
Solutions for Homework 5

Problem 1 Consider a generalization of the binary heap structure. Every
node has d children. It is an almost complete,d-ary tre, and a node must be
less than or equal to all its children. Design an array representation of the
heap. Design a Deletemin and Increasekey procedure here.

Solution: We generalize the representation of a 2-ary (binary) heap to
a d-ary heap. Root is stored in array element 0. The children of root are
stored in array elements 1 to d. The grandchildren of root are stored in
array elements d + 1 to d2 + d. In general, level j has dj elements which
are stored in locations 1 +Pi=j�1i=1 di to Pi=ji=0 di. Parent of j is at position
b j�1d c; and children of j are at dj + 1 to dj + d:

Deletemin removes the value in the root (which is the minimum value)
and places the last element of the heap | name it a| to the side. Then the
procedure �nds the child of the root with the minimum value and compares
this value to the value of a. If a is smaller then it is placed in the root, and
the heap has been restored. Otherwise, the minimum child value moves up
to the root, and the algorithm is applied recursively using this child as the
new root.

Increasekey increases the value of the speci�ed element. Then it com-
pares its new value to the values of its children. If its value is greater than
any of its children, then the minimum child value is interchanged with the
value of the speci�ed element. The algorithmn is applied recursively till it
reaches a leaf.

Problem 2: Consider a binary heap. Print the keys as encountered in
a preorder travel. Is the output sorted? Justify your answer Attempt the
same question for inorder and postorder travel.

Solution: Consider �rst the preorder traversal. A counter-example is
provided: The root of the heap keeps key-value 1. Its left child keeps key-
value 4 and its right child keeps key-value 2. A preorder traversal would
have the following output: 1; 4; 2 . Obviously the output is not sorted.

1

In the case of inorder, whatever heap we provide the output will not
be sorted. The reason is that the heap property makes the left child being
bigger than its parent. For example the above heap would give 4; 1; 2 as
output.

The same argument holds for postorder traversal. Checking this with
the above heap, we get output 4; 2; 1 which is not sorted.

Problem 3: Give an algorithm to �nd all nodes less than some value X
in a binary heap. Analyze its complexity.

Solution: Here is a sketch of a recursive algorithm: start from the root
of the heap. If the value of the root is smaller than X then print this value
and call the procedure recursively once for its left child and once for its right
child . If the value of a node is bigger or equal than X then the procedure
stops without printing that value.

The complexity of this algorithm is O(N), where N is the total number
of nodes in the heap. This bound takes place in the worst case, where the
value of every node in the heap will be smaller than X, so the procedure
has to call each node of the heap.

Problem 4: Given any n, design an input of n elements such that the
insertion sort takes
(n2) operations.

Solution: Consider an input that is initially sorted in the reverse order.
For example, the sequence 5; 4; 3; 2; 1 satis�es the above property for n = 5.

In this case, let the �rst k elements be sorted using insertion sort. Then
the k + 1th element will take k comparisons to be inserted properly in the
�rst position, since it is smaller than the �rst k elements. Thus, the total
number of comparisons is 1 + 2 + : : :+ (n� 1) = n(n�1)

2 which is
(n2).

Problem 5: Problem 6.15 a, b, c from Weiss.
Solution:
A. The minimum key in a min-max heap is found at the root. The

maximum key is the largest child of the root.
B. A node is inserted by placing it into the �rst available leaf position

and reestablishing the min-max heap property from the path to the root.
Here is the procedure reestablishing the property:
/* A is the data array */

procedure PercolateUp(i) /* i is the position in the array */

{

2

if (i is on min-level)

if A[i]>A[parent(i)

swap A[i] and A[parent(i)]

PercolateUpMax(parent(i)) /* distinguish bw max and min levels */

else PercolateUpMin(i)

else /* i is on max level */

if A[i]<A[parent(i)

swap A[i] and A[parent(i)]

PercolateUpMin(parent(i))

else PercolateUpMax(i)

}

procedure PercolateUpMin(i) {

if A[i] has grandparent

if A[i]<A[grandparent(i)]

swap A[i] and A[parent(i)]

PercolateUpMin(grandparent(i))

}

PercolateUpMax is similar to PercolateUpMin. The relational operators <,> are

reversed accordingly.

C. DeleteMin and DeleteMax are similar to the operations with normal
heaps. The desired element (min or max) is extracted and the last element
of the heap is inserted into the empty position. Then the algorithm must
maintain the max-min heap property. Again the procedure di�erentiates
between min-level and max-level.

procedure PercolateDownMin(i) /* i is the position in the array */

{

if (i is on min level)

3

PercolateDownMin(i)

else PercolateDownMax(i)

}

procedure PercolateDownMin(i) {

if A[i] has children

m:= index of smallest of children

and grandchildren (if any) of i

if A[m] is grandchild of i

if A[m]<A[i]

swap A[m] and A[i]

if A[m]>A[parent[m]

swap A[m] and A[parent(m)]

PercolateDownMin(m)

else /* A[m] is a child of i */

if A[m] < A[i]

swap A[i] and A[m]

}

Again the PercolateDownMax(i) is similar to the one above.

4

