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Abstract

We address the question of providing throughput guararieesgh distributed scheduling, which has remained
an open problem for some time. We consider a simple distbstheduling strategwaximal schedulingand
prove that it attains a guaranteed fraction of the maximurouthput region in arbitrary wireless networks. The
guaranteed fraction depends on “interference degree” @htitwork which is the maximum number of sessions
that interfere with any given session in the network and dbimerfere with each other. Depending on the nature
of communication, the transmission powers and the propagamodels, the guaranteed fraction can be lower
bounded by the maximum link degrees in the underlying togglor even by constants that are independent of the
topology. The guarantees also hold in networks with anyitraimber of frequencies. We prove that the guarantees
are tight in that they can not be improved any further with et scheduling. Our results can be generalized
to networks with multicast communication, arbitrary numbé frequencies and end-to-end sessions. Finally, we
enhance maximal scheduling to guarantee fairness of riateatibn.

I. INTRODUCTION

Maximizing the network throughput by appropriately scHedy sessions is a key design goal in
wireless networks. Tassiula al. characterized the maximum attainable throughput regiah aso
provided a scheduling strategy that attains this throughgmion in any given wireless network [16]. The
policy, however, is centralized and can have exponentialptexity depending on the network topology
considered. Later, Tassiulas [15] and Slealal. [14] provided linear complexity randomized scheduling
schemes that attain the maximum achievable throughpuingboth scheduling strategies however require
centralized control.

Designing a distributed scheduling policy that attains titim@ughput region in wireless networks has
remained elusive. Recently, Let al. [7] proved that a distributed maximal matching schedulitigtegy
is guaranteed to attain at least half of this region for thdeaexclusive spectrum sharing model. In the
node-exclusive spectrum sharing model, the only scheglaglimstraint is that a node cannot communicate
with multiple nodes simultaneously. This specific integfeze model holds only when every node has a
unique frequency in its two-hop neighborhood.

Different wireless networks have significantly differemtdrference constraints. Bluetooth networks
satisfy the node-exclusive spectrum sharing model. Ontier thand, IEEE 802.11 networks have limited
number of frequencies that may not permit the allocatiomidue frequencies in a two-hop neighborhood.
Furthermore, the interference regions of nodes involvettansmissions may vary widely depending on
the signal propagation conditions, and may be differentdifferent transmitter-receiver pairs. A basic
guestion that remains open is whether a distributed schegstrategy can attain a guaranteed fraction
of the maximum achievable throughput region for arbitrarteiference models. Our investigation takes
a step forward in solving this open problem.

Our contribution is to characterize the maximum throughegton attained by a distributed scheduling
strategy under arbitrary topologies and interference sodéne simple scheduling policy we consider,
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referred to asnaximal schedulingonly ensures that if a transmitterhas a packet to transmit to a receiver
v, either(u, v) or a transmitter-receiver pair that can not simultaneotrsiysmit with(u, v) is scheduled
for transmission; the scheduling is otherwise arbitranyr @vestigation of this maximal scheduling policy
has been motivated by the following observations. In theifipanode-exclusive spectrum sharing model,
the maximal scheduling policy becomes the maximal matcipiolicy considered by Liret. al, and is
therefore guaranteed to attain at least half of the maximumoughput region [7]. Dakt. al. [4] has
also obtained a similar guarantee for the maximal matchwigcy in input-queued switches where the
scheduling constraints are similar to that in the nodetesteé spectrum sharing model. Last but not the
least, the simplicity and localized nature of maximal scHied) imply that it can be readily implemented
in a distributed manner with low overhead and computaticst.do is therefore interesting and important
to examine whether maximal scheduling can provide any titput guarantee under arbitrary interference
models and topologies.

We prove that the maximum throughput region attained by makscheduling is significantly different
for different interference models. We first consider a “tedtional equal power” interference model in
which the network has a single frequency, and all commuicicatuse the same power and involve
bidirectional message exchanges (e.g., RTS, CTS, data, &&ikanges in IEEE 802.11). Using a
combination of Lyapunov theory and geometric packing, we/@tthat in this interference model, maximal
scheduling is guaranteed to attain at leg&ith of the maximum throughput region. This result therefore
guarantees that as in the node-exclusive spectrum shammglma distributed scheduling can attain a
constant fraction of the maximum throughput region in thésec as well. Furthermore, we show that
the guarantee can not be improved any further in this cashesis exists topologies for which maximal
scheduling will attain at most/8th of the maximum throughput region.

We next consider a “unidirectional equal power” interfar@model in which all communications involve
unidirectional message exchanges. The network still hasgdesfrequency and all communications use
the same power. In this case, however, the performance oinmhscheduling can become arbitrarily
bad. More precisely, given any constafit there exists topologies in which maximal scheduling will
attain less than /Z of the maximum throughput region. On the other extreme, ssudised before, in the
node-exclusive spectrum sharing model, maximal schegluirguaranteed to attain at least half of the
maximum throughput region [7]. We also demonstrate thahis tase there exists topologies in which
maximal scheduling, and hence maximal matching, will at&ti mostl/2 of the maximum throughput
region.

We conclude that a slight variation in the interference tansts may significantly alter the throughput
region attained by maximal scheduling (and possibly by modieributed scheduling strategies as well). We
can not therefore draw conclusions about the performanosgafmal scheduling for arbitrary interference
constraints from the results in a few representative saenaklso, given that large number of interference
models arise, case by case investigations may not be fea®yel therefore proceed to design a framework
for characterizing the throughput region of maximal schieduin arbitrary wireless networks.

We characterize the fraction of the maximum throughputaegittained by maximal scheduling in any
given topology and interference model. LE{A\) be the maximum interference degree in an arbitrary
wireless network\/, where the “interference degree” of any transmitter-nesrgpair (u, v) is the maximum
number of transmitter-receiver pairs that interfere withv) but do not interfere with each other. We
prove that maximal scheduling is guaranteed to attain att leai’ (N) of the maximum throughput
region in the given networld/. Also, there exists an arrival process in the given netwirkor which
maximal scheduling will attain at mosy K (N') of the maximum throughput region. Given a network,
the maximum interference degree may be computed using gegoraegraph-theoretic techniques. These
results therefore allow us to obtain performance guarantee maximal scheduling for arbitrary node
locations, propagation conditions, interference modat$ éhannel allocations.

The comparisons between the throughput region of maxinmtediding with the maximum possible
throughput region of the network characterizes the perdity to the use of only local information in
the scheduling. The characterizations of the throughpgioreof maximal scheduling obtained so far



bounds the performance of the network in terms of that of tleestvsession. However, depending on
the interference in individual neighborhoods, differeessons may be able to accommodate different
arrival rates. The natural next question now is whether fassible to obtain better non-uniform bounds
by considering the constraints of individual sessions. Weve that under maximal scheduling the
performance of each session can be characterized by thdenetece degree of only the links in its
path, and the interference degrees of the neighbors of ts® Thus the performance penalty for
each session, due to the use of local information based skthgddepends only on the neighborhoods
of the links in its path. The result is somewhat counteriitaeias the overall performances of sessions
may depend on each other even when they are separated bwldesps. Furthermore, we prove that
the performance penalties under maximal scheduling carb@docalized any further. Specifically, the
interference degrees of the links of a session alone canetetrdine its throughput guarantee.

Maximal scheduling is really a class of policies, and somej@s in this class could allocate bandwidth
very unfairly. Recently, Liret al. [7] and Buiet. al.[2] have shown that in the node exclusive spectrum
sharing model, maximal scheduling can be used for maximizire network utility and congestion
control. We obtain global fairness guarantees in wirelesworks with arbitrary interference models using
maximal scheduling. First, using the characterizatiomstie throughput region for maximal scheduling,
we characterize the feasible set of service rate allocatfon maximal scheduling, and prove that a
combination of a token generation scheme together with maixscheduling attains maxmin fairness in
this feasible set. We next show that the rate vector attaiiyethe above combination is fairer than the
overall maxmin fair rate vector times the reciprocal of thaximum interference degree in the network.
The token generation scheme allows each session to esiisatexmin fair rate in a distributed manner.
Sessions contend for channel access in accordance witadiiisate, and the contention is resolved using
maximal scheduling. The token generation and the contemésolution can be executed in parallel. The
maxmin fair rates need not be computed explicitly, and noAtedge of the statistics of the packet arrival
process is necessary for executing the algorithm. The ctatipn need not restart when the topology or
the arrival rates change. The scheme is therefore robust.

The paper is organized as follows. We describe the systermehaodl the maximal scheduling policy
in Section Il. We describe some example communication atefference models in Section 1ll. We
characterize the throughput regions of maximal scheddbngome representative interference models in
Section 1V, and for arbitrary wireless networks in Sectionl¥v Section VI, we generalize the analytical
results and the framework so as to include multicast andichaibnel networks, different throughput
guarantees for different sessions, stronger notions diilsyaand end-to-end performance guarantees.
We describe how maximal scheduling can be enhanced so asatargee fairness in Section VII. We
conclude in Section VIIl. We present the proofs in appendix.

II. SYSTEM MODEL

We consider scheduling at the MAC layer in a wireless netwd¥e assume that time is slotted.
The topology in a wireless network can be modeled as a didegtephG = (V, E), whereV and £
respectively denote the sets of nodes and links. A link sxrstm a node: to another node if and only
if v can receiveu’s signals. The link setz depends on the transmission power levels of nodes and the
propagation conditions in different directions.

We now introduce terminologies that we use throughout thepe&Some of these are well-known in
graph theory; we mention these for completeness.

Definition 1: A node: is aneighbor of a nodej, if there exists a link fromi to j, i.e., (i,7) € E.

The degree of a node is the number of links inE' originating from or ending at.. The degree of a
link e = (u,v) is defined as the sum of the degreesuadéind v. The maximum link degreén G, iq, is
the maximum degree of any link if.

The out-degreeof a nodeu is the number of links inE' originating fromw. The in-degreeof a node
u is the number of links in® ending atu. The directed degree of a link = (u, v) is defined as the sum
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(a) Network \/’ (c)

Fig. 1. Panel (a) shows a directed graph with= {M1,..., M10}. The arrows between the nodes indicate the directed linkererl
are7 sessionsiS1,...,S7. NodesM2, M5, M3, M6, M1, M8 and M 10 are the transmitters of sessiofs, S2, 53, 54,55, 56 and S7,
respectively. Nodel/2 has 3 neighborsM1, M5, M6. NodesM1 and M2 have degree 5; hence the degrees of eddés, M/2) and
(M2, M1) are 10. Herejs = 10. Both the out-degree af/1 and in-degree of\/2 are 3. Thus, the directed degree (a1, M2) is 6.
Here, A¢ = 6. SessionsS5 and S6 interfere with each other, a&/4 has a single transceiver.

Panels (b) and (c) show the interference graphs for the mktaltown in (a) under bidirectional and unidirectional conmication models,
respectively. As panels (b) and (c) show, the interfererats sf S6 are {S1,.S55} and {S5} under the bidirectional and unidirectional
communication models, respectively.

of the out-degree of: and in-degree of. The maximum directed link degree GG, Ag, is the maximum
directed degree of any link if.

At the MAC layer, each session traverses only one link. If ss®mi traverses link(u, v) thenw and
v ared’s transmitter and receiver respectively, and the sessotompletely specified by thg—tuple,
(1,u,v). Multiple sessions may traverse the same link. Without tafsgenerality, we assume that every
node inV is either the transmitter or the receiver of at least oneigesH this assumption does not hold,
we can conside6 to be a subgraph obtained from the original topology by rangthe nodes that are
not the end points of sessions.

Definition 2: A sessioni interfereswith sessionj if j can not successfully transmit a packet when
is transmitting.

In Section 1ll, we will describe broad classes of communaatnd interference models and how to
obtain the pairwise interference relations in each case.

A wireless networkN' can be described by the topology = (V, E), the 3—tuple specifications of
the sessions and the pair-wise interference relationsdegtihe sessions. We consider a network with
sessions.

Definition 3: Theinterference sebf a session, 5;, is the set of sessionssuch that eithef interferes
with j or j interferes withi.

Note that ifj € S;, theni € S;.

Definition 4: Thelnterference graphV = (VV, EY) of a network\ is an undirected graph in which
the vertex sel’?\ corresponds to the set of sessions\inand there is an edge between two vertices
andj if j € S;.

We elucidate these definitions through examples in Fig. 1.

We now describe the arrival process. We assume that at mQst> 1 packets arrive for any session
in any slot. LetA;(n) be the number of packets that sessiagenerates in intervdl),n], : = 1,..., N.
We assume that any packet arriving in a slot arrives at thenbexg of the slot, and may be transmitted
in the slot. The arrival procesgA;(.),7 = 1,..., N} satisfies a strong law of large numbers (SLLN).

Thus, there exists non-negative real numbers = 1,..., N such that with probability,
lim A;(n)/n=X\;, i=1,...,N. 1)

The condition (1) on the arrival processes is mild. Sevarala processes including all jointly stationary



and ergodic arrival processes satisfy (1). For simpliaitg, will sometimes consider special cases of the
above general model (Sections VI-D, VI-E, VII), and exglicistate whenever we do so. B

Definition 5: The arrival rate of sessioni is \;, ¢ = 1,..., N. The arrival rate vector A is an
N —dimensional vector whose components are the arrival rates.

Definition 6: A scheduling policyis an algorithm that decides in each slot the subset of sess$at
would transmit packets in the slot.
Clearly, a subse$' of sessions can transmit packets in any slot if no two sessiofi interfere with each
other and every session # has a packet to transmit. Every packet has lerigsfot. Thus, if a session
is scheduled in a slot, it transmits a packet in the slot.

Let D;(n) be the number of packets that sessiomansmits in interval0,n), : = 1,..., N. Clearly
the transmissions depend on the scheduling policy.

Definition 7: The network is said to bstableif with probability 1,

lim D;(n)/n=X\;, i=1,...,N. (2)
Thus, a network is stable if the arrival and departures ratesequal for each session.

Definition 8: The throughput regiorof a scheduling policy is the set of arrival rate vectarsuch that
the network is stable under the policy for any arrival prectreat satisfies (1) and has arrival rate vector
A.

Definition 9: An arrival rate vector) is said to befeasibleif it is in the throughput region of some
scheduling policy.

Definition 10: The maximum throughput regiom\ is the set of feasible arrival rate vectors.

Note, A depends on the network’.

Example 1:Consider the network shown in Fig. 2(a). Consider a schiegytiolicy 7;, that serves
sessiont mod 9 + 1 in slot ¢, where ‘imod” is a modulo operator. Under;, each sessione {1,...,9}
can transmit at the rate of at mdst9. Thus, the throughput region af, A™, is characterized as follows:

AT = {()\1,...,)\9) . )\z S 1/9 V’L}

In this case, the maximum throughput regiéns given by

Therefore, in this example, scheduling poligyachieves only a small fraction of the maximum throughput
region.

We now describe the “maximal scheduling” policy we considdihis policy schedules a subsgt
of sessions such that (i) every sessionSnhas a packet to transmit, (ii)) no session Sninterferes
with any other session iy, (iii) if a sessioni has a packet to transmit, then eitheor a session in
S;, 1s included inS. Clearly, many subsets of sessions satisfy the above iaritereach slot, e.g., in
Fig. 1(b),{S1, 57}, {52, 53, 56} satisfy the above criteria in any slot in which all sessioagenpackets
to transmit. Maximal scheduling can select any such suliseaich session knows its interference set,
maximal scheduling can be implemented in distributed mamséeng standard algorithms [9]. In most
cases of practical interest, sessions can determine titeiference sets using local message exchange.

[1I. I NTERFERENCEMODELS

The pairwise interference relations between the sessiepemd on topology: = (V, £') and the nature
of communication. The topolog¥ is determined by the transmission powers, propagationittond and
node locations. Communication can either be bidirectionainidirectional. In the former, when a session
is scheduled, both the transmitter and the receiver trarseguentially. For example, the transmitter may
transmit data and control messages while the receiver naagriit control messages. Such bidirectional
communications occur in IEEE 802.11. Thus, there must Heslin both directions between a session’s



transmitter and receiver. In unidirectional communicatawhen a session is scheduled, it transmits packets
from only the transmitter to the receiver. For example, actional communication occurs in IEEE 802.11
when control messages are disabled (e.g., in broadcast)nioifferent combinations of these conditions
lead to different interference relations. We next charézgethe pair-wise interference relations for some
of these combinations.

We assume that each node has a single transceiver. Thus acandee involved in at most one
transmission. In other words, sessions that have a nodemimmom interfere with each other. We initially
assume that all transmissions use the same frequency. fitaes; can not receive any packet successfully
if more than one of its neighbors are transmitting simultarsty (we do not assume any capture). Thus, a
transmission on linKi, j) € E is successful in a slot if and only if no neighbor pbther than transmits
in the slot. For example, in Fig. 1(a), transmission aldngs, M2) is successful ifAM/1 and M6 do not
transmit. For bidirectional communication, when a session, v) is scheduled, transmissions proceed
along both(u,v) and (v, ). For unidirectional communication, when a session:, v) is scheduled,
transmissions proceed only alofig v). The above constraints provide the interference relationboth
the bidirectional and unidirectional communication madel

In the bidirectional communication moded session interferes with sessiopif  and;j have a common
end point, or one end point (transmitter or receiver) @ a neighbor of an end point of For example,
in Fig. 1(a),S1, S5, S7 interfere withS3. This is also clearly evident from Fig. 1(b). In thaidirectional
communication modgkession: interferes with session if + and j have a common end point, gfs
receiver is a neighbor ofs transmitter. For example, in Fig. 1(a), on§7 interferes withS3. Observe
that the interference relations may be asymmetric,di.may interfere withj but j may not interfere with
i. For example, under bidirectional communication model,io E(a), S1 interferes withS3 but S3 does
not interfere withS1.

We now describe several important special cases. Firstmasdbat the propagation conditions are
identical in all directions. Each node transmits at a fixed/grolevel which can be different for different
nodes. The power level of a nodaletermines its transmission range, and all nodes witlsitransmission
range receive/’s signal. Thus, the link sef' has the following structure: a link exists fromto v if and
only if the distance between andv is less than or equal to's transmission range. In the bidirectional
communication model, sessionnterferes with session if one end point of; is within the transmission
range of an end point af In the unidirectional communication model, sessidnterferes with session
j if j's receiver is within the transmission range it transmitter.

Let us further assume that all nodes transmit at the same rpdwes, all nodes have the same
transmission range which is determined by the transmission power. Now, the $iek” has the following
structure: a link exists from to v if and only if the distance betweanandv is less thani. Now, in the
bidirectional communication model, a sessiomterferes with session if one end point of; is within
distanced from an end point ofi (bidirectional equal power modglIn the unidirectional interference
model, a session interferes with session if j's receiver is within distancel from i's transmitter
(unidirectional equal power modelRefer to Fig. 2(a) and (b) for examples of both cases. Nuié riow
the interference relation is symmetric in the bidirectioc@mmunication model, i.e., if nodeinterferes
with node j, then node;j also interferes with nodé However, interference relationships could still be
asymmetric in the unidirectional communication model.

We also consider multi-channel networks. We assume thatetveork has a large number of frequencies
such that every node has a unique frequency in its two-hoghberhood. Now, for both bidirectional
and unidirectional communications, only the sessions lthsge common end point interfere. This model
arises in Bluetooth communications, and is commonly reteto as thanode-exclusive spectrum sharing
model(Fig. 3). The framework and the analytical results for aduit interference models however extend
to the more general case where the network has an arbitramperuof frequencies (Section VI-B).

We observe that the pairwise interference relations arrifgigntly different in each of the cases
discussed above. There is however one important simildfitgession: interferes with another session
j, the distance between the transmitters @nd j is at most three hops. Thus, a session can use local



message exchange to determine its interference set. Heraamal scheduling can be implemented in
distributed manner in each of these cases. But, given thefisant difference between the interference
relations, it is not clear how similar the performance of mad scheduling will be in these different

cases. In the next section, we assess this difference bwatkaring the throughput region of maximal
scheduling in a few representative scenarios.

V. PERFORMANCE OFMAXIMAL SCHEDULING FOR SPECIFIC INTERFERENCEMODELS

We characterize the throughput regions of maximal schegwMS for some representative interference
models. We focus on the bidirectional equal power (Subsed/-A) and unidirectional equal power
models (Subsection I1V-B). We subsequently compare thaugimput regions obtained in these cases with
that in the well-investigated node-exclusive spectrunrisBgamodel (Subsection IV-C). We conclude that
the throughput regions are significantly different in diéfiet cases.

A. Throughput region of maximal scheduling for bidirecabequal power model

Lemmas 1 and 2 show that in the bidirectional equal power maoté®, is 1/8th of the maximum
throughput region\. . .

Lemma 1: For the bidirectional equal power model )i A, \/8 € AMS,

We describe the intuition behind the result. Let arrivaéragctor € A. Then, from (2), under some
scheduling policy the packet arrival rate for each session equalsj’s departure rate. Thus, for each
session;, the sum of its arrival rate and the arrival rates of the sessin its interference sef; must
equal the sum of the corresponding departure rates.

In each slot, eithef or one or more sessions ) may transmit packets, butcan not simultaneously
transmit with any session i¥;. We prove using geometry that for arnyat most8 sessions inS; can
simultaneously transmit packets (Appendix E). Thus in doy & most8 packets can be transmitted by
sessions in{:} U S;. Thus, the sum of the departure rates of sessiong}iru S;, and hence the sum of
the corresponding arrival rates, is at m8st Thus, when the arrival rate vector f§/8 instead of}, the
sum of the arrival rates of sessions{if} U S; is at mostl.

Let the arrival rate vector b§/8, and let maximal scheduling be used. For any sessionaximal
scheduling always servdspacket from eithei or a session irb; in any slot in which; has a packet to
transmit. Thus, whenevérhas a packet to transmit, the sum of the departure ratesdeetbessions ig
which is greater than or equal to the sum of the arrival rafdbese sessions. Now, since the departure
rate of any session cannot exceed’s arrival rate, for alli, the sum of the departure rates from the
sessions in{i} U S; equals the sum of the corresponding arrival rates. It fadldlat the departure rate
of each session equalsi's arrival rate. Thus, the system is stable. Hengs € AMS.

We now describe why for any at most8 sessions inS; can simultaneously transmit packets. From
the interference constraints, at least one end point of saskion inS; must be within a distanceé from
eitheri’s transmitter ori’s receiver. Also, the distance betwegés transmitter and receiver is at mast
Thus, at least one end point of each sessioy;imust be in the union of two circles of radidsand
centered arounds transmitter and receiver respectively (Fig. 2(a)). Weerréo the area in this union as
i's interference areaWe prove using geometric arguments that at nfopbints can be present in this
interference area such that the distance between any twiispexceedsl. Clearly, if sessiong and k
need to simultaneously transmit packets, the distancedeagivan end point of and an end point ok
must exceedl. The result follows.

Lemma 2: Consider an arbitrary positive constansuch thatZ < 8. For the bidirectional equal power
model, there exists a netwoX and an arrival rate vector\, such that\ € A in A/, but \/Z ¢ AMSin
N.

We present the intuition behind the result. Using geometry first demonstrate that it is possible to
obtain a network witl) sessions where one session (sess$jonterferes with all other sessions and none
of the other sessions interfere with each other (Fig. 2(a))such a network, consider an arrival rate



Fig. 2. Fig. (a) shows a network with interference constsag@iven by the bidirectional equal power model and transimisranged. There
are 9 sessiond., ..., 9. Session has transmittef/; and receiverR;. The interference area of sessibris the union of circle”; and Cs.
Here,0; = 70 deg, andd, = 61 deg. Distance between (i)/; and R; is d for everyi = 1,...,8, (ii) My and Ry is ¢ > 0, wheree is a
small positive number, (iiij}\/; and M; is d for everyi = 2,...,9, (i) M; and My is greater than! for every j, k € {2,...,9},j # k
and (iv) My and R; is €. Thus, session 1 interferes with all the otlgesessions, but none of the other sessions interfere with et
Fig. (b) shows a network with interference constraints igilsg the unidirectional equal power model and transmissémyed. There are 12
sessionsli, ..., 12. Session has transmittef/; and receiverR;. The distance betweel; and R;, and R; and M; is d for everyi. Thus,
session 1 interferes will all the other 11 sessions, but rafrtbe other sessions interfere with each other. We refeessisns,...,12 as
non-interfering sessions. Herg,is =/6. Note that27/0 — 1 non-interfering sessions can be accommodated. Thus, jogigen Z, Z + 1
non-interfering sessions can be accommodated by choésia@r/(Z + 2).

S2 s1 _ . S3 P2 P3 P4 P1P5P6 P7 P8 P9
v v I I I I A |

M1 M2 M3 M4
1 2 3 4 5 6 7 8

Fig. 3. Figure shows a network with 4 nodg#l, ..., M4 and 3

sessionsS1, 2 and S3. Under node exclusive spectrum sharing Fig. 4. Figure shows a periodic arrival process for the netwo
model, S1 interferes with bothS2, 53, but S2 and S3 do not in Fig. 2(a). The period i8 slots. Sessiord; generates a packet
interfere with each other. in the slot markedPi, for eachi. Here, \; = 1/8, for eachs.

vector \ in which session generates packets at the rateand session generates packets at the rate
for all 1 € {2,...9}. Consider\;, s such that\; + A, = 1, A, = Z/8. The system can be stabilized by
scheduling sessioh in \; fractiorl of slots and the other sessions in the remainints.slthus,\ € A.
Now consider arrival rate vectoX/Z. Let sessionl generate packets at the rate/Z and session
generate packets at the rate/Z for all i € {2,...9}. Furthermore, sessior 3,...9 generate packets
in non-overlapping slots (Fig. 4). Thus, sinag/Z = 1/8, in each slot at least one session{ih...9}
generates packets, and therefore has a packet to tranghihdximal scheduling schedule sesslaonly
when other sessions do not have packets. But then sesssonever scheduled. Since sessidnarrival
rate is positive, the system is not stable under maximaldsdhey. Thus,\/Z & AMS,

B. Throughput region of maximal scheduling for unidirenabequal power model

We now consider the unidirectional equal power model. Wevgrihat maximal scheduling can not
attain a constant fraction of the maximum throughput region

Lemma 3: Consider an arbitrary positive constafit For the unidirectional equal power model, there
exists a network\/, an arrival rate vector), such that\ € A in A, but\/Z ¢ AMSin .

We present the intuition behind the result. We could obthm throughput guarantee @f/8 in the
bidirectional equal power model irrespective of the nekvprimarily because for this model in any



network the interference set of any session consists of at $rgessions that can transmit simultaneously.
This no longer holds for the unidirectional equal power modle fact, for unidirectional equal power
model given any constarf we can construct a network where the interference set of icsesonsists
of [Z + 1] sessions that can transmit simultaneously (Fig. 2(b)). Afe mrove that in such a network
there exists an arrival rate vectar such that\ € A, but X/Z ¢ AMS. The intuition behind the proof of
this part is similar to that for Lemma 2.

C. Throughput region of maximal scheduling for node-exekispectrum sharing model

The throughput regions of maximal scheduling are signifigadifferent for the bidirectional and
unidirectional power models. We next mention the guarantee a third interference model, the node-
exclusive spectrum sharing model, and then contrast theagtees in the three cases. We need the
following concepts that are well-known in graph theory. €ider a graplG’ = (V, E’) where E’ consists
of only those links inE that are traversed by sessions

Definition 11: A matchingin G’ is a set of links such that no two links have a common node.

Definition 12: A maximal matchings a matching inG’ such that for any linke that is traversed by a
session that has a packet to transmit, eithes in the matching or a link that has a common node with
e is in the matching.

In the node-exclusive spectrum sharing model, maximal cddireg always selects sessions that con-
stitute a maximal matching iw’. This follows from the definition of maximal scheduling andchuse
of the pair-wise interference relations in the node-exetispectrum sharing model. Liet. al. [7] has
proved that maximal matching attains at leag the maximum throughput region in the node-exclusive
spectrum sharing model. Thus, maximal scheduling alsanattat leastl/2 the maximum throughput
region. We would like to remark that in this model in any netivthe interference set of any session
consists of at mos? sessions; therefore, in this case too, the throughput gteeaseems to be related
to this quantity.

We next prove that there exists networks where maximal sdhmegattains at most /2 the maximum
throughput region.

Lemma 4: Consider an arbitrary positive constansuch that” < 2. For the node-exclusive spectrum
sharing model, there exists a network and an arrival ratet@eg, such that\ € A in A/, but \/Z ¢ AMS
in \V.

We present the intuition behind this result. We construcetavork with 3 sessions where one session
(sessionl) interferes with all other sessions and none of the othesises interfere with each other
(Fig. 3). Like for Lemma 2, we can prove that in such a netwdrdre exists an arrival rate vectar
such thatX € A, but X\/Z & AMS,

The throughput regions for the maximal scheduling in theesexklusive spectrum sharing model
are again significantly different from those in the bidiresal and unidirectional equal power models.
We conclude that these guarantees will critically dependheninterference relations. Furthermore, the
differences between the characterizations obtained ®bitiirectional and the unidirectional interference
models demonstrate that slight changes in interferencdittons can significantly alter the guarantees.
We can not therefore draw conclusions about the performander different models from the results
in a few representative scenarios. Also, given that largamber of interference relations exist, case by
case investigations may not be feasible. We therefore néedreework for characterizing the throughput
region of maximal scheduling in arbitrary wireless netwgork

V. PERFORMANCE GUARANTEES OF MAXIMAL SCHEDULING IN ARBITRARY NETWORKS

We design a framework for characterizing the throughputore@f maximal scheduling\M® for an
arbitrary wireless network.
We first introduce the notion of “interference degree” fossens.
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Fig. 5. Fig. (@) shows a network/{ with bidirectional communication model ardsessions{S1, M1, R1),..., (S7, M7, R7). Session

S1 interferes with all the remaining sessions, and none of ¢neaining sessions interferes with each other. THIEVT) = 6. The degree
of (M1, R1) is 10, which is also equal t6¢. Thus, K(N7) = 6¢ — 4 = max(dc — 4, 1).

Fig. (b) shows a networl/; with unidirectional communication model and four sessidi$d, M1, R1), ..., (S4, M4, R4). SessionsS2, S3
and S4 interfere with.S1, but not with each other. Thugs (N3) = 3. The directed degree of\(1, R1) is 5, which is also equal té\¢.
Thus, K(N3) = Ag — 2 = max(Ag — 2,1). In both figures, arrows indicate directed links betweenrtbees.

Definition 13: The interference degree of a sessions (i) the maximum number of sessions in its
interference seb; that can simultaneously transmit, $f is non-empty and (ii)l if S; is empty.

The interference degrees depend on the links traversedebgessions and the topology = (V, E)
which in turn depends on the node locations, propagatioditons and interference models. For example,
in Fig. 1(b), Ss1 = {52,.53,54, 55,56}, and the largest set of sessionsdg, that can simultaneously
transmit is{S53, S4,56}. Thus, the interference degree $f is 3.

The characterizations ofMS obtained so far for specific interference models are clossited to the
maximum interference degrees of sessions under these sndetel example, for both the bidirectional
equal power and the node-exclusive spectrum sharing madalémal scheduling attains exactly P
fraction of the maximum throughput regiaoh, where P is the maximum interference degree of any
session. In the unidirectional equal power model, we olesktliat maximal scheduling can not attain a
constant fraction ofA and also that a session can have arbitrarily large interéereegree. We now prove
that this relation is not a coincidence but reflects a gerrahomenon that holds for arbitrary networks.
We first define the interference degree of a network.

Definition 14: Theinterference degree of a netwo¥, K (/N), is the maximum interference degree of
sessions in the network.

In Fig. 1(b) and (c), the interference degrees of the netvewed and2 respectively. Sessiof1 has
these interference degrees in both cases. _ B

Theorem 1: In any wireless netwolX, if A € A in A/, \/K(N) € AMSin .

Theorem 2: Consider an arbitrary wireless netwgvkand a constantZ such thatZ < K(N). There
exists an arrival rate vectoh such thatk € A in \V, but \/Z & AMS in /.

The intuition behind Theorems 1 and 2 are similar to that femimas 1 and 2 respectively. The
generalization here is that we obtain the characterizatiorierms of K(\N') because for any sessiorat
most K (N') sessions inS; can transmit simultaneously.

Theorems 1 and 2 allow us to characterié> under arbitrary interference relations, node locations,
edge sets, session configurations and propagation modelsied we can comput& () in these cases.
We now obtain upper bounds fdk (') for arbitrary bidirectional and unidirectional commurticas
models, in terms of the maximum link degregsand A in the underlying topology-. We also prove
that the bounds are tight as there exists netwdrkehere K (N') equals these bounds. These bounds and
the resulting characterizations aMS hold even when different nodes use different transmissimmeps
and propagation conditions in different directions ardedént.

Lemma 5: In a wireless network” with bidirectional communication and underlying topoloGy=
(V,E), K(N) < max(dg — 4,1). Moreover, there exists a wireless netwakk; with bidirectional
communication and underlying topology = (V, E), such thatK (N;) = max(dg — 4,1).



11

The upper-bound in Lemma 5 follows because for bidirecticoanmunication the interference-degree of
each sessioff, u,v) is at most the degree of linku, v) minus4, and the degree of any link i@ is at
mostdg. Fig. 5(a) shows an example netwaokk where K (N]) = d; — 4; the bound is therefore tight.

Lemma 6: In a wireless network” with unidirectional communication and underlying topojog =
(V,E), K(N) < max(Ag — 2,1). Moreover, there exists a wireless netwokk; with unidirectional
communication and underlying topology= (V, E), such thatK' (N;) = max(Ag — 2,1).

Lemmas 5 and 6 are similar. Due to unidirectional commuiooathe bound in Lemma 6 however
depends on\s instead ofd. Fig. 5(b) provides an example to illustrate the tightness.

Theorems 1 and 2 explain the characterizationsbf for all the specific interference models considered
so far. For the bidirectional equal power model, for any mekw\/, K(N) < 8 ( Appendix E), and there
exists a network\'; where K(N;) = 8 (Fig. 2(a)). Thus, Lemmas 1 and 2 follow as special cases of
Theorems 1 and 2. For the unidirectional equal power modeingny.Z a network can be constructed so
as to attain the interference degrge- 1 (Fig. 2(b)). Theorem 2 now explains Lemma 3. Theorem 1 also
explains the throughput characterization for the maximataiming policy in the node-exclusive spectrum
sharing model obtained by Liet. al [7]. In this model, for any network/, K (N') < 2. Also, there exists
a network \N'; with K(N;) = 2 (Fig. 3). Thus, the throughput guarantee 1gP obtained in this case
follows as a special case of Theorem 1, and Lemma 4 follows sgzeial case of Theorem 2.

The characterizations ofMS for specific interference models are often obtained for tbestwnetwork
under the interference model. This observation appliedlteesults obtained in Section IV and also the
guarantees obtained by Let. al[7]. Theorems 1 and 2 allow the guarantees to cater to speefigorks,
and therefore often provide better guarantees. For exarhplama 3 states that for the unidirectional
equal power model, given a constant, there exists topdogigere the throughput region of maximal
scheduling is less than that constant fraction of the mamintliroughput region. But, Lemma &hows
that even in this model maximal scheduling attains a gueaezhfraction of the maximum throughput
region; Lemma 6 shows that the guarantee however depend® aegrees in the underlying topology
Although in the worst case, these degrees can be arbitlaridye (and therefore the guaranteed fraction
can not be lower bounded by a constant in the worst case tthegrees are usually small. Thus, for
several topologies Lemma 6 guarantees an acceptable parioe even for the unidirectional equal power
model. Similarly, for the bidirectional equal power modeheneveri; < 12, Lemma 5 guarantees that
K(N) <7, and Theorem 1 provides a throughput guarantee that isrtibtte the lower bound of /8
in Lemma 1.

VI. GENERALIZATIONS OF THROUGHPUT GUARANTEES

We first generalize the framework to characteri?® for some additional scenarios of practical interest.
In subsection VI-A we consider a network with multicast g&ss. In subsection VI-B, we consider a
network with multiple (/) frequencies. Here)/ may not be so large that every node can be allocated a
frequency that is unique in it3-hop neighborhood, and thus the node exclusive spectrunmghaodel
may not apply. We demonstrate that the overall framework e@sjly be extended to consider both cases,
and Theorems 1 and2 hold.

Next, the characterizations 8> obtained so far demonstrate that maximal scheduling doeattain
the maximum throughput region of a network. This is clearkpexted as maximal scheduling uses
only local information and the maximum throughput regios lsa far only been obtained by centralized
scheduling policies [16], [15]. The contribution of thegsults is to characterize the penalty due to the use
of such limited information, and provide tight “uniform” bads on the penalty in the arbitrary networks.
The bounds are “uniform” because they uniformly apply tesaksions. In subsection VI-C, we generalize
Theorems 1 and 2 to obtain better throughput guaranteepéaifec sessions by allowing different bounds
for different sessions (Lemma 9).

“Note that Lemma 6 holds for all unidirectional communicatimodels and hence for the unidirectional equal power model.



12

We have so far considered the notion of stability which goteas that arrival rates of sessions equal
their departure rates. This does not however provide gtesaron the expected queue lengths of the
sessions. In subsection VI-D, we characterize the perfocmaf maximal scheduling under a stronger
notion of stability which guarantees that the expected guengths of all sessions are finite (Lemma 11).

Finally, in subsection VI-E, we relax the assumption thatheaessions traverses only one hop, and
provide throughput guarantees for maximal scheduling wdessions traverse arbitrary number of hops
(Lemmas 12,13,14).

A. Multicast Networks

We now generalize the framework to support multicast (@eany) communications. Each multicast
session has one sender and one or more receivers, and tedrafotwo or more end points. Thus, unicast
sessions (which we considered so far) are special cases lo€ast

A session has transmittet, G; receivergvy, .. ., vg,) and is completely specified Qy, u, vy, ..., vg,).

For the bidirectional communication model, the descriptid the pairwise interference relations remain
the same as in the unicast case. For the unidirectional coneation models, the description must be
generalized as follows: sessionnterferes with session if i andj have a common end point, or one
or more ofj’'s receivers are neighbors @6 transmitter.

Given that the interference relations are still between $essions, maximal scheduling can be used to
schedule sessions. All the definitions introduced in cdantéxarbitrary wireless networks again remain
valid in this case. We now characterizé”"S in arbitrary wireless networks with multicast sessions.
Theorems 1 and 2 also hold for multicast networks.

We now introduce some additional notations to generalieeréisults for specific interference models.
The multicast degree of a sessi¢n u, vy, ..., vg,) is the sum of the degrees of vy, ..., v, and —4G;.

Let v(N) be the maximum multicast degree of a session in a networkniuiigcast directional degree of
a sessior(i, u, vy, . . ., vg,) IS the sum of the out-degree of and in-degrees af;, . . ., v, and—2G;. Let
I'(N') be the maximum multicast directional degree of a sessiomietaork. LetG(A) be the maximum
number of receivers in a multicast session in a network.

We first upper bound (') for specific interference models, which would in turn previdwer bounds
for AMS using Theorem 1.

Lemma 7: Consider a wireless netwokk with multicast sessions.

1) In the bidirectional communication modek (V) < max (y(N),1).
2) In the unidirectional communication modét;(N) < max (I'(NV), 1),
3) In the bidirectional equal power modelk' (N) < 25.
4) In the node exclusive spectrum sharing modé(N) < G(N) + 1.
We now lower bound< () for specific interference models, which would in turn pravighper bounds
for AMS using Theorem 2.
Lemma 8: 1) In the bidirectional communication model, there exists eeless network\" such that
K(N) = max (y(N),1).
2) In the unidirectional communication model, there existsigeless network\" such thatK (NV) =
max (I'(NV), 1).
3) In the bidirectional equal power model, there exists a veissl network\V" such thatK (N) > 19.
4) In the unidirectional equal power model, given any constérthere exists a wireless netwos
such thatK' (N) > Z.
5) In the node exclusive spectrum sharing model, there existisedess networl\" such thatk (N) =
GN) + 1.
Using Lemmas 7 and 8 and Theorems 1 and'®; can now be characterized for specific interference
models.
The generalizations in Lemmas 7 and 8 for the bidirectiondl anidirectional communication models
have been obtained by substitutimgax(de — 2,1) and max(Ag — 2,1) in Lemmas 5 and 6 with
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max (y(N),1) and max (I'(NV),1) in Lemmas 7 and 8 respectively. Note that when all sessioaes ar
unicast,y(N) = dg — 4 andT'(NV) = Ag — 2. Thus, Lemma 5 can be obtained as a special case of
Lemmas 7 and 8.

Lemma 8 shows that in the unidirectional equal power modekimal scheduling may not in general
attain a constant fraction of the maximum throughput regidns is expected as a similar negative result
holds for unicast networks (Lemma 3) and unicast is a speeis¢ of multicast.

When all sessions are unicast(N') = 1. Then, Lemmas 7 and 8 and Theorems 1 and 2 guarantee
that in the node exclusive spectrum sharing model, maxicta¢duling attains at least/2, and in some
topologies no more thah/2 the maximum throughput region. This is consistent with #gult obtained
by Lin et. al.[7] and Lemma 4.

B. Multichannel Wireless Networks

We consider a wireless network with/ channels. We assume that the transmissions from a session
always use the same frequency which is pre-determined. \&WeacterizeAMS for arbitrary frequency
allocation strategies, but do not investigate the desigauch strategies. A sessiarthat traverses link
(u,v) and transmits in channélis now completely specified by the-tuple (i, u, v, k). We first describe
the transmission constraints. Now, noflean not receive any packet successfully in charindélmore
than one of its neighbors are transmitting simultaneouslghannelk. Thus, a transmission on edge
(1,7) € E using channek is successful in a slot if and only if no neighbor pbther than: transmits in
channelk in the slot.

We now obtain the pairwise interference relations for bdté bidirectional and unidirectional com-
munication models using the above constraints. In the dgtimnal communication model, a session
interferes with sessior if they have a common end point (transmitter or receiver),fdhey have
the same frequency and one end pointjois a neighbor of an end point af In the unidirectional
communication model, sessianinterferes with session if they have a common end point, or if they
have the same frequency amd receiver is a neighbor afs transmitter.

Given the above pairwise interference relations, all thénd®ns introduced in context of arbitrary
wireless networks remain valid in this case. Theorems 1 arals@ hold for arbitrary multichannel
wireless networks. Both Lemmas 5 and 6 can be generalizethttonospecific results for bidirectional
and unidirectional communication models.

C. Nonuniform Bounds

We now describe how we obtain different performance guaemntor different sessions. In Theorems 1
and 2, we have proved that in an arbitrary netwdfk due to the use of maximal scheduling, the arrival
rate that can be accommodated for each session reduces ysafif\), and the arrival rate that can
be accommodated for at least one session reduces by at{éas}. This uniform bound of a factor of
1/K(N) is obtained considering the worst session, and it is passitalt for most sessions the penalty is
less. We now prove that it is possible to obtain better nafeum bounds by considering the constraints
of individual sessions. Specifically, we show that the p@nfnce of each sessiarcan be characterized
by its two-hop interference degree’;(N), which is the maximum of the interference degrees in its
neighborhood (i.e.3;(N) = max;es,up:y K, (N)), but not by its interference degree alone.

Lemma 9: |f()\1, ceey )\N) € A, then ()\1/61(./\/’), RN )\N/ﬁN(N)) e AMS,

Thus, due to the use of local information based schedulirgperformance of each sessiotlecreases
by a factor of3;(\); the penalty for each session therefore depends only omwashop neighborhood.
Note that in many networks; (/') may be significantly less thaki (\') for most sessions(Figure 6(b)).
The following result shows that a similar characterizatiorterms of the single-hop neighborhood does
not hold in general.

Lemma 10: There exists a wireless netwdvk and an arrival rate vector(\y, ..., \y) such that
()\1,. . .,)\N) e Ain N, but (Al/Kl(N), . ,)\N/KN(N)) ¢ AMS,
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D. Stronger Notion of Stability

In this subsection, we consider a stronger notion of stghdueue length stabilitywhich guarantees
that the expected queue lengths of sessions are finite itestgbtems. We provide guarantees on the
stability region of maximal scheduling under this notiordamder some stronger assumptions on the
arrival process. We first mention the additional assumptmmthe arrival process and formally define the
notion of queue-length-stability.

Now, «;(t) and D;(t) denote the number of arrivals and departures respectieelgdssiory in slot
t. We assume that the arrival procdss(.), ..., ay(.)) constitute an irreducible, aperiodic markov chain
with a finite number of states. We refer to this assumptionhagdintly markovian assumption. Note
that such an arrival process satisfies (1).

Let @;(n) be the number of packets waiting for transmission at thecgoaf session at the beginning
of slotn.

Definition 15: The network is said to bgqueue-length-stablé there exists non-negative real numbers
g, 1 =1,..., N, such that with probabilityi,

lim Q;(n)/n=g¢q;, i=1,...,N. 3)

The queue-length-stability regionf a scheduling policy is the set of arrival rate vectarsuch that the
network is stable under the policy for any arrival procest #atisfies the jointly markovian assumption
and has arrival rate vector. The maximum queue-length-stability regiong is the union of the queue-
length-stability region of all scheduling policies.
Note that if a network is queue-length-stable it is also Istabut the converse is not true. Thus, queue-
length-stability is a stronger notion of stability.

We now obtain a lower-bouricbn the queue-length-stability region of maximal schedylig®.

Lemma 11: Consider a jointly markovian arrival process vitik arrival rate vector(\}, ..., \y) such
that \; < A1/Bi(N), ..., Ay < An/By(N), where(A, ..., Ay) € Ag. Then,(A},..., Ay) € A¥S.

E. Multi-hop sessions

We now obtain performance guarantees for maximal schegluliven sessions traverse arbitrary number
of links. We first mention the differences from the model irct8m: Il. The network hasVv end-to-end
sessions, each of which can be viewed as a collection of advep-by-hop connections, one for each link
it traverses; each of these hop-by-hop connections isccaltession-linkof the session considered. Each
session-link is of the fornju, v), whereu andv represent the transmitter and the receiver, respectively,
of the corresponding session-links. For any sessjdat P, denote the set of its session-links. Lgy)
denote the session of session-lipki.e., ¢(j) = {i : 7 € P;}. We assume that there are a total /df
session-links in the network (over all sessions), and tlaesendexed by, . .., M.

The notions of interference, interference-set and intenfee-degrees are now defined for session-links
instead of sessions. Specifically, a session-linkterfereswith session-linkk if £ can not successfully
transmit a packet whern is transmitting. Theinterference sebf session-linkj, S;, denotes the set of
session-linksk such that eithek interferes withj or j interferes withk (Fig. 6(a)). Theinterference
degreeof a session-linkj in network A/, K;(N) is (i) the maximum number of session-links in its
interference sefb; that can simultaneously transmit, $f; is non-empty, and (ii)t, if S; is empty. The
two-hop interference degree of session-ligikis defined ag?;(N) = max,es,u(y Km(N). Thetwo-hop
interference degree of sessioms;(\) denote the maximum two-hop interference degree of all sessi
links of session, i.e., 5;(N) = max;ep, §;(N). Theinterference degree of a netwos, K (N), is the
maximum interference degree of session-links in the né¢wor

fWe presented this result in ITA workshop [8]. Wi al. [20] also obtained this result independently, and preskittén the same
workshop.
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Fig. 6. In both figures, all sessions and session-links ardirectional, and the arrows show the direction of datadfan The circles
indicate the interference regions of session-links AB andHMig. (a)) and SO, S1, ..., SL (Fig. (b)).

In Fig. (a), session S1 consists of two session-links, AB B whereas sessions S2, S3, S4 are single-hop sessiosforsSlak AB

interferes with session-links DE (session S2) and FG (sesSB) and session-link HI (session S4) interferes withisedik BC. Now,

Sag = {BC, DE, FG, Sgc = {AB, HI},Spe = Spg = {AB}, Sy = {BC}. Thus, token-buckets at node$, B, D, F, H consist
of token-queues corresponding to session-lijk8, BC, DE, FG}, { AB, BC, HI}, {AB, DE}, {AB, FG}, and {BC, HI}. Thus, token-
buckets associated with session-link AB (BC) are at nodeB,A), F (A, B, H); these are denoted buckets .. 4 of AB (1,2 of BC). The
token generation for AB at bucketdepends on that for AB at buck8tand BC at bucket of BC.

In Fig. (b), network consists of single-hop sessions ongss®n SO interferes with sessions TO, ..., TJ, whereagnreSsinterferes with
session S(i-1), for i=1,2, ..., L. Thud(;(N) = 1 for i € {T0,...TJ,SL}, K;(N) = 2 for i € {SL...S(L-1)}, Kso(N) = J + 2,

Bi(N) = J+ 2 fori e {T0,...T3 SO, SI, and3;(N) =2 for i € S2,...,SL, K(N) = (J +2). If I and L are large, but L> J, then
K;, 3; for most sessions are substantially smaller tfa@\).

The packet arrival and departure processes now need to bedédir session-links. Now};(n) denotes
the number of arrivals for session-linkin the time interval(0,n], j = 1,..., M. The arrival process
at the first session-link of any session consists only of erogs packets, and satisfies the SLLN as
described in (1). Thus, if; denotes session-link corresponding to the first link fosgesi, then there
exists non-negative real numbexsi = 1,..., N such that with probabilityl,

lim Ag,(n)/n=X, i=1,...,N. 4)
Now, D;(n) denotes the number of packets that session<litdansmits in interval0,n|, j =1,..., M.

Note that if j and j + 1 are consecutive session-links of a session, tHen, (n) = D;(n). Now, let
L; be the session-link corresponding to the last hop of sessidhfor some constant;, the limit
lim, .., Dr,(n)/n = d; with probability 1, thend; is denoted as the departure rate of session

Definition 16: The network is said to bstableif there exists a departure rate vectbe (dy,...,dN)
such that with probabilityl, for each session
lim Dp,(n)/n=d; =X, i=1,...,N. (5)

Thus, again a network is stable if the arrival and departtae=s are equal for each session. Now, using the
above definition for stability, the maximum throughput m@giA, and the throughput region for maximal
scheduling, AMS, can be defined as in Section Il. Note that maximal-schedulan be described similar
to that in Section II; the only difference is that sessiorkdi must now be used instead of sessions in the
description.

We first provide an upper-bound oxMS, .

Lemma 12: Given any constaft there exists a netwotk’, an arrival rate vector\ such thati'(N') =
Z, Xe Ain N, butX/x & AMSin A\ for any k < K(N).

We now provide lower-bounds oAMS. under an enhancement of maximal scheduling that has been
proposed by Wiet. al.[18], [19]. Under this enhancement, every session-link tlees not originate from
the source of the session has a regulator that in each sletages a token with a probability that equals
the arrival-rate of the session. Every such session-lis& alaintains two-queues,vaaiting-queueand a
release-queuePackets arriving at such a session-link are initially estomn its waiting-queue. Whenever
the regulator generates a new token, if the waiting-queumisempty, a packet is transferred from the
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waiting-queue to the release-queue. A session-link thginates from the source of the session maintains
only the release-queue, and all exogenous packets wainggdnsmission are stored there. Maximal
scheduling only considers the release-queues of sesaimfor service and contention resolution. We
refer to this enhancement eegulator-enhancement.

Lemma 13: IfA € A, then(A\,/B1(N), ..., Ax/Br(N)) € AMS in A under the regulator-enhancement.

Note that from Lemma 13 and sindé(N) > 3;(N), i = 1,..., N, if X € A, thenX/K(N) € AMS in
N under the regulator-enhancement.

The use of regulators requires that the arrival rate for easision must be knows an each session-link.
We now investigate whether performance guarantees candwdpd for maximal scheduling without
using regulators. We consider a special case of the genenalgrocess described in (4). We refer to
this special case asxponentially-convergent arrival process&¥e assume that there exists a constant
& > 1 such that the empirical average of the exogenous arrivatlsersystem irl’ slots converges ta
at a rate faster tha%. Mathematically, there exists such that for every € {1,....m}, T > ts, and

0 >0, .
P{M—)\i>5}<%. 6)

T
Again, a large class of arrival processes, e.g., periodid,,iand positive recurrent Markovian arrival
processes with finite state space, satisfy the above assumyte show that, without any enhanceménts
for exponentially-convergent arrival processes, maxis@eduling attains the following weaker notion
of stability. We define a random variablg, ; as follows. If session-link has a packet to transmit at time
t, then B;, is the length of its remaining busy period, otherwisg, = 0.

Lemma 14: Consider exponentially-convergent arrival psses. Let the arrival rate vectox;, . .., Ay)
be such that\; < A\ /Bi(N),..., Ay < An/By(N), where (\y,...,A\y) € A. Then under maximal
scheduling, the packet queue of every session-link willoainsurely become empty infinitely often.
Furthermore, for every session-linkand timet, E[B, ;| < occ.

The above result implies that almost suréiyi sup,, . 2®-4®) — g v j =1 ... M. Thus, if the
arrival rate vector satisfies the condition in Lemma 14, amcehich session link the limits of the departure
and the arrival rates exist almost surely, then almost guiel, ... Dy, (n)/n =X Vi=1,...N, and
the system is stable under maximal scheduling. But, thereiguarantee that these limits exist. Thus,
this is a weaker notion of stability than that in Definition. Myhether the stronger notion of stability,
holds in this case or not, remains an open question.

VII. M AX-MIN FAIRNESS UNDERMAXIMAL SCHEDULING

We have so far characterized the throughput region for maixarhedulingA\MS under different system
assumptions. We now describe the issues involved when tivalaate vector is not i\MS. Then maximal
scheduling can not serve all sessions at their arrival ratestherefore it is necessary to fairly allocate the
service rates or departure rates of sessions. We descrubwlemhance maximal scheduling so as to ensure
maxmin fair allocation of rates in the feasible set for maairacheduling. We also prove that the rate
vector attained by this enhancement is fairer than the mecgb of the network interference degree times
the maxmin fair rate vector in the overall network feasit#e $Ve first consider networks with single-hop
sessions (Subsection VII-A) and subsequently networkk mitilti-hop sessions (Subsection VII-B).

A. Single-hop Sessions

We assume that every session spans one link. Thus, the fratk@nesented in Section Il applies. We
introduce our fairness notions and additional assumptilor&ection VII-A.1, and subsequently describe
the enhancement used for attaining max-min fairness angdtfermance guarantees in Section VII-A.2.

*Each session-link therefore has only one queue for stohiagptickets waiting for transmission.
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1) Fairness notion and terminologie§Ve first present a lemma that is useful in describing the ibasi
set under maximal scheduling.

Lemma 15:
AMS={X=(\,.. ) i >0 > N <1, Vi=1,... N} 7)
JeSU{i} .
We can now describe thieasible setAMS of departure rate vectorsd = (di, ..., dy) under maximal
scheduling as follows:
if\>0, > dj < 1, Vi=1,...,N, (8)
JE€S;U{i}
(interference constraints)

The “interference constraints” (8) capture the interfeeenelations and are analogous to constraints (7)
for the stability region. The constraints (9) follow sindeetdeparture rates can not exceed the arrival
rates.

Note thatAMS C AMS, Whan € AMS, the departure rate vector satisfigs= \; for eachi and hence
both (8) and (9) hold. When ¢ AMS, depending on the maximal scheduling policy used, the dear
rate vector can be any element AMS, and hence can be unfair for some sessions. For example, if
maximal scheduling provides absolute priority to a sessiand \; > 1, thend; = 1 and the departure
rates of sessions ifi; are(. This motivates our goal of ensuring fairness using maxiroheduling.

We now define the notion of maxmin fairness that we seek tanattor any N-dimensional vectot,
let Z(a) denote a non-decreasing ordering of the components ©herefore, ifa = (a1, as,...,ay) and
Z(a) = (a,as,...,ay)then(ay,as,...,ay) is a permutation ofay, as, .. .,ay), satisfyinga; < a, <
... < ay. A departure rate vectat* is said to be maxmin fair if* € AMS, and for any other departure
rate vectord € AMS, the first non-zero component if(d*) — Z(d) is positive. Intuitively, a departure
rate vector is maxmin fair if it is not possible to increase aih its components without decreasing any
other component of equal or lesser value [1]. Note tfaE AMS as AMS C AMS. Finally, if X € AMS,
thend* = \.

Next, we present a condition that is both necessary and isuffilor any departure rate vector to be
maxmin fair. We first introduce the notion of a bottleneck swaint.

Definition 17: For any departure rate vectdy an interference constraint isbattleneck constrainfor
a session if (a) 7 is involved in the constraint, (bj; > d, for all other sessiong whose sessions are
associated with the constraint and (c) the inequality indbiestraint is an equality.

Lemma 16: A departure rate vectar € AMS is maxmin fair if and only if the following holds: for
every session, eitherd; = \;, or the session has a bottleneck constraint.

We omit the proof for the above lemma as the proof is similathtat for the well-known bottleneck
condition for maxmin fairness in wireline networks [1].

Finally, although for notational simplicity we refer tf as the maxmin fair departure rate vector, it is
maxmin fair only in the feasible set of maximal schedulity>. The feasible set for the network is
the union of the feasible sets of all policies, and may beiatstuperset ofAMS. Thus, the maxmin fair
departure rate vector in the network), which we refer to as thglobally maxmin fair departure rate
vector, is the rate vector which is maxmin fair in. We now describe the relation betweéhand m*.
We first describe the notion of “relative fairness” introddcin [12]. A departure rate vectar is fairer
than another departure rate vectoif the first non-zero component (@) — Z(b) is positive. Note that
by this definition a departure rate vector is maxmin fair ity &asible set if it is fairer than any other
departure rate vector in the same feasible set. Now, sitice A, m*/K(N) € AMS. Thus, from the
definition of ¢*, d* is either fairer thann* /K (N) or d* = "/ K (N).
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We will consider a special case of the general arrival modetgnted in (1). Specifically, we will
consider thebounded-burstinessarrival model where (a\; > 0 i = 1,...,N% and there exists a
burstiness vecto# = (o, ...,o0y) such that

|Ai(t) — Ait| <oy V 1. (10)

2) Maxmin fair rate allocation algorithm:We propose a modular approach for attaining maxmin
fairness using maximal scheduling (Figure 7). The first ni@@stimates the maxmin fair bandwidth share
of each session in each node in the session’s path, and egleaskets for transmission in accordance
with these estimates. The second module schedules thentissign of the released packets so as to attain
the estimates. Note that the modules operate in parallel.

Fair bandwidth is estimated by a token generation procdss.sburce node for each active session
maintains a token bucket far(Fig. 6(a)). The token bucket consists of a token-queue dohesession in
S; U{i}. Every token bucket generates tokens for all token-queuds Tine token generation process is
so designed that each token-queue receives tokens at daatequals the maxmin fair departure rate of
the corresponding session (we shortly describe how thiveatone). Whenever a new token is generated
for a session at the token bucket for at i’'s source,i’s source releases a new packet for transmission.
Thus, the packet release rates are maxmin fair and hencago®a\MS. Only the released packets are
eligible for transmission. Thus, maximal scheduling traits the released packets at the rates at which
they are released. Hence, the rate allocations are maximin fa

We now describe the token generation process for each tokeket. An sessiom is associated with
b; = |S;| + 1 token-buckets, one for each of the sessions it interferds, wnd itself. Let us denote these
token-buckets as, . . ., b,. Each token-bucket samples all sessions in the bucket inradnmbin order. Let
C; x(t) be the number of tokens generated for sessianbuckett in the interval(0, ¢]. Let token-bucket
k' (1 < k' < b;) associated with be sampled in slot. Let £’ not be at the source af Then,k’ generates
a token for sessionin slot ¢ if and only if C; x/(t) < W + min (C; p—1(t), Cix11(t)) . Thus,i receives
a token at bucket’ unless the number of tokens forat &’ substantially exceeds that at the adjacent
buckets; this prohibitive difference is the window paraengtl’. If £’ is ati's sourcek’ generates a token
to ¢ in slot ¢ if and only if the number of packets generated faat i's source in(0, t] exceeds; /(1)
and C; p(t) < W 4 min (C; x—1(t), Cixr41(f)) . In slot ¢, £’ samples the next session in the bucket in a
round robin order if and only ik’ does not generate a token forNote that token-bucket andb; have
only one adjacent token-bucket for sessiomnd thus decide whether to generate a token based on the
number of tokens at only one adjacent token-bucket. Tokemsi@/er removed from a bucket.

We now explain why the token generation rate for each sessi@ach token-bucket associated with
the session equals the session’s maxmin fair rate. For Xpigeation, we assume that > 1 for each
i; all performance guarantees in this section however hotdafbitrary \. Since \; > 1 for eachi,
constraints (8) subsume constraints (9). Also, the numbpackets generated farat i’s source in(0, ¢]
exceeds the number of tokens generate(jmn| at the bucket at its source for any> ;. Thus, the token
generation process at a bucket faat i's source does not differ from that at a node that is#ssource.

Note that each token-bucket corresponds to constraintai8sdme; € {1,..., M}. Since the goal
is to allocate maxmin-fair rates, each constraint shoutddrallocate equal rates to all sessions in the
constraint. This motivates the round robin sampling of tkes®ns at each token-bucket. Again, all
constraints involving a session must offer the same ratdaosession. This is attained by relating the
token generation process for a given session at a given dokeket to that at the adjacent token-buckets
for the same session. The number of tokens for a session aadyacent buckets associated with the
session differ by at modt/ at any timet, and the difference is at mostll for that at any two buckets
associated with the session. Thus, the rates of token gemefar a session are nearly the same at any
two buckets associated with the session.

$This assumption requires that the arrival rate for eachvactession is positive. Note that if a sessiois not active we do not need
to consider it at all. Thus, we assume that there /dractive sessions denotdd. .., N. In this section, a session will always refer to an
active session, though for brevity we omit the adjectivetilat.
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Procedure Token Generation (noag
begin
For all t and session, let C; o(t) = Cj p,41(t) = co.
Let A[.\‘R(t) be the number of packets of sessioat slott that have been generated at its source but not been released.
Let ©; 1 (t) = A'Z.\'R(t) if the kth bucket of session is ati’s source-node, an®; j(t) = oo otherwise.
Each bucket samples the sessions associated with it in nalial order.
When sessiorni is sampled at itsth bucket in slott:
if ®L,k(t) > 0 and Czk(t) < Ci7k+1(t) + W and Czk(t) < Cz'_ykfl(t) + W, then
generate a token for sessiomt its kth bucket C; 1 (t + 1) = C; x(t) + 1);
else
do not generate token for sessipat its kth bucket C; 1 (t + 1) = C; ,(¢)), and
sample the next session at thth bucket in the round robin order.

end

Procedure Packet Release (souice
begin
Release a new sessiorpacket for transmission at sessidisource node when a token is generated for the session at tkethat its source.

end

Erogedure Packet Scheduling For Transmission
egin

Transmit the released packets using maximal scheduling.

end

Fig. 7. Pseudo code of the fair departure rate allocatioordlgn when each session traverses one hop

Since)\; > 1 for eachi, every session has a bottleneck constraint under the mamirate allocation.
Now, the maxmin fair rate of a session is determined by theWwadth offered by the bottleneck constraint
which offers the least bandwidth to the session. The buckatsponding to the bottleneck constraint
of a session is denoted as thettleneck buckefor the session. Now, a session’s token generation rate
at any token-bucket equals that at its bottleneck buckeigiwturns out to be the session’s maxmin fair
rate. If a session has a low maxmin fair rate, then its batikrconstraint offers it a low rate, and it does
not receive tokens several times it is sampled at other bsickther sessions with less severe constraints
receive these tokens. Thus, the following performanceajiae holds.

Lemma 17:Consider token-buckét of session. For the bounded-burstiness arrival model and arbitrary
X, there exists constants W, such that ifi’ > WW,, then for any intervain,, n), \M—dﬂ <

na—mni
o

" The token generation scheme here is based on the same desuajple as that for an existing centralized
fair bandwidth allocation algorithm [13], [17]. Howevehe constraints characterizing the feasibility set
for maximal scheduling are significantly different from #gocharacterizing the feasibility set in [13],
[17]; therefore, the scheme differs significantly in the teases.

We now describe the packet scheduling policy. Whenever dliece node of a sessiangenerates a
new token fori ati’s token-bucket at the source (the one associated withasessiS; U{:}), i releases a
new packet. Only the sessions that have released packeisgnair transmission contend for scheduling,
and are scheduled as per maximal scheduling. When thesersesse scheduled, they transmit only
released packets.

Packets that contend for scheduling and are transmittedaxymal scheduling arrive as per the release
process. The release rate vector is maxmin fair (Lemma 1d)satherefore inPAMS. Maximal scheduling
therefore provides departure rates equal to the packeiselmtes. Thus, as the following result states,
a combination of token generation and maximal schedulitgret the maxmin fair departure rates for
every session. B

Theorem 3:For the bounded-burstiness arrival model and arbitparthere exists a constamt,, such
that whenW > Wy, lim,, ., Dy, (n)/n=d}, i=1,...N.
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Procedure Token Generation (noag
begin
For session-linki, let I andm respectively be the previous and next session-links of #meessession.
For each slot and session-link,
if ¢ is the first-session-link of its sessiorithen
Ci0(t) = 00,C5 p,+1(t) = Cm,0(?)
else
if 7 is the last session-link of its sessidhen
Cio(t) = Crp,+1(t), Cip;+1(t) = 00
else
Cio(t) = Crp, (t) and Cy p, 41(t) = Cm 0 (t).
Let A?‘R(t) be the number of packets of session-linkt slott that are in its waiting-queue.
Let ©; 1 (t) = A'Z.\lR(t) if the kth bucket of session-link is at the source-node of sessionipfind©; 1 (t) = co otherwise.
Each bucket samples the session-links associated withr@und robin order.
When session-link is sampled at it&th bucket in slott:
if ®i,k(t) > 0 and Ci’k(t) < Ci,k+1(t) + W and Ci’k(t) < Ci’kfl(t) + W, then
generate a token for session-linkat its kth bucket C; 1 (t + 1) = C; »(t) + 1);
else
do not generate token for sessibat its kth bucket C; 1 (t + 1) = C; 1 (t)), and
sample the next session-link at tkéh bucket in the round robin order.

end

Procedure Queue Management (session-)nk

begin
When a new packet is generated for session-imk a new packet arrives at the source of session4ifiom a previous session-link, add the new-packet
in the waiting-queue for session-link
Transfer a session-link packet from its waiting-queue to its release-queue at itscgonode when a token is generated for it at the bucket abitscs.

end

Procedure Packet Scheduling For Transmission
begin
Transmit the packets in the release-queues of the sessiantising maximal scheduling.

end

Fig. 8. Pseudo code of the fair departure rate allocatioorélgn when sessions traverse multiple hops

B. Multi-hop Sessions
We next allow sessions to traverse multiple hops. Thus, thedwork in Section VI-E applies. The

feasible setAMS of departure rate vectorsd = (dq,...,dy) can be described by (9) and
if Ay >0, > dyy <1, Vji=1,... M. (11)
k’ESjU{j}

Using the above description fakMS, the maxmin fair departure rate vector can now be defined as in
Section VII-A. .

Definition 18: For any departure rate vectdyan interference constraint issdttleneck constrairfor a
session if (a) a session-link of 7 is involved in the constraint, (kj,;) > d,) for all other session-links
k whose sessions are associated with the constraint ande(tyequality in the constraint is an equality.
Again, with the above definition for a bottleneck constrail@mma 16 provides a necessary and sufficient
condition for a departure rate vector to be maxmin fair.

We now describe the modifications required in the algoritmesented in Figure 7 for attaining maxmin
fairness in this general case. We first describe the modditain the token-generation procedure. Now,
session-links, rather than sessions, are associated akigm-tuckets, and the source of each session-link
J maintains the bucket consisting of session-linksSjru {;j}. Again, token-buckets sample session-links
rather than sessions. The token generation process foesiseos-links are now similar to that for single-
hop sessions. The main difference is that the token-geaeratocess for a session-link at the first
(last) token-bucket ofi must also depend on the number of tokens generated at théfitagt token-
bucket for the previous (next) session-lihlof the same session (Fig. 6(a)). We now describe the packet
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scheduling policy. The source of each session-link maistaivo packets queueswvaiting packet queue,
and areleasedpacket queue. On arrival, a packet is queued at the waiticgepagueue. A packet is
forwarded from the waiting to the released queue when a nkentts generated at the token-bucket for
the session-link at the session-link’s source. Only seskinis with non-empty released queues contend
for scheduling. The rest of the scheduling remains the sasrtbhat for the case of single-hop sessions.
Refer to Figure 8 for a pseudo-code.

Both Lemma 17 and Theorem 1 hold; the term ‘session’ must neweplaced with ‘session-link’ in
the statement of Lemma 17.

We now make a few concluding remarks on our maxmin fair paskkéduling algorithm. Note that the
token-buckets associated with a session-fimeed to know the number of tokens generated fatr other
token-buckets associated withAlso note that a token bucket associated witl either ati’s source or
at j’s source, wherg € S;. Thus, a token bucket at the source of a session#imeed only know the
number of tokens generated at a token-bucket at the souraese$sion-link if and only if bothk and
[ interfere with each other or with a common session-link.c8ionly session-links in close proximity
interfere with each other in a wireless network, the tokenegation process requires communication
among nodes in proximity as well. Finally, the analyticabmantees hold even when nodes know the
number of tokens generated at other nodes after some dsléyna as the delay is upper-bounded by a
constant.

VIII. DiscussiON ANDCONCLUSION

In this paper, we have addressed the long-standing operni@ued attaining throughput guarantees
with distributed scheduling in wireless networks. We hawel®d the performance of a simple distributed
scheduling policy, maximal scheduling, which had earlieei investigated in context of node-exclusive
spectrum sharing model and input-queued switches. We hhataned tight performance guarantees
for maximal scheduling under arbitrary interference medaid topologies, and have characterized the
throughput region attained by maximal scheduling in terfhe interference degree of the network. The
characterizations demonstrate that the performance Isaleend heavily on the nature of communication
and interference models. We prove that maximal schedulnguaranteed to attain a constant fraction
of the maximum throughput region for certain communicataom interference models, while it is also
guaranteed to not attain a constant fraction in the worst éassome other models. Our results can be
generalized to networks with multicast communication iteaty number of frequencies and end-to-end
sessions. Finally, we enhance maximal scheduling to gtegdairness of rate allocation.

Concurrentlyf with our work, Wuet. al. have obtained bounds for the throughput region of maximal
scheduling [19]. Specifically, they proved that in the kediional and unidirectional interference models,
maximal scheduling is guaranteed to attain at lé@af: of the maximum throughput region, whergN,g
is the maximum number of links interfering with a given linkhey also proved that in the bidirectional
interference model there exists an arrival rate vector amétevork such that maximal scheduling will
attain at mos2 /N, of the maximum throughput region. The upper bound is cleargresting when
N¢ > 2. Note that for any network/, K(N') < Ng, and in several casds(N) << Ng. Thus, the lower
bound we obtained in Theorem 1 is tighter than that obtainewh et. al. [19]. Similarly, given a/Ng,
one can construct a network with the saiig and K (N) = Ng — 1, and whenNg < 2, Ne —1 > N¢/2.
Thus, again the upper bound we obtained in Theorem 2 is tigh#a that obtained by Wat. al. [19].
Nevertheless, the proof techniques used by &t/ual. [19] are certainly illuminating, and may be useful
in chracaterizing the delay under maximal scheduling.

The class of maximal scheduling policies is quite broad, and performance bounds apply to all
policies in this class. However, it remains to be seen whiatbgain policies in this class can attain better
performance bounds, while still being amenable to low-dexity distributed implementation. Similar

Tour major results were presented at Allerton conferencpteBeber28 — 30, 2005, and Wiopt conference, Aprily — 7, 2006. Wu et.
al. [19] reported their results at INFOCOM conference, A, — 29, 2006.
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guestions remain open for distributed scheduling policaetside this class as well. Recently, Sharma
et. al. [6] have lower bounded the complexity of policies that attdie maximum stability region, or
approximate the maximum stability region within constaattér, in arbitrary topologies. These results
may help answer some of the above open questions.
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APPENDIX

PROOFS OF ANALYTICAL RESULTS INSECTION V (THEOREMS 1 AND 2 AND LEMMAS 5 AND 6)

Appendix A: Proof of Theorem 1
We prove Theorem 1 using the following supporting lemmas.
Lemma 18:Let A € A. Then,>>, ¢ iy Aj < K(N).
Lemma 19:Let X € {X: if \; > 0, Yesup N <L i=1,..., N} Then X € AMS.
Theorem 1 follows from Lemmas 18 and 19. [ |
We now prove Lemmas 18 and 109.
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Appendix A.1: Proof of Lemma 18:

We prove Lemma 18 using a supporting lemma, Lemma 20, whicktate and prove first. Lemma 20
is stated and proved for sessions with arbitrary number p{sho .

Lemma 20: IfX € A, then (a) for each session-link j =1,2,..., M, 3 cs, 0 M)/ Bay V) < 1,
and (b) if each session spans one hop, for each sesgsioa 1, . N EZGS iy Ai/BiN) < 1L

Proof: We first prove (a). Let there exists a session- hrﬂauch that
> M)y
Jjes;u{i} ﬁq J (N)

We will show thatX g A.

Now, sinceg; < Bq(j Z

JES; U{}

Now, note thati;(N') < 3;(N) for every session-ling € S;U{:i}. This is because if € S;, theni € S;.
Thus,

)‘q(j)
> 7 > 1.

JES;U{d}

JjESU{i}

Now consider an arbitrary scheduling polisy Underm, >°. g iy D;(n) < ni;(N) for everyn > 0
as at mosti;(N) nodes among; U {i} can be scheduled concurrently.

Thus, lim inf Z Dy(n) < K;N)

e jeS;U{4} n
D.
= Z lim inf () < Ki(N)
jesioy oo™
< ) Ay (from (12)).
JeS;U{i}
D.
= liminfﬂ < Ay for somej € S; U {i}
n—oo n
Dy,
= lian_}glof# < )\q(j).

The last mequallty follows sincd, (n) < Dj(n) for all j,n. Thus, if lim, . DLJ'(") exists, then its
value is less than;). Thus, the network is not stable underAlternatively, if the limit does not exist,
then also the network is not stable underThus, X ¢ A. The result follows.
~ When each session spans one link, sessions and sessisraliekidentical,// = N, q(j) = 7,
Loy (N') = B;(N). Thus, (b) follows from (a). n

Lemma 18 follows from part (b) of Lemma 20 siné&N') > 3;(N) for all 4.

Appendix A.2: Proof of Lemma 19:

Recall thatQ,(n) denotes the queue length of sessidn the beginning of the:'" slot. Then, for any
scheduling policy,

Qi(n+1) = Q;(0) + Ai(n) — Di(n) Yn>1andi=1,...,N. (13)
We first define fluid limits. The definitions are similar to tkogssed by Daket. al. [4].
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Appendix A.2.a: Definition of Fluid LimitsWe denote byN andR the set of non-negative integers
and reals respectively. For a random procggg)}:>o, we denote its value at timealong a sample path
w by f(t,w).

Note that the domain of the function&(-), D(-) and Q(-) is N. Now, we define these functions for
arbitraryt € R by using a piecewise linear interpolation. The piecewisedr interpolation of a function
f N — R is defined as follows. Fot € (n,n + 1]

f)=fn)+({E—n)(f(n+1) = f(n)).

Note thatf(¢) defined as above is a continuous function.

Consider any scheduling policy. From any senfext most one packet can be served in a slot. Also,
the maximum number of packets arriving in a slot as bounded byv,,... Thus, for everyi, w, t > 0
andj >0

Ai(t+0,w) — Ai(t,w) < damax, (14)
D;(t + 0,w) — Di(t,w) < 0, (15)
Qi(t+0,w) —Qi(t,w) < damax (16)

Now, let us define a family of functions for any given functigft) as follows.

fr(t,w) o M for every r > 0.

It follows from (14), (15) and (16), that for every> 0,

At +ow) —Al(t,w) < domax, (17)
Di(t+d6,w) — Di(t,w) < 9, (18)
QIt+6,w) —QI(t,w) < damax- (29)

Thus, all the above functions are Lipschitz continuous, fagrtte uniformly continuous on any compact
interval. Clearly, the above functions are also bounded mnampact interval. Fix a compact interval
[0,t]. Now, consider any sequeneg such thatr, — oo asn — oo. Then, by Arzela-Ascoli Theorem
[10], there exists a subsequence and continuous functiond;(-), D;(-) and Q,(-) such that for every

1, W,
lim sup |A"™(f,w) — Ai(f,w)| = 0, (20)
k_’oofe[qﬂ
lim sup |D;"(,w) — Di(t,w)| = 0, (21)
k_’ooie[o,t]
lim sup Q" (f,w) — Q;(t,w)| = 0. (22)
k_’oofe[qﬂ

We now define fluid limits.

Definition 19: Any (A;, D;, Q;) is called a fluid limit for\/ if there exists,,, such that all the relations
(20) to (22) are satisfied.

Now, we state some important properties of the fluid limitdohve use to prove Lemma 19.

Lemma 21:Every fluid limit satisfies,4;(t) = \;it w.p. 1 for every sessionandt > 0.

Lemma 22:Any fluid limit (A;, D;, Q,) for N satisfies the following equality for everyandt > 0
with probability (w.p.) 1:

_ Q;(t) = Q;(0) + At — Dy(2). (23)

Lemma 23:Let ,(0) = 0 for everyi. Also, Ietzjesiu{i} A <1if A;>0,¢=1,...,N. Then, under
maximal scheduling, every fluid limit satisfieq,(t) = 0 for everyt > 0 w.p. 1 for every:.

The proofs of Lemmas 21, 22, 23 are provided later, after tteofpLemma 19. We now prove
Lemma 19.
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Proof: First, we show thalim,_.., D} (t) = A\t w.p. 1 for everyt. Then, the result follows by
choosingt = 1.

Under maximal scheduling, i®),(0) = 0 and Zjesiu{i} A; < 1 for every: for which \; > 0, then
Q,(t) = 0 w.p. 1 for everyi andt > 0 (Lemma 23). Thus, by Lemma 22);(t) = A\t w.p. 1 for
everyt > 0. Since D;(+) is a fluid limit, there exists a subsequengg such thatlim;, .., r,, = oo and
limy,_ o DZ”’“ (t) = D;(t) = M\t w.p. 1 (Section A.2.a). Thugim inf, ., D/ (t) < A\t w.p. 1. Now, we
argue thafiminf, ., D! (t) = A\t w.p. 1.

Supposeliminf, .., Di(t) < A\t w.p. 1. Then, there exists a subsequengesuch thatim; .., 7, =
0o andlimy_., D, (t) = A\t — € w.p. 1 for some: > 0. Now, note that

Q™ () = Q™ (0) + A™ (t) — D™ (t) (from (13))

Now, by taking limit ask — oo on both sides of the above equation we obtain
_1 R

Q;(t) = Qil(O) + A\t —ﬁil(t) w.p. 1 (from Lemma 21)
= €, (sinceﬁg (1) = limg o0 D (t) = N\t — €).

Since,@j (t) is also a fluid limit under maximal scheduling, the above ¢iquacontradicts Lemma 23.
Thus,
liminf D] (¢) = A\t w.p. 1
Now, for everyr > 0, Di(t) < Al(t) as the number of departures frohtan at most be equal to the
arrivals fori till time rt. Thus, clearly,

limsup D] (t) < A\t w.p. 1

This shows that
lim D (t) = A\t w.p. 1

Now, selectt = 1, and consider subsequencesuch thatr, = n. Here, for everyi
lim DI"(1) = A\ wp. 1
D;
im 20—\ w1

n—0o00 n

We now prove the supporting lemmas used to prove Lemma 19.
Appendix A.2.b: Proof of Lemma 21:
Proof: SinceA,(¢) is a fluid limit, by Definition 19, there exists a sequengesuch thatimy,_.., r,,, =
oo and

Ai(t) = lim A" (t) (from (20))

= lim 7Ai (7, t)

k—o00 Tng

= lim Ai(rnt)

k—o00 Tn

t

k

= M\t w.p. 1 (sinceA;(-) satisfy SLLN)

The result follows. [ ]
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Appendix A.2.c: Proof of Lemma 22:

Proof: SinceQ;(-), A;(-) andD;(-) are fluid limits, there exists a sequengg such thatimy—cor,, =
oo and they are obtained as a uniform limits of functigng* (-), A;"*(-) and D, " (-) respectively. Now,
from (13) it follows that for every-,, andt > 0,

Q" (1) = Q" (0) + A;™ (1) — D™ (#).

The result follows from Lemma 21 after taking the limit— oo on both sides of the above equalitm
Appendix A.2.d: Proof of Lemma 23:
Proof: We prove the required by contradiction. L@f(t) # 0 for everyt andi. Then, there exists a
session, 7, y; > 0 andz; > 0 such that

> Q0 = w, (24)
JESU{i}
> Qi) < i foreveryt € [0,7), (25)
JjeS;U{i}

Q,(t) = 1. (26)

We justify (24) to (26) by constructing,, y,, t that satisfy (24) to (26). Let = inf{t : t > 0, max; Qy(t) >
0}. SinceQy(t) # 0 for somet and somé, ¢’ is well-defined. From the definition ofthere exists ansuch
thatt' = inf{t:t > 0,Q;(t) > 0}. From the continuity of),.(¢) for all ¢, k, the definition oft’, and since
Qr(0) = 0 for all &, Qk(tl) =0 for all t; <+ andk. From the continuity ofQ;(¢) for all ¢, there exists
ane > 0 s.t. Z]Esu{}Q]( ) > Qy(t) >0 forall t € (¢, t’+e] Let y1 = maXurefov+q D jesup @i(h)-
Let ¢ be the first time at WhICfEJGS (i) Q;(t) = y1. Now, t € (¥, + ¢, sinceQy(t,) = 0 for all k¥ and
all t; <t andzjem{}@]( ) > Qi(t) >0 forallt e (ft+e. Letz; = Q;(t). Clearly,z; > 0.

Let \; < 0. From Lemma 22, sinc®;(0) = 0, Q;(t) < —D;(t). Since D;(.) is the fluid limit of D;(.),
and D;(t) > 0 at all ¢, D;(t) > 0. Thus,z; < 0, which is a contradiction. Thus); > 0, and hence,
Zjesiu{i} Aj < L o o R

Clearly, z; <y as@,(-) > 0 for everyj. Since(),(-) is a continuous function, there existsc [0, )
such that B . R

Q,(t) > 51 for everyt € [t', 7). (27)

Now, since@ (+) is a fluid limit, by Definition 19, there exists a sequemggsuch thatimy,_,, r,, = 00
andlimy . ank( t) = Q,(t) for everyj andt in an interval(0 ,1]. Thus, we can draw two conclusions.

First, for sufficiently Iargefrnk, Q" (t) > x1/4 for everyt € [t',1]. Thus, Q;(r,,t) > 7, x1/4. This
implies that for everyr,, > 4/x,

Qi(ry, t) > 1 for everyt e [t 1]. (28)

The second conclusion is that for every sufficiently largge there exists: > 0 such that

doRMB - Y Q) > e

jes;u{i} JjeS;U{i}

= lim | Y QMH) - Y Q)| = e (29)

k—oo
jeS;U{i} JE€S;U{i}
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Relation (29) follows from (24), (25} < t and the definition of fluid limits. Seleot,, large enough
such that (28) holds. For all suel,,

S - Y

JjeSs;u{i} JES;U{i}

= > [AM@ AT - | Y D@ - > D(t)| (from (13)).  (30)

jeS;U{i} JjESU{i} JjESU{i}

Since maximal scheduling is used and (28) holds, at Ieaspagleet from some session fiu{i} departs
in every slot. Thusy .o 0y DI () — des i) D’””k (t) > (t —t'). Now, from (30),

Yoo m - Y Q) < Y [ATD) - ATEE)] - (-t

J€8S;U{i} JeS;u{i} JjeS;U{i}

> Jm | D QMO - > Q)] < Jm ), [AME - A ] - - 1)
JjeS;U{i} JjeS;U{i} JES;U{i}

= > A —1|(E=#) wp. 1 (from Lemma 21)
JES;U{i}
< 0. (31)

Note that (31) contradicts (29). Thus, the result follows. [ |

Appendix B: Proof of Theorem 2

Proof: Consider an arbitrary network/ with interference degreé& (\'). By Definition 13, there
existsi such that the interference degree of sessimn/ (\'). Consider sessiong, ..., jxw) € S; such
that they are pair-wise non-interfering. Now, consider fibiiowing arrival rate vector: N =Z/K(N)
ifj€{j, .., ixn} andX; = (K(N) - 2)/ KN ) if j =1, and); = 0 otherwise. Thus, effectively the
network consists only of sessionsgnd ji,. .., jx). Note that smcel < Z < K(N), \; > 0 for every
J € {i,j1,..., jx}- Now, consider a schedullng policy that schedules w.p. (K(N) — Z)/K(N)
and sessiong, .. ., jx) concurrently in the remaining slots. Clearly,is rate stable. Thus) € A.

Now, consider arrival rate vectoi/Z and the following arrival pattern. A packet corresponding t
sessionj, arrives in slotst if v = ¢t mod K(N) + 1, where “mod” is the modulo operator. In every
slot a packet arrives w.p(K (N) — Z)/K(N). Clearly, the arrivals are in accordance wiiZ. Let
maximal scheduling scheduleonly when none of the sessions i) have a packet to transmit. Note
that under maximal scheduling and the described arrivetepatj, is scheduled in slot such that
u =t mod K(N)+ 1, and thusi is never scheduled. Sincg/Z > 0, i is not stable. Thus\/Z ¢ AMS.

[

Appendix C: Proof of Lemma 5

Proof: Consider a network\" that has bidirectional communication and underlying togglG =
(V, E). Select a sessionfrom u to v. Since we are considering bidirectional communicatieny) € £
and (v, u) € E. Note that at most one session along every link frerand v, and every link tou andv
can be scheduled concurrently in the interference regianathout interfering with each other. Lef, )
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denote the degree of linku, v). Now, i's interference degrek; (') satisfies the following inequality.

EN) < > [Lgwery + Ywhem] + D [LGwes + Lwper)]

JjeEV JjeEV

j#v j#u
= > [Gwen + Lwpem] + D [LGwer + Lwpen] —4
JEV JjeV
= d(u,v) —4
=  max{k;N)} < (m?XE{d(M)} —4
7 u,v)e
Now, Fig. 5(a) shows an example of a network that achieveedtuality in (32). [ ]

Appendix D: Proof of Lemma 6

Proof: Consider a networkV" and with unidirectional communication on underlying tappt G =
(V, E). Fix a session from u to v. Since we are considering unidirectional communicatieny) € E.
Let d(,.) denote the directional degree of lirfk, v). Now, i's interference degreg;(\) satisfies the
following inequality.

FN) <> Tgugpery + Y LGwer

JEV JEV
Jj#Fv Jj#u
= D Ywpeny + Y Ligwen —2
JEV JjeEV
= du) =2
=  max{k;,N)} < (mé)lXE{C/Z\(uﬂ,)} -2
7 u,v)e
= KW) < Ag-—2. (33)
Now, Fig. 5(b) shows an example of a network that achievesthality in (33). [ |

PROOFS OF ANALYTICAL RESULTS INSECTION IV (LEMMAS 1, 2, 3AND 4)
Appendix E: Proof of Lemma 1

We prove Lemma 1 by considering an arbitrary ses$nTy, Ry) and showing thaf(,, the maximum
number of sessions that interfere with but do not interfere with each other, must satigfy < 8. Thus,
Lemma 1 follows from Theorem 1.

We assume that the nodes are deployed on a two-dimensiodia&an plane. Let the distance between
the transmitting nodé&; and receiving nodéz, be p < r, wherer is the transmission range of any node.
Without loss of generality let us assume that the line ja@riy and R, is aligned along the x-axis.
Let Dy, and Dg, represent disks of radiusaround?; and Ry, respectively. Then the interference area

of sessionS is Dy, U Dg,.

In the following, a node is said to be thensceiver nodef a session if it is either the transmitting
node or the receiving node of that session; thus each sekBa®mwo transceiver nodes. Note that if a
session interferes witli,, at least one of its transceiver nodes must liehip, U Dg,. Now for each of
the sessions that interfere wify but do not interfere with each other, choose any one travescende
of that session that lies iy, U Dy, ; let U, denote the set of the transceiver nodes thus chosen. We will
show K, < 8 by showingU, = |Uy| < 8.

The proof of Ky < 8 is quite involved; therefore, we will first show thaf, < 9, the proof of which
is considerably simpler. We will then extend our argumeatstiow thati, < 8.
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Fig. 9. Diagram used in proof of Lemma 24 Fig. 10. Diagram used in proof of Lemma 25

Lemma 24:Let Wy, Wy € Uy. If Wy, Wy € Dy, (Wy, W5 € Dg,), and none of them coincide with,
(Ro), then the line segment joining/; and W, subtends an angle greater tharat Ty (Fo).

Proof: We only consider the case o, W, € Dy, (the W, W, € Dg, case is similar). Letw;ws|
denote the length of the line segment joining and w,, for any two pointsw;, w,. Refer to Fig. 9.
SinceW,, W, € Dy, we have|lW,Ty| < r, |WyT,| < r. Also, since sessions of transceiver notiésand
W, do not interfere with each other, we hali&; 15| > r. Thus, in trianglel; W,T,, W;W, is longer
than each of the other sides, and its opposite andlg7,W, must be greater thaf, from elementary
geometry. [ |

Fig. 11 shows the are@r, UDg,. Note tha 7o Ry| = p < r. Let A; (A,) be a point on the circumference
of Dr, (Dg,), such tha ATy Ry 5 (£ A2 RoTy 5). Similarly, let B, (B,) be a point on the circumference
of Dr, (Dg,), such that/ BTy Ry § (£ B2Ro Ty 3). Let line segment¥,A4, and Ry A, intersect at4, and
line segmentd;, B, and Ry B, intersect atB.

Recall thatTj R, is aligned along the x-axis. Let points D, E' be points on the circumference 6y,
such thatC'T, DT, and E'T;, subtend angles o@ T and%r with the x-axis, respectively. Also, let points
F,G, H be points on the circumference @iz, such thatF'R,, GR, and H R, subtend angles of, 0
and%” with the x-axis, respectively. Le®; (FP) denote the points at which the lifg R, extended k(7
extended) intersects the circumferencelbf (Dg,). Thus, line segmentd, Ty, CT,, DTy, ETy, BTy
and P, Ty divide Dy, into six 3 sectors. Similarly, line segments Ry, F'Ry, G Ry, H Ry, By Ry and Ry
divide Dg, into six 3 sectors. From Lemma 24, it follows that each of these sectmscontain at most
one node in4,.

Lemma 25:The number of nodes ity, that lie in Dz, (Dg,) can be no greater than 5.

Proof: We only consider the case @¥;, (the case ofDg, is similar). LetU denote the number of
nodes inlf, that lie in Dr,. Since Dy, is contained in six; sectors,U < 6.

For the sake of contradiction let us assume ffiat 6, and leti¥;,i = 1, ..., 6 denote the six nodes in
U, that lie in Dy, as shown in Fig. 10. Note that none of these nodes can lie agthter ofDy, i.e., at7.
Then, from Lemma 24, the angle subtendedaby each of the line segmentg;\V;, j = (i+1) mod 6,
is greater tharg. Since the total angle subtended/atcannot exceedr, we have a contradiction, thereby
proving the lemma. [ |

From Fig. 11, note thaDp, \ Dr, is contained in fou; sectors. Therefore, at most 4 nodegfncan
lie in Dg, \ Dr,. Since at most 5 nodes i, can lie in Dy, we have the following result:

Corollary 1: U,, the number of nodes i, can be no greater than 9.

The above result implies th&f, < 9. Now we proceed to tighten this upper bound by showifig< 8.

Now let us assume, for the sake of contradiction, thigt= 9; this impliesU, = 9.
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Fig. 11. Diagram used in proof of Lemma 1

Corollary 2: If Uy =9, then the number of nodes ¥ that lie in Dy, \ Dg,, Dy, N Dg,, andDg, \ Dr,
are 4, 1 and 4, respectively.

Proof: Let U, U, andU; respectively denote the nodestif that lie in Dy, \ Dg,, Dz, N Dg,, and
Dg, \ Dg,. Then,U; + Us + Uz = 9. Without loss of generality, assunig > Us.

We first argue that/; # 0. Note that ifU; = 0, thenU; +U; = 9, implying U; > 5, which is impossible
since Dz, \ D, is contained in four; sectors. This implies thdt, > 0.

Now we argue that/; < 1. Let us assume, for the sake of contradiction, that> 2. Then,U; +U; =
9—U, < 7. ThusU; < 3. Therefore,U; + U; = 9 — U3z > 6, which is impossible (from Lemma 25).
Therefore,U, < 1. SinceU, > 0 (as shown previously), we havg = 1.

Therefore,U; + Us = 8. SincelU; < 4,U; < 4 (each ofDg, \ Dg, and Dg, \ Dy, are contained in four
7 sectors), we must havé, = U = 4. [ ]

From the above lemma, we see thatif = 9, then Dy, \ Dg, and Dg, \ Dz, must each contain 4
nodes in4,. For the sake of contradiction, let us assume that this & ote that none of these 8 nodes
can lie at the centers of the two disks, i.e.Jabbr R,. Also, exactly one of these 8 points must lie in each
of the 7 sectors ofDy, \ Dg, and Dg, \ Dr,. Let X, X5, X3 and X, respectively denote the nodesliy
that lie in sectorsA,T,C, CTyD, DTy E and E'TyB,. Let Y7, Y5, Y3 andY, respectively denote the nodes in
U, that lie in sectorsd, Ry F, FRyG, GRyH and HRyB,. Join X, X5, X3, X, with Tj, andY;, Y5, Y3, Y,
with R, (refer to Fig. 11). Now, construct the octagon by joiniNgX,, X, X3, X3X,, Y1Ys, YoY3, Y3Yy,
and X,Y7, X,Y,. Note that the length of each side of this octagon must begrédaanr. Let line segment
X1Y] intersect line segment§ A and Ry A (possibly extended) at points and /5, respectively. Let line
segmentX,Y, intersect line segmentf B and Ry B (possibly extended) at point§ and.J,, respectively.

Note that the angle subtended &t by 71 X; X>X35X,J; (which is a collection of the line segments
L1 X1, X1 Xs,...,X4J1), is equal to%”. Similarly, the angle subtended &t by I,Y;Y5Y3Y,J, (which is a
collection of the line segmentsY;, Y1Ys, ..., Yy Jo), is equal to%’f. In the following, we show however
that the angle subtended Bt by I, X; X, X5.X,.J; plus the angle subtended &t by I,Y;Y>Y3Y,J, must
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be greater thariﬂ, thus arriving at a contradiction.

We will show that the angle subtended By X1, at T plus the angle subtended biyY;Y; at R is
greater thanr. Without loss of generality, assume th&t{ has a higher y-coordinate than (recall that
Ty Ry is aligned along the x-axis). As shown in Flg 11, cho&Sesuch thatX, Ty Ry X is a parallelogram.
Join Xl with Y andYé Note, ZXlT(]Il + ZIQRoXl =T — ZIlT(]RO — ZIQR(]TO =T — 3 — E =

We consider the following two cases separately:Y{i)lies within parallelograleTORoXl, and (i)
Y; lies outside parallelogran¥, TR, X,. Let us consider case (i) first (Fig. 11 shows this case). i th
case, we claim that X; RyY> > Z. To see this, choosE, such thatX;Y;Y; X is a parallelogram. Join
Y, with Ry andY,. Note, | X,Y,| = | X,Y1| > r. Note thatY, must lie “below”Y;Y;, since it is easy to
see that there is no point in sectdiR G that is “above”YlYl' and whose distance fro, is greater
thanr.

Note that|Y;Y]| = | X, X|| = |TyRo| = p (by construction). Therefore, it is easy to see fHamust lie
outsideDg,. Thus, line segmenX’{Yz must intersect line segmeYﬁYI'. In triangleYlYng', |Y1Ys| > r and
VY| =p< Y)Yy > ZV1YoY,. Thus, ZX Y)Y, > VY)Y, > ZY1Y,Y] > /X VLY.
Thus, comparing angles in trianglé, Y,Y], we get| X, Ys| > | X Y]] > r.

Note that sinceX; lies in sectorC'TyA,, it follows thatX{ must lie in sectord, Ry F'. Therefore,X{
lies in Dg,. In triangle X R,Y5, therefore, we haveX, Ry| < r,|YaRo| < r, and|X,Ys| > r. Therefore,
/X RoYs > I

Thus, ifY; lies in the parallelogranX 7y Ry X, we have/ X, Ty [+ £, Ry X+ £ X, RoYs > Z+% = 2,
Moreover, sinceélgRoXﬁéXiRoYz = LI, RyY1+2£Y1 RyY,, we have/ X Tyl + £ RyY1 +£Y 1 Ry Yy >
%’T. From Lemma 24/X,T, X, > 3. Therefore,/ XoTo Xy + £ X Tyl + LI, RoYy + £Y1RoYs > 7. In
other words, the angle subtended Ry.X, I, at T; plus the angle subtended lyY,Y; at R, is greater
than.

Now let us consider the case wheye does not lie inside parallelogram’lToRoXi. SinceY; has a
lower y-coordinate thanX,, it follows thatY; must lie below the IineXlXi. ThusY; must lie to the
“right’ of line RoX;. Thus, ZXTol; + LI,ReYy > ZX Ty, + ,RyX; = Z. From Lemma 24, we get
L X To Xy > 3, LY1RgY, > 3. Therefore, we obtaid XoTo Xy + £ X Toly + LI RoYy + LY RoYs > ,
implying that the angle subtended B X, 1; at 7, plus the angle subtended ByY;Y> at R, is greater
than .

Using similar arguments as above, it follows that the angl#ended byX;.X,.J; atT; plus the angle
subtended by/,Y,Ys is greater thanr. From Lemma 24, we obtaid X,75 X3 > 5, ZYoReY3 > 3.
Combining all of the above results, we see that the angleesded atl; by 7, X; X, X5X,.J; plus the
angle subtended at, by I,Y1Y,Y3Y,.J, must be greater tham +7 + 2 + 3 = %’T Thus we arrive at a
contradiction showing that our assumption t&t = 9 was incorrect. Therefor&, < 8. [ |

Appendix F: Proof of Lemma 2

Proof: Figure 2(a) shows a network” with bidirectional equal power model such th&{\) = 8.
Thus, the lemma follows immediately from Theorem 2. [ |

Appendix G: Proof of Lemma 3

Proof: Consider any constarff. In the network\ of Fig. 2(b), for6 < 2x/(Z +2), K(N) > Z
under unidirectional equal power model. Thus, the lemmipvid immediately from Theorem 2. =

Appendix H: Proof of Lemma 4

Proof: Fig. 3 shows an example of a netwaokk under node exclusive spectrum sharing model with
K(N) = 2. Thus, the lemma follows immediately from Theorem 2. u
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PROOFS FOR ANALYTICAL RESULTS INSECTION VI-A (L EMMAS 7 AND 8)

Let G, denote the set of receivers for sessioand letu denote the receiver for sessionAlso, let
ki(N) denote the interference degree of session

Appendix I: Proof for Lemma 7

Proof: 1) Consider networl\/” with multicast sessions and bidirectional communicatiaudel. Since
only one session can be scheduled along any link in a slotnthiecast degree of any sessiofidenoted
by M;) satisfies the following relation.

k:(N) M;
= max{k;(N)} max{M; }
> KW) < W),
2) Consider network\” with multicast sessions and unidirectional communicatimuel. Note that can
interfere only with the sessions whose receiver is neiglbaror whose sender has at least ghe G; as

its neighbor. Moreover, each node can be involved in onlytcargsmission in a slot. Thus, the directional
multicast degree (denoted hy;) satisfies the following relation.

<
<

= mzax{ki(/\/')} < mgX{Mi}
= KWN) < TW).

3) Let interference area for sessibfi4;) denote the area such that if an end-point of sesgiles in A;
then session and j interfere with each other. Note that; for anyi is a subset of the area covered by a
disk of radius2d centered at the sender ofinder bidirectional equal power model with the transmissio
radius of a node beind. Now, for two sessiong and k£ to belong to a interference set oft least one
of their end-points should belong td;. Moreover, for these sessions to be mutually non-interégrine
distance between their end-points should be greaterdhahus, if we place a disk of radiug/2 around
one end-point of the interfering sessionand k, then these disks do not intersect. Thus, the maximum
number interfering sessions that are pair-wise non-ietgr for any session is less than or equal to
the maximum number of non-overlapping disks of radii/@ whose center lies itd;. Thus, K(N) is
less than or equal to the maximum number of non-overlappisksdf radiusd/2 such that the disks lie
completely in the area covered by a disk of radidg2. Thus, K(N) < 25.

4) Note that under node exclusive spectrum sharing modedssian; interferes with sessiononly if ¢
andj has common end-point. Since the number of end-points fosdlssion is G; + 1. Thus,

kEN) < Gi+1
= mlax{kl(/\f)} < mZaX{GZ- + 1}
= KW) < GW)+1L

Appendix J: Proof of Lemma 8

Proof: Note that unicast is a special case multicast and hence 1P@afalows immediately from
Figures 5(a) and 5(b) respectively. Also, 4) and 5) follovesf Figures 2(b) and 3 respectively. Now, we
prove 3) by constructing a network” with a multicast session such thatA) = 19. We show such an
network in Figure 12. Hence, the result follows. [ ]
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Fig. 12. Figure shows a construction to prove that a netwdrkvith a multicast session can be constructed such &gt/) = 19. Now,

we describe the construction. Figure shows 19 disks of sa#}i@ whose center lies in a disk> of radius2d. C; is another disk of radius

d such thatC; andC> are concentric. Now, consider a multicast session with t2ivers such that the sender of the multicast session is at
the center ofC;. Each of the receivers lie at the intersection of the lineveay from the center of'; to nodess to 19 and the boundary of
C1. One such receiveR that lies at the intersection of the line from the centelCefto node9 and the boundary of; is shown with the
filled circle. This completes the construction of the matit session. Now, we construct 19 unicast sessions thafeirgtevith the multicast
session but are pair-wise non-interfering. We place thelessnof these unicast sessions at the center of each of tke wlith radiusd/2,

i.e., at the location shown by the small circles numberethfiioto 19. Note that since the disks with radiy® do not intersect, the distance
between any € {1,...,19} to anyj € {1,...,19} is greater thanl 4 ¢ for somee > 0. Now, we place receivers for each unicast session
at the distance/4 from its respective sender. Thus, note that the distanceeeet any end-point of sessigrand any end-point of session

j is strictly greater thanl for everyi,j € {1,...,19}. In other words, the 19 unicast sessions are pair-wise m@nféring. But, clearly,
each of the unicast session interferes with the multicasgtioe. Thus K (N) = 19.

PROOFS OF ANALYTICAL RESULTS INSECTION VI-C (LEMMAS 9 AND 10)
Appendix K: Proof of Lemma 9
Lemma 9 follows from Lemma 19 and part (b) of Lemma 20. [ ]

Appendix L: Proof of Lemma 10

Consider a network\" with three single-hop sessionsg i, andis such thatS;, = {iy,i3} andS;, =
Siy = {i1}. Thus,K;,(N) =2 and K;,(N) = K;,(N) = 1. Let \;, = \;, = \;; = 1/2. Note that a policy
that schedules sessionin odd slots and, andis in the even slots stabilizes the system. Hence, A.

Now, consider the arrival rate vectok;, /K, (N), A,/ Ki,(N), Miy/ Kiy(N)) = (1/4,1/2,1/2), which
corresponds to the following arrival process:(is, resp.) generates a packet every even (odd, resp.) slot,

andi; generates a packet in slots5,9,.... Note that a maximal scheduling policy that schedules
only wheni, andi; do not have a packet to transmit, never schedilemd is therefore unstable. Thus,
<)‘21/K11<N)7)‘Zz/Klz(N)v)‘ls/Kls(N>> gAMS' u

PROOF OF ANALYTICAL RESULTS INSECTION VI-D (LEMMA 11)
Appendix M: Proof of Lemma 11

Proof: Let X € Ag. Then, under), for some scheduling policy, there exists a non-negative real
vector(qi, . .., qy) such that for alk, lim,, .. Y Q;(n)/n = ¢; w.p. 1. Now, sinc&);(n) = Q;(0)+A;(n—
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1) = Di(n—1), 3, Qi(n)/n = Q;(0) + 3, 2=V=Diln=l) Thyg, for alli, lim,,_,, 202l —
w.p. 1. Since for alli, lim,, .., A;(n— 1)/n = lim, . A;(n)/n =\, w.p. 1, for alls, hmn—>oo Di(n)/n =
lim,, .o D;j(n—1)/n = \; w.p. 1. Thus)\ € A. Thus, from part (b) of Lemma 20, for all deslu{ A i/ Bi(N)

< 1. Thus,
Y N <1V (34)
JES;U{d}

Let the arrival rate vector b\, ..., X ). Consider a maximal scheduling policy. Let the state of the
arrival process in the end of slat be B(n). Clearly, (Q(n), B(n)) constitutes an irreducible aperiodic
markov chain.

Consider the lyapunov functiofi(t), where

=3 > QitQ;t)
i jeS;U{i}

Clearly, f(t) > 0 if Q;(t) > 0 for somex.

E[f(n+1) - f<n>|@<n>,én>1 -
= 33 EQun+ 1)@+ 1) — Q)@ (n)|G(n), B(n)]

1 jeS;U{i}

-3 ) E[(@xn)m(n)—bi(n)) (Q(m) + a(n) = D;(n) = Q)@ ()| G(n), Bn)|
i jes;u{i}
= > > E[(@) +ailn) = Ditm) (Q5(n) + as(n) = Di(n) = im)Q;(mI@(n), B(n)]
i jeS;u{i}
< Y > EQi(m)ay(n) — Qi(m)Dy(n) + Q;(n)ai(n) — Q;(n) Di(n)|G(n), B(n)]
i jes;u{i}
+(N 4+ 1)N(« maX+1).
Now,
Y. D Qima(n) = D Y Qi(n)as(n),
i jes;u{i} i jes;u{i}
and > > Qin)Di(n) = > D @
i jes;u{i} i jes;u{i}
Thus

4 JjES;U{i}
E[f(n +7) — f(n)|Q(n), B(n)]
< 2) Qin) | > TZ:Oa]n—i—]{: Z Z (n+k)|Q(n), B(n)| + (N +1)N(a?,. + ).
i jeS;u{i} k=0 eS;u{i} k=0

Under maximal scheduling, 1@ ( ) > T+ 1, des U{}D () =1 for eachl € [n,n + 7 — 1]. Thus, if
Qi(n) >7+1, > icsum SiZt Dij(n+k) = 7. Next, letd = 1 — max; > jesiugn Ay From (34),0 > 0.
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Now, clearly, the arrival process is a positive recurrentkoa chain. Hence, for any)(n), B(n) there
existsm, such that for allr > 75, S>7_) aj(n + k) < 7(X; 4+ 6/2N). Thus, for allQ(n), and forr > 7,

E[f(n+7) = f()|@n) =@, B(n) = B < =67 > Qi(n)+ (N + 1)N(f + e + 1) (T + 1).
:Qi(n)>7+1

Thus, forr > 7, E[f(n + 7) — f(n)|Q(n) = @,B(n) = B] < o for all @, B, andE[f(n + 1) —
f(n)|@(n) = @, B(n) = B] < —1forall @, B such thatnax; Q; > max(7+ 1, XN Cmuttmat D) ),

ot

Hence, by Foster’s theorem (Theorem 2.2.3 in [5]), for each 7o, t € (0,7 — 1), (Q(t),é(t)) ,

Qt+7),Bt+7)), (Qt+27),B(t+27)),...,is a positive recurrent markov chain. Also, all these
markov chains have the same set of states, and same trangitibabilities. Thus, under maximal
scheduling, there exists a non-negative real vegtor.. ., gn) such that for all, lim,_... >, Qi(n)/n =
¢ W.p. 1. Thus,(\;, ..., Xy) € AgS. |

PROOFS OF ANALYTICAL RESULTS INSECTION VI-E (LEMMAS 12, 13AND 14)
Appendix N: Proof of Lemma 12

Note that a network where each session traverses one linlsjeeial case of a network where each
session spans arbitrary link. In Section G, we have showh uhder the unidirectional equal power
model given any constarf there exists a network/ such thatK'(N) > Z. Lemma 12 now follows
from theorem 2. [ ]

Appendix O: Proof of Lemma 13

We prove Lemma 13 using the following supporting lemma. .

Lemma 26:Let A € {A: if Ny >0, Dpcs iy Aay <1, 5 =1,..., M}. Thenx € AVS,

Lemma 13 follows from part (a) of Lemma 20 and Lemma 26. [ ]

Appendix O.1: Proof of Lemma 26/ outline this proof as it is similar to that for Lemma 19. kit
regulators, the source of each session-link has two quewssng-queue and release-queue. Nely(n)
and D;(n) denote the arrivals in and departures from the releaseequésession-linkj in (0,n], and
@);(n) denotes the queue length at the release-queue of sessionit the beginning of thexith slot.
For eachj, j =1,..., M, the fluid limits of A4;(.), D;(.), @;(.) are defined as in Section A.2.a.

Now, we state and prove some important properties of the filmids which we use to prove Lemma 26.

Lemma 27:Every fluid limit satisfies,A;(t) < \;t w.p. 1 for every session-ling = 1,..., M and
t>0.

Proof: The proof is similar to that for Lemma 21 whehis the first session-link of its session.
When j is not the first session-link of its session, the proof fokobecause due to the regulator the
release-queue of receives packet w.p. at mosf;) in any slotn. [ |

Lemma 28:Any fluid limit (A;, D;, Q,) for N satisfies the following equality for everyandt > 0
with probability (w.p.) 1.

Q;(t) = Q;(0) + Ait — Dy(1). (35)
The proof is similar to that for Lemma 22.

Lemma 29:Let Q;(0) = 0 for everyi. Also, let) " es,upy Ay < LI Agy >0, j=1,..., M. Then,
under maximal scheduling, every fluid limit satisfies thatt) = 0 for everyt > 0 w.p. 1 for everyi.
The lemma follows from Lemma 27. The arguments are similgh&b in the proof of Lemma 23.

We now prove Lemma 26.

Proof: We prove the following for each session-link=1,..., M.

1) Every fluid limit satisfies A;(t) = \;t w.p. 1 for every session-link=1,..., M andt > 0.

2) D;(t) = Ayjt w.p. 1 for everyt.
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We prove using induction on the position of the sessiondlimkthe paths of their sessions.

First, let j be the first session-link of some session (i.e., the sedsikroeriginating at the source of
the session). The arrivals in the release-queue of the Bsstian-link are the exogenous arrivals. Now,
(1) follows from (4). From Lemmas 28 and 2B),(t ) A;t w.p. 1 for everyt > 0. Now, (2) follows
from (1). Finally, using arguments similar to those in theqeremma 19)im, oo D}(t) = Ayt W.p. 1
for everyt follows from (1) and (2). Now, (3) follows by choosing= 1.

Now, let (1) and (2) hold for all session-links that dre .., p in the paths of their sessions. We now
prove (1) and (2) for a session-linkthat is thep + 1th in the path of its session. Let session-linke the
session-link of sessio(j) that terminate at the source of session-linket @);(n) be the queue length
at the waiting-queue of session-linkat the beginning of theith slot. Now,

Q;(n +1) = Q;(0) + Dy(n) — A;(n).

From (3) of induction hypothesisim,_.. Dy(t)/t = Ayt W.p. 1. Note thatd;(n) = 1 w.p. Ay if
Q;(n) > 0. Thus, the waiting-queue of session-lifiks a queue which receives packets as per an arrival
process that satisfies SLLN with ralg ;) and is served w.p),;) whenever it is non-empty. It follows
that the departure-process of this quelig- - -) satisfies SLLN W|th rate\,(;). Now, (1) follows. Now,
(2) and (3) follows as in the base case.

The lemma follows from (3). [ |

Appendix P: Proof of Lemma 14

We prove Lemma 14 using Lemma 20 and another supporting lerhhemma 30, which we state and
prove next.

Lemma 30: Consider an arrival rate vectdf such thatd ", o Ly Ayjy) < 1. Then the packet queue
of every session-link will almost surely become empty tefinoften. Furthermore for every session-link
J and timet, E[B;;] < oco.

Proof: Now, «;(t) and D;(t) denote the number of arrivals and departures respectivelgession-
link j in slott. Let Q;(¢) be the number of packets for the session of session-linktjmwgaiior transmission
at the source of session-linkat the end of slot. Let S; U {j} = &), andn = |&]|. First, we obtain
relations among these parameters. If session<igatisfy ();(») > 0 for everyv € [t,t + 7], then for
everyv € [t,t + 7],

Z Dk(’/) > 1 (36)
kEX;
t+1 t+1
Qi)+ Y a(r) < D Ay
v=t+1 v=1
t+T1
< tomax + Z Aq(j)(V). (37)
v=t+1
Now we have,
P {Bj,t > T}
t+7 v v
< PO Do @+ D) D )= Y Y Di(w) >0
v=t ker v=t+1 ker v=t+1 ker
t+T1 v
< P (3D @+ D | D a(w)—1] >0, ¢ (from (36))

v=t+1 k:EXj v=t+1 k’EXj
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t+1

ZQk(t)—i- Z Zak(u)—7'>0

< P
kex; v=t+1k€X,
tna t+7
< P max Z > Ap,,(v)=1>05 (from (37))
v=t+1 keX;
th\a t+T1
- p{ ey ( > o XM) SIS
kEX; v=t+1 kex;
Letd =1—3 v Ay Clearly,é > 0. Thus,
IP){ gt > T}
o t+7
tno )
< v {fes }U{Zz‘w >
T n - 1 X, v=t+1 n+ 1
tha il 5
max /
< P { m} zﬂ»{ > —}
keX v=t+1
t+7 o~
o : n(n 4 1)toumax
_ ZIP ZAF@) ) > = } if 7>~ max
kex; { v=t+1 n+l 0

Now, from (6), the packet queue of every session-link withast surely become empty infinitely often.
Also,

= ZP{BM > 7} < o0.
=1

Lemma 14 follows from part (a) of Lemma 20 and Lemma 30.

PROOFS OF ANALYTICAL RESULTS INSECTION VII (L EMMAS 15 AND 17 AND THEOREM 3)

Appendix Q: Proof of Lemma 15

Let X = {X = (A, ..., y) ¢ 0f N >0, Zjesiu{i} A <1, Vi=1,...,N.} From Lemma 19, if
XE X, XeEAMS,

Now, let A ¢ X. Then there exists a sessiorsuch that\; > 0 and > ;g A; > 1. Let A; > 0
for m sessions inS;, wherem < |S;|. Let these sessions bg, ..., j,,. For simplicity, we assume that
My kB € {j1,...,7m} are rational numbers. Le¥ be an integer such that )\, is an integer for all
k€ {j,...,jim}. Consider an arrival process in which the arrivals far. . ., j,, are periodic with period
Z, andj, generates packets (nZEl "'\, mod Z)th to (Z(E Ap) — 1 modZ)th slots of the period,
[l =1,...,m. Note that for this arnval process at least one sessio{ljjn. ..,Jm} generates a packet
in every slot. Consider a maximal scheduling policy thabhess contention among sessions that have
packets to transmit as follows. Jfi has a packet to transmit, it transmits. EbK k£ < m, if j; has a
packet to transmit, and none of the sessiongjin...,jx_1} that interfere withj, are transmitting,jy
transmits. Note that this policy schedules one sessidniin . ., j.,} every slot, and thus never schedules
i. Thus,d; = 0 < \;. Thus, X & AMS. Thus, AMS = X. The result follows. |
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Appendix R: Proof of Lemma 17

We prove Lemma 17 when each session spans one link. Firsthawe that if a session generates
packets at rate or higher, and if it is sampled at rateor higher at every bucket associated with it, then
it receives tokens at rateor higher from each of its buckets (Lemma 31). We next showdhsession’s
sampling rate at any of its buckets equals its maxmin fag (aemma 32). Now, the result follows, as
by definition, a session’s maxmin fair rate is less than oraédqui its packet generation rate. We prove
Lemmas 31 and 32 in sections R.1 and R.2. Thus, like in theestigection, throughout sections R.1
and R.2, we will assume that every session spans one link.

We introduce some terminologies and subsequently staterizen31 and 32. Le$; ,,(¢) be the number
of times session is sampled at token-bucketin the interval(0,¢], L = max;b;, 0 = max; o;, and 3,y
are constants that are specified later.

Lemma 31: Consider an arbitrarf’ and a sequence ok disjoint intervals,(¢;,w], I = 1,..., K,
that satisfies the following property for sessignfor every positive integed/” and every sequence of
sub-intervals(z,,, ym), m = 1,..., M, (X, ym) C (t;, w;], for somel: At every bucket associated with
(8

Ml
Z(Sz,n(ym)_ znxm >TZ _xm _6_Mf (38)
m=1
wheree and f are constants that do not depend &f and the sub interval$z,,, y,,], m =1,..., M.
Let \; > and W > 3%~1(f + 0;)/2. Then, at every bucket associated with,
K
D (Cin(w) = Cinlt))) = rz wy — 1) — 2% e — K37 Y(f +0;). (39)

=1
Lemma 32: Consider any positive mtegﬁ, and an arbitrary non-decreasing sequence of times
TLYL - T, Y. Let W > 37 e (F) + 0)/2, where e, (F) is defined in (43) to (48). For every
bucketn associated with sessian

K K

(Si,N(yk) - Si,n(xk)) > d; Z(yk — ) —
K. (40)

(Cinlyr) = Cinlwn)) = di Y (yx—2x) =

1 k=1

— K, (41)

(Cinlyr) = Cinlwn)) < di Y (ye—w) + 13

1 k=1

+ K. (42)

M= 1[M= i
i

e
I

Here, 8 and v are constants that do not depend ony,,...,rx, yk.

We introduce the notion of “rank” of a session for definifgnd~. A session has rankif its maxmin
fair rate isd,, the pth lowest among the maxmin fair rates of different sessibes$.F' be the number of
distinct ranks,[’ < N.

a(l) = 0. (43)
e1(l) = 1. (44)
wlp) = 2"a(p). (45)
eo(p) = 3" (ewlp) +0). (46)
ss(p) = 20 +max(L,2) (2(p) +e2(p))
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| [el o2 [ 2[4 |2] [2]1] |
f1 wy to

Ug U2 V21 u22

Fig. 13. We show two interval§t:, w1] and (¢2, w2], and some typd and2 slots. We also show the correspondingand v slots. Here
(t1,u11], (t2,u21], (ve1,u2e] are example sub-intervals that endiir-slots and start from the nearestslot or ¢;—slot.

+2LW. (47)

e3(p) = ealp). (48)
alp+1) = (L—-1)s(p). (49)
eilp+1) = (L—1es(p) +1. (50)

Now, 8 = ¢3(F) andy = e3(F).

Now, for any givenX, Lemma 17 follows from (41) and (42) of Lemma 32 with= 3 + ~ and
WQZBL_1(€1(F)—|—O')/2. [ ]

Appendix R.1: Proof of Lemma 3M/e first present the intuition behind the proof. The proofys b
induction on the number of buckets associated with a ses3ioa sessions with one bucket form the
base case. Note that any such session receives a token atkest levery time it is sampled at its bucket
and has a packet that has not been released, since no adpacket applies back-pressure. Now, the
lemma follows for the base case from the lower bounds on thgkiag and packet generation rates. We
next assume that the lemma holds for all sessions witlickets, and then prove the lemma for sessions
with p + 1 buckets. Consider a session wijih+ 1 buckets and adjacent bucketsandn + 1 associated
with it. Bucketn + 1 does not prevent the generation of any tokem atnless the number of tokens at
n is W more than that at + 1. If the number of tokens at is W more than that at + 1, n does not
prevent any token generationatf- 1, and the buckets + 1,7 + 2, ... generate tokens oblivious to the
presence of the buckets. .., n, as though they constitute a session with fewer buckets.nBydtion
hypothesis, and from the sampling and packet generati@s,réte session receives tokens at rate
higher atn + 1 in these intervals. In all these slots, the number of tokens @xceeds that at + 1 by
W. Thus,n’s token generation rate is lower bounded/by 1's token generation rate which is at least
In other slotsy + 1 does not prevent the generation of any tokemn.athus, the token generation at the
bucketsl, ..., n resembles that for a session with fewer buckets. Thus, byctiwh hypothesis and the
assumption on the sampling rate, in all sloisgenerates tokens at rateor higher for the session.

Proof: We prove by induction on the number of buckgtassociated with a session.

First consider a sessianwith one bucketn. Let n not be at the source node 6f The lemma holds
from the assumption on the sampling rate (condition (38wNlet n» be at the source node of Let
ANR(t) be the number of packets of sessioat its source at time that have not been released. We now
define a slot. If ANR(¢) > 0 for all t € (t;,w], z = t;, elsez = MAaX, ;1 ANR@—o b 1T 20> 1,

Cin(z) = Cin(t)) = Ai(z) — As(t) + ATR(t)
Ai(zl) — Ai(tl)
r(z—t;) — o;. (51)

The last inequality follows from (10) and sinege< \;. Clearly, (51) also holds it; = ¢;. Bucketn
generates a token for sessibevery time it samples in (z;, w;], V [.

>
>

M) =

(Cin(wr) = Cin(z))

=1

I
[M] =

(Sin(wr) = Sin(2))

o~

1
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K
> rY (w—2z)—e—Kf (from (38)). (52)
=1

]~

(Cin(wr) = Cin(tr))

=1

I
]~

K
(Cz n(wl zn Zl + Z in Zl zn(h))
=1

l

1
K
> rY (w—t)—e—K(f+0;) (from (51) and (52)).
=1
Thus, (39) holds in the base case.

We now assume that (39) holds for all sessions witir fewer buckets, and prove (39) for an arbitrary
session with p+ 1 buckets. Consider an arbitrary bucketssociated withi. If the number of tokens of
i atn does not exceed that at buckets adjacent tiy 1 or more in the interval$t,, w;), [ =1, ..., K,
then the token generation process#at n is not affected by back-pressure, and the proof is simildné¢o
base case. Thus, we assume that there exists a bBcttedt is adjacent ta, andC; ,,(t) = C; 5(t) + W
at some time in these intervals. Clearlyp € {n — 1,n + 1}. We consider the case th& = n + 1. The
proof whenB = n — 1 is similar.

Let a slott whereC; ,,(t) exceeds”; ,,;1(t) by W be a typel slot, and a slot whereC; ,,.(t) exceeds
C;n(t) by W be a type2 slot; a slot may neither be type nor type2. Consider eachit;, w;| interval
separately. Consider the sequences of typad?2 slots that are obtained after removing the slots without
numbers. The last slot in such a sequence of tip€) slots is denoted a “u” (*v”) slot. Theath “u-slot”
(“v-slot”) of the /th interval isu;,, (v;,) (Figure 13). Note that

Ci,n(ulm) - Ci,n-i—l(ulm) + wy l, m. (53)
Ci,n—i-l(vlm) = Ci,n(“lm) + w v l7 m. (54)
Cin(t) < Cina(t) +W, V1. (55)

Consider a sub-interval that ends at alot and starts from & (not inclusive) or as—slot (not inclusive),
whichever is the nearest to the-slot (Figure 13). Let there bég; such sub-intervals irt;, w;|, and
Zfil J; = I,. These sub-intervals do not consist of any tgpglot. Thus,n does not prevent any session
1 token generation at + 1 in these sub-intervals. Hence, in these sub-intervalstaken generation foi

in bucketsn+1,...,p+1 resembles that in the buckets of a session withl —n buckets, where, > 0.
Condition (38) holds foi in each of these buckets for every set of sub-intervals dfdliesub-intervals,
since any such sub-interval is (i, w;| for somel. Thus, the number of tokens generated fan these
I, sub-intervals in each of these buckets can be lower bounsieg the induction hypothesis. The sub-
intervals in(t;, w;| are (t;, unn] and (vpn—1, wm), m > 1, if vy > w; as in Figure 13; the sub-intervals are
(Vim, wim], m > 1, otherwise. We assume that > u;; for all [; the argument is similar ify; < u;; for
some or alll. From induction hypothesis,

Ji

(Cins1(wn) = Cipgr(tr)) + Z (Cipns1(Um) — Cing1(Vim-1)))

1 m=2

Ji
((Uu — 1)+ Z (Uim — Uzm—1)> — 2" e — 13PN f + 0y). (56)

m=2

]~

l

]~

v

r

=1

Ci,n(ull) - Cz,n(tl)
Cims1(un) + W = Cippa(t;) — W (from (53) and (55))
= G n+1<ull) C (tl> (57)

v
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From (53) and (54),
Ci,n(“lm) - Ci,n(“lm—l) = Cz',n—l—l(ulm) - Ci,n+1(vlm—1> + 2W. (58)

Ji

((Cim(ull) - Ci,n(tl)) + Z(Ci,n(ulm) - Ci,n(vlm—l)))

1 m=2

((Ci,n+1<ull) 2n+1 tl + Z i,n+1 ulm - i,n+1(vlm—1>>>

W (I, — K) (from (57) and (58))

Ji
((Un —t) + Z (Ui — Ulm—1)> — 27 le — K3P7Y(f + 03)

= m=2

+(I, — K)(2W — 371 f — 37715;) (from (56)). (59)

Now, consider the sub-intervals obtained after removirggét;, sub-intervals fromu’ | (¢, w;]. These
new sub-intervals do not contain any typeslot. Thus,n + 1 does not prevent any sessiortoken
generation at.. Hence, the sessiontoken generation in buckets ..., n resembles that of a session
with n buckets, wherex < p. The number of sessiontokens generated at in these sub-intervals can
be lower bounded from the induction hypothesis. There araadt /; + K such sub-intervals, which are
of the form (g, vim] and (uy,, wy], since we assume thag > u; V [

vV
5 1= 11

_|_

[M] =

v

r

[y

K

=1

Ji-1
> rz ((wl —uy,) + Z (Vi — ulm)> — 227l — (I = K)3" 7' (f + 0y) — 2K3°"'(f + 0;). (60)

m=1

Adding (59) and (60),

Z in(w1) — Cin(t))

=1

K
> 1y (w—t) =2 — K3(f+0i)+ (I — K)2W — 3 (f + 03)). (61)
=1

Note thatp + 1 < b; and thusWW > 3?(f + 0;)/2. We have implicitly assumed that at least one type
slot exists in each intervalt;, w,|; this justifies the summation froh = 1 to K in (56). Under this
assumption/; > K. Hence, (39) holds for sessiarmat bucketn. If there is no type-1 slot in (¢;, w;] for
somel, then the summation in (56) must be over the interyalsy,| that have at least one typé slot.
Let K, be the number of such intervals. No@; — K') must be replaced with/; — k). Sincel; > K;,
(39) holds at all buckets associated with [ |
Appendix R.2: Proof of Lemma 32Ae outline the proof for the special case that all sessionays
have packets to transmit, i.e\; > 1 for all i. We use induction on the rankof a session. For the base
case f = 1), using a property of the round robin sampling, we show thiatessions are sampled at a
rated, or higher at every bucket. Now, (41), the lower bound on themogeneration rate follows from
Lemma 31. Next, we show (42), i.e., the token generatiorsrate upper bounded h¥ for all sessions
with rank 1. This follows because the sampling and hence the token gemrerate is upper bounded by
d, at the bottleneck bucket, and due to back-pressure the tpéearation rates for a session are equal
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at different buckets in the session’s path. Now, consideritiduction case, i.e., arbitragy The token
generation rates of sessions with rank lower thaare upper bounded by their respective maxmin fair
rates which are upper bounded Wy. Sessions of rank or higher are sampled in a certain minimum
fraction of the slots in which the sessions with rank lowerth do not receive tokens. Therefore, the
lower bound on the sampling rate of sessions with rarde higher follows. Again, the lower bound on
the token generation rate follows from Lemma 31. We provendke base case, the upper bound on the
token generation rate for sessions with rank
In the formal proof, we relax the assumption that all sessialwvays have packets to transmit, i.e.,
we consider arbitraryi. We would like to clarify the usage of a particular notatiorfdse proceeding
further. We have so far numbered token-buckets based oreiseoss traversing them. In this terminology,
bucketn of session is i's nth bucket, and”; ,(¢), S;(t) are the number of tokens generated for session
1 at and the number of times sessiors sampled at its:th bucket respectively. In the following proof,
we number token-buckets separately. Thus, for example, amsider token-bucket and all sessions
associated wit. Now, (i) will denote the number for the bucketamongi’s buckets. Thus, we need
to useC; ,,(;)(t), Sin) (t) instead ofC; (1), S; »(t). For simplicity, we still useC; ,,(t), S; »(t). Thus, in the
following proof, C; ,,(t), S; »(t) really stand foiC; ,,;) (t), Si () (t) respectively. Note that this inconsistency
is limited to the following proof only, and does not lead toyagrror, because none of the analytical
guarantees in other lemmas (including those that are us#tkifollowing proof and those whose proof
use Lemma 32) depend on the token-bucket number.
Proof: We prove the following for rankg = 1, ..., F, by induction onp.
For each bucket, for each sessionthat is associated with and has rank greater than or equapto
for any positive integer<, and for any nondecreasing sequence of times, ..., rg, yx,
K K
> (Sinlyr) = Sin(xa)) > dp > (g — ) — 1(p) — Kea(p). (62)
k=1 k=1
For each bucket, for each sessionthat is associated with and has rank greater than or equapto
for any positive integer<, and for any nondecreasing sequence of times, ..., rg, yx,

K K

> (Cinlyr) = Cinlwr)) = dp Y (g — ) — 2(p) — Kea(p). (63)

k=1 k=1
If a session has rankp, andd! = \;,

AZNR(t) <o;+ §2(p) + 82(]9) Y t. (64)
For each bucket, for each sessionthat is associated with and has ranl, for any positive integer
K, and for any nondecreasing sequence of times, ..., zrx, yx,
K K
k=1 k:

We first prove (62) to (65) fop = 1. Note thatd; = min(1/L, min; \;). Consider a bucket. Let X be
the set of sessions associated withSince at least one session is sampled &t a slot, in any interval

(xk,yk],
> (Sinlyr) = Simlar)) > yp —
jeX
Since sessions are sampled in round robin or8gr(yx) — Sin(zk) > Sjn(yr) — Sjn(zr) — 1 for any
two sessions, j associated witm. Thus, for any sessiohassociated with,
X (Sin(y) = Sim(ze) +1) > yp — ay,

Sin(yn) — Sin(zy) > LTk

~1.
|X]
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Thus, every session associated with buckeits sampled at IeasEle(yk — x)/|X| — @ times for
any arbitrary sequence of nondecreasing timgsy, . .., zq, yq, and any arbitraryQ). Since |X| < L,
d; < 1/|X|. Thus, (62) holds with;;(1) = 0,e1(1) = 1.

Sinceep(1) > (1), W > 3%71(1(1) + 0)/2. Hence, (63) follows from Lemma 31 witky(1) =
2L_1§1(1) and€2(1) = 3L_1(€1(1) + 0’). A

Now, we prove (64) fop = 1. Consider a sessionwith rank 1 andd; = \;. Thus,d; = ;. Letn be
the bucket at the source node iof

ATR() = Ai(t) = Cinlt)
< (AN —dy)t+0; + ¢(1) +e2(1) (from (10) and (63) fop = 1)

= 0,4 (1) +£5(1) (sinced; = \,).

Thus, (64) follows forp = 1.
Now, we prove (65) fop = 1. Consider a sessionwith rank 1. Let n be a bucket associated with

Consider a sequence of non-decreasing timeg, ..., xx, yx.
K
(Cin(yr) — Cinlzr))

k=1

K-1
= Czn(yK) - Ci,n(fl) - (Ci,n(fkﬂ) - Czn(yk))
k=1
K-1

< Cinlyk) — Cinl(z1) — d,

(]

(Trt1 — Yx) +2(1) + (K — 1)e2(1) (from (63) forp =1). (66)

Ed

=1

Sinced; = d* andd* < \;, d; < \;. First, letd; < ;. Thus, from Lemma 16, has a bottleneck constraint
and hence a bottleneck buckét, Let X' be the set of sessions associated withSince: has rankl,
|X| =L, rankj) =1V j € X, andd, = 1/L.
Ci,B(yK) - Ci,B(l'l)
< Yk — 1 — Z (Crn,B(yx) — Cm,p(71))

meX\{i}
< yx—a —(L—1) (Jl(yK — 1) — (1) - 52(1)) (from (63) since rankj) = 1, V j € X)
= di(yx — 21) 4+ (L — 1) (0(1) + £5(1)) (sinced; = 1/L). (67)

Now, letd; = \;. Let B be the bucket at the source of
Ci,B(yK) - Ci,B(xl)
AfR(z1) + Ai(yx) — Ai(x1)
o; + §2(1) —+ 62(1) —+ )\z<yK — 1’1) + 0; (from (64) and (10))
ch(yK — 1'1) + 20; + §2(1) + 52(1) (SincedAl = )\Z) (68)
From (67) and (68), there exists a bucketassociated with such that
Ci,B(yK) - Cz’,B(fl)
< di(yx — 21) + 20; + max(L — 1,1) (c2(1) + 2(1)). (69)

IA A
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Ci,n (yK) - Ci,n (xl)

< C@B(y]() — C@B(l’l) + QbZW (from (70))
From (66) and (71),
K
k:lK
< di Y (e — ) +max(L, 2) (1) + £2(1)) + 2;W + 20, + Ke(1). (72)

k=1
Thus, forp = 1, (65) follows from (72) withg;(1) = max(L,2) (¢2(1) + e2(1)) +2LW + 20 andes(1) =
82(1).
Now, we assume (62) to (65) fdr,. .., p, and show that (62) to (65) hold for+ 1.
We first prove (62). Consider a sessionith rank greater than or equal o-1. Consider a bucket as-
sociated withi. Let Y= {w : w is associated with, rankw) < p} and Z= {w : w is associated with,
rankw) > p+ 1}. In any interval(zy, y|,

Z (Sjn(yr) = Sjn(r)) + Z i (k) Cjn(zr))
jEZ JjEY
2 Yk — Tk

Since sessions are sampled in round robin or8gr(yx) — Sin(zk) > Sjn(yr) — Sjn(zr) — 1 for any
two sessiong, j associated withn. Thus,

1Z] ( zn(yk) Szn( k) +1)
= yk_xk_Z(CJ,n( k) = Cjn(an)) -

JjEY
Thus,

(Sin(yr) — Sim(z1))

‘H EMN

k=1 Jey k=1
(1-Zie J)Ek (=) |y 2]+ lesp)
= 2] B -

The last inequality follows since rafik) < p, andd!, = dranlqu YV w €Y. Also, ¢(7) > (7 — 1),
e3(j) > e3(j — 1), ¥j. Thus, induction hypothesis (inequality (65)) applies. Now

K

k=1

Z]ez j Zk Yk — ) |Y) | 2]+ [V]es

K—————""7 (since d,, + dy <1)
= 2] gt - K 2t 2
K

R Z

>yt 3o - m0) — Salp) - K2 ) (73)

k=1
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The last step follows since rankf > p + 1, and hencel;, > dp+1, YV w €Z. Thus, from (73), (62)
holds forp + 1, with ¢, (p 4+ 1) = (L — 1)s3(p), andei(p + 1) = (L — 1)es(p) + 1.

Consider a sessmnmth rank greater than or equal to+-1. Note that\; > dp+1, andW > 357 1(g(p+

1)+0)/2. Thus, (63) follows from Lemma 31, with(p+1) = 257 ¢, (p+1) andes(p+1) = 37 (g1 (p+
1)+ o).

The proof for (64) is similar to that in the base case.

Now, we prove (65) forp + 1. The argument is similar to that for the base case. We pointtloait
differences. Consider a sessiomwith rank p + 1. Let n be a bucket associated with Consider any
sequence of non-decreasing timasy,, ..., Tk, Yx.

K
(Cin(yk) = Cinlzr))

=1

Ed

K-1
= Cinyx) = Cin(@1) = > (Cin(rs1) — Cinlyr))
]i:1 K-1
< Cinlyk) — Cin(1) — dpia Z(%H — ) +@+1)+ (K —1)e(p+1). (74)
k=1

The last inequality follows from (63) fop + 1.

Sinced, 1 = df andd; < \;, d,+1 < A;. Now, first let de < ;. Sinced; = p+1, d; < \;. Thus,
from Lemma 16@ is assomated with a bottleneck constraint, and hence daebeuk bucketB Let X
be the set of sessions associated withSince: has rankp + 1, ranks of all sessions associated with
are less than or equal o+ 1.

Ci,B(yK) - Cz‘,B(fl)
< yx—w1— Y (Counlyx) = Cp(@1))

meX\{i}
< Yk —x1 — Z (dy(yx — 1) — 2(p+ 1) — e2(p+ 1)) (from (63))
meX\{i}
= dpni(yx — 1) + (X = D(calp + 1) + e2(p + 1)). (75)

The last step follows sincé,., + D omexriy A = 1.

Now, let de = \;. Let B be the bucket at the source nodeiotike in the base case, using (63) and
(10), we can prove that

Cinlyx) — Cip(x1) < dpp(yx — 1) +20: + (p+1) +e2(p + 1). (76)
From (75) and (76), there exists a buckgtassociated withi such that,
Cz‘,B(yK) - Ci,B(l'l)
< dppa(yx — 1) + 20, + max(L — 1,1) ((p+ 1) + e2(p + 1)) - (77)
From (77), like in the base case,
Cin(yr) — Cin(z1)
< dpi(yx — x1) + 205 + 2b;W + max(L — 1,1) (c(p+ 1) + ea(p+ 1)) . (78)

From (74) and (78),
K

(Cin(y) — Cinlwr))

e
Il
—_

IA

K
bt S (g — w0) + 200 + 20, + Keo(p+ 1) + max(L,2) (w(p+ 1) + e2(p+ 1) (79)
k=1
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Thus, (65) follows from (79) withs(p+ 1) = max(L,2) (e(p+ 1) + e2(p+ 1)) +2LW + 20 ande;(p+
1) =e3(p+1). Thus, (62) to (65) hold in the induction case.

Note thatg;(z), ;(z) are increasing in both andz. Thus, from (62), (63) and (65), Lemma 32 holds
with 5 = ¢;(F) and~y = e3(F). u

Appendix S: Proof of Theorem 3

We present the proof when each session traverses one linkd}(@) be the number of packets of
session: that have been released at its source nod@jn. Note that a packet is released for session
1 at its source if and only if a new token is generated for sessiat the bucket at its source. Thus,
V t, AR(t) = C;,.(t) wheren is the bucket at’s source. Now, from Lemma 17, there exists constants

R —
0, Wy, such that whedV > W, V t, AiT(t) —d;| < 2. Thus, the packet release rate vectodiss AMS.
Since only the released packets are available for schegall the release rate vector is AYS, the

departure rate vector exists and equals the release ratiar.v€be result follows. [ |




