) such that for every~Q, P ~Q

(~ℓOPT) ≥ µ for someµ > 0.

Lemma 2:Let ~λ be a stabilizable arrival rate vector. Then{~Y (t) = (~Q(t), ~ℓ∆γ (t))}t≥1 is a positive recurrent
Markov chain, and∆R stabilizes the system.

We prove Lemma 2 in appendix. Now, we show that∆R is n
µ
(Amax + 2)-inaccurate.

Lemma 3:Let ~Q(t) be the queue length vector under∆R in t. Then, for any initial distribution of~Y (t),

E


 max

~l∈L

~l=~l( ~Q(t))

W
(

~Q(t), ~ℓ
)
− W ( ~Q(t), ~ℓ∆R(t))


 ≤

n

µ
(Amax + 2).

Proof: SinceP ~Q
(~ℓOPT) ≥ µ for every ~Q, ~ℓ∆R(t) = ~ℓOPT(t) infinitely often w.p. 1. Let{κK}K≥1 be the slots

in which ~ℓ∆R(t) = ~ℓOPT(t). Again, sinceP ~Q
(~ℓOPT) ≥ µ for every ~Q, E[κK+1 − κK ] ≤ 1/µ.

Consider theK for which t ∈ [κK , κK+1 − 1]. Like in Lemma 1, we obtain

max
~l∈L

~l=~l( ~Q(t))

W
(

~Q(t), ~ℓ
)
− W ( ~Q(t), ~ℓ∆R(t))

≤ n(κK+1 − κK)(Amax + 2).

Thus, the result follows sinceE[κK+1 − κK ] ≤ 1/µ.
Now, from part 1 of Theorem 3 and Lemmas 2 and 3, it follows that∆R is ǫ-throughput-optimal for anyµ. We

formally state this in the following theorem.
Theorem 5:Let ~λ be a stabilizable arrival rate vector. Then, for everyǫ > 0, there existŝV such that for every

V ≥ V̂ the policy∆R is ǫ-throughput optimal.
Now, if µ = 2−n, ∆R can be computed inO(n) time in each slot. Each non-empty queue can be selected w.p.

1/2. If the resulting vector is not inL, then no queue is served.

D. Distributed Implementation of∆R and ∆T

Distributed scheduling can be defined in different ways. Onedefinition is to consider a policy as distributed if
each node selects its action based on its observation, stateand the information it acquires by exchanging messages
with its neighbors. Such policies are then evaluated on the basis of their performance and the frequency and the
amount of message exchange. Another definition is to consider a policy as distributed if each node selects its action
based on its observation, state and the states and actions ofnodes in a certain neighborhood.

We first describe how∆R and∆T can be implemented as per the first definition. The time axis can be divided
in periods of lengthT. Each node can broadcast its queue length at the beginning of every period. The period
lengthT should be selected so that the broadcasts in a period reach other nodes in the same period. For executing
∆T , each node computes the optimal service vector at the beginning of every period based on the broadcasts it
receives in the previous period. For executing∆R, each node randomly selects a service vector at the beginning
of each period, and subsequently chooses between the service vectors selected in the current and previous periods
based on the broadcasts it receives in the previous period, and finally uses the chosen service vector throughout
the period. All nodes use the same seeds in the random number generators and therefore obtain the same random
selections. For both policies, each node’s computations depend on the queue lengths of other nodes in the previous
period. Theorems 4 and 5 still hold. The message exchange complexity can be made arbitrarily small in both cases
by increasingT.

Determination of an optimal policy which is distributed as per the second definition for distributed scheduling
remains open. Note that the design of such scheduling policies in the precursor problem, that of maximizing the
stability region, is still not completely understood, although some illuminating results have been obtained recently
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[10], [29], [36]. We hope that the optimality results in thispaper and the recent advances in context of distributed
scheduling will motivate further exploration of the above open problem.

Finally, Rosset. al. has obtained local search based policies, which are likely to be computationally simple in
practice, for maximizing the stability region of certain classes of constrained queueing networks [31]. It will be
interesting to determine whether the throughput can be maximized subject to stabilizing the system using similar
local search policies, and how the computation time required by theγ-accurate policies we propose compare with
those for the resulting local search policies.

VI. D ISCUSSIONS ANDGENERALIZATIONS

We now generalize our framework so as to obtain optimal policies when some of the assumptions made in
Section II do not hold. First, we have so far assumed that a packet is discarded only after it is transmitted. We
discuss how our framework can be generalized to allow a queueto discard some or all packets before transmitting
them, and examine the advantages and disadvantages of this option (Subsection VI-A). We next describe how
our framework can be generalized to accommodate random rewards and random sets of valid service vectorsL
(Subsection VI-B). Finally, we discuss howL and reward functions can be chosen so as to attain certain performance
goals in an important application domain for this frameworkthat of wireless networks (Subsection VI-C).

A. Discarding packets before transmission

In Section II, we have assumed that each packet is discarded from its queue only after it is served once. However,
in practice, a packet may be discarded from its queue even before it is served. The availability of this option enhances
the stability region, and its judicious use increases the throughput. For example, in Example1 in Section III, when
~λ = (1 − ǫ, 1 − ǫ) whereǫ is a small positive number,Ωmax(~λ) ≈ 4 (Ωb∆ ≈ 4). Now, if S2 can discard packets
before serving them,∆′ is stable and attains a throughput close to5. But, clearly, indiscriminate use of this option
substantially reduces the throughput.

We now show that appropriate augmentation ofL allows us to design policies that attain the maximum possible
throughput in presence of this option. LetO be the original system that does not allow packets to be discarded
before transmission, and let̂O be the new system which allows the above. InÔ a queue is said to be served when
a packet is removed from its queue. The service vectors inÔ have2n 0 − 1 components. The firstn components
denote which queues are being served and the remaining components denote whether the packets from the queues
that are being served are transmitted or discarded before transmission. We obtain the setL̂ of valid service vectors
of Ô from the corresponding setL of O as follows. Let~ℓ ∈ L and let~ℓ havei 0 components where0 ≤ i ≤ n.
Now, ~ℓ corresponds to2i service vectors inL̂, and each of these service vectors (a) transmit packets fromthe
queues~ℓ were serving inO and (b) discard packets from a certain (possibly empty) subset of queues which~ℓ were
not serving inO. Note that the set of queues~ℓ were not serving inO has2i subsets. Thus, the number of service

vectors generated by~ℓ is 2i. Let ~̂
ℓ1 be one such service vector generated by~ℓ. Since~ℓ and~̂

ℓ1 transmit packets

from the same queues,rk(
~̂
ℓ1) = rk(~ℓ) for eachk ∈ {1, . . . , n}.

The stability region ofÔ is a (possibly improper) superset of that ofO. This is because as long as the arrival rate
of a queue is less than1 it can be stabilized in̂O by simply discarding all its packets before transmission. Thus, the
stability region ofÔ is a superset of{~λ : 0 ≤ λi < 1 i = 1, . . . , n} and a subset of{~λ : 0 ≤ λi ≤ 1 i = 1, . . . , n}.
For any~λ that is stabilizable inO, the maximum throughput of a stable policy inO is less than or equal to that of
the maximum throughput of a stable policy in̂O. This is because every policy∆ in O is a valid policy inÔ, since

for each~ℓ ∈ L there exists
~̂
ℓ ∈ L̂ that does not discard packets from any queue before transmission, and transmits

packets from the same queues which~ℓ serves. Note that∆∗, ∆O, ∆γ , ∆T and∆R can be defined similar to that
in O; the only difference is thatL must be substituted bŷL. The performance guarantees for these generalized
versions, i.e., Theorems 1 to 5, hold in̂O. are the same as those forO.

However, note that higher throughput and stability region can be attained inÔ while sacrificing fairness.
Specifically, for any~λ that is stabilizable inO, if an ǫ−throughput optimal policŷ∆ in Ô attains a throughput which
is higher than that of anǫ−throughput optimal policy inO, ∆̂ discards packets before transmission from some
queues. Thus,̂∆ attains higher throughput by being unfair to some queues. Also, in communication networks, in
presence of this option, some receivers may only receive a small fraction of packets transmitted by the corresponding
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sources, which will in turn prevent them from successfully decoding the transmitted information. Thus, this option
is not likely to be widely used (refer to Section VI-C).

B. Random rewards and randomL

We have so far assumed that the reward received by thekth queue int is completely determined by the service
vector chosen int. We now allow the rewards to be random variables (r.v.’s) that depend on an external random
component in addition to the service vector (Subsection VI-B). This generalization is relevant in context of wireless
networks, where the success of a transmission is a random event whose probability depends on the fading state of
the channels. Thus, in one-to-many or one-to-one communication the reward is a r.v. whose distribution depends
on the service vector and the channel fading state between each sender-receiver pair. We generalize∆∗, ∆O, ∆γ ,
∆T and∆R so as to maximize the throughput subject to stabilizing the system in presence of random rewards.

We first formally describe the generalization. We consider arandom process{S(t)}t≥1 which in any slott is in
stateSi with probability bi, i = 1, 2, . . . , z, independent of its state in any other slot and also independent of the
arrival process in any slot. Here,bi > 0 for eachi ∈ {1, . . . , z}. The policy knowsS(t) at the beginning of slott.
The reward received by thekth queue when~ℓ is the service vector and the processS(t) is in stateS is a random

variable,Rk(~ℓ, S), whose distribution depends on~ℓ andS. Let rk(~ℓ, S)
def
= E[Rk(~ℓ, S)] ≤ Gk for every~ℓ andS.

We assume thatRk(~ℓ, S) = 0 if ℓk = 0, andrk(~ℓ1, S) ≥ rk(~ℓ2, S) if ~ℓ1 ≤ ~ℓ2 and ℓk > 0. Thus, the throughput
Ω̂∆(~λ) under a policy∆ and arrival rate vector~λ is

Ω̂∆(~λ) = lim inf
t→∞

1

t

t∑

u=1

n∑

k=1

Rk(~ℓ
∆(u),S(u))

= lim inf
t→∞

1

t

t∑

u=1

n∑

k=1

Rk(~ℓ
∆(u),S(u))ℓ∆

k (u). (30)

Finally, when the arrival rate vector is~λ, the maximum throughput of any stable policy iŝΩmax(~λ). We next
elucidate the above formalisms with a specific example.

Example 4: In Fig.1 assume that the channel to each receiver is in good (bad, resp.) state w.p.0.8 (0.2), and
each receiver can decode the packet w.p.0.9 (0.2, resp.) when its channel is in good (bad, resp.) state and it is
not in the range of any other sender that is transmitting packets. The state of a channel in a slot is independent of
that in other slots and also independent of the states of other channels in any slot. In each slot, the system knows
the states of all channels, but does not know whether a receiver can decode the packet its sender transmits. Thus,
the system has64 states corresponding to different combinations of channelstates. Now, if~ℓ = ~ℓ2 (~ℓ = ~ℓ4, resp.)
R1(~ℓ, S) equals the number of receivers in the set{R1, . . . , R5} ({R3, R4, R5}, resp.) that can decode the packet
S1 transmits and if(~ℓ ∈ {~ℓ1, ~ℓ3}), R1(~ℓ, S) = 0. Next, R2(~ℓ, S) = 1 if ℓ2 = 1 and R6 can decode the packet,
R2(~ℓ, S) = 0 otherwise. Thus,R1(~ℓ, S), R2(~ℓ, S) are random variables whose distributions depend on~ℓ, S. For
example,r1(~ℓ2, S) = 4.5 if S is such that the channels toR1, . . . , R5 are in good state,r2(~ℓ, S) = 0.9 if ℓ2 = 1
andS is such that the channel toR6 is in good state.

First, note that sinceL does not depend onS(t), the stability region of the system remains the same. Now, we
present the optimality results. We first describe how∆∗(~λ, δ) can be generalized. In any slott in which S(t) = Sz,
the generalized policŷ∆∗(~λ, δ) selects~ℓi w.p. wiz. If ~ℓi is selected in slott, then the system selects service vector
~ℓi

(
~Q(t)

)
(i.e., ~ℓ

b∆∗(~λ,δ)(t) = ~ℓi

(
~Q(t)

)
). The probability distribution~wz = [w1z · · · wmz] for everyz = 1, . . . , Z

is computed using the following linear program.
L̂P(~λ, δ) :- Maximize: Û(~λ, δ) =

∑Z
z=1 bz

[∑m
i=1

∑n
k=1 wizℓikrk(~ℓi, Sz)

]

Subject to:
1)

∑m
i=1 wiz = 1 for everyz ∈ {1, . . . , Z}

2) wiz ≥ 0 for every i ∈ {1, . . . ,m} andz ∈ {1, . . . , Z}
3)

∑Z
z=1 bz [

∑m
i=1 wizℓik] = λk + δ for everyk ∈ {1, . . . , n}.

Note that L̂P(~λ, δ) is similar to LP(~λ, δ); the only difference is that the distribution for selecting the service
vectors depends on the stateS(t) of the system.
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Theorem 6 (Generalization of∆∗): Let ~λ be any stabilizable arrival rate vector. Then, for everyǫ > 0 there
exists aδ̂ such that for everyδ ∈ (0, δ̂), L̂P(~λ, δ) is feasible, and̂∆∗(~λ, δ) is ǫ-throughput optimal. Furthermore,

Ω̂
b∆∗(~λ,δ) ≥ Û(~λ, δ) − δ

n∑

k=1

Gk ≥ Ω̂max(~λ) − ǫ w.p. 1. (31)

Both the statement and proof for Theorem 6 are similar to thatfor Theorem 1. Hence, we do not prove Theorem 6.
Theorem 7 (Generalization for∆O): Consider a stabilizable arrival rate vector~λ and a scheduling policŷ∆O

that chooses service vector~ℓ
b∆O(t) such that

~ℓ
b∆O(t)

= arg max
~ℓ∈L,

~ℓ=~ℓ( ~Q(t))

{
n∑

k=1

(
Qk(t)−V ×

(
Gk−rk(~ℓ,S(t))

))
ℓk

}
(32)

in every slott ≥ 1. Then, for everyV ≥ 0, ∆̂O stabilizes the system. Moreover, for everyǫ > 0, there existŝV
such that for everyV ≥ V̂ , ∆̂O is ǫ-throughput optimal.

Note that the only difference between~ℓ
b∆O(t) and~ℓ∆O(t) is that the former considersrk(~ℓ,S(t)) in selecting the

service vector while the latter considersrk(~ℓ) in selecting the service vector. The statement of Theorem 2 is similar
to that of Theorem 7. Using the fact that{~Q(t)}t≥1 constitutes a Markov chain, Theorem 7 can be proved using
similar arguments and the same Lyapunov function as Theorem2. We omit the proof for Theorem 7 for brevity.

We now generalize the framework for designing computationally simple policies for maximizing the throughput
subject to stabilizing the system. We first generalize the notion of inaccurate scheduling.

Let τ(t, S)
def
=

{
0 if S(u) 6= S ∀ u < t,
max {u < t : S(u) = S} otherwise.

Note thatτ(t, Si) is the last time instant beforet such that the processS was in stateSi. Thus, for everyu ∈
{τ(t, Si) + 1, . . . , t − 1}, S(u) 6= Si.

We consider policies∆ for which {~I(t) = (~Q(t), ~ℓ
b∆(t), ~ℓ

b∆(τ(t, S1)), . . . , ~ℓ
b∆(τ(t, Sz)))}t≥1 are irreducible,

aperiodic and countable Markov chains. Let

Ŵ ( ~Q, ~ℓ, S)
def
=

n∑

k=1

(
Qk − V × (Gk − rk(~ℓ, S))

)
ℓk. (33)

Note that the only difference between̂W ( ~Q, ~ℓ, S) and W ( ~Q, ~ℓ) is that the former depends on the expected
rewards associated with both~ℓ andS, whereas the latter depends on the deterministic rewards associated with~ℓ.

Definition 9 (Generalizedγ-Inaccurate Policy):A policy ∆̂γ is called generalized-γ-inaccurate if in each slott
it selects a service vector~ℓ∆γ (t) such that

Ŵ
(

~Q(t), ~ℓ∆γ (t),S(t)
)

≥ max
~ℓ∈L,

~ℓ=~ℓ( ~Q(t))

Ŵ
(

~Q(t), ~ℓ,S(t)
)
− X̂

(
~I(t)

)
, (34)

where X̂
(
~I(t)

)
is a random variable that depends on~I(t) and if ~I(t) has a stationary distribution, then the

expectationE[X̂(~I(t))] with respect to the stationary distribution, is upper bounded byγ.
The main difference between aγ-inaccurate policy and a generalized-γ-inaccurate policy is that the former seeks

to approximatemax ~ℓ∈L,

~ℓ=~ℓ( ~Q(t))
W

(
~Q(t), ~ℓ

)
and the latter seeks to approximatemax ~ℓ∈L,

~ℓ=~ℓ( ~Q(t))
Ŵ

(
~Q(t), ~ℓ,S(t)

)
at

every timet.
We next show that for appropriate choice ofV all stable generalized-γ-inaccurate policies areǫ−throughput

optimal.
Theorem 8:Let ~λ be any stabilizable arrival rate vector and̂∆γ an arbitrary generalized-γ-inaccurate policy.

Then, for everyǫ > 0 andγ < ∞, there existŝV such that for everyV ≥ V̂ ,
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1) if {~I(t)}t≥1 is a positive recurrent Markov chain, then̂∆γ is ǫ-throughput optimal, and
2) if E[X̂(~I) | ~I(t) = ~I] ≤ γ for every~I, then{~I(t)}t≥1 is a positive recurrent Markov chain, and̂∆γ stabilizes

the system.
Both the statement and proof for Theorem 8 are similar to thatfor Theorem 3; the only difference is that we

consider~I(t) as the system state in the former and~Y (t) as the system state in the latter. We omit the proof for
Theorem 8 for brevity.

Both ∆T and∆R can be generalized using the framework of generalized-γ-inaccurate policies. For brevity, we
only describe how∆R can be generalized. We denote the generalized version of∆R as∆̂R.

The policy ∆̂R obtains the service vector{~ℓb∆R(t)}t≥1 as follows. In every slott ≥ 0, ∆̂R generates a random

service vector~ℓ(t) among all service vectors~ℓ ∈ L such that~ℓ
(

~Q(t)
)

= ~ℓ as per a distributionP ~Q(t),S(t)
(·) that

may depend on~Q(t) andS(t). In every slott ≥ 1, after generating the random service vector,∆̂R obtains~ℓ
b∆R(t)

using the following iterative algorithm:

~ℓ
b∆R(t) = arg max

~ℓ∈{~ℓ(t), ((~ℓb∆R(t−1))( ~Q(t))), ((~ℓb∆R (τ(S(t),t)))( ~Q(t)))}
Ŵ

(
~Q(t), ~ℓ,S(t)

)
. (35)

We only consider distributionsP ~Q,S
(·) such that for every~Q, S, P ~Q,S

(~ℓ
b∆O) ≥ µ for someµ > 0.

First, we point out the key difference between∆R and∆̂R. In each slott, ∆R comparesW (·) for the randomly
generated service vector~ℓ(t) with W (·) under the service vector used in slott − 1. Now, ∆̂R compareŝW (·) for
the randomly generated service vector~ℓ(t) with Ŵ (·) under the service vectors used in slotst− 1 andτ (t,S(t)).
For example, recall that there are64 system states in Example 4. LetS(t) = S5, and t1, . . . , t64 be the times at
which states1, . . . , 64 were last encountered beforet. Then∆̂R compareŝW (·) for the randomly generated service
vector~ℓ(t) with Ŵ (·) under the service vectors used in slotst − 1, t5. This additional comparison is necessary as
the reward in the generalized system also depends on the state of the processS(t). Hence, a service vector~ℓ that
maximizesŴ (·) for some stateSj may not do so for some other stateSj′ .

Theorem 9 (Generalization for∆R): Consider a stabilizable arrival rate vector~λ. Then,∆̂R stabilizes the system
for every V ≥ 0. Moreover, for everyǫ > 0, there exists âV such that for everyV ≥ V̂ , ∆̂R is ǫ-throughput
optimal.

The statement of Theorem 9 is similar to that for Theorem 5. Weprove Theorem 9 in the appendix.
Note that we have so far assumed that the maximum number of packet arrivals in each slott in any queuek is

upper bounded by a finite constantAmax. But, even when the above assumption is relaxed, as long as the arrival
distribution has finite second moment, all the results, except Lemmas 1, 3 and Theorems 4, 5, 9 hold.

We finally consider the case where the set of allowed service vectors evolves randomly. Specifically,{L(t)}t≥1

evolves as per a finite state random process whose state in anyslot is independent of that in any other slot and
independent of the number of arrivals in any queue in any slot. The stability region is now different from that when
L does not change. We refer to the interior of this new stability region asC′. We assume that the policy knows
L(t) at the beginning of slott. All policies can be generalized to this case as well, using the framework of random
rewards. Here, consider a new system in which the set of allowed service vectors is the power-set of the set of
queues, and the reward for serving each queue is0 in a slot if the service vector is not inL(t). The system is
otherwise similar to the actual system. Theorems 7, 8 and 9 hold for all ~λ ∈ C′, and for∆̂O and∆̂R computed in
the new system. For smallǫ, these policies rarely select service vectors inL \ L(t) if ~λ ∈ C′.

C. Choice ofL and rewards in wireless networks

Our model allows each packet to be delivered to a subset of receivers, and therefore induces some packet loss.
We can appropriately design the setL so as to ensure that the receivers can successfully decode the packets
in presence of packet loss. For example, we can eliminate packet loss by restrictingL to consist of only those
service vectors that serve a queue only when its packet can bedelivered to all receivers. For example, in Figure 1,
L =

{
~ℓ1 = [0 0], ~ℓ2 = [1 0], ~ℓ3 = [1 0]

}
will accomplish the above goal. But, observe that ifL(1) ⊆ L(2) then the

stability region in a system whereL = L(1) is a subset of that in a system whereL = L(2). Also, for any~λ which
is in the stability region of both systems, the maximum throughput (minimum loss, resp.) of a stable policy in the
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former is greater than or equal to (less than or equal to, resp.) that in the latter. Thus, such restrictions onL should
be imposed only when the system can not tolerate any loss.

Many applications, e.g., real time applications like audio, video, and some data applications like anycast† can
inherently tolerate certain amount of packet loss. Applications can recover the information present in lost packets
when they use coding redundancy (forward error correction [28], [30] or digital fountain [8]), path diversity (multiple
transmissions of the same packet in different paths [21]), retransmissions at higher layers‡ (e.g., TCP or RTCP
resend a packet at the transport layer if an end-to-end acknowledgement is not received within a time-out period).
Also, for multicast transmissions a receiver may recover lost packets by requesting transmission from another
receiver that has received the packet [9]. This “local recovery” is often useful if receivers are clustered and the
distance between receivers in each cluster is significantlyless than that between a receiver and the sender.L should
be larger in all the above cases.

Thus, L must be chosen in accordance with application requirementsand system design. The loss tolerant
applications and also the mechanisms for recovering lost packets are effective only when either each packet is
delivered to a certain minimum number of receivers, or each receiver receives a certain minimum fraction of
packets transmitted by its source. The former is useful for anycast applications and local recovery mechanisms.
The latter is useful for real time traffic, and in presence of loss recovery schemes like forward error correction,
path diversity and retransmissions at higher layers. In thefirst case,L may be designed to consist of only those
service vectors that deliver each packet of queuei to at leastdi receivers, where(d1, . . . , dn) can be determined
based on application requirements and recovery mechanisms. Usually,di > 0 for eachi, which in turn implies that
packets can not be discarded from the queues before transmission.

In the second case,L may be designed to consist of only those service vectors thatensure that each receiver
receives a packet transmitted by its source with a certain minimum probability, which can in turn be determined
in accordance with application requirements and system design (e.g., the amount of coding redundancy, multi-path
diversity and local recovery used). Note that the design ofL under this requirement may be computationally hard
as in the worst case each subset of the possible2n service vectors may need to be examined to determine whether
the desired policy, e.g., one among∆∗, ∆O, ∆γ , ∆T and∆R, attains the above goal. But, this computation need
be performed once every time nodes move, and hence only once in static networks, and in-frequently in networks
where nodes move slowly. Furthermore, heuristic selectionstrategies may be used to ensure fast computation, e.g.,
heuristics for the coverage problems [22] may be used if we assume the knowledge of the probability that a service
vector inL is selected by the given policy. Designing computationallysimple algorithms for appropriately selecting
L given the requirements of the application and the higher layer protocols and the service vector selection policy
(e.g., one among∆∗, ∆O, ∆γ , ∆T ) is a topic of future research.

Finally, the reward functions can also be appropriately selected so as to ensure that optimal policies prefer service
vectors that facilitate successful decoding of information. For example, if a receiver has limited loss tolerance owing
to application requirements and/or the nature of its loss recovery schemes, the reward associated with service vectors
that deliver packets to this receiver can be made high. Appropriate selection of reward functions constitutes a topic
for future research.

VII. R ELATED WORK

Tassiulaset al have characterized the stability region of constrained queueing networks, and have obtained a
scheduling policy that maximizes the stability region [35]. Several interesting generalizations of this basic result
have been obtained in context of mild assumptions on arrivaland service processes [1], [5], [18] and a diverse class
of systems including wireless networks [19], [34], input queued switches [23], parallel processing systems [6] and
manufacturing systems [2]. We consider constrained queueing networks where different queues receive different
rewards for service, and more importantly, the reward obtained by the same queue may be different depending on
the set of concurrently served queues. An important performance goal in such networks is to maximize the reward
per unit time or the throughput subject to stabilizing the system. Our contribution has been to design a scheduling

†In anycast, a packet need only be delivered to a certain minimum number of receivers. An example application of anycast isa client-server
query system. When a client needs to locate a service, it needs its query packet to reach a certain minimum number of servers.

‡These retransmissions are treated as separate packets at lower layers.



21

policy that attains this goal. We have earlier designed a scheduling policy that attains the same goal but only in a
system with a single queue [12], [16].

Recently, Neely has considered a queueing system in which ineach slot different queues can be simultaneously
served at different rates [27]. The rate vector can be selected among some given choices, and different selections have
different costs. In this scenario, Neely has proposed a scheduling policy that minimizes the cost while stabilizing
the system. In our case, in each slot all queues that are served must be served at the same rate, but receive different
rewards depending on the service vector. We maximize the total reward achieved per unit time subject to stabilizing
the system. Thus, in some sense, we study the dual of the problem studied in [27]. Concurrent with our work,
Stolyar has investigated a similar problem, and has proposed optimal policies similar to∆∗(~λ, δ) and∆O [33]§.
Our proof techniques are however significantly different, and also simpler, than that used by Stolyar. Furthermore,
the optimal policies proposed by Stolyar, and also the basicoptimal policies∆∗(~λ, δ), ∆O we propose, turn out
to be computationally complex. One of our important contributions has been to provide a general framework for
designing optimal policies that are also computationally simple. The design of this general framework in turn relies
on the techniques used for proving the optimality of∆∗(~λ, δ) and∆O.

Bonaldet al also showed that a policy that maximizes the instantaneous throughput does not attain the system
stability region [7]. But, while they focus on a wire-line network we consider more general scheduling constraints.
Also, they assume that flows arrive as per an arrival process and each flow arrives with a random number of packets,
whereas we assume that the set of flows do not change but packets arrive in each flow as per an arrival process.
Finally, the most important difference is that they investigated the tradeoff between fairness and stability, whereas
we maximize the average throughput subject to stability.

We now describe some interesting open problems, and how someexisting results can be used to solve these
problems. We have assumed that the arrivals and the random rewards are temporally independent, and every packet
can be served in1 slot. An interesting direction for future research is to generalize our results for all stationary,
ergodic arrival, service and reward processes. Several classes of policies have been shown to maximize the stability
region in constrained queueing networks under the above mild assumptions on the arrival and service processes
[1], [5], [18]. The analytical techniques proposed in thesepapers may be useful for the above generalizations in
our context.

We have assumed that a packet can be transmitted at most once.Note that since each additional transmission
increases the energy consumption, and the interference forother transmissions, several existing medium access
policies, e.g., IEEE 802.11, transmit a packet only a bounded number of times, and subsequently discard the packet
even if it has not reached some, or all, of its receivers. We assume this bound to be one which corresponds to a
special case of the above. Note that in the broadcast mode IEEE 802.11 transmits every packet only once at the
MAC layer, which is consistent with our assumption. An interesting open problem is to maximize the throughput
subject to stabilizing the system when each packet can be transmitted up tok times wherek > 1. We have recently
proposed a policy that minimizes, in a network consisting ofa single multicast sender, the amount of time each
packets waits at the head of line position of the queue beforeit is transmitted, when each packet can be transmitted
up to k times wherek is a parameter [13]. It will be interesting to investigate whether similar results can be
obtained for a network consisting of multiple queues and whether the guarantee on the waiting time at the head of
line position can be used to obtain guarantees on the throughput and the stability region.
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APPENDIX

PROOF OFTHEOREM 1

First, we prove two supporting lemmas (Section A) and subsequently prove Theorem 1 using these lemmas
(Section B). In Lemma 4, we show that if~λ is stabilizable, then there existsδ > 0 such that LP(~λ, δ) has a feasible
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solution. Thus, policy∆∗(~λ, δ) is well defined. In Lemma 5, we upper bound the throughput of any stable scheduling
policy. For stating these lemmas, we generalize the definitions of LP(~λ, δ) andU(~λ, δ). Let ~δ = (δ1, . . . , δn).

LP(~λ,~δ) :- Maximize: U(~λ,~δ) =
∑

i

∑
k wiℓikrk(~ℓi)

Subject to:
1)

∑m
i=1 wi = 1 andwi ≥ 0 for every i

2)
∑m

i=1 wiℓik = λk + δk for everyk.

A. Supporting Lemmas

Lemma 4:Let ~λ ∈ C. Then, there exists a neighborhoodN0 around~λ such that LP(~λ,~δ) is feasible if~λ+~δ ∈ N0.
Proof: Let ~λ1 ∈ C. SinceC is the interior of the convex hull ofL,

~λ1 =

m∑

i=1

ci
~ℓi, whereci ≥ 0, ∀ i and

m∑

i=1

ci = 1.

Thus,~c = [c1 · · · cm] is a valid distribution. Moreover,~c is a feasible solution for LP(~λ1 − ~δ′, ~δ′) for every~δ′.
Now, consider a given~λ ∈ C. SinceC is an open set, there exists an open ball centered at~λ (denoted byN0)

such thatN0 ∈ C. Thus,~λ + ~δ ∈ C for every~λ + ~δ ∈ N0. Now, as shown above, this implies that LP(~λ,~δ) has a
feasible solution.

Lemma 5:For every stabilizable~λ, Ωmax(~λ) ≤ U(~λ, 0) w.p. 1.
Proof: Consider any policy∆ that stabilizes~λ.

Let ξ∆
i (t) denote the number of slots in which∆ uses~ℓi as the service vector till timet, i.e.,

ξ∆
i (t) =

t∑

u=1

1
{~ℓ∆(u)=~ℓi}

.

Now, ξ∆
i (t) ≥ 0, for everyt ≥ 1, (36)∑m

i=1 ξ∆
i (t)

t
= 1, for everyt ≥ 1, (37)

lim
t→∞

∑m
i=1 ξ∆

i (t)ℓik

t
= λk w.p. 1 for everyk. (38)

The last equality follows since∆ is stable.
Consider anyt, and let for eachk,

ck,t =

∑m
i=1 ξ∆

i (t)ℓik

t
− λk. (39)

Let ~ct = (c1,t, . . . , cn,t). Since from (36), (37) and (39),ξ
∆

i (t)
t

is a feasible solution of LP(~λ,~ct),
∑m

i=1

∑n
k=1 ξ∆

i (t)ℓikrk(~ℓi)

t
≤ U(~λ,~ct). (40)

We will show that given anyι > 0, w.p. 1 there exists (a) a~δ such that0 < δi < ι for all i, 1 ≤ i ≤ n, and (b)
t̂ such that for everyt ≥ t̂ ∑m

i=1

∑n
k=1 ξ∆

i (t)ℓikrk(~ℓi)

t
≤ sup

−~δ<~δ′<~δ

{
U(~λ,~δ′)

}
. (41)

From Lemma 4, there exists a neighborhoodN0 around~λ such that LP(~λ,~δ) is feasible if~λ + ~δ ∈ N0. Thus,
given anyι > 0, there exists a~δ such that0 < δi < ι for all i, 1 ≤ i ≤ n, and~λ + ~δ′ ∈ N0 for all ~δ′ such that
−~δ < ~δ′ < ~δ. Thus,U(~λ, ~δ′) is defined for all~δ′ such that−~δ < ~δ′ < ~δ. From (38), w.p.1 there existŝt such that
for everyk, t ≥ t̂, −δk < ck,t < δk. Thus, for everyt ≥ t̂, U(~λ,~ct) ≤ sup

−~δ<~δ′<~δ

{
U(~λ,~δ′)

}
. Now, (41) follows

from (40).
Now, from (41) and by the continuity ofU(~λ,~δ), w.p. 1,

lim inf
t→∞

∑m
i=1

∑n
k=1 ξ∆

i (t)ℓikrk(~ℓi)

t
≤ U(~λ, 0).

Since∆ is an arbitrary stable policy, the lemma follows from the above inequality, (1) and Definition 6.
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B. Proof of Theorem 1

Proof: From Lemma 4, there exists a neighborhoodN0 around~λ such that LP(~λ,~δ) is feasible if~λ+~δ ∈ N0.
Thus, there exists aδ1 > 0 such that~λ + (δ, . . . , δ) ∈ N0 for all δ, 0 < δ < δ1. Thus, by Lemma 4, LP(~λ, δ) has a
feasible solution for everyδ, 0 < δ < δ1.

Now, from continuity ofU(~λ, δ) it follows that

lim
δ→0

[
U(~λ, δ) − δ

n∑

k=1

Gk

]
= U(~λ, 0).

Thus, from Lemma 5 it follows that for everyǫ > 0 there existŝδ > 0 such that for every0 < δ < δ̂, U(~λ, δ) is
well-defined and

U(~λ, δ) − δ

n∑

k=1

Gk ≥ Ωmax(~λ) − ǫ w.p. 1. (42)

Selectδ such that0 < δ < δ̂. Now, ∆∗(λ, δ) is well-defined. Since∆∗(λ, δ) selects thekth queue for service
w.p. λk + δ, the rate at which thekth queue is offered service is greater than its arrival rate.Hence,{~Q(t)}t≥1

under∆∗(~λ, δ) constitutes a positive recurrent Markov chain, and the expected queue lengths under the stationary
distribution of this Markov chain are finite. Thus,∆∗(~λ, δ) is stable.

Let γi(u) = 1 if ∆∗(~λ, δ) selects~ℓi in slot u, and0 otherwise. Thus,

lim
t→∞

1

t

t∑

u=1

γi(u) = wi(~λ, δ) w.p. 1, (43)

lim
t→∞

1

t

t∑

u=1

m∑

i=1

γi(u)ℓik1{Qk(u)>0} = λk w.p. 1, (44)

and lim
t→∞

1

t

t∑

u=1

m∑

i=1

γi(u)ℓik = λk + δ w.p. 1. (45)

Relation (44) follows because∆∗(~λ, δ) is stable and
∑t

u=1

∑m
i=1 γi(u)ℓik1{Qk(u)>0} is the number of packets

departing from thekth queue in(0, t). Relation (45) follows from (43) and LP(~λ, δ). Now,

Ω∆∗(~λ,δ)(~λ)

= lim
t→∞

∑t
u=1

∑n
k=1

∑m
i=1 γi(u)ℓik

(
~Q(u)

)
rk

(
~ℓi

(
~Q(u)

))

t

(the limit exists w.p. 1 since{~Q(t)}t≥1 under∆∗(~λ, δ)

constitutes a positive recurrent Markov chain)

≥ lim
t→∞

∑t
u=1

∑n
k=1

∑m
i=1 γi(u)ℓikrk(~ℓi)1{Qk(u)>0}

t

(sincerk(~ℓi) ≥ rk(~ℓj) if ~ℓi ≤ ~ℓj andℓik > 0)

= lim
t→∞

∑t
u=1

∑n
k=1

∑m
i=1 γi(u)ℓikrk(~ℓi)

t

− lim
t→∞

∑t
u=1

∑n
k=1

∑m
i=1 γi(u)ℓikrk(~ℓi)1{Qk(u)=0}

t

≥ U(~λ, δ)− lim
t→∞

∑t
u=1

∑n
k=1 Gk

∑m
i=1 γi(u)ℓik1{Qk(u)=0}

t

(from (43), LP(~λ, δ) and sincerk(~ℓi) ≤ Gk ∀ i)

≥ U(~λ, δ) − δ
n∑

k=1

Gk w.p. 1 (from (44) and (45)). (46)

The result follows from (42) and (46).
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PROOF OFTHEOREM 4

Proof: Let ~λ be stabilizable and

f(~Y (t)) =

n∑

k=1

(Qk(t))
2.

Using an analysis similar to that for obtaining (8),

E

[
f(~Y ((T + 1)t)) − f(~Y (Tt)) | ~Y (Tt)

]

≤ MT 2 + nAmaxT + T
n∑

k=1

2Qk(Tt)λk

−2

T−1∑

K=0

E

[
W ( ~Q(Tt + K), ~ℓ∆T (Tt + K)) | ~Y (Tt)

]

−2V

T−1∑

K=0

E

[
n∑

k=1

[Gk−rk(~ℓ
∆T (Tt+K))]ℓ∆T

k (Tt+K)|~Y (Tt)

]
. (47)

From Lemma 1 and (47), it follows that

E

[
f(~Y ((T + 1)t)) − f(~Y (Tt)) | ~Y (Tt)

]

≤ MT 2 + nAmaxT + 2nT 2(Amax + 2) + T

n∑

k=1

2Qk(t)λk

−2

T−1∑

K=0

E


 max

~ℓ∈L,

~ℓ=~ℓ( ~Q(Tt+K))

W ( ~Q(Tt + K), ~ℓ) | ~Y (Tt)




−2V

T−1∑

K=0

E

[
n∑

k=1

[Gk−rk(~ℓ
∆T (Tt+K))]ℓ∆T

k (Tt+K)|~Y (Tt)

]
.

Using arguments similar to those in the proof of (12) from (8), we can prove that

E

[
f(~Y ((T + 1)t)) − f(~Y (Tt)) | ~Y (Tt)

]

≤ MT 2 + nAmaxT + 2nT 2(Amax + 2) − 2T

n∑

k=1

δQk(t)

+2V T

n∑

k=1

Gk(λk + δ) − 2V TU(~λ, δ)

−2V
T−1∑

K=0

E

[
n∑

k=1

[Gk−rk(~ℓ
∆T (Tt+K))]ℓ∆T

k (Tt+K)|~Y (Tt)

]
, (48)

whereδ is such that∆∗(~λ, δ) is ǫ/2-throughput optimal.
1) Proof for stability of∆T : : From (48), for everyV ≥ 0,

E

[
f(~Y ((T + 1)t)) − f(~Y (Tt)) | ~Y (Tt)

]

≤ MT 2 + nAmaxT + 2nT 2(Amax + 2) − 2T

n∑

k=1

δQk(t)

+2V T

n∑

k=1

Gk(λk + δ).
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Let BT = {~Y = (~Q, ~ℓ) : ~ℓ ∈ L,
∑n

k=0 Qk ≤ V
δ

∑n
k=0 Gk(λk + δ) + MT+nAmax+2nT (Amax+2)+1

2δ
}. Thus,

E

[
f(~Y ((T + 1)t)) − f(~Y (Tt)) | ~Y (t)

]

<

{
∞ for all ~Y (Tt),

−1 if ~Y (Tt) 6∈ BT .

Thus, since|BT | is finite, by Foster’s Theorem (Theorem 2.2.3 in [20]),{~Y (Tt)}t≥1 is positive recurrent and
the expectations of the queue lengths under the stationary distribution of {~Y (Tt)}t≥1 are finite. Thus, since the
queue lengths in consecutive slots can differ only by a constant,∆T stabilizes the system.

2) Proof thatΩ∆T (~λ) ≥ Ωmax(~λ) − ǫ: Taking expectation on both sides of (48) with respect to the stationary
distribution for{~Y (Tt)}t≥1, we obtain

E

[
f(~Y ((T + 1)t)) − f(~Y (Tt))

]

≤ MT 2 + nAmaxT + 2nT 2(Amax + 2) − 2T

n∑

k=1

δE[Qk(Tt)]

+2V T
n∑

k=1

Gk(λk + δ) − 2V TU(~λ, δ)

−2V

T−1∑

K=0

E

[
n∑

k=1

[Gk − rk(~ℓ
∆T (Tt + K))]ℓ∆T

k (Tt + K)

]
. (49)

Since{~Y (Tt)}t≥1 is a positive recurrent markov chain, and{~Y (t), t%T}t≥1 is a periodic markov chain with
periodT,

T−1∑

K=0

E[ℓ∆T

k (Tt + K)] = T lim
u→∞

1

u

u∑

v=1

ℓ∆T

k (v) = Tλk w.p. 1, (50)

and
T−1∑

K=0

n∑

k=1

E[rk(~ℓ
∆T (Tt + K))ℓ∆T

k (Tt + K)]

= T lim
u→∞

1

u

u∑

v=1

n∑

k=1

rk(~ℓ
∆T (v))ℓ∆T

k (v) w.p. 1

= TΩ∆T (~λ) (from (1)). (51)

From stationarity,E[f(~Y ((T + 1)t))] = E[f(~Y (Tt))]. (52)

From (49), (50), (51) and (52), it follows that

Ω∆T (~λ)

≥ U(~λ, δ) − δ
n∑

k=1

Gk −
MT + nAmax + 2nT (Amax + 2)

2V

≥ Ωmax(~λ) −
ǫ

2
−

MT + nAmax + 2nT (Amax + 2)

2V
(from Theorem 1)

≥ Ωmax(~λ) − ǫ if V ≥
MT + nAmax + 2nT (Amax + 2)

ǫ
.

The result follows since∆T stabilizes the system as well.
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PROOF OFLEMMA 2

Here, we outline the proof, but provide the complete proof in[15].
Let the system use∆R and the arrival rate vector~λ be stabilizable. Let~Y (t) = (~Q(t), ~ℓ∆R(t)) represent the

system state under∆R. Consider a Lyapunov function:f(~Y (t)) = f1(~Y (t)) + f2(~Y (t)), where

f1(~Y (t)) =

n∑

k=1

(Qk(t))
2,

f2(~Y (t)) =

[
n∑

k=1

Qk(t)
(
ℓOPT
k (t) − ℓ∆R

k (t)
)]2

.

Using similar technique as that in the proof of Proposition 1of [34], we show thatE[f(~Y (t+1))−f(~Y (t))|~Y (t) =
~Y ] < 0 for all but the finite number of~Y ’s. Thus, by Foster’s theorem (Theorem 2.2.3 in [20]), the process{~Y (t)}t≥1

is a positive recurrent markov chain. Hence, the system is stable under∆R.

PROOF OFTHEOREM 9

Let the system usê∆R and the arrival rate vector~λ be stabilizable. Let~I(t) be the system state under∆̂R. Using
similar arguments as in the proof of Lemma 2, we can prove that{~I(t)}t≥1 is a positive recurrent markov chain.
Next, we outline the proof.

Let ~ℓ
b∆O(t) denote the service vector selected by∆̂O in slot t if the queue length vector and the random process

S at the beginning oft are ~Q(t) and S(t). As in the proof of Lemma 2, we consider the Lyapunov function
f(~I(t)) = f1(~I(t)) + f2(~I(t)), where

f1(~I(t)) =

n∑

k=1

(Qk(t))
2,

f2(~I(t)) =

[
n∑

k=1

Qk(t)
(
ℓ

b∆O

k (t) − ℓ
b∆R

k (t)
)]2

.

UsingŴ
(

~Q(t), ·,S(t)
)

instead ofW
(

~Q(t), ·
)

, and the same arguments as in the proof of Lemma 2, we can show

that (a) there exists a constantB̂1 > 0 such thatE[f(~I(t + 1)) − f(~I(t)) | ~I(t)] < B̂1 for all ~I(t), and (b) there
exists a constant̂B2 > 0, such thatE[f(~I(t + 1)) − f(~I(t)) | ~I(t)] < 0 for all ~I(t) such that

∑n
k=1 Qk(t) ≥ B̂2.

Thus, since|{~I :
∑n

k=1 Qk < B̂2}| is finite, the stability of∆̂R follows from Foster’s theorem (Theorem 2.2.3 in
[20]). Thus, the first part of Theorem 9 follows.

We now prove that̂W ( ~Q(t), ~ℓ
b∆O(t),S(t)) − Ŵ ( ~Q(t), ~ℓ

b∆R(t),S(t)) ≤ n
µ mini bi

(Amax + 1)¶. Then, the second
part of Theorem 9 follows from the first part of Theorem 8.

Recall thatP (S(t) = Si) = bi for eachi ∈ {1, . . . , z}. Since P ~Q,S
(~ℓ

b∆O) ≥ µ for every ~Q, S, and bi > 0

for each i ∈ {1, . . . , z},
(
~ℓ

b∆R(t),S(t)
)

=
(
~ℓ∆O(t), Si

)
infinitely often w.p. 1 for eachi ∈ {1, . . . , z}. Let

{κ̂K,i}K≥1 be the slots in which
(
~ℓ

b∆R(t),S(t)
)

=
(
~ℓ

b∆O(t), Si

)
. Again, sinceP ~Q,S

(~ℓ∆O) ≥ µ for every ~Q, S,
E[κ̂K+1,i − κ̂K,i] ≤ 1/(biµ) for eachi ∈ {1, . . . , z}.

Without loss of generality, letS(t) = Si and t ∈ [κ̂K,i, κ̂K+1,i − 1] for someK, i. Now,

Qk(t) ≤ Qk(κ̂K,i) + Amax(κ̂K+1,i − κ̂K,i) ∀ k. (53)

Qk(t) ≥ Qk(t − 1) − 1 ∀ k. (54)

¶Note that henceforth all expectations are under the stationary distribution of the process{~I(t)}.
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Ŵ ( ~Q(t), ~ℓ
b∆O(t),S(t))

≤ Ŵ ( ~Q(κ̂K,i), ~ℓ
b∆O(t),S(t)) + nAmax(κ̂K+1,i − κ̂K,i)

(from (33) and (53) and since for everyℓ ∈ L, i = 1, . . . , z

Ŵ ( ~Q1, ~ℓ, Si) − Ŵ ( ~Q1, ~ℓ, Si) ≤
n∑

j=1

(Q1j − Q2j)ℓj)

≤ Ŵ
(

~Q(κ̂K,i),
(
~ℓ

b∆O(t)
) (

~Q(κ̂K,i)
)

,S(t)
)

+nAmax(κ̂K+1,i − κ̂K,i)

(sinceŴ ( ~Q, ~ℓ, Si) ≤ Ŵ ( ~Q, ~ℓ( ~Q), Si) ∀ ~ℓ, ~Q, i = 1, . . . , z)

≤ max
~ℓ∈L,

~ℓ=~ℓ( ~Q(bκK,i))

Ŵ
(

~Q(κ̂K,i), ~ℓ,S(t)
)
+nAmax(κ̂K+1,i−κ̂K,i)

= Ŵ ( ~Q(κ̂K,i), ~ℓ
b∆O(κ̂K,i),S(t)) + nAmax(κ̂K+1,i−κ̂K,i)

(from (32) sinceS(t) = S(κ̂K,i)). (55)

Next,

Ŵ ( ~Q(t), ~ℓ
b∆R(t),S(t))

≥ Ŵ
(

~Q(t),
((

~ℓ
b∆R (τ(t,S(t))

)(
~Q(t)

))
,S(t)

)
(from (35))

≥ Ŵ
(

~Q(t), ~ℓ
b∆R (τ (t,S(t))) , S(t)

)

≥ Ŵ
(

~Q (τ (t,S(t))) , ~ℓ
b∆R (τ (t,S(t))) , S(t)

)

−n (t − τ (t,S(t))) (from (54)).

Thus, sincêκK,i = τ(τ(. . . τ(t, Si), Si . . .), Si),

Ŵ ( ~Q(t), ~ℓ
b∆R(t),S(t))

≥ Ŵ
(

~Q(κ̂K,i), ~ℓ
b∆R(κ̂K,i),S(t)

)
− n(κ̂K+1,i − κ̂K,i). (56)

Thus, from (55) and (56), and since from the definition ofκ̂K,i, ~ℓ
b∆R(κ̂K,i) = ~ℓ

b∆O(κ̂K,i),

Ŵ ( ~Q(t), ~ℓ
b∆O(t),S(t)) − Ŵ ( ~Q(t), ~ℓ

b∆R(t),S(t))

≤ n(Amax + 1)(κ̂K+1,i − κ̂K,i).

The result follows sinceE[κ̂K+1,i − κ̂K,i] ≤ 1/(biµ) for eachi ∈ {1, . . . , z}.
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