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Throughput and Fairness Guarantees Through
Maximal Scheduling in Wireless Networks

Prasanna Chaporkar, Koushik Kar, Saswati Sarkar

Abstract

We address the question of providing throughput guaranteesthrough distributed scheduling, which has remained
an open problem for some time. We consider a simple distributed scheduling strategy,maximal scheduling, and
prove that it attains a guaranteed fraction of the maximum throughput region in arbitrary wireless networks. The
guaranteed fraction depends on “interference degree” of the network which is the maximum number of sessions
that interfere with any given session in the network and do not interfere with each other. Depending on the nature
of communication, the transmission powers and the propagation models, the guaranteed fraction can be lower
bounded by the maximum link degrees in the underlying topology, or even by constants that are independent of the
topology. The guarantees also hold in networks with arbitrary number of frequencies. We prove that the guarantees
are tight in that they can not be improved any further with maximal scheduling. Our results can be generalized
to networks with multicast communication, arbitrary number of frequencies and end-to-end sessions. Finally, we
enhance maximal scheduling to guarantee fairness of rate allocation.

I. INTRODUCTION

Maximizing the network throughput by appropriately scheduling sessions is a key design goal in
wireless networks. Tassiulaset al. characterized the maximum attainable throughput region and also
provided a scheduling strategy that attains this throughput region in any given wireless network [16]. The
policy, however, is centralized and can have exponential complexity depending on the network topology
considered. Later, Tassiulas [15] and Shahet al. [14] provided linear complexity randomized scheduling
schemes that attain the maximum achievable throughput region; both scheduling strategies however require
centralized control.

Designing a distributed scheduling policy that attains thethroughput region in wireless networks has
remained elusive. Recently, Linet al. [7] proved that a distributed maximal matching scheduling strategy
is guaranteed to attain at least half of this region for the node-exclusive spectrum sharing model. In the
node-exclusive spectrum sharing model, the only scheduling constraint is that a node cannot communicate
with multiple nodes simultaneously. This specific interference model holds only when every node has a
unique frequency in its two-hop neighborhood.

Different wireless networks have significantly different interference constraints. Bluetooth networks
satisfy the node-exclusive spectrum sharing model. On the other hand, IEEE 802.11 networks have limited
number of frequencies that may not permit the allocation of unique frequencies in a two-hop neighborhood.
Furthermore, the interference regions of nodes involved intransmissions may vary widely depending on
the signal propagation conditions, and may be different fordifferent transmitter-receiver pairs. A basic
question that remains open is whether a distributed scheduling strategy can attain a guaranteed fraction
of the maximum achievable throughput region for arbitrary interference models. Our investigation takes
a step forward in solving this open problem.

Our contribution is to characterize the maximum throughputregion attained by a distributed scheduling
strategy under arbitrary topologies and interference models. The simple scheduling policy we consider,
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referred to asmaximal scheduling, only ensures that if a transmitteru has a packet to transmit to a receiver
v, either(u, v) or a transmitter-receiver pair that can not simultaneouslytransmit with(u, v) is scheduled
for transmission; the scheduling is otherwise arbitrary. Our investigation of this maximal scheduling policy
has been motivated by the following observations. In the specific node-exclusive spectrum sharing model,
the maximal scheduling policy becomes the maximal matchingpolicy considered by Linet. al., and is
therefore guaranteed to attain at least half of the maximum throughput region [7]. Daiet. al. [4] has
also obtained a similar guarantee for the maximal matching policy in input-queued switches where the
scheduling constraints are similar to that in the node-exclusive spectrum sharing model. Last but not the
least, the simplicity and localized nature of maximal scheduling imply that it can be readily implemented
in a distributed manner with low overhead and computation cost. It is therefore interesting and important
to examine whether maximal scheduling can provide any throughput guarantee under arbitrary interference
models and topologies.

We prove that the maximum throughput region attained by maximal scheduling is significantly different
for different interference models. We first consider a “bidirectional equal power” interference model in
which the network has a single frequency, and all communications use the same power and involve
bidirectional message exchanges (e.g., RTS, CTS, data, ACKexchanges in IEEE 802.11). Using a
combination of Lyapunov theory and geometric packing, we prove that in this interference model, maximal
scheduling is guaranteed to attain at least1/8th of the maximum throughput region. This result therefore
guarantees that as in the node-exclusive spectrum sharing model, a distributed scheduling can attain a
constant fraction of the maximum throughput region in this case as well. Furthermore, we show that
the guarantee can not be improved any further in this case as there exists topologies for which maximal
scheduling will attain at most1/8th of the maximum throughput region.

We next consider a “unidirectional equal power” interference model in which all communications involve
unidirectional message exchanges. The network still has a single frequency and all communications use
the same power. In this case, however, the performance of maximal scheduling can become arbitrarily
bad. More precisely, given any constantZ, there exists topologies in which maximal scheduling will
attain less than1/Z of the maximum throughput region. On the other extreme, as discussed before, in the
node-exclusive spectrum sharing model, maximal scheduling is guaranteed to attain at least half of the
maximum throughput region [7]. We also demonstrate that in this case there exists topologies in which
maximal scheduling, and hence maximal matching, will attain at most1/2 of the maximum throughput
region.

We conclude that a slight variation in the interference constraints may significantly alter the throughput
region attained by maximal scheduling (and possibly by other distributed scheduling strategies as well). We
can not therefore draw conclusions about the performance ofmaximal scheduling for arbitrary interference
constraints from the results in a few representative scenarios. Also, given that large number of interference
models arise, case by case investigations may not be feasible. We therefore proceed to design a framework
for characterizing the throughput region of maximal scheduling in arbitrary wireless networks.

We characterize the fraction of the maximum throughput region attained by maximal scheduling in any
given topology and interference model. LetK(N ) be the maximum interference degree in an arbitrary
wireless networkN , where the “interference degree” of any transmitter-receiver pair(u, v) is the maximum
number of transmitter-receiver pairs that interfere with(u, v) but do not interfere with each other. We
prove that maximal scheduling is guaranteed to attain at least 1/K(N ) of the maximum throughput
region in the given networkN . Also, there exists an arrival process in the given networkN for which
maximal scheduling will attain at most1/K(N ) of the maximum throughput region. Given a network,
the maximum interference degree may be computed using geometric or graph-theoretic techniques. These
results therefore allow us to obtain performance guarantees for maximal scheduling for arbitrary node
locations, propagation conditions, interference models and channel allocations.

The comparisons between the throughput region of maximal scheduling with the maximum possible
throughput region of the network characterizes the penaltydue to the use of only local information in
the scheduling. The characterizations of the throughput region of maximal scheduling obtained so far
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bounds the performance of the network in terms of that of the worst session. However, depending on
the interference in individual neighborhoods, different sessions may be able to accommodate different
arrival rates. The natural next question now is whether it ispossible to obtain better non-uniform bounds
by considering the constraints of individual sessions. We prove that under maximal scheduling the
performance of each session can be characterized by the interference degree of only the links in its
path, and the interference degrees of the neighbors of theselinks. Thus the performance penalty for
each session, due to the use of local information based scheduling, depends only on the neighborhoods
of the links in its path. The result is somewhat counterintuitive as the overall performances of sessions
may depend on each other even when they are separated by several hops. Furthermore, we prove that
the performance penalties under maximal scheduling can notbe localized any further. Specifically, the
interference degrees of the links of a session alone can not determine its throughput guarantee.

Maximal scheduling is really a class of policies, and some policies in this class could allocate bandwidth
very unfairly. Recently, Linet al. [7] and Bui et. al. [2] have shown that in the node exclusive spectrum
sharing model, maximal scheduling can be used for maximizing the network utility and congestion
control. We obtain global fairness guarantees in wireless networks with arbitrary interference models using
maximal scheduling. First, using the characterizations for the throughput region for maximal scheduling,
we characterize the feasible set of service rate allocations for maximal scheduling, and prove that a
combination of a token generation scheme together with maximal scheduling attains maxmin fairness in
this feasible set. We next show that the rate vector attainedby the above combination is fairer than the
overall maxmin fair rate vector times the reciprocal of the maximum interference degree in the network.
The token generation scheme allows each session to estimateits maxmin fair rate in a distributed manner.
Sessions contend for channel access in accordance with thisestimate, and the contention is resolved using
maximal scheduling. The token generation and the contention resolution can be executed in parallel. The
maxmin fair rates need not be computed explicitly, and no knowledge of the statistics of the packet arrival
process is necessary for executing the algorithm. The computation need not restart when the topology or
the arrival rates change. The scheme is therefore robust.

The paper is organized as follows. We describe the system model and the maximal scheduling policy
in Section II. We describe some example communication and interference models in Section III. We
characterize the throughput regions of maximal schedulingfor some representative interference models in
Section IV, and for arbitrary wireless networks in Section V. In Section VI, we generalize the analytical
results and the framework so as to include multicast and multichannel networks, different throughput
guarantees for different sessions, stronger notions of stability and end-to-end performance guarantees.
We describe how maximal scheduling can be enhanced so as to guarantee fairness in Section VII. We
conclude in Section VIII. We present the proofs in appendix.

II. SYSTEM MODEL

We consider scheduling at the MAC layer in a wireless network. We assume that time is slotted.
The topology in a wireless network can be modeled as a directed graphG = (V, E), whereV and E
respectively denote the sets of nodes and links. A link exists from a nodeu to another nodev if and only
if v can receiveu’s signals. The link setE depends on the transmission power levels of nodes and the
propagation conditions in different directions.

We now introduce terminologies that we use throughout the paper. Some of these are well-known in
graph theory; we mention these for completeness.

Definition 1: A node i is a neighbor of a nodej, if there exists a link fromi to j, i.e., (i, j) ∈ E.
The degree of a nodeu is the number of links inE originating from or ending atu. The degree of a

link e = (u, v) is defined as the sum of the degrees ofu and v. The maximum link degreein G, δG, is
the maximum degree of any link inE.

The out-degreeof a nodeu is the number of links inE originating fromu. The in-degreeof a node
u is the number of links inE ending atu. The directed degree of a linke = (u, v) is defined as the sum
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Fig. 1. Panel (a) shows a directed graph withV = {M1, . . . , M10}. The arrows between the nodes indicate the directed links. There
are7 sessions:S1, . . . , S7. NodesM2, M5, M3, M6, M1, M8 andM10 are the transmitters of sessionsS1, S2, S3, S4, S5, S6 andS7,
respectively. NodeM2 has 3 neighbors:M1, M5, M6. NodesM1 and M2 have degree 5; hence the degrees of edges(M1, M2) and
(M2, M1) are 10. Here,δG = 10. Both the out-degree ofM1 and in-degree ofM2 are 3. Thus, the directed degree of(M1, M2) is 6.
Here,∆G = 6. SessionsS5 andS6 interfere with each other, asM4 has a single transceiver.
Panels (b) and (c) show the interference graphs for the network shown in (a) under bidirectional and unidirectional communication models,
respectively. As panels (b) and (c) show, the interference sets of S6 are {S1, S5} and {S5} under the bidirectional and unidirectional
communication models, respectively.

of the out-degree ofu and in-degree ofv. The maximum directed link degreein G, ∆G, is the maximum
directed degree of any link inE.

At the MAC layer, each session traverses only one link. If a sessioni traverses link(u, v) thenu and
v are i’s transmitter and receiver respectively, and the session is completely specified by the3−tuple,
(i, u, v). Multiple sessions may traverse the same link. Without lossof generality, we assume that every
node inV is either the transmitter or the receiver of at least one session. If this assumption does not hold,
we can considerG to be a subgraph obtained from the original topology by removing the nodes that are
not the end points of sessions.

Definition 2: A sessioni interfereswith sessionj if j can not successfully transmit a packet wheni
is transmitting.

In Section III, we will describe broad classes of communication and interference models and how to
obtain the pairwise interference relations in each case.

A wireless networkN can be described by the topologyG = (V, E), the 3−tuple specifications of
the sessions and the pair-wise interference relations between the sessions. We consider a network withN
sessions.

Definition 3: The interference setof a sessioni, Si, is the set of sessionsj such that eitheri interferes
with j or j interferes withi.
Note that if j ∈ Si, then i ∈ Sj.

Definition 4: The interference graphIN = (V N
I , EN

I ) of a networkN is an undirected graph in which
the vertex setV N

I corresponds to the set of sessions inN and there is an edge between two verticesi
and j if j ∈ Si.

We elucidate these definitions through examples in Fig. 1.
We now describe the arrival process. We assume that at mostαmax > 1 packets arrive for any session

in any slot. LetAi(n) be the number of packets that sessioni generates in interval(0, n], i = 1, . . . , N.
We assume that any packet arriving in a slot arrives at the beginning of the slot, and may be transmitted
in the slot. The arrival process{Ai(.), i = 1, . . . , N} satisfies a strong law of large numbers (SLLN).
Thus, there exists non-negative real numbersλi, i = 1, . . . , N such that with probability1,

lim
n→∞

Ai(n)/n = λi, i = 1, . . . , N. (1)

The condition (1) on the arrival processes is mild. Several arrival processes including all jointly stationary
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and ergodic arrival processes satisfy (1). For simplicity,we will sometimes consider special cases of the
above general model (Sections VI-D, VI-E, VII), and explicitly state whenever we do so.

Definition 5: The arrival rate of sessioni is λi, i = 1, . . . , N . The arrival rate vector ~λ is an
N−dimensional vector whose components are the arrival rates.

Definition 6: A scheduling policyis an algorithm that decides in each slot the subset of sessions that
would transmit packets in the slot.
Clearly, a subsetS of sessions can transmit packets in any slot if no two sessions in S interfere with each
other and every session inS has a packet to transmit. Every packet has length1 slot. Thus, if a session
is scheduled in a slot, it transmits a packet in the slot.

Let Di(n) be the number of packets that sessioni transmits in interval(0, n), i = 1, . . . , N. Clearly
the transmissions depend on the scheduling policy.

Definition 7: The network is said to bestableif with probability 1,

lim
n→∞

Di(n)/n = λi, i = 1, . . . , N. (2)
Thus, a network is stable if the arrival and departures ratesare equal for each session.

Definition 8: The throughput regionof a scheduling policy is the set of arrival rate vectors~λ such that
the network is stable under the policy for any arrival process that satisfies (1) and has arrival rate vector
~λ.

Definition 9: An arrival rate vector~λ is said to befeasibleif it is in the throughput region of some
scheduling policy.

Definition 10: The maximum throughput regionΛ is the set of feasible arrival rate vectors.
Note,Λ depends on the networkN .

Example 1:Consider the network shown in Fig. 2(a). Consider a scheduling policy π1, that serves
sessiont mod 9 + 1 in slot t, where “mod” is a modulo operator. Underπ1, each sessioni ∈ {1, . . . , 9}
can transmit at the rate of at most1/9. Thus, the throughput region ofπ1, Λπ1, is characterized as follows:

Λπ1 = {(λ1, . . . , λ9) : λi ≤ 1/9 ∀ i}.

In this case, the maximum throughput regionΛ is given by

Λ =

{
(λ1, . . . , λ9) : λ1 + max

2≤i≤9
{λi} ≤ 1

}
.

Therefore, in this example, scheduling policyπ1 achieves only a small fraction of the maximum throughput
region.

We now describe the “maximal scheduling” policy we consider. This policy schedules a subsetS
of sessions such that (i) every session inS has a packet to transmit, (ii) no session inS interferes
with any other session inS, (iii) if a sessioni has a packet to transmit, then eitheri or a session in
Si, is included inS. Clearly, many subsets of sessions satisfy the above criteria in each slot, e.g., in
Fig. 1(b),{S1, S7}, {S2, S3, S6} satisfy the above criteria in any slot in which all sessions have packets
to transmit. Maximal scheduling can select any such subset.If each session knows its interference set,
maximal scheduling can be implemented in distributed manner using standard algorithms [9]. In most
cases of practical interest, sessions can determine their interference sets using local message exchange.

III. I NTERFERENCEMODELS

The pairwise interference relations between the sessions depend on topologyG = (V, E) and the nature
of communication. The topologyG is determined by the transmission powers, propagation conditions and
node locations. Communication can either be bidirectionalor unidirectional. In the former, when a session
is scheduled, both the transmitter and the receiver transmit sequentially. For example, the transmitter may
transmit data and control messages while the receiver may transmit control messages. Such bidirectional
communications occur in IEEE 802.11. Thus, there must be links in both directions between a session’s
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transmitter and receiver. In unidirectional communication, when a session is scheduled, it transmits packets
from only the transmitter to the receiver. For example, unidirectional communication occurs in IEEE 802.11
when control messages are disabled (e.g., in broadcast mode). Different combinations of these conditions
lead to different interference relations. We next characterize the pair-wise interference relations for some
of these combinations.

We assume that each node has a single transceiver. Thus a nodecan be involved in at most one
transmission. In other words, sessions that have a node in common interfere with each other. We initially
assume that all transmissions use the same frequency. Thus,nodej can not receive any packet successfully
if more than one of its neighbors are transmitting simultaneously (we do not assume any capture). Thus, a
transmission on link(i, j) ∈ E is successful in a slot if and only if no neighbor ofj other thani transmits
in the slot. For example, in Fig. 1(a), transmission along(M5, M2) is successful ifM1 andM6 do not
transmit. For bidirectional communication, when a session(i, u, v) is scheduled, transmissions proceed
along both(u, v) and (v, u). For unidirectional communication, when a session(i, u, v) is scheduled,
transmissions proceed only along(u, v). The above constraints provide the interference relationsfor both
the bidirectional and unidirectional communication models.

In thebidirectional communication model, a sessioni interferes with sessionj if i andj have a common
end point, or one end point (transmitter or receiver) ofj is a neighbor of an end point ofi. For example,
in Fig. 1(a),S1, S5, S7 interfere withS3. This is also clearly evident from Fig. 1(b). In theunidirectional
communication model, sessioni interferes with sessionj if i and j have a common end point, orj’s
receiver is a neighbor ofi’s transmitter. For example, in Fig. 1(a), onlyS7 interferes withS3. Observe
that the interference relations may be asymmetric, i.e.,i may interfere withj but j may not interfere with
i. For example, under bidirectional communication model, in Fig. 1(a),S1 interferes withS3 but S3 does
not interfere withS1.

We now describe several important special cases. First assume that the propagation conditions are
identical in all directions. Each node transmits at a fixed power level which can be different for different
nodes. The power level of a nodeu determines its transmission range, and all nodes withinu’s transmission
range receiveu’s signal. Thus, the link setE has the following structure: a link exists fromu to v if and
only if the distance betweenu andv is less than or equal tou’s transmission range. In the bidirectional
communication model, sessioni interferes with sessionj if one end point ofj is within the transmission
range of an end point ofi. In the unidirectional communication model, sessioni interferes with session
j if j’s receiver is within the transmission range ofi’s transmitter.

Let us further assume that all nodes transmit at the same power. Thus, all nodes have the same
transmission ranged which is determined by the transmission power. Now, the linksetE has the following
structure: a link exists fromu to v if and only if the distance betweenu andv is less thand. Now, in the
bidirectional communication model, a sessioni interferes with sessionj if one end point ofj is within
distanced from an end point ofi (bidirectional equal power model). In the unidirectional interference
model, a sessioni interferes with sessionj if j’s receiver is within distanced from i’s transmitter
(unidirectional equal power model). Refer to Fig. 2(a) and (b) for examples of both cases. Note that now
the interference relation is symmetric in the bidirectional communication model, i.e., if nodei interferes
with nodej, then nodej also interferes with nodei. However, interference relationships could still be
asymmetric in the unidirectional communication model.

We also consider multi-channel networks. We assume that thenetwork has a large number of frequencies
such that every node has a unique frequency in its two-hop neighborhood. Now, for both bidirectional
and unidirectional communications, only the sessions thathave common end point interfere. This model
arises in Bluetooth communications, and is commonly referred to as thenode-exclusive spectrum sharing
model(Fig. 3). The framework and the analytical results for arbitrary interference models however extend
to the more general case where the network has an arbitrary number of frequencies (Section VI-B).

We observe that the pairwise interference relations are significantly different in each of the cases
discussed above. There is however one important similarity. If sessioni interferes with another session
j, the distance between the transmitters ofi and j is at most three hops. Thus, a session can use local
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message exchange to determine its interference set. Hence,maximal scheduling can be implemented in
distributed manner in each of these cases. But, given the significant difference between the interference
relations, it is not clear how similar the performance of maximal scheduling will be in these different
cases. In the next section, we assess this difference by characterizing the throughput region of maximal
scheduling in a few representative scenarios.

IV. PERFORMANCE OFMAXIMAL SCHEDULING FOR SPECIFIC INTERFERENCEMODELS

We characterize the throughput regions of maximal scheduling ΛMS for some representative interference
models. We focus on the bidirectional equal power (Subsection IV-A) and unidirectional equal power
models (Subsection IV-B). We subsequently compare the throughput regions obtained in these cases with
that in the well-investigated node-exclusive spectrum sharing model (Subsection IV-C). We conclude that
the throughput regions are significantly different in different cases.

A. Throughput region of maximal scheduling for bidirectional equal power model

Lemmas 1 and 2 show that in the bidirectional equal power model, ΛMS, is 1/8th of the maximum
throughput regionΛ.

Lemma 1: For the bidirectional equal power model, if~λ ∈ Λ, ~λ/8 ∈ ΛMS.
We describe the intuition behind the result. Let arrival rate vector~λ ∈ Λ. Then, from (2), under some

scheduling policy the packet arrival rateλj for each sessionj equalsj’s departure rate. Thus, for each
sessioni, the sum of its arrival rate and the arrival rates of the sessions in its interference setSi must
equal the sum of the corresponding departure rates.

In each slot, eitheri or one or more sessions inSi may transmit packets, buti can not simultaneously
transmit with any session inSi. We prove using geometry that for anyi at most8 sessions inSi can
simultaneously transmit packets (Appendix E). Thus in any slot at most8 packets can be transmitted by
sessions in{i} ∪ Si. Thus, the sum of the departure rates of sessions in{i} ∪ Si, and hence the sum of
the corresponding arrival rates, is at most8. Thus, when the arrival rate vector is~λ/8 instead of~λ, the
sum of the arrival rates of sessions in{i} ∪ Si is at most1.

Let the arrival rate vector be~λ/8, and let maximal scheduling be used. For any sessioni, maximal
scheduling always serves1 packet from eitheri or a session inSi in any slot in whichi has a packet to
transmit. Thus, wheneveri has a packet to transmit, the sum of the departure rates for these sessions is1,
which is greater than or equal to the sum of the arrival rates of these sessions. Now, since the departure
rate of any sessionj cannot exceedj’s arrival rate, for alli, the sum of the departure rates from the
sessions in{i} ∪ Si equals the sum of the corresponding arrival rates. It follows that the departure rate
of each sessioni equalsi’s arrival rate. Thus, the system is stable. Hence~λ/8 ∈ ΛMS.

We now describe why for anyi at most8 sessions inSi can simultaneously transmit packets. From
the interference constraints, at least one end point of eachsession inSi must be within a distanced from
either i’s transmitter ori’s receiver. Also, the distance betweeni’s transmitter and receiver is at mostd.
Thus, at least one end point of each session inSi must be in the union of two circles of radiusd and
centered aroundi’s transmitter and receiver respectively (Fig. 2(a)). We refer to the area in this union as
i’s interference area. We prove using geometric arguments that at most8 points can be present in this
interference area such that the distance between any two points exceedsd. Clearly, if sessionsj and k
need to simultaneously transmit packets, the distance between an end point ofj and an end point ofk
must exceedd. The result follows.

Lemma 2: Consider an arbitrary positive constantZ such thatZ < 8. For the bidirectional equal power
model, there exists a networkN and an arrival rate vector~λ, such that~λ ∈ Λ in N , but ~λ/Z 6∈ ΛMS in
N .

We present the intuition behind the result. Using geometry,we first demonstrate that it is possible to
obtain a network with9 sessions where one session (session1) interferes with all other sessions and none
of the other sessions interfere with each other (Fig. 2(a)).In such a network, consider an arrival rate
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Fig. 2. Fig. (a) shows a network with interference constraints given by the bidirectional equal power model and transmission ranged. There
are 9 sessions:1, . . . , 9. Sessioni has transmitterMi and receiverRi. The interference area of session1 is the union of circlesC1 andC2.
Here,θ1 = 70 deg, andθ2 = 61 deg. Distance between (i)Mi andRi is d for every i = 1, . . . , 8, (ii) M9 andR9 is ǫ > 0, whereǫ is a
small positive number, (iii)M1 and Mi is d for every i = 2, . . . , 9, (ii) Mj and Mk is greater thand for every j, k ∈ {2, . . . , 9}, j 6= k
and (iv) M9 andR1 is ǫ. Thus, session 1 interferes with all the other8 sessions, but none of the other sessions interfere with eachother.
Fig. (b) shows a network with interference constraints given by the unidirectional equal power model and transmission ranged. There are 12
sessions:1, . . . , 12. Sessioni has transmitterMi and receiverRi. The distance betweenMi andRi, andR1 andMi is d for everyi. Thus,
session 1 interferes will all the other 11 sessions, but noneof the other sessions interfere with each other. We refer to sessions2, . . . , 12 as
non-interfering sessions. Here,θ is π/6. Note that2π/θ − 1 non-interfering sessions can be accommodated. Thus, for any given Z, Z + 1
non-interfering sessions can be accommodated by choosingθ = 2π/(Z + 2).

M1 M2 M3 M4

S1S2 S3

Fig. 3. Figure shows a network with 4 nodesM1, . . . , M4 and 3
sessionsS1, S2 andS3. Under node exclusive spectrum sharing
model, S1 interferes with bothS2, S3, but S2 and S3 do not
interfere with each other.

1 2 3 4 5 6 7 8

P2 P3 P6 P7 P8 P9P4 P1,P5

Fig. 4. Figure shows a periodic arrival process for the network
in Fig. 2(a). The period is8 slots. SessionSi generates a packet
in the slot markedPi, for eachi. Here,λi = 1/8, for eachi.

vector~λ in which session1 generates packets at the rateλ1 and sessioni generates packets at the rateλ2

for all i ∈ {2, . . . 9}. Considerλ1, λ2 such thatλ1 + λ2 = 1, λ2 = Z/8. The system can be stabilized by
scheduling session1 in λ1 fraction of slots and the other sessions in the remaining slots. Thus,λ ∈ Λ.
Now consider arrival rate vector~λ/Z. Let session1 generate packets at the rateλ1/Z and sessioni
generate packets at the rateλ2/Z for all i ∈ {2, . . . 9}. Furthermore, sessions2, 3, ...9 generate packets
in non-overlapping slots (Fig. 4). Thus, sinceλ2/Z = 1/8, in each slot at least one session in{2, . . . 9}
generates packets, and therefore has a packet to transmit. Let maximal scheduling schedule session1 only
when other sessions do not have packets. But then session1 is never scheduled. Since session1’s arrival
rate is positive, the system is not stable under maximal scheduling. Thus,~λ/Z 6∈ ΛMS.

B. Throughput region of maximal scheduling for unidirectional equal power model

We now consider the unidirectional equal power model. We prove that maximal scheduling can not
attain a constant fraction of the maximum throughput region.

Lemma 3: Consider an arbitrary positive constantZ. For the unidirectional equal power model, there
exists a networkN , an arrival rate vector~λ, such that~λ ∈ Λ in N , but ~λ/Z 6∈ ΛMS in N .

We present the intuition behind the result. We could obtain the throughput guarantee of1/8 in the
bidirectional equal power model irrespective of the network primarily because for this model in any
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network the interference set of any session consists of at most 8 sessions that can transmit simultaneously.
This no longer holds for the unidirectional equal power model. In fact, for unidirectional equal power
model given any constantZ we can construct a network where the interference set of a session consists
of ⌈Z + 1⌉ sessions that can transmit simultaneously (Fig. 2(b)). We can prove that in such a network
there exists an arrival rate vector~λ, such that~λ ∈ Λ, but ~λ/Z 6∈ ΛMS. The intuition behind the proof of
this part is similar to that for Lemma 2.

C. Throughput region of maximal scheduling for node-exclusive spectrum sharing model

The throughput regions of maximal scheduling are significantly different for the bidirectional and
unidirectional power models. We next mention the guarantees for a third interference model, the node-
exclusive spectrum sharing model, and then contrast the guarantees in the three cases. We need the
following concepts that are well-known in graph theory. Consider a graphG′ = (V, E ′) whereE ′ consists
of only those links inE that are traversed by sessions

Definition 11: A matchingin G′ is a set of links such that no two links have a common node.
Definition 12: A maximal matchingis a matching inG′ such that for any linke that is traversed by a

session that has a packet to transmit, eithere is in the matching or a link that has a common node with
e is in the matching.

In the node-exclusive spectrum sharing model, maximal scheduling always selects sessions that con-
stitute a maximal matching inG′. This follows from the definition of maximal scheduling and because
of the pair-wise interference relations in the node-exclusive spectrum sharing model. Linet. al. [7] has
proved that maximal matching attains at least1/2 the maximum throughput region in the node-exclusive
spectrum sharing model. Thus, maximal scheduling also attains at least1/2 the maximum throughput
region. We would like to remark that in this model in any network the interference set of any session
consists of at most2 sessions; therefore, in this case too, the throughput guarantee seems to be related
to this quantity.

We next prove that there exists networks where maximal scheduling attains at most1/2 the maximum
throughput region.

Lemma 4: Consider an arbitrary positive constantZ such thatZ < 2. For the node-exclusive spectrum
sharing model, there exists a network and an arrival rate vector ~λ, such that~λ ∈ Λ in N , but~λ/Z 6∈ ΛMS

in N .
We present the intuition behind this result. We construct a network with 3 sessions where one session

(session1) interferes with all other sessions and none of the other sessions interfere with each other
(Fig. 3). Like for Lemma 2, we can prove that in such a network there exists an arrival rate vector~λ,
such that~λ ∈ Λ, but ~λ/Z 6∈ ΛMS.

The throughput regions for the maximal scheduling in the node-exclusive spectrum sharing model
are again significantly different from those in the bidirectional and unidirectional equal power models.
We conclude that these guarantees will critically depend onthe interference relations. Furthermore, the
differences between the characterizations obtained for the bidirectional and the unidirectional interference
models demonstrate that slight changes in interference conditions can significantly alter the guarantees.
We can not therefore draw conclusions about the performanceunder different models from the results
in a few representative scenarios. Also, given that large number of interference relations exist, case by
case investigations may not be feasible. We therefore need aframework for characterizing the throughput
region of maximal scheduling in arbitrary wireless networks.

V. PERFORMANCE GUARANTEES OF MAXIMAL SCHEDULING IN ARBITRARY NETWORKS

We design a framework for characterizing the throughput region of maximal schedulingΛMS for an
arbitrary wireless network.

We first introduce the notion of “interference degree” for sessions.
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Fig. 5. Fig. (a) shows a networkN ′
1 with bidirectional communication model and7 sessions:(S1, M1, R1), . . . , (S7, M7, R7). Session

S1 interferes with all the remaining sessions, and none of the remaining sessions interferes with each other. Thus,K(N ′
1) = 6. The degree

of (M1, R1) is 10, which is also equal toδG. Thus,K(N ′
1) = δG − 4 = max(δG − 4, 1).

Fig. (b) shows a networkN ′
2 with unidirectional communication model and four sessions: (S1, M1, R1), . . . , (S4, M4, R4). SessionsS2, S3

and S4 interfere withS1, but not with each other. Thus,K(N ′
2) = 3. The directed degree of (M1, R1) is 5, which is also equal to∆G.

Thus,K(N ′
2) = ∆G − 2 = max(∆G − 2, 1). In both figures, arrows indicate directed links between thenodes.

Definition 13: The interference degree of a sessioni is (i) the maximum number of sessions in its
interference setSi that can simultaneously transmit, ifSi is non-empty and (ii)1 if Si is empty.

The interference degrees depend on the links traversed by the sessions and the topologyG = (V, E)
which in turn depends on the node locations, propagation conditions and interference models. For example,
in Fig. 1(b), SS1 = {S2, S3, S4, S5, S6}, and the largest set of sessions inSS1 that can simultaneously
transmit is{S3, S4, S6}. Thus, the interference degree ofS1 is 3.

The characterizations ofΛMS obtained so far for specific interference models are closelyrelated to the
maximum interference degrees of sessions under these models. For example, for both the bidirectional
equal power and the node-exclusive spectrum sharing modelsmaximal scheduling attains exactly1/P
fraction of the maximum throughput regionΛ, where P is the maximum interference degree of any
session. In the unidirectional equal power model, we observed that maximal scheduling can not attain a
constant fraction ofΛ and also that a session can have arbitrarily large interference degree. We now prove
that this relation is not a coincidence but reflects a generalphenomenon that holds for arbitrary networks.
We first define the interference degree of a network.

Definition 14: The interference degree of a networkN , K(N ), is the maximum interference degree of
sessions in the network.

In Fig. 1(b) and (c), the interference degrees of the networkare3 and2 respectively. SessionS1 has
these interference degrees in both cases.

Theorem 1: In any wireless networkN , if ~λ ∈ Λ in N , ~λ/K(N ) ∈ ΛMS in N .
Theorem 2: Consider an arbitrary wireless networkN and a constantZ such thatZ < K(N ). There

exists an arrival rate vector~λ such that~λ ∈ Λ in N , but ~λ/Z 6∈ ΛMS in N .
The intuition behind Theorems 1 and 2 are similar to that for Lemmas 1 and 2 respectively. The

generalization here is that we obtain the characterizations in terms ofK(N ) because for any sessioni at
mostK(N ) sessions inSi can transmit simultaneously.

Theorems 1 and 2 allow us to characterizeΛMS under arbitrary interference relations, node locations,
edge sets, session configurations and propagation models, provided we can computeK(N ) in these cases.
We now obtain upper bounds forK(N ) for arbitrary bidirectional and unidirectional communications
models, in terms of the maximum link degreesδG and∆G in the underlying topologyG. We also prove
that the bounds are tight as there exists networksN whereK(N ) equals these bounds. These bounds and
the resulting characterizations ofΛMS hold even when different nodes use different transmission powers
and propagation conditions in different directions are different.

Lemma 5: In a wireless networkN with bidirectional communication and underlying topologyG =
(V, E), K(N ) ≤ max(δG − 4, 1). Moreover, there exists a wireless networkN 1 with bidirectional
communication and underlying topologyG = (V, E), such thatK(N 1) = max(δG − 4, 1).
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The upper-bound in Lemma 5 follows because for bidirectional communication the interference-degree of
each session(i, u, v) is at most the degree of link(u, v) minus4, and the degree of any link inG is at
mostδG. Fig. 5(a) shows an example networkN ′

1 whereK(N ′
1) = δG − 4; the bound is therefore tight.

Lemma 6: In a wireless networkN with unidirectional communication and underlying topology G =
(V, E), K(N ) ≤ max(∆G − 2, 1). Moreover, there exists a wireless networkN 1 with unidirectional
communication and underlying topologyG = (V, E), such thatK(N 1) = max(∆G − 2, 1).

Lemmas 5 and 6 are similar. Due to unidirectional communication, the bound in Lemma 6 however
depends on∆G instead ofδG. Fig. 5(b) provides an example to illustrate the tightness.

Theorems 1 and 2 explain the characterizations ofΛMS for all the specific interference models considered
so far. For the bidirectional equal power model, for any network N , K(N ) ≤ 8 ( Appendix E), and there
exists a networkN 1 whereK(N 1) = 8 (Fig. 2(a)). Thus, Lemmas 1 and 2 follow as special cases of
Theorems 1 and 2. For the unidirectional equal power model, given anyZ a network can be constructed so
as to attain the interference degreeZ +1 (Fig. 2(b)). Theorem 2 now explains Lemma 3. Theorem 1 also
explains the throughput characterization for the maximal matching policy in the node-exclusive spectrum
sharing model obtained by Linet. al [7]. In this model, for any networkN , K(N ) ≤ 2. Also, there exists
a networkN 1 with K(N 1) = 2 (Fig. 3). Thus, the throughput guarantee of1/2 obtained in this case
follows as a special case of Theorem 1, and Lemma 4 follows as aspecial case of Theorem 2.

The characterizations ofΛMS for specific interference models are often obtained for the worst network
under the interference model. This observation applies to all results obtained in Section IV and also the
guarantees obtained by Linet. al [7]. Theorems 1 and 2 allow the guarantees to cater to specificnetworks,
and therefore often provide better guarantees. For example, Lemma 3 states that for the unidirectional
equal power model, given a constant, there exists topologies where the throughput region of maximal
scheduling is less than that constant fraction of the maximum throughput region. But, Lemma 6∗ shows
that even in this model maximal scheduling attains a guaranteed fraction of the maximum throughput
region; Lemma 6 shows that the guarantee however depends on the degrees in the underlying topologyG.
Although in the worst case, these degrees can be arbitrarilylarge (and therefore the guaranteed fraction
can not be lower bounded by a constant in the worst case), these degrees are usually small. Thus, for
several topologies Lemma 6 guarantees an acceptable performance even for the unidirectional equal power
model. Similarly, for the bidirectional equal power model,wheneverδG < 12, Lemma 5 guarantees that
K(N ) ≤ 7, and Theorem 1 provides a throughput guarantee that is better than the lower bound of1/8
in Lemma 1.

VI. GENERALIZATIONS OF THROUGHPUT GUARANTEES

We first generalize the framework to characterizeΛMS for some additional scenarios of practical interest.
In subsection VI-A we consider a network with multicast sessions. In subsection VI-B, we consider a
network with multiple (M) frequencies. Here,M may not be so large that every node can be allocated a
frequency that is unique in its2-hop neighborhood, and thus the node exclusive spectrum sharing model
may not apply. We demonstrate that the overall framework mayeasily be extended to consider both cases,
and Theorems 1 and2 hold.

Next, the characterizations ofΛMS obtained so far demonstrate that maximal scheduling does not attain
the maximum throughput region of a network. This is clearly expected as maximal scheduling uses
only local information and the maximum throughput region has so far only been obtained by centralized
scheduling policies [16], [15]. The contribution of these results is to characterize the penalty due to the use
of such limited information, and provide tight “uniform” bounds on the penalty in the arbitrary networks.
The bounds are “uniform” because they uniformly apply to allsessions. In subsection VI-C, we generalize
Theorems 1 and 2 to obtain better throughput guarantees for specific sessions by allowing different bounds
for different sessions (Lemma 9).

∗Note that Lemma 6 holds for all unidirectional communication models and hence for the unidirectional equal power model.
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We have so far considered the notion of stability which guarantees that arrival rates of sessions equal
their departure rates. This does not however provide guarantees on the expected queue lengths of the
sessions. In subsection VI-D, we characterize the performance of maximal scheduling under a stronger
notion of stability which guarantees that the expected queue lengths of all sessions are finite (Lemma 11).

Finally, in subsection VI-E, we relax the assumption that each sessions traverses only one hop, and
provide throughput guarantees for maximal scheduling whensessions traverse arbitrary number of hops
(Lemmas 12,13,14).

A. Multicast Networks

We now generalize the framework to support multicast (one-to-many) communications. Each multicast
session has one sender and one or more receivers, and therefore has two or more end points. Thus, unicast
sessions (which we considered so far) are special cases of multicast.

A sessioni has transmitteru, Gi receivers(v1, . . . , vGi
) and is completely specified by(i, u, v1, . . . , vGi

).
For the bidirectional communication model, the description of the pairwise interference relations remain
the same as in the unicast case. For the unidirectional communication models, the description must be
generalized as follows: sessioni interferes with sessionj if i and j have a common end point, or one
or more ofj’s receivers are neighbors ofi’s transmitter.

Given that the interference relations are still between twosessions, maximal scheduling can be used to
schedule sessions. All the definitions introduced in context of arbitrary wireless networks again remain
valid in this case. We now characterizeΛMS in arbitrary wireless networks with multicast sessions.
Theorems 1 and 2 also hold for multicast networks.

We now introduce some additional notations to generalize the results for specific interference models.
The multicast degree of a session(i, u, v1, . . . , vGi

) is the sum of the degrees ofu, v1, . . . , vGi
and−4Gi.

Let γ(N ) be the maximum multicast degree of a session in a network. Themulticast directional degree of
a session(i, u, v1, . . . , vGi

) is the sum of the out-degree ofu, and in-degrees ofv1, . . . , vGi
and−2Gi. Let

Γ(N ) be the maximum multicast directional degree of a session in anetwork. LetG(N ) be the maximum
number of receivers in a multicast session in a network.

We first upper boundK(N ) for specific interference models, which would in turn provide lower bounds
for ΛMS using Theorem 1.

Lemma 7: Consider a wireless networkN with multicast sessions.
1) In the bidirectional communication model,K(N ) ≤ max (γ(N ), 1) .
2) In the unidirectional communication model,K(N ) ≤ max (Γ(N ), 1).
3) In the bidirectional equal power model,K(N ) ≤ 25.
4) In the node exclusive spectrum sharing model,K(N ) ≤ G(N ) + 1.
We now lower boundK(N ) for specific interference models, which would in turn provide upper bounds

for ΛMS using Theorem 2.
Lemma 8: 1) In the bidirectional communication model, there exists a wireless networkN such that

K(N ) = max (γ(N ), 1) .
2) In the unidirectional communication model, there exists a wireless networkN such thatK(N ) =

max (Γ(N ), 1).
3) In the bidirectional equal power model, there exists a wireless networkN such thatK(N ) ≥ 19.
4) In the unidirectional equal power model, given any constantZ there exists a wireless networkN

such thatK(N ) > Z.
5) In the node exclusive spectrum sharing model, there exists awireless networkN such thatK(N ) =

G(N ) + 1.
Using Lemmas 7 and 8 and Theorems 1 and 2,ΛMS can now be characterized for specific interference

models.
The generalizations in Lemmas 7 and 8 for the bidirectional and unidirectional communication models

have been obtained by substitutingmax(δG − 2, 1) and max(∆G − 2, 1) in Lemmas 5 and 6 with
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max (γ(N ), 1) and max (Γ(N ), 1) in Lemmas 7 and 8 respectively. Note that when all sessions are
unicast,γ(N ) = δG − 4 and Γ(N ) = ∆G − 2. Thus, Lemma 5 can be obtained as a special case of
Lemmas 7 and 8.

Lemma 8 shows that in the unidirectional equal power model, maximal scheduling may not in general
attain a constant fraction of the maximum throughput region. This is expected as a similar negative result
holds for unicast networks (Lemma 3) and unicast is a specialcase of multicast.

When all sessions are unicast,G(N ) = 1. Then, Lemmas 7 and 8 and Theorems 1 and 2 guarantee
that in the node exclusive spectrum sharing model, maximal scheduling attains at least1/2, and in some
topologies no more than1/2 the maximum throughput region. This is consistent with the result obtained
by Lin et. al. [7] and Lemma 4.

B. Multichannel Wireless Networks

We consider a wireless network withM channels. We assume that the transmissions from a session
always use the same frequency which is pre-determined. We characterizeΛMS for arbitrary frequency
allocation strategies, but do not investigate the design ofsuch strategies. A sessioni that traverses link
(u, v) and transmits in channelk is now completely specified by the4−tuple (i, u, v, k). We first describe
the transmission constraints. Now, nodej can not receive any packet successfully in channelk if more
than one of its neighbors are transmitting simultaneously in channelk. Thus, a transmission on edge
(i, j) ∈ E using channelk is successful in a slot if and only if no neighbor ofj other thani transmits in
channelk in the slot.

We now obtain the pairwise interference relations for both the bidirectional and unidirectional com-
munication models using the above constraints. In the bidirectional communication model, a sessioni
interferes with sessionj if they have a common end point (transmitter or receiver), orif they have
the same frequency and one end point ofj is a neighbor of an end point ofi. In the unidirectional
communication model, sessioni interferes with sessionj if they have a common end point, or if they
have the same frequency andj’s receiver is a neighbor ofi’s transmitter.

Given the above pairwise interference relations, all the definitions introduced in context of arbitrary
wireless networks remain valid in this case. Theorems 1 and 2also hold for arbitrary multichannel
wireless networks. Both Lemmas 5 and 6 can be generalized to obtain specific results for bidirectional
and unidirectional communication models.

C. Nonuniform Bounds

We now describe how we obtain different performance guarantees for different sessions. In Theorems 1
and 2, we have proved that in an arbitrary networkN , due to the use of maximal scheduling, the arrival
rate that can be accommodated for each session reduces by at most K(N ), and the arrival rate that can
be accommodated for at least one session reduces by at leastK(N ). This uniform bound of a factor of
1/K(N ) is obtained considering the worst session, and it is possible that for most sessions the penalty is
less. We now prove that it is possible to obtain better non-uniform bounds by considering the constraints
of individual sessions. Specifically, we show that the performance of each sessioni can be characterized
by its two-hop interference degree, βi(N ), which is the maximum of the interference degrees in its
neighborhood (i.e.,βi(N ) = maxj∈Si∪{i} Ki(N )), but not by its interference degree alone.

Lemma 9: If(λ1, . . . , λN) ∈ Λ, then(λ1/β1(N ), . . . , λN/βN(N )) ∈ ΛMS.
Thus, due to the use of local information based scheduling, the performance of each sessioni decreases

by a factor ofβi(N ); the penalty for each session therefore depends only on its two-hop neighborhood.
Note that in many networksβi(N ) may be significantly less thanK(N ) for most sessionsi (Figure 6(b)).
The following result shows that a similar characterizationin terms of the single-hop neighborhood does
not hold in general.

Lemma 10: There exists a wireless networkN and an arrival rate vector(λ1, . . . , λN) such that
(λ1, . . . , λN) ∈ Λ in N , but (λ1/K1(N ), . . . , λN/KN(N )) 6∈ ΛMS.
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D. Stronger Notion of Stability

In this subsection, we consider a stronger notion of stability, queue length stability, which guarantees
that the expected queue lengths of sessions are finite in stable systems. We provide guarantees on the
stability region of maximal scheduling under this notion and under some stronger assumptions on the
arrival process. We first mention the additional assumptions on the arrival process and formally define the
notion of queue-length-stability.

Now, αj(t) and D̃j(t) denote the number of arrivals and departures respectively for sessionj in slot
t. We assume that the arrival process(α1(.), . . . , αN(.)) constitute an irreducible, aperiodic markov chain
with a finite number of states. We refer to this assumption as the jointly markovian assumption. Note
that such an arrival process satisfies (1).

Let Qi(n) be the number of packets waiting for transmission at the source of sessioni at the beginning
of slot n.

Definition 15: The network is said to bequeue-length-stableif there exists non-negative real numbers
qi, i = 1, . . . , N, such that with probability1,

lim
n→∞

Qi(n)/n = qi, i = 1, . . . , N. (3)

The queue-length-stability regionof a scheduling policy is the set of arrival rate vectors~λ such that the
network is stable under the policy for any arrival process that satisfies the jointly markovian assumption
and has arrival rate vector~λ. The maximum queue-length-stability regionΛQ is the union of the queue-
length-stability region of all scheduling policies.
Note that if a network is queue-length-stable it is also stable, but the converse is not true. Thus, queue-
length-stability is a stronger notion of stability.

We now obtain a lower-bound† on the queue-length-stability region of maximal scheduling ΛMS
Q .

Lemma 11: Consider a jointly markovian arrival process withthe arrival rate vector(λ
′

1, . . . , λ
′

N) such
that λ

′

1 < λ1/β1(N ), . . . , λ
′

N < λN/βN(N ), where(λ1, . . . , λN) ∈ ΛQ. Then,(λ
′

1, . . . , λ
′

N) ∈ ΛMS
Q .

E. Multi-hop sessions

We now obtain performance guarantees for maximal scheduling when sessions traverse arbitrary number
of links. We first mention the differences from the model in Section II. The network hasN end-to-end
sessions, each of which can be viewed as a collection of several hop-by-hop connections, one for each link
it traverses; each of these hop-by-hop connections is called a session-linkof the session considered. Each
session-link is of the form(u, v), whereu andv represent the transmitter and the receiver, respectively,
of the corresponding session-links. For any sessioni, let Pi denote the set of its session-links. Letq(j)
denote the session of session-linkj, i.e., q(j) = {i : j ∈ Pi}. We assume that there are a total ofM
session-links in the network (over all sessions), and theseare indexed by1, . . . , M .

The notions of interference, interference-set and interference-degrees are now defined for session-links
instead of sessions. Specifically, a session-linkj interfereswith session-linkk if k can not successfully
transmit a packet whenj is transmitting. Theinterference setof session-linkj, Sj , denotes the set of
session-linksk such that eitherk interferes withj or j interferes withk (Fig. 6(a)). Theinterference
degreeof a session-linkj in network N , Kj(N ) is (i) the maximum number of session-links in its
interference setSj that can simultaneously transmit, ifSj is non-empty, and (ii)1, if Sj is empty. The
two-hop interference degree of session-linkj, is defined asβj(N ) = maxm∈Sj∪{j} Km(N ). The two-hop
interference degree of sessioni β̃i(N ) denote the maximum two-hop interference degree of all session-
links of sessioni, i.e., β̃i(N ) = maxj∈Pi

βj(N ). The interference degree of a networkN , K(N ), is the
maximum interference degree of session-links in the network.

†We presented this result in ITA workshop [8]. Wuet al. [20] also obtained this result independently, and presented it in the same
workshop.
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Fig. 6. In both figures, all sessions and session-links are unidirectional, and the arrows show the direction of data transfer. The circles
indicate the interference regions of session-links AB and HI (Fig. (a)) and S0, S1, ..., SL (Fig. (b)).
In Fig. (a), session S1 consists of two session-links, AB andBC, whereas sessions S2, S3, S4 are single-hop sessions. Session-link AB
interferes with session-links DE (session S2) and FG (session S3) and session-link HI (session S4) interferes with session-link BC. Now,
SAB = {BC, DE, FG}, SBC = {AB, HI}, SDE = SFG = {AB}, SHI = {BC}. Thus, token-buckets at nodesA, B, D, F, H consist
of token-queues corresponding to session-links{AB, BC, DE, FG}, { AB, BC, HI}, {AB, DE}, {AB, FG}, and{BC, HI}. Thus, token-
buckets associated with session-link AB (BC) are at nodes A,B, D, F (A, B, H); these are denoted buckets1, . . . 4 of AB (1, 2 of BC). The
token generation for AB at bucket4 depends on that for AB at bucket3 and BC at bucket1 of BC.
In Fig. (b), network consists of single-hop sessions only. Session S0 interferes with sessions T0, ..., TJ, whereas session Si interferes with
session S(i-1), for i=1,2, ..., L. Thus,Ki(N ) = 1 for i ∈ {T0, . . . TJ, SL}, Ki(N ) = 2 for i ∈ {S1, . . . S(L-1)}, KS0(N ) = J + 2,
βi(N ) = J + 2 for i ∈ {T0, . . . TJ, S0, S1}, andβi(N ) = 2 for i ∈ S2, ..., SL, K(N ) = (J + 2). If J and L are large, but L≫ J, then
Ki, βi for most sessions are substantially smaller thanK(N ).

The packet arrival and departure processes now need to be defined for session-links. Now,Aj(n) denotes
the number of arrivals for session-linkj in the time interval(0, n], j = 1, . . . , M . The arrival process
at the first session-link of any session consists only of exogenous packets, and satisfies the SLLN as
described in (1). Thus, ifFi denotes session-link corresponding to the first link for session i, then there
exists non-negative real numbersλi, i = 1, . . . , N such that with probability1,

lim
n→∞

AFi
(n)/n = λi, i = 1, . . . , N. (4)

Now, Dj(n) denotes the number of packets that session-linkj transmits in interval(0, n], j = 1, . . . , M.
Note that if j and j + 1 are consecutive session-links of a session, thenAj+1(n) = Dj(n). Now, let
Li be the session-link corresponding to the last hop of sessioni. If for some constantdi, the limit
limn→∞ DLi

(n)/n = di with probability 1, thendi is denoted as the departure rate of sessioni.
Definition 16: The network is said to bestableif there exists a departure rate vector~d = (d1, . . . , dN)

such that with probability1, for each sessioni

lim
n→∞

DLi
(n)/n = di = λi, i = 1, . . . , N. (5)

Thus, again a network is stable if the arrival and departuresrates are equal for each session. Now, using the
above definition for stability, the maximum throughput region, Λ, and the throughput region for maximal
scheduling,ΛMS, can be defined as in Section II. Note that maximal-scheduling can be described similar
to that in Section II; the only difference is that session-links must now be used instead of sessions in the
description.

We first provide an upper-bound onΛMS.
Lemma 12: Given any constantZ, there exists a networkN , an arrival rate vector~λ such thatK(N ) =

Z, ~λ ∈ Λ in N , but ~λ/κ 6∈ ΛMS in N for any κ < K(N ).
We now provide lower-bounds onΛMS. under an enhancement of maximal scheduling that has been

proposed by Wuet. al. [18], [19]. Under this enhancement, every session-link that does not originate from
the source of the session has a regulator that in each slot generates a token with a probability that equals
the arrival-rate of the session. Every such session-link also maintains two-queues, awaiting-queueand a
release-queue. Packets arriving at such a session-link are initially stored in its waiting-queue. Whenever
the regulator generates a new token, if the waiting-queue isnon-empty, a packet is transferred from the
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waiting-queue to the release-queue. A session-link that originates from the source of the session maintains
only the release-queue, and all exogenous packets waiting for transmission are stored there. Maximal
scheduling only considers the release-queues of session-links for service and contention resolution. We
refer to this enhancement asregulator-enhancement.

Lemma 13: If~λ ∈ Λ, then(λ1/β̃1(N ), . . . , λN/β̃N(N )) ∈ ΛMS in N under the regulator-enhancement.
Note that from Lemma 13 and sinceK(N ) ≥ β̃i(N ), i = 1, . . . , N , if ~λ ∈ Λ, then~λ/K(N ) ∈ ΛMS in

N under the regulator-enhancement.
The use of regulators requires that the arrival rate for eachsession must be knows an each session-link.

We now investigate whether performance guarantees can be provided for maximal scheduling without
using regulators. We consider a special case of the general arrival process described in (4). We refer to
this special case asexponentially-convergent arrival processes.We assume that there exists a constant
α̂ > 1 such that the empirical average of the exogenous arrivals inthe system inT slots converges to~λ
at a rate faster than1

T α̂ . Mathematically, there existŝtδ such that for everyi ∈ {1, . . . , m}, T ≥ t̂δ, and
δ > 0,

P

{∣∣∣∣∣

∑T

t=1 AFi
(t)

T
− λi

∣∣∣∣∣ > δ

}
<

1

T α̂
. (6)

Again, a large class of arrival processes, e.g., periodic, i.i.d., and positive recurrent Markovian arrival
processes with finite state space, satisfy the above assumption. We show that, without any enhancements‡,
for exponentially-convergent arrival processes, maximalscheduling attains the following weaker notion
of stability. We define a random variableBj,t as follows. If session-linkj has a packet to transmit at time
t, thenBj,t is the length of its remaining busy period, otherwiseBj,t = 0.

Lemma 14: Consider exponentially-convergent arrival processes. Let the arrival rate vector(λ
′

1, . . . , λ
′

N)
be such thatλ

′

1 < λ1/β̃1(N ), . . . , λ
′

N < λN/β̃N(N ), where (λ1, . . . , λN) ∈ Λ. Then under maximal
scheduling, the packet queue of every session-link will almost surely become empty infinitely often.
Furthermore, for every session-linkj and timet, E[Bj,t] < ∞.

The above result implies that almost surelylim supn→∞
Dj(n)−Aj(n)

n
= 0 ∀ j = 1, . . . , M . Thus, if the

arrival rate vector satisfies the condition in Lemma 14, and for each session link the limits of the departure
and the arrival rates exist almost surely, then almost surely limn→∞ DLi

(n)/n = λi ∀ i = 1, . . .N , and
the system is stable under maximal scheduling. But, there isno guarantee that these limits exist. Thus,
this is a weaker notion of stability than that in Definition 16. Whether the stronger notion of stability,
holds in this case or not, remains an open question.

VII. M AX -M IN FAIRNESS UNDERMAXIMAL SCHEDULING

We have so far characterized the throughput region for maximal schedulingΛMS under different system
assumptions. We now describe the issues involved when the arrival rate vector is not inΛMS. Then maximal
scheduling can not serve all sessions at their arrival rates, and therefore it is necessary to fairly allocate the
service rates or departure rates of sessions. We describe how to enhance maximal scheduling so as to ensure
maxmin fair allocation of rates in the feasible set for maximal scheduling. We also prove that the rate
vector attained by this enhancement is fairer than the reciprocal of the network interference degree times
the maxmin fair rate vector in the overall network feasible set. We first consider networks with single-hop
sessions (Subsection VII-A) and subsequently networks with multi-hop sessions (Subsection VII-B).

A. Single-hop Sessions

We assume that every session spans one link. Thus, the framework presented in Section II applies. We
introduce our fairness notions and additional assumptionsin Section VII-A.1, and subsequently describe
the enhancement used for attaining max-min fairness and theperformance guarantees in Section VII-A.2.

‡Each session-link therefore has only one queue for storing the packets waiting for transmission.
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1) Fairness notion and terminologies:We first present a lemma that is useful in describing the feasible
set under maximal scheduling.

Lemma 15:

ΛMS = {~λ = (λ1, . . . , λN) : if λi > 0,
∑

j∈Si∪{i}

λj ≤ 1, ∀ i = 1, . . . , N.} (7)

We can now describe thefeasible set∆MS of departure rate vectors~d = (d1, . . . , dN) under maximal
scheduling as follows:

if λi > 0,
∑

j∈Si∪{i}

dj ≤ 1, ∀ i = 1, . . . , N, (8)

(interference constraints)

di ≤ λi ∀ i = 1, . . . , N. (9)

The “interference constraints” (8) capture the interference relations and are analogous to constraints (7)
for the stability region. The constraints (9) follow since the departure rates can not exceed the arrival
rates.

Note that∆MS ⊆ ΛMS. When~λ ∈ ΛMS, the departure rate vector satisfiesdi = λi for eachi and hence
both (8) and (9) hold. When~λ 6∈ ΛMS, depending on the maximal scheduling policy used, the departure
rate vector can be any element of∆MS, and hence can be unfair for some sessions. For example, if
maximal scheduling provides absolute priority to a sessioni, andλi > 1, thendi = 1 and the departure
rates of sessions inSi are0. This motivates our goal of ensuring fairness using maximal scheduling.

We now define the notion of maxmin fairness that we seek to attain. For anyN-dimensional vectora,
let I(a) denote a non-decreasing ordering of the components ofa. Therefore, ifa = (a1, a2, . . . , aN) and
I(a) = (â1, â2, . . . , âN),then (â1, â2, . . . , âN ) is a permutation of(a1, a2, . . . , aN), satisfyingâ1 ≤ â2 ≤
. . . ≤ âN . A departure rate vector~d∗ is said to be maxmin fair if~d∗ ∈ ∆MS, and for any other departure
rate vector~d

′

∈ ∆MS, the first non-zero component inI(~d∗) − I(~d
′

) is positive. Intuitively, a departure
rate vector is maxmin fair if it is not possible to increase any of its components without decreasing any
other component of equal or lesser value [1]. Note that~d∗ ∈ ΛMS as ∆MS ⊆ ΛMS. Finally, if ~λ ∈ ΛMS,
then ~d∗ = ~λ.

Next, we present a condition that is both necessary and sufficient for any departure rate vector to be
maxmin fair. We first introduce the notion of a bottleneck constraint.

Definition 17: For any departure rate vector~d, an interference constraint is abottleneck constraintfor
a sessioni if (a) i is involved in the constraint, (b)di ≥ dk for all other sessionsk whose sessions are
associated with the constraint and (c) the inequality in theconstraint is an equality.

Lemma 16: A departure rate vector~d ∈ ∆MS is maxmin fair if and only if the following holds: for
every sessioni, either di = λi, or the session has a bottleneck constraint.

We omit the proof for the above lemma as the proof is similar tothat for the well-known bottleneck
condition for maxmin fairness in wireline networks [1].

Finally, although for notational simplicity we refer to~d∗ as the maxmin fair departure rate vector, it is
maxmin fair only in the feasible set of maximal scheduling∆MS. The feasible set for the network∆ is
the union of the feasible sets of all policies, and may be a strict superset of∆MS. Thus, the maxmin fair
departure rate vector in the network (~m∗), which we refer to as theglobally maxmin fair departure rate
vector, is the rate vector which is maxmin fair in∆. We now describe the relation between~d∗ and ~m∗.
We first describe the notion of “relative fairness” introduced in [12]. A departure rate vector~a is fairer
than another departure rate vector~b if the first non-zero component inI(~a) − I(~b) is positive. Note that
by this definition a departure rate vector is maxmin fair in any feasible set if it is fairer than any other
departure rate vector in the same feasible set. Now, since~m∗ ∈ ∆, ~m∗/K(N ) ∈ ∆MS. Thus, from the
definition of ~d∗, ~d∗ is either fairer than~m∗/K(N ) or ~d∗ = ~m∗/K(N ).
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We will consider a special case of the general arrival model presented in (1). Specifically, we will
consider thebounded-burstinessarrival model where (a)λi > 0 i = 1, . . . , N § and there exists a
burstiness vector~σ = (σ1, . . . , σN) such that

|Ai(t) − λit| ≤ σi ∀ t. (10)

2) Maxmin fair rate allocation algorithm:We propose a modular approach for attaining maxmin
fairness using maximal scheduling (Figure 7). The first module estimates the maxmin fair bandwidth share
of each session in each node in the session’s path, and releases packets for transmission in accordance
with these estimates. The second module schedules the transmission of the released packets so as to attain
the estimates. Note that the modules operate in parallel.

Fair bandwidth is estimated by a token generation process. The source node for each active sessioni
maintains a token bucket fori (Fig. 6(a)). The token bucket consists of a token-queue for each session in
Si ∪ {i}. Every token bucket generates tokens for all token-queues init. The token generation process is
so designed that each token-queue receives tokens at a rate that equals the maxmin fair departure rate of
the corresponding session (we shortly describe how this canbe done). Whenever a new token is generated
for a sessioni at the token bucket fori at i’s source,i’s source releases a new packet for transmission.
Thus, the packet release rates are maxmin fair and hence belong to ΛMS. Only the released packets are
eligible for transmission. Thus, maximal scheduling transmits the released packets at the rates at which
they are released. Hence, the rate allocations are maxmin fair.

We now describe the token generation process for each token-bucket. An sessioni is associated with
bi = |Si|+ 1 token-buckets, one for each of the sessions it interferes with, and itself. Let us denote these
token-buckets as1, . . . , bi. Each token-bucket samples all sessions in the bucket in a round robin order. Let
Ci,k(t) be the number of tokens generated for sessioni at bucketk in the interval(0, t]. Let token-bucket
k′ (1 < k′ < bi) associated withi be sampled in slott. Let k′ not be at the source ofi. Then,k′ generates
a token for sessioni in slot t if and only if Ci,k′(t) < W + min (Ci,k′−1(t), Ci,k′+1(t)) . Thus, i receives
a token at bucketk′ unless the number of tokens fori at k′ substantially exceeds that at the adjacent
buckets; this prohibitive difference is the window parameter, W. If k′ is at i’s source,k′ generates a token
to i in slot t if and only if the number of packets generated fori at i’s source in(0, t] exceedsCi,k′(t)
andCi,k′(t) < W + min (Ci,k′−1(t), Ci,k′+1(t)) . In slot t, k′ samples the next session in the bucket in a
round robin order if and only ifk′ does not generate a token fori. Note that token-bucket1 andbi have
only one adjacent token-bucket for sessioni, and thus decide whether to generate a token based on the
number of tokens at only one adjacent token-bucket. Tokens are never removed from a bucket.

We now explain why the token generation rate for each sessionat each token-bucket associated with
the session equals the session’s maxmin fair rate. For this explanation, we assume thatλi > 1 for each
i; all performance guarantees in this section however hold for arbitrary ~λ. Since λi > 1 for each i,
constraints (8) subsume constraints (9). Also, the number of packets generated fori at i’s source in(0, t]
exceeds the number of tokens generated in(0, t] at the bucket at its source for anyt ≥ σi. Thus, the token
generation process at a bucket fori at i’s source does not differ from that at a node that is noti’s source.

Note that each token-bucket corresponds to constraint (8) for somej ∈ {1, . . . , M}. Since the goal
is to allocate maxmin-fair rates, each constraint should try to allocate equal rates to all sessions in the
constraint. This motivates the round robin sampling of the sessions at each token-bucket. Again, all
constraints involving a session must offer the same rate to the session. This is attained by relating the
token generation process for a given session at a given token-bucket to that at the adjacent token-buckets
for the same session. The number of tokens for a session at twoadjacent buckets associated with the
session differ by at mostW at any timet, and the difference is at mostbiW for that at any two buckets
associated with the session. Thus, the rates of token generation for a session are nearly the same at any
two buckets associated with the session.

§This assumption requires that the arrival rate for each active session is positive. Note that if a sessioni is not active we do not need
to consider it at all. Thus, we assume that there areN active sessions denoted1, . . . , N. In this section, a session will always refer to an
active session, though for brevity we omit the adjective “active”.
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Procedure Token Generation (nodem)
begin

For all t and sessioni, let Ci,0(t) = Ci,bi+1(t) = ∞.

Let ANR
i (t) be the number of packets of sessioni at slot t that have been generated at its source but not been released.

Let Θi,k(t) = ANR
i (t) if the kth bucket of sessioni is at i’s source-node, andΘi,k(t) = ∞ otherwise.

Each bucket samples the sessions associated with it in roundrobin order.
When sessioni is sampled at itskth bucket in slott:
if Θi,k(t) > 0 andCi,k(t) < Ci,k+1(t) + W andCi,k(t) < Ci,k−1(t) + W , then

generate a token for sessioni at its kth bucket (Ci,k(t + 1) = Ci,k(t) + 1);
else

do not generate token for sessioni at its kth bucket (Ci,k(t + 1) = Ci,k(t)), and
sample the next session at thekth bucket in the round robin order.

end

Procedure Packet Release (sourcei)
begin

Release a new sessioni packet for transmission at sessioni source node when a token is generated for the session at the bucket at its source.

end

Procedure Packet Scheduling For Transmission
begin

Transmit the released packets using maximal scheduling.

end

Fig. 7. Pseudo code of the fair departure rate allocation algorithm when each session traverses one hop

Sinceλi > 1 for eachi, every session has a bottleneck constraint under the maxminfair rate allocation.
Now, the maxmin fair rate of a session is determined by the bandwidth offered by the bottleneck constraint
which offers the least bandwidth to the session. The bucket corresponding to the bottleneck constraint
of a session is denoted as thebottleneck bucketfor the session. Now, a session’s token generation rate
at any token-bucket equals that at its bottleneck bucket, which turns out to be the session’s maxmin fair
rate. If a session has a low maxmin fair rate, then its bottleneck constraint offers it a low rate, and it does
not receive tokens several times it is sampled at other buckets; other sessions with less severe constraints
receive these tokens. Thus, the following performance guarantee holds.

Lemma 17:Consider token-bucketk of sessioni. For the bounded-burstiness arrival model and arbitrary
~λ, there exists constants̺, W0, such that ifW ≥ W0, then for any interval(n1, n2], |

Ci,k(n2)−Ci,k(n1)

n2−n1
−d∗

i | ≤
̺

n2−n1
.

The token generation scheme here is based on the same design principle as that for an existing centralized
fair bandwidth allocation algorithm [13], [17]. However, the constraints characterizing the feasibility set
for maximal scheduling are significantly different from those characterizing the feasibility set in [13],
[17]; therefore, the scheme differs significantly in the twocases.

We now describe the packet scheduling policy. Whenever the source node of a sessioni generates a
new token fori at i’s token-bucket at the source (the one associated with sessions inSi∪{i}), i releases a
new packet. Only the sessions that have released packets waiting for transmission contend for scheduling,
and are scheduled as per maximal scheduling. When these sessions are scheduled, they transmit only
released packets.

Packets that contend for scheduling and are transmitted by maximal scheduling arrive as per the release
process. The release rate vector is maxmin fair (Lemma 17) and is therefore inΛMS. Maximal scheduling
therefore provides departure rates equal to the packet release rates. Thus, as the following result states,
a combination of token generation and maximal scheduling attains the maxmin fair departure rates for
every session.

Theorem 3:For the bounded-burstiness arrival model and arbitrary~λ, there exists a constantW0, such
that whenW ≥ W0, limn→∞ DLi

(n)/n = d∗
i , i = 1, . . . N.
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Procedure Token Generation (nodem)
begin

For session-linki, let l andm respectively be the previous and next session-links of the same session.
For each slott and session-linki,
if i is the first-session-link of its session,then

Ci,0(t) = ∞, Ci,bi+1(t) = Cm,0(t)
else

if i is the last session-link of its session,then
Ci,0(t) = Cl,bl+1(t), Ci,bi+1(t) = ∞

else
Ci,0(t) = Cl,bl

(t) andCi,bi+1(t) = Cm,0(t).

Let ANR
i (t) be the number of packets of session-linki at slot t that are in its waiting-queue.

Let Θi,k(t) = ANR
i (t) if the kth bucket of session-linki is at the source-node of session ofi, andΘi,k(t) = ∞ otherwise.

Each bucket samples the session-links associated with it inround robin order.
When session-linki is sampled at itskth bucket in slott:
if Θi,k(t) > 0 andCi,k(t) < Ci,k+1(t) + W andCi,k(t) < Ci,k−1(t) + W , then

generate a token for session-linki at its kth bucket (Ci,k(t + 1) = Ci,k(t) + 1);
else

do not generate token for sessioni at its kth bucket (Ci,k(t + 1) = Ci,k(t)), and
sample the next session-link at thekth bucket in the round robin order.

end

Procedure Queue Management (session-linki)
begin

When a new packet is generated for session-linki or a new packet arrives at the source of session-linki from a previous session-link, add the new-packet
in the waiting-queue for session-linki.
Transfer a session-linki packet from its waiting-queue to its release-queue at its source node when a token is generated for it at the bucket at its source.

end

Procedure Packet Scheduling For Transmission
begin

Transmit the packets in the release-queues of the session-links using maximal scheduling.

end

Fig. 8. Pseudo code of the fair departure rate allocation algorithm when sessions traverse multiple hops

B. Multi-hop Sessions

We next allow sessions to traverse multiple hops. Thus, the framework in Section VI-E applies. The
feasible set∆MS of departure rate vectors~d = (d1, . . . , dN) can be described by (9) and

if λq(j) > 0,
∑

k∈Sj∪{j}

dq(k) ≤ 1, ∀ j = 1, . . . , M. (11)

Using the above description for∆MS, the maxmin fair departure rate vector can now be defined as in
Section VII-A.

Definition 18: For any departure rate vector~d, an interference constraint is abottleneck constraintfor a
sessioni if (a) a session-linkj of i is involved in the constraint, (b)dq(j) ≥ dq(k) for all other session-links
k whose sessions are associated with the constraint and (c) the inequality in the constraint is an equality.
Again, with the above definition for a bottleneck constraint, Lemma 16 provides a necessary and sufficient
condition for a departure rate vector to be maxmin fair.

We now describe the modifications required in the algorithm presented in Figure 7 for attaining maxmin
fairness in this general case. We first describe the modifications in the token-generation procedure. Now,
session-links, rather than sessions, are associated with token-buckets, and the source of each session-link
j maintains the bucket consisting of session-links inSj ∪ {j}. Again, token-buckets sample session-links
rather than sessions. The token generation process for the session-links are now similar to that for single-
hop sessions. The main difference is that the token-generation process for a session-linkj at the first
(last) token-bucket ofj must also depend on the number of tokens generated at the last(first) token-
bucket for the previous (next) session-linkk of the same session (Fig. 6(a)). We now describe the packet
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scheduling policy. The source of each session-link maintains two packets queues: awaiting packet queue,
and areleasedpacket queue. On arrival, a packet is queued at the waiting packet queue. A packet is
forwarded from the waiting to the released queue when a new token is generated at the token-bucket for
the session-link at the session-link’s source. Only session-links with non-empty released queues contend
for scheduling. The rest of the scheduling remains the same as that for the case of single-hop sessions.
Refer to Figure 8 for a pseudo-code.

Both Lemma 17 and Theorem 1 hold; the term ‘session’ must now be replaced with ‘session-link’ in
the statement of Lemma 17.

We now make a few concluding remarks on our maxmin fair packetscheduling algorithm. Note that the
token-buckets associated with a session-linki need to know the number of tokens generated fori at other
token-buckets associated withi. Also note that a token bucket associated withi is either ati’s source or
at j’s source, wherej ∈ Si. Thus, a token bucket at the source of a session-linkk need only know the
number of tokens generated at a token-bucket at the source ofa session-linkl if and only if bothk and
l interfere with each other or with a common session-link. Since only session-links in close proximity
interfere with each other in a wireless network, the token-generation process requires communication
among nodes in proximity as well. Finally, the analytical guarantees hold even when nodes know the
number of tokens generated at other nodes after some delay, as long as the delay is upper-bounded by a
constant.

VIII. D ISCUSSION ANDCONCLUSION

In this paper, we have addressed the long-standing open question of attaining throughput guarantees
with distributed scheduling in wireless networks. We have studied the performance of a simple distributed
scheduling policy, maximal scheduling, which had earlier been investigated in context of node-exclusive
spectrum sharing model and input-queued switches. We have obtained tight performance guarantees
for maximal scheduling under arbitrary interference models and topologies, and have characterized the
throughput region attained by maximal scheduling in terms of the interference degree of the network. The
characterizations demonstrate that the performance bounds depend heavily on the nature of communication
and interference models. We prove that maximal scheduling is guaranteed to attain a constant fraction
of the maximum throughput region for certain communicationand interference models, while it is also
guaranteed to not attain a constant fraction in the worst case for some other models. Our results can be
generalized to networks with multicast communication, arbitrary number of frequencies and end-to-end
sessions. Finally, we enhance maximal scheduling to guarantee fairness of rate allocation.

Concurrently¶ with our work, Wuet. al. have obtained bounds for the throughput region of maximal
scheduling [19]. Specifically, they proved that in the bidirectional and unidirectional interference models,
maximal scheduling is guaranteed to attain at least1/NE of the maximum throughput region, where1/NE

is the maximum number of links interfering with a given link.They also proved that in the bidirectional
interference model there exists an arrival rate vector and anetwork such that maximal scheduling will
attain at most2/NE of the maximum throughput region. The upper bound is clearlyinteresting when
NE > 2. Note that for any networkN , K(N ) ≤ NE , and in several casesK(N ) << NE . Thus, the lower
bound we obtained in Theorem 1 is tighter than that obtained by Wu et. al. [19]. Similarly, given aNE ,
one can construct a network with the sameNE andK(N ) = NE − 1, and whenNE ≤ 2, NE − 1 > NE/2.
Thus, again the upper bound we obtained in Theorem 2 is tighter than that obtained by Wuet. al. [19].
Nevertheless, the proof techniques used by Wuet. al. [19] are certainly illuminating, and may be useful
in chracaterizing the delay under maximal scheduling.

The class of maximal scheduling policies is quite broad, andour performance bounds apply to all
policies in this class. However, it remains to be seen whether certain policies in this class can attain better
performance bounds, while still being amenable to low-complexity distributed implementation. Similar

¶Our major results were presented at Allerton conference, September28 − 30, 2005, and Wiopt conference, April,3 − 7, 2006. Wu et.
al. [19] reported their results at INFOCOM conference, April,23 − 29, 2006.
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questions remain open for distributed scheduling policiesoutside this class as well. Recently, Sharma
et. al. [6] have lower bounded the complexity of policies that attain the maximum stability region, or
approximate the maximum stability region within constant factor, in arbitrary topologies. These results
may help answer some of the above open questions.
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APPENDIX

PROOFS OF ANALYTICAL RESULTS INSECTION V (THEOREMS 1 AND 2 AND LEMMAS 5 AND 6)

Appendix A: Proof of Theorem 1

We prove Theorem 1 using the following supporting lemmas.
Lemma 18:Let ~λ ∈ Λ. Then,

∑
j∈Si∪{i}

λj ≤ K(N ).

Lemma 19:Let ~λ ∈ {~λ : if λi > 0,
∑

j∈Si∪{i}
λj ≤ 1, i = 1, . . . , N}. Then~λ ∈ ΛMS.

Theorem 1 follows from Lemmas 18 and 19.
We now prove Lemmas 18 and 19.
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Appendix A.1: Proof of Lemma 18:
We prove Lemma 18 using a supporting lemma, Lemma 20, which westate and prove first. Lemma 20

is stated and proved for sessions with arbitrary number of hops.
Lemma 20: If~λ ∈ Λ, then (a) for each session-linkj, j = 1, 2, . . . , M,

∑
j∈Sk∪{k}

λq(j)/β̃q(j)(N ) ≤ 1,
and (b) if each session spans one hop, for each sessioni, i = 1, . . . , N,

∑
i∈Sj∪{j}

λi/βi(N ) ≤ 1.
Proof: We first prove (a). Let there exists a session-linki such that

∑

j∈Si∪{i}

λq(j)

β̃q(j)(N )
> 1.

We will show that~λ 6∈ Λ.

Now, sinceβj ≤ β̃q(j),
∑

j∈Si∪{i}

λq(j)

βj(N )
> 1.

Now, note thatKi(N ) ≤ βj(N ) for every session-linkj ∈ Si∪{i}. This is because ifj ∈ Si, theni ∈ Sj.
Thus,

∑

j∈Si∪{i}

λq(j)

Ki(N )
> 1.

⇒
∑

j∈Si∪{i}

λq(j) > Ki(N ). (12)

Now consider an arbitrary scheduling policyπ. Underπ,
∑

j∈Si∪{i}
Dj(n) ≤ nKi(N ) for everyn ≥ 0

as at mostKi(N ) nodes amongSi ∪ {i} can be scheduled concurrently.

Thus, lim inf
n→∞

∑

j∈Si∪{i}

Dj(n)

n
≤ Ki(N )

⇒
∑

j∈Si∪{i}

lim inf
n→∞

Dj(n)

n
≤ Ki(N )

<
∑

j∈Si∪{i}

λq(j) (from (12)).

⇒ lim inf
n→∞

Dj(n)

n
< λq(j) for somej ∈ Si ∪ {i}

⇒ lim inf
n→∞

DLj
(n)

n
< λq(j).

The last inequality follows sinceDLj
(n) ≤ Dj(n) for all j, n. Thus, if limn→∞

DLj
(n)

n
exists, then its

value is less thanλq(j). Thus, the network is not stable underπ. Alternatively, if the limit does not exist,
then also the network is not stable underπ. Thus,~λ 6∈ Λ. The result follows.

When each session spans one link, sessions and session-links are identical,M = N, q(j) = j,
β̃q(j)(N ) = βj(N ). Thus, (b) follows from (a).

Lemma 18 follows from part (b) of Lemma 20 sinceK(N ) ≥ βi(N ) for all i.
Appendix A.2: Proof of Lemma 19:
Recall thatQi(n) denotes the queue length of sessioni in the beginning of thenth slot. Then, for any

scheduling policy,

Qi(n + 1) = Qi(0) + Ai(n) − Di(n) ∀n ≥ 1 and i = 1, . . . , N. (13)

We first define fluid limits. The definitions are similar to those used by Daiet. al. [4].
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Appendix A.2.a: Definition of Fluid Limits:We denote byN andR the set of non-negative integers
and reals respectively. For a random process{f(t)}t≥0, we denote its value at timet along a sample path
ω by f(t, ω).

Note that the domain of the functionsA(·), D(·) and Q(·) is N. Now, we define these functions for
arbitrary t ∈ R by using a piecewise linear interpolation. The piecewise linear interpolation of a function
f : N → R is defined as follows. Fort ∈ (n, n + 1]

f(t) = f(n) + (t − n) (f(n + 1) − f(n)) .

Note thatf(t) defined as above is a continuous function.
Consider any scheduling policy. From any senderi, at most one packet can be served in a slot. Also,

the maximum number of packets arriving in a slot ati is bounded byαmax. Thus, for everyi, ω, t ≥ 0
andδ > 0

Ai(t + δ, ω) − Ai(t, ω) ≤ δαmax, (14)

Di(t + δ, ω) − Di(t, ω) ≤ δ, (15)

Qi(t + δ, ω) − Qi(t, ω) ≤ δαmax. (16)

Now, let us define a family of functions for any given functionf(·) as follows.

f r(t, ω)
def
=

f(rt, ω)

r
for every r > 0.

It follows from (14), (15) and (16), that for everyr > 0,

Ar
i (t + δ, ω) − Ar

i (t, ω) ≤ δαmax, (17)

Dr
i (t + δ, ω) − Dr

i (t, ω) ≤ δ, (18)

Qr
i (t + δ, ω) − Qr

i (t, ω) ≤ δαmax. (19)

Thus, all the above functions are Lipschitz continuous, andhence uniformly continuous on any compact
interval. Clearly, the above functions are also bounded on any compact interval. Fix a compact interval
[0, t]. Now, consider any sequencern such thatrn → ∞ as n → ∞. Then, by Arzela-Ascoli Theorem
[10], there exists a subsequencernk

and continuous functionsAi(·), Di(·) andQi(·) such that for every
i, ω,

lim
k→∞

sup
bt∈[0,t]

∣∣Arnk

i (t̂, ω) − Ai(t̂, ω)
∣∣ = 0, (20)

lim
k→∞

sup
bt∈[0,t]

∣∣Drnk

i (t̂, ω) − Di(t̂, ω)
∣∣ = 0, (21)

lim
k→∞

sup
bt∈[0,t]

∣∣Qrnk

i (t̂, ω) − Qi(t̂, ω)
∣∣ = 0. (22)

We now define fluid limits.
Definition 19: Any (Ai, Di, Qi) is called a fluid limit forN if there existsrnk

such that all the relations
(20) to (22) are satisfied.

Now, we state some important properties of the fluid limits which we use to prove Lemma 19.
Lemma 21:Every fluid limit satisfies,Ai(t) = λit w.p. 1 for every sessioni and t ≥ 0.
Lemma 22:Any fluid limit (Ai, Di, Qi) for N satisfies the following equality for everyi and t ≥ 0

with probability (w.p.) 1:
Qi(t) = Qi(0) + λit − Di(t). (23)

Lemma 23:Let Qi(0) = 0 for everyi. Also, let
∑

j∈Si∪{i}
λj ≤ 1 if λi > 0, i = 1, . . . , N. Then, under

maximal scheduling, every fluid limit satisfies,Qi(t) = 0 for every t ≥ 0 w.p. 1 for everyi.
The proofs of Lemmas 21, 22, 23 are provided later, after the proof Lemma 19. We now prove

Lemma 19.
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Proof: First, we show thatlimr→∞ Dr
i (t) = λit w.p. 1 for everyt. Then, the result follows by

choosingt = 1.
Under maximal scheduling, ifQi(0) = 0 and

∑
j∈Si∪{i}

λi ≤ 1 for every i for which λi > 0, then
Qi(t) = 0 w.p. 1 for everyi and t ≥ 0 (Lemma 23). Thus, by Lemma 22,Di(t) = λit w.p. 1 for
every t ≥ 0. SinceDi(·) is a fluid limit, there exists a subsequencernk

such thatlimk→∞ rnk
= ∞ and

limk→∞ D
rnk

i (t) = Di(t) = λit w.p. 1 (Section A.2.a). Thus,lim infr→∞ Dr
i (t) ≤ λit w.p. 1. Now, we

argue thatlim infr→∞ Dr
i (t) = λit w.p. 1.

Suppose,lim infr→∞ Dr
i (t) < λit w.p. 1. Then, there exists a subsequencer̂nk

such thatlimk→∞ r̂nk
=

∞ and limk→∞ D
brnk

i (t) = λit − ǫ w.p. 1 for someǫ > 0. Now, note that

Qbrnk (t) = Qbrnk (0) + Abrnk (t) − Dbrnk (t) (from (13)).

Now, by taking limit ask → ∞ on both sides of the above equation we obtain

Q
1

i (t) = Q
1

i (0) + λit − D
1

i (t) w.p. 1 (from Lemma 21)

= ǫ, (sinceD
1

i (t) = limk→∞ D
brnk

i (t) = λit − ǫ).

Since,Q
1

i (t) is also a fluid limit under maximal scheduling, the above equation contradicts Lemma 23.
Thus,

lim inf
r→∞

Dr
i (t) = λit w.p. 1.

Now, for everyr > 0, Dr
i (t) ≤ Ar

i (t) as the number of departures fromi can at most be equal to the
arrivals for i till time rt. Thus, clearly,

lim sup
r→∞

Dr
i (t) ≤ λit w.p. 1.

This shows that
lim
r→∞

Dr
i (t) = λit w.p. 1.

Now, selectt = 1, and consider subsequencern such thatrn = n. Here, for everyi

lim
n→∞

Drn

i (1) = λi w.p. 1

lim
n→∞

Di(n)

n
= λi w.p. 1.

We now prove the supporting lemmas used to prove Lemma 19.
Appendix A.2.b: Proof of Lemma 21:
Proof: SinceAi(t) is a fluid limit, by Definition 19, there exists a sequencernk

such thatlimk→∞ rnk
=

∞ and

Ai(t) = lim
k→∞

A
rnk

i (t) (from (20))

= lim
k→∞

Ai(rnk
t)

rnk

= lim
k→∞

Ai(rnk
t)

rnk
t

t

= λit w.p. 1 (sinceAi(·) satisfy SLLN).

The result follows.
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Appendix A.2.c: Proof of Lemma 22:
Proof: SinceQi(·), Ai(·) andDi(·) are fluid limits, there exists a sequencernk

such thatlimk→∞rnk
=

∞ and they are obtained as a uniform limits of functionsQ
rnk

i (·), A
rnk

i (·) andD
rnk

i (·) respectively. Now,
from (13) it follows that for everyrnk

and t ≥ 0,

Q
rnk

i (t) = Q
rnk

i (0) + A
rnk

i (t) − D
rnk

i (t).

The result follows from Lemma 21 after taking the limitk → ∞ on both sides of the above equality.
Appendix A.2.d: Proof of Lemma 23:
Proof: We prove the required by contradiction. LetQi(t) 6= 0 for every t and i. Then, there exists a

sessioni, t̂, y1 > 0 andx1 > 0 such that
∑

j∈Si∪{i}

Qj(t̂) = y1, (24)

∑

j∈Si∪{i}

Qj(t) < y1 for every t ∈ [0, t̂), (25)

Qi(t̂) = x1. (26)

We justify (24) to (26) by constructingx1, y1, t̂ that satisfy (24) to (26). Lett′ = inf{t : t ≥ 0, maxk Q̄k(t) >
0}. SinceQ̄k(t) 6= 0 for somet and somek, t′ is well-defined. From the definition oft′ there exists ani such
that t′ = inf{t : t ≥ 0, Q̄i(t) > 0}. From the continuity ofQ̄k(t) for all t, k, the definition oft′, and since
Q̄k(0) = 0 for all k, Q̄k(t1) = 0 for all t1 ≤ t′ andk. From the continuity ofQ̄i(t) for all t, there exists
an ǫ > 0 s.t.

∑
j∈Si∪{i}

Q̄j(t) ≥ Q̄i(t) > 0 for all t ∈ (t′, t′ + ǫ]. Let y1 = maxt:t∈[0,t′+ǫ]

∑
j∈Si∪{i}

Q̄j(t).

Let t̂ be the first time at which
∑

j∈Si∪{i}
Q̄j(t) = y1. Now, t̂ ∈ (t′, t′ + ǫ], sinceQ̄k(t1) = 0 for all k and

all t1 ≤ t′, and
∑

j∈Si∪{i}
Q̄j(t) ≥ Q̄i(t) > 0 for all t ∈ (t′, t′ + ǫ]. Let x1 = Q̄i(t̂). Clearly,x1 > 0.

Let λi ≤ 0. From Lemma 22, sincēQi(0) = 0, Q̄i(t̂) ≤ −D̄i(t̂). SinceD̄i(.) is the fluid limit of Di(.),
and Di(t) ≥ 0 at all t, D̄i(t̂) ≥ 0. Thus, x1 ≤ 0, which is a contradiction. Thus,λi > 0, and hence,∑

j∈Si∪{i}
λj ≤ 1.

Clearly, x1 ≤ y1 asQj(·) ≥ 0 for every j. SinceQi(·) is a continuous function, there existst′ ∈ [0, t̂)
such that

Qi(t) ≥
x1

2
for every t ∈ [t′, t̂]. (27)

Now, sinceQj(·) is a fluid limit, by Definition 19, there exists a sequencernk
such thatlimk→∞ rnk

= ∞
and limk→∞ Q

rnk

j (t) = Qj(t) for every j and t in an interval[0, t̂]. Thus, we can draw two conclusions.
First, for sufficiently largernk

, Q
rnk

i (t) > x1/4 for every t ∈ [t′, t̂]. Thus, Qi(rnk
t) > rnk

x1/4. This
implies that for everyrnk

> 4/x1,

Qi(rnk
t) > 1 for every t ∈ [t′, t̂]. (28)

The second conclusion is that for every sufficiently largernk
, there existsǫ > 0 such that

∑

j∈Si∪{i}

Q
rnk

j (t̂) −
∑

j∈Si∪{i}

Q
rnk

j (t′) > ǫ,

⇒ lim
k→∞




∑

j∈Si∪{i}

Q
rnk

j (t̂) −
∑

j∈Si∪{i}

Q
rnk

j (t′)



 ≥ ǫ. (29)
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Relation (29) follows from (24), (25),t′ < t̂ and the definition of fluid limits. Selectrnk
large enough

such that (28) holds. For all suchrnk
,

∑

j∈Si∪{i}

Q
rnk

j (t̂) −
∑

j∈Si∪{i}

Q
rnk

j (t′)

=
∑

j∈Si∪{i}

[
A

rnk

j (t̂) − A
rnk

j (t′)
]
−




∑

j∈Si∪{i}

D
rnk

j (t̂) −
∑

j∈Si∪{i}

D
rnk

j (t′)



 (from (13)). (30)

Since maximal scheduling is used and (28) holds, at least onepacket from some session inSi∪{i} departs
in every slot. Thus,

∑
j∈Si∪{i}

D
rnk

j (t̂) −
∑

j∈Si∪{i}
D

rnk

j (t′) ≥ (t̂ − t′). Now, from (30),
∑

j∈Si∪{i}

Q
rnk

j (t̂) −
∑

j∈Si∪{i}

Q
rnk

j (t′) ≤
∑

j∈Si∪{i}

[
A

rnk

j (t̂) − A
rnk

j (t′)
]
− (t̂ − t′)

⇒ lim
k→∞




∑

j∈Si∪{i}

Q
rnk

j (t̂) −
∑

j∈Si∪{i}

Q
rnk

j (t′)



 ≤ lim
k→∞

∑

j∈Si∪{i}

[
A

rnk

j (t̂) − A
rnk

j (t′)
]
− (t̂ − t′)

=




∑

j∈Si∪{i}

λj − 1



 (t̂ − t′) w.p. 1 (from Lemma 21)

≤ 0. (31)

Note that (31) contradicts (29). Thus, the result follows.

Appendix B: Proof of Theorem 2

Proof: Consider an arbitrary networkN with interference degreeK(N ). By Definition 13, there
existsi such that the interference degree of sessioni is K(N ). Consider sessionsj1, . . . , jK(N ) ∈ Si such
that they are pair-wise non-interfering. Now, consider thefollowing arrival rate vector~λ: λj = Z/K(N )
if j ∈ {j1, . . . , jK(N )}, andλj = (K(N )−Z)/K(N ) if j = i, andλj = 0 otherwise. Thus, effectively the
network consists only of sessionsi and j1, . . . , jK(N ). Note that since1 ≤ Z < K(N ), λj > 0 for every
j ∈ {i, j1, . . . , jK(N )}. Now, consider a scheduling policyπ that schedulesi w.p. (K(N ) − Z)/K(N )

and sessionsj1, . . . , jK(N ) concurrently in the remaining slots. Clearly,π is rate stable. Thus,~λ ∈ Λ.
Now, consider arrival rate vector~λ/Z and the following arrival pattern. A packet corresponding to

sessionju arrives in slotst if u = t mod K(N ) + 1, where “mod” is the modulo operator. In every
slot a packet arrives w.p.(K(N ) − Z)/K(N ). Clearly, the arrivals are in accordance with~λ/Z. Let
maximal scheduling schedulei only when none of the sessions inSi have a packet to transmit. Note
that under maximal scheduling and the described arrival pattern, ju is scheduled in slott such that
u = t mod K(N ) + 1, and thusi is never scheduled. Sinceλi/Z > 0, i is not stable. Thus,~λ/Z 6∈ ΛMS.

Appendix C: Proof of Lemma 5

Proof: Consider a networkN that has bidirectional communication and underlying topology G =
(V, E). Select a sessioni from u to v. Since we are considering bidirectional communication,(u, v) ∈ E
and (v, u) ∈ E. Note that at most one session along every link fromu andv, and every link tou andv
can be scheduled concurrently in the interference region ofi without interfering with each other. Letd(u,v)
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denote the degree of link(u, v). Now, i’s interference degreeki(N ) satisfies the following inequality.

ki(N ) ≤
∑

j∈V
j 6=v

[
1{(j,u)∈E} + 1{(u,j)∈E}

]
+
∑

j∈V
j 6=u

[
1{(j,v)∈E} + 1{(v,j)∈E}

]

=
∑

j∈V

[
1{(j,u)∈E} + 1{(u,j)∈E}

]
+
∑

j∈V

[
1{(j,v)∈E} + 1{(v,j)∈E}

]
− 4

= d(u,v) − 4

⇒ max
i

{ki(N )} ≤ max
(u,v)∈E

{d(u,v)} − 4

⇒ K(N ) ≤ δG − 4. (32)

Now, Fig. 5(a) shows an example of a network that achieves theequality in (32).

Appendix D: Proof of Lemma 6

Proof: Consider a networkN and with unidirectional communication on underlying topology G =
(V, E). Fix a sessioni from u to v. Since we are considering unidirectional communication,(u, v) ∈ E.
Let d̂(u,v) denote the directional degree of link(u, v). Now, i’s interference degreeki(N ) satisfies the
following inequality.

ki(N ) ≤
∑

j∈V

j 6=v

1{(u,j)∈E} +
∑

j∈V

j 6=u

1{(j,v)∈E}

=
∑

j∈V

1{(u,j)∈E} +
∑

j∈V

1{(j,v)∈E} − 2

= d̂(u,v) − 2

⇒ max
i

{ki(N )} ≤ max
(u,v)∈E

{d̂(u,v)} − 2

⇒ K(N ) ≤ ∆G − 2. (33)

Now, Fig. 5(b) shows an example of a network that achieves theequality in (33).

PROOFS OF ANALYTICAL RESULTS INSECTION IV (L EMMAS 1, 2, 3AND 4)

Appendix E: Proof of Lemma 1

We prove Lemma 1 by considering an arbitrary session(S0, T0, R0) and showing thatK0, the maximum
number of sessions that interfere withS0 but do not interfere with each other, must satisfyK0 ≤ 8. Thus,
Lemma 1 follows from Theorem 1.

We assume that the nodes are deployed on a two-dimensional Euclidean plane. Let the distance between
the transmitting nodeT0 and receiving nodeR0 beρ ≤ r, wherer is the transmission range of any node.

Without loss of generality let us assume that the line joining T0 and R0 is aligned along the x-axis.
Let DT0 andDR0 represent disks of radiusr aroundT0 andR0, respectively. Then the interference area
of sessionS0 is DT0 ∪ DR0 .

In the following, a node is said to be thetransceiver nodeof a session if it is either the transmitting
node or the receiving node of that session; thus each sessionhas two transceiver nodes. Note that if a
session interferes withS0, at least one of its transceiver nodes must lie inDT0 ∪ DR0 . Now for each of
the sessions that interfere withS0 but do not interfere with each other, choose any one transceiver node
of that session that lies inDT0 ∪DR0 ; let U0 denote the set of the transceiver nodes thus chosen. We will
showK0 ≤ 8 by showingU0 = |U0| ≤ 8.

The proof ofK0 ≤ 8 is quite involved; therefore, we will first show thatK0 ≤ 9, the proof of which
is considerably simpler. We will then extend our arguments to show thatK0 ≤ 8.
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Lemma 24:Let W1, W2 ∈ U0. If W1, W2 ∈ DT0 (W1, W2 ∈ DR0), and none of them coincide withT0

(R0), then the line segment joiningW1 andW2 subtends an angle greater thanπ
3

at T0 (R0).
Proof: We only consider the case ofW1, W2 ∈ DT0 (the W1, W2 ∈ DR0 case is similar). Let|w1w2|

denote the length of the line segment joiningw1 and w2, for any two pointsw1, w2. Refer to Fig. 9.
SinceW1, W2 ∈ DT0 , we have|W1T0| ≤ r, |W2T0| ≤ r. Also, since sessions of transceiver nodesW1 and
W2 do not interfere with each other, we have|W1W2| > r. Thus, in triangleW1W2T0, W1W2 is longer
than each of the other sides, and its opposite angle∠W1T0W2 must be greater thanπ

3
, from elementary

geometry.

Fig. 11 shows the areaDT0∪DR0 . Note that|T0R0| = ρ ≤ r. Let A1 (A2) be a point on the circumference
of DT0 (DR0), such that∠A1T0R0

π
3

(∠A2R0T0
π
3
). Similarly, letB1 (B2) be a point on the circumference

of DT0 (DR0), such that∠B1T0R0
π
3

(∠B2R0T0
π
3
). Let line segmentsT0A1 andR0A2 intersect atA, and

line segmentsT0B1 andR0B2 intersect atB.
Recall thatT0R0 is aligned along the x-axis. Let pointsC, D, E be points on the circumference ofDT0

such thatCT0, DT0 andET0 subtend angles of2π
3

, π and 4π
3

with the x-axis, respectively. Also, let points
F, G, H be points on the circumference ofDR0 such thatFR0, GR0 and HR0 subtend angles ofπ

3
, 0

and 5π
3

with the x-axis, respectively. LetP1 (P2) denote the points at which the lineT0R0 extended (R0T0

extended) intersects the circumference ofDT0 (DR0). Thus, line segmentsA1T0, CT0, DT0, ET0, B1T0

andP1T0 divide DT0 into six π
3

sectors. Similarly, line segmentsA2R0, FR0, GR0, HR0, B2R0 andP2R0

divide DR0 into six π
3

sectors. From Lemma 24, it follows that each of these sectorscan contain at most
one node inU0.

Lemma 25:The number of nodes inU0 that lie in DT0 (DR0) can be no greater than 5.
Proof: We only consider the case ofDT0 (the case ofDR0 is similar). Let Û denote the number of

nodes inU0 that lie in DT0. SinceDT0 is contained in sixπ
3

sectors,Û ≤ 6.
For the sake of contradiction let us assume thatÛ = 6, and letWi, i = 1, . . . , 6 denote the six nodes in

U0 that lie inDT0 , as shown in Fig. 10. Note that none of these nodes can lie at the center ofDT0, i.e., atT0.
Then, from Lemma 24, the angle subtended atT0 by each of the line segmentsWiWj , j = (i+1) mod 6,
is greater thanπ

3
. Since the total angle subtended atT0 cannot exceed2π, we have a contradiction, thereby

proving the lemma.

From Fig. 11, note thatDR0 \DT0 is contained in fourπ
3

sectors. Therefore, at most 4 nodes inU0 can
lie in DR0 \ DT0 . Since at most 5 nodes inU0 can lie inDT0 , we have the following result:

Corollary 1: U0, the number of nodes inU0 can be no greater than 9.
The above result implies thatK0 ≤ 9. Now we proceed to tighten this upper bound by showingK0 ≤ 8.
Now let us assume, for the sake of contradiction, thatK0 = 9; this impliesU0 = 9.
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Corollary 2: If U0 = 9, then the number of nodes inU0 that lie inDT0 \DR0 , DT0∩DR0 , andDR0 \DT0

are 4, 1 and 4, respectively.
Proof: Let U1, U2 andU3 respectively denote the nodes inU0 that lie in DT0 \DR0 , DT0 ∩DR0, and

DR0 \ DT0 . Then,U1 + U2 + U3 = 9. Without loss of generality, assumeU1 ≥ U3.
We first argue thatU2 6= 0. Note that ifU2 = 0, thenU1+U3 = 9, implying U1 ≥ 5, which is impossible

sinceDT0 \ DR0 is contained in fourπ
3

sectors. This implies thatU2 > 0.
Now we argue thatU2 ≤ 1. Let us assume, for the sake of contradiction, thatU2 ≥ 2. Then,U1 +U3 =

9 − U2 ≤ 7. ThusU3 ≤ 3. Therefore,U1 + U2 = 9 − U3 ≥ 6, which is impossible (from Lemma 25).
Therefore,U2 ≤ 1. SinceU2 > 0 (as shown previously), we haveU2 = 1.

Therefore,U1 +U3 = 8. SinceU1 ≤ 4, U3 ≤ 4 (each ofDT0 \DR0 andDR0 \DT0 are contained in four
π
3

sectors), we must haveU1 = U3 = 4.

From the above lemma, we see that ifK0 = 9, thenDT0 \ DR0 and DR0 \ DT0 must each contain 4
nodes inU0. For the sake of contradiction, let us assume that this is true. Note that none of these 8 nodes
can lie at the centers of the two disks, i.e., atT0 or R0. Also, exactly one of these 8 points must lie in each
of the π

3
sectors ofDT0 \DR0 andDR0 \DT0. Let X1, X2, X3 andX4 respectively denote the nodes inU0

that lie in sectorsA1T0C, CT0D, DT0E andET0B1. Let Y1, Y2, Y3 andY4 respectively denote the nodes in
U0 that lie in sectorsA2R0F, FR0G, GR0H andHR0B2. JoinX1, X2, X3, X4 with T0, andY1, Y2, Y3, Y4

with R0 (refer to Fig. 11). Now, construct the octagon by joiningX1X2, X2X3, X3X4, Y1Y2, Y2Y3, Y3Y4,
andX1Y1, X4Y4. Note that the length of each side of this octagon must be greater thanr. Let line segment
X1Y1 intersect line segmentsT0A andR0A (possibly extended) at pointsI1 andI2, respectively. Let line
segmentX4Y4 intersect line segmentsT0B andR0B (possibly extended) at pointsJ1 andJ2, respectively.

Note that the angle subtended atT0 by I1X1X2X3X4J1 (which is a collection of the line segments
I1X1, X1X2, . . . , X4J1), is equal to4π

3
. Similarly, the angle subtended atR0 by I2Y1Y2Y3Y4J2 (which is a

collection of the line segmentsI2Y1, Y1Y2, . . . , Y4J2), is equal to4π
3

. In the following, we show however
that the angle subtended atT0 by I1X1X2X3X4J1 plus the angle subtended atR0 by I2Y1Y2Y3Y4J2 must
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be greater than8π
3

, thus arriving at a contradiction.
We will show that the angle subtended byX2X1I1 at T0 plus the angle subtended byI2Y1Y2 at R0 is

greater thanπ. Without loss of generality, assume thatX1 has a higher y-coordinate thanY1 (recall that
T0R0 is aligned along the x-axis). As shown in Fig. 11, chooseX

′

1 such thatX1T0R0X
′

1 is a parallelogram.
Join X

′

1 with Y1 andY2. Note,∠X1T0I1 + ∠I2R0X
′

1 = π − ∠I1T0R0 − ∠I2R0T0 = π − π
3
− π

3
= π

3
.

We consider the following two cases separately: (i)Y1 lies within parallelogramX1T0R0X
′

1, and (ii)
Y1 lies outside parallelogramX1T0R0X

′

1. Let us consider case (i) first (Fig. 11 shows this case). In this
case, we claim that∠X

′

1R0Y2 > π
3
. To see this, chooseY

′

1 such thatX1Y1Y
′

1X
′

1 is a parallelogram. Join
Y

′

1 with R0 andY2. Note, |X
′

1Y
′

1 | = |X1Y1| > r. Note thatY2 must lie “below” Y1Y
′

1 , since it is easy to
see that there is no point in sectorFR0G that is “above”Y1Y

′

1 and whose distance fromY1 is greater
thanr.

Note that|Y1Y
′

1 | = |X1X
′

1| = |T0R0| = ρ (by construction). Therefore, it is easy to see thatY
′

1 must lie
outsideDR0 . Thus, line segmentX

′

1Y2 must intersect line segmentY1Y
′

1 . In triangleY1Y2Y
′

1 , |Y1Y2| > r and
|Y1Y

′

1 | = ρ ≤ r. Therefore,∠Y1Y
′

1Y2 > ∠Y1Y2Y
′

1 . Thus,∠X
′

1Y
′

1Y2 ≥ Y1Y
′

1Y2 > ∠Y1Y2Y
′

1 ≥ ∠X
′

1Y2Y
′

1 .
Thus, comparing angles in triangleX

′

1Y2Y
′

1 , we get|X
′

1Y2| > |X
′

1Y
′

1 | > r.
Note that sinceX1 lies in sectorCT0A1, it follows that X

′

1 must lie in sectorA2R0F . Therefore,X
′

1

lies in DR0. In triangleX
′

1R0Y2, therefore, we have|X
′

1R0| ≤ r, |Y2R0| ≤ r, and |X
′

1Y2| > r. Therefore,
∠X

′

1R0Y2 > π
3
.

Thus, ifY1 lies in the parallelogramX1T0R0X
′

1, we have∠X1T0I1+∠I2R0X
′

1+∠X
′

1R0Y2 > π
3
+π

3
= 2π

3
.

Moreover, since∠I2R0X
′

1+∠X
′

1R0Y2 = ∠I2R0Y1+∠Y1R0Y2, we have∠X1T0I1+∠I2R0Y1+∠Y1R0Y2 >
2π
3

. From Lemma 24,∠X2T0X1 > π
3
. Therefore,∠X2T0X1 + ∠X1T0I1 + ∠I2R0Y1 + ∠Y1R0Y2 > π. In

other words, the angle subtended byX2X1I1 at T0 plus the angle subtended byI2Y1Y2 at R0 is greater
thanπ.

Now let us consider the case whereY1 does not lie inside parallelogramX1T0R0X
′

1. SinceY1 has a
lower y-coordinate thanX1, it follows that Y1 must lie below the lineX1X

′

1. Thus Y1 must lie to the
“right” of line R0X

′

1. Thus,∠X1T0I1 + ∠I2R0Y1 > ∠X1T0I1 + I2R0X
′

1 = π
3
. From Lemma 24, we get

∠X2T0X1 > π
3
, ∠Y1R0Y2 > π

3
. Therefore, we obtain∠X2T0X1 + ∠X1T0I1 + ∠I2R0Y1 + ∠Y1R0Y2 > π,

implying that the angle subtended byX2X1I1 at T0 plus the angle subtended byI2Y1Y2 at R0 is greater
thanπ.

Using similar arguments as above, it follows that the angle subtended byX3X4J1 at T0 plus the angle
subtended byJ2Y4Y3 is greater thanπ. From Lemma 24, we obtain∠X2T0X3 ≥ π

3
, ∠Y2R0Y3 ≥ π

3
.

Combining all of the above results, we see that the angle subtended atT0 by I1X1X2X3X4J1 plus the
angle subtended atR0 by I2Y1Y2Y3Y4J2 must be greater thanπ + π + π

3
+ π

3
= 8π

3
. Thus we arrive at a

contradiction showing that our assumption thatK0 = 9 was incorrect. ThereforeK0 ≤ 8.

Appendix F: Proof of Lemma 2

Proof: Figure 2(a) shows a networkN with bidirectional equal power model such thatK(N ) = 8.
Thus, the lemma follows immediately from Theorem 2.

Appendix G: Proof of Lemma 3

Proof: Consider any constantZ. In the networkN of Fig. 2(b), for θ < 2π/(Z + 2), K(N ) > Z
under unidirectional equal power model. Thus, the lemma follows immediately from Theorem 2.

Appendix H: Proof of Lemma 4

Proof: Fig. 3 shows an example of a networkN under node exclusive spectrum sharing model with
K(N ) = 2. Thus, the lemma follows immediately from Theorem 2.
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PROOFS FOR ANALYTICAL RESULTS INSECTION VI-A (L EMMAS 7 AND 8)

Let Gi denote the set of receivers for sessioni and letu denote the receiver for sessioni. Also, let
ki(N ) denote the interference degree of sessioni.

Appendix I: Proof for Lemma 7

Proof: 1) Consider networkN with multicast sessions and bidirectional communication model. Since
only one session can be scheduled along any link in a slot, themulticast degree of any sessioni (denoted
by Mi) satisfies the following relation.

ki(N ) ≤ Mi

⇒ max
i

{ki(N )} ≤ max
i

{Mi}

⇒ K(N ) ≤ γ(N ).

2) Consider networkN with multicast sessions and unidirectional communicationmodel. Note thati can
interfere only with the sessions whose receiver is neighborof u or whose sender has at least onej ∈ Gi as
its neighbor. Moreover, each node can be involved in only onetransmission in a slot. Thus, the directional
multicast degree (denoted bỹMi) satisfies the following relation.

ki(N ) ≤ M̃i

⇒ max
i

{ki(N )} ≤ max
i

{M̃i}

⇒ K(N ) ≤ Γ(N ).

3) Let interference area for sessioni (Ai) denote the area such that if an end-point of sessionj lies inAi

then sessioni andj interfere with each other. Note thatAi for any i is a subset of the area covered by a
disk of radius2d centered at the sender ofi under bidirectional equal power model with the transmission
radius of a node beingd. Now, for two sessionsj andk to belong to a interference set ofi at least one
of their end-points should belong toAi. Moreover, for these sessions to be mutually non-interfering, the
distance between their end-points should be greater thand. Thus, if we place a disk of radiusd/2 around
one end-point of the interfering sessionsj andk, then these disks do not intersect. Thus, the maximum
number interfering sessions that are pair-wise non-interfering for any sessioni is less than or equal to
the maximum number of non-overlapping disks of radiusd/2 whose center lies inAi. Thus,K(N ) is
less than or equal to the maximum number of non-overlapping disks of radiusd/2 such that the disks lie
completely in the area covered by a disk of radius5d/2. Thus,K(N ) ≤ 25.
4) Note that under node exclusive spectrum sharing model, a sessionj interferes with sessioni only if i
and j has common end-point. Since the number of end-points for thesessioni is Gi + 1. Thus,

ki(N ) ≤ Gi + 1

⇒ max
i

{ki(N )} ≤ max
i

{Gi + 1}

⇒ K(N ) ≤ G(N ) + 1.

Appendix J: Proof of Lemma 8

Proof: Note that unicast is a special case multicast and hence 1) and2) follows immediately from
Figures 5(a) and 5(b) respectively. Also, 4) and 5) follows from Figures 2(b) and 3 respectively. Now, we
prove 3) by constructing a networkN with a multicast session such thatK(N ) = 19. We show such an
network in Figure 12. Hence, the result follows.
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Fig. 12. Figure shows a construction to prove that a networkN with a multicast session can be constructed such thatK(N ) = 19. Now,
we describe the construction. Figure shows 19 disks of radius d/2 whose center lies in a diskC2 of radius2d. C1 is another disk of radius
d such thatC1 andC2 are concentric. Now, consider a multicast session with 12 receivers such that the sender of the multicast session is at
the center ofC1. Each of the receivers lie at the intersection of the line segment from the center ofC1 to nodes8 to 19 and the boundary of
C1. One such receiverR that lies at the intersection of the line from the center ofC1 to node9 and the boundary ofC1 is shown with the
filled circle. This completes the construction of the multicast session. Now, we construct 19 unicast sessions that interfere with the multicast
session but are pair-wise non-interfering. We place the senders of these unicast sessions at the center of each of the disks with radiusd/2,
i.e., at the location shown by the small circles numbered from 1 to 19. Note that since the disks with radiusd/2 do not intersect, the distance
between anyi ∈ {1, . . . , 19} to anyj ∈ {1, . . . , 19} is greater thand + ǫ for someǫ > 0. Now, we place receivers for each unicast session
at the distanceǫ/4 from its respective sender. Thus, note that the distance between any end-point of sessioni and any end-point of session
j is strictly greater thand for every i, j ∈ {1, . . . , 19}. In other words, the 19 unicast sessions are pair-wise non-interfering. But, clearly,
each of the unicast session interferes with the multicast session. Thus,K(N ) = 19.

PROOFS OF ANALYTICAL RESULTS INSECTION VI-C (L EMMAS 9 AND 10)

Appendix K: Proof of Lemma 9

Lemma 9 follows from Lemma 19 and part (b) of Lemma 20.

Appendix L: Proof of Lemma 10

Consider a networkN with three single-hop sessionsi1, i2 and i3 such thatSi1 = {i2, i3} and Si2 =
Si3 = {i1}. Thus,Ki1(N ) = 2 andKi2(N ) = Ki3(N ) = 1. Let λi1 = λi2 = λi3 = 1/2. Note that a policy
that schedules sessioni1 in odd slots andi2 and i3 in the even slots stabilizes the system. Hence,~λ ∈ Λ.

Now, consider the arrival rate vector(λi1/Ki1(N ), λi2/Ki2(N ), λi3/Ki3(N )) = (1/4, 1/2, 1/2), which
corresponds to the following arrival process:i2 (i3, resp.) generates a packet every even (odd, resp.) slot,
and i1 generates a packet in slots1, 5, 9, . . . . Note that a maximal scheduling policy that schedulesi1
only wheni2 and i3 do not have a packet to transmit, never schedulesi1 and is therefore unstable. Thus,
(λi1/Ki1(N ), λi2/Ki2(N ), λi3/Ki3(N )) 6∈ ΛMS.

PROOF OF ANALYTICAL RESULTS INSECTION VI-D (L EMMA 11)

Appendix M: Proof of Lemma 11

Proof: Let ~λ ∈ ΛQ. Then, under~λ, for some scheduling policyπ, there exists a non-negative real
vector(q1, . . . , qN) such that for alli, limn→∞

∑
n Qi(n)/n = qi w.p. 1. Now, sinceQi(n) = Qi(0)+Ai(n−
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1)−Di(n − 1),
∑

n Qi(n)/n = Qi(0) +
∑

n
Ai(n−1)−Di(n−1)

n
. Thus, for alli, limn→∞

Ai(n−1)−Di(n−1)
n

= 0
w.p. 1. Since for alli, limn→∞ Ai(n−1)/n = limn→∞ Ai(n)/n = λi w.p. 1, for all i, limn→∞ Di(n)/n =
limn→∞ Di(n−1)/n = λi w.p. 1. Thus,~λ ∈ Λ. Thus, from part (b) of Lemma 20, for alli,

∑
j∈Si∪{i}

λj/βj(N )
≤ 1. Thus, ∑

j∈Si∪{i}

λ′
j < 1 ∀ i. (34)

Let the arrival rate vector be(λ′
1, . . . , λ

′
N). Consider a maximal scheduling policy. Let the state of the

arrival process in the end of slotn be ~B(n). Clearly, ( ~Q(n), ~B(n)) constitutes an irreducible aperiodic
markov chain.

Consider the lyapunov functionf(t), where

f(t) =
∑

i

∑

j∈Si∪{i}

Qi(t)Qj(t).

Clearly, f(t) > 0 if Qi(t) > 0 for somei.

E[f(n + 1) − f(n)| ~Q(n), ~B(n)]

=
∑

i

∑

j∈Si∪{i}

E[Qi(n + 1)Qj(n + 1) − Qi(n)Qj(n)| ~Q(n), ~B(n)]

=
∑

i

∑

j∈Si∪{i}

E

[(
Qi(n) + αi(n) − D̃i(n)

)(
Qj(n) + αj(n) − D̃j(n)

)
− Qi(n)Qj(n)| ~Q(n), ~B(n)

]

=
∑

i

∑

j∈Si∪{i}

E

[(
Qi(n) + αi(n) − D̃i(n)

)(
Qj(n) + αj(n) − D̃j(n)

)
− Qi(n)Qj(n)| ~Q(n), ~B(n)

]

≤
∑

i

∑

j∈Si∪{i}

E[Qi(n)αj(n) − Qi(n)D̃j(n) + Qj(n)αi(n) − Qj(n)D̃i(n)| ~Q(n), ~B(n)]

+(N + 1)N(α2
max + 1).

Now,
∑

i

∑

j∈Si∪{i}

Qi(n)αj(n) =
∑

i

∑

j∈Si∪{i}

Qj(n)αi(n),

and
∑

i

∑

j∈Si∪{i}

Qi(n)D̃j(n) =
∑

i

∑

j∈Si∪{i}

Qj(n)D̃i(n).

Thus,

E[f(n + 1) − f(n)| ~Q(n), ~B(n)]

≤ 2
∑

i

Qi(n)
∑

j∈Si∪{i}

E[αj(n) − D̃j(n)| ~Q(n), ~B(n)] + (N + 1)N(α2
max + 1)

E[f(n + τ) − f(n)| ~Q(n), ~B(n)]

≤ 2
∑

i

Qi(n)




∑

j∈Si∪{i}

τ−1∑

k=0

αj(n + k) − E[
∑

j∈Si∪{i}

τ−1∑

k=0

D̃j(n + k)| ~Q(n), ~B(n)



+ (N + 1)N(α2
max + 1)τ.

Under maximal scheduling, ifQi(n) > τ + 1,
∑

j∈Si∪{i}
D̃j(l) = 1 for eachl ∈ [n, n + τ − 1]. Thus, if

Qi(n) > τ + 1,
∑

j∈Si∪{i}

∑τ−1
k=0 D̃j(n + k) = τ. Next, let δ = 1 − maxi

∑
j∈Si∪{i}

λ′
j. From (34),δ > 0.
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Now, clearly, the arrival process is a positive recurrent markov chain. Hence, for any~Q(n), ~B(n) there
existsτ0 such that for allτ ≥ τ0,

∑τ−1
k=0 αj(n + k) ≤ τ(λ′

j + δ/2N). Thus, for all ~Q(n), and forτ ≥ τ0,

E[f(n + τ)− f(n)| ~Q(n) = ~Q, ~B(n) = ~B] ≤ −δτ
∑

i:Qi(n)>τ+1

Qi(n) + (N + 1)N(α2
max + αmax + 1)(τ + 1).

Thus, for τ ≥ τ0, E[f(n + τ) − f(n)| ~Q(n) = ~Q, ~B(n) = ~B] < ∞ for all ~Q, ~B, and E[f(n + τ) −

f(n)| ~Q(n) = ~Q, ~B(n) = ~B] < −1 for all ~Q, ~B such thatmaxi Qi > max(τ +1, (N+1)N(α2
max+αmax+1)(τ+1)

δτ
).

Hence, by Foster’s theorem (Theorem 2.2.3 in [5]), for eachτ ≥ τ0, t ∈ (0, τ − 1),
(

~Q(t), ~B(t)
)

,
(

~Q(t + τ), ~B(t + τ)
)

,
(

~Q(t + 2τ), ~B(t + 2τ)
)

, . . . , is a positive recurrent markov chain. Also, all these
markov chains have the same set of states, and same transition probabilities. Thus, under maximal
scheduling, there exists a non-negative real vector(q1, . . . , qN) such that for alli, limn→∞

∑
n Qi(n)/n =

qi w.p. 1. Thus,(λ′
1, . . . , λ

′
N) ∈ ΛMS

Q .

PROOFS OF ANALYTICAL RESULTS INSECTION VI-E (L EMMAS 12, 13AND 14)

Appendix N: Proof of Lemma 12

Note that a network where each session traverses one link is aspecial case of a network where each
session spans arbitrary link. In Section G, we have shown that under the unidirectional equal power
model given any constantZ there exists a networkN such thatK(N ) > Z. Lemma 12 now follows
from theorem 2.

Appendix O: Proof of Lemma 13

We prove Lemma 13 using the following supporting lemma.
Lemma 26:Let ~λ ∈ {~λ : if λq(k) > 0,

∑
k∈Sj∪{j}

λq(k) ≤ 1, j = 1, . . . , M}. Then~λ ∈ ΛMS.
Lemma 13 follows from part (a) of Lemma 20 and Lemma 26.

Appendix O.1: Proof of Lemma 26:We outline this proof as it is similar to that for Lemma 19. With
regulators, the source of each session-link has two queues:waiting-queue and release-queue. Now,Aj(n)
and Dj(n) denote the arrivals in and departures from the release-queue of session-linkj in (0, n], and
Qj(n) denotes the queue length at the release-queue of session-link j at the beginning of thenth slot.
For eachj, j = 1, . . . , M, the fluid limits of Aj(.), Dj(.), Qj(.) are defined as in Section A.2.a.

Now, we state and prove some important properties of the fluidlimits which we use to prove Lemma 26.
Lemma 27:Every fluid limit satisfies,Aj(t) ≤ λjt w.p. 1 for every session-linkj = 1, . . . , M and

t ≥ 0.
Proof: The proof is similar to that for Lemma 21 whenj is the first session-link of its session.

When j is not the first session-link of its session, the proof follows because due to the regulator the
release-queue ofj receives packet w.p. at mostλq(j) in any slotn.

Lemma 28:Any fluid limit (Ai, Di, Qi) for N satisfies the following equality for everyi and t ≥ 0
with probability (w.p.) 1.

Qi(t) = Qi(0) + Ait − Di(t). (35)
The proof is similar to that for Lemma 22.

Lemma 29:Let Qi(0) = 0 for everyi. Also, let
∑

k∈Sj∪{j}
λq(k) ≤ 1 if λq(j) > 0, j = 1, . . . , M. Then,

under maximal scheduling, every fluid limit satisfies thatQi(t) = 0 for every t ≥ 0 w.p. 1 for everyi.
The lemma follows from Lemma 27. The arguments are similar tothat in the proof of Lemma 23.

We now prove Lemma 26.
Proof: We prove the following for each session-linkj = 1, . . . , M.

1) Every fluid limit satisfies,Aj(t) = λjt w.p. 1 for every session-linkj = 1, . . . , M and t ≥ 0.
2) D̄j(t) = λq(j)t w.p. 1 for everyt.
3) limt→∞ Dj(t)/t = λq(j)t w.p. 1.
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We prove using induction on the position of the session-links in the paths of their sessions.
First, let j be the first session-link of some session (i.e., the session-link originating at the source of

the session). The arrivals in the release-queue of the first session-link are the exogenous arrivals. Now,
(1) follows from (4). From Lemmas 28 and 23,Dj(t) = Ajt w.p. 1 for everyt ≥ 0. Now, (2) follows
from (1). Finally, using arguments similar to those in the proof Lemma 19,limr→∞ Dr

j (t) = λq(j)t w.p. 1
for every t follows from (1) and (2). Now, (3) follows by choosingt = 1.

Now, let (1) and (2) hold for all session-links that are1, . . . , p in the paths of their sessions. We now
prove (1) and (2) for a session-linkj that is thep+1th in the path of its session. Let session-linkk be the
session-link of sessionq(j) that terminate at the source of session-linkj. Let Q̂j(n) be the queue length
at the waiting-queue of session-linkj at the beginning of thenth slot. Now,

Q̂j(n + 1) = Q̂j(0) + Dk(n) − Aj(n).

From (3) of induction hypothesis,limt→∞ Dk(t)/t = λq(j)t w.p. 1. Note thatAj(n) = 1 w.p. λq(j) if
Qj(n) > 0. Thus, the waiting-queue of session-linkj is a queue which receives packets as per an arrival
process that satisfies SLLN with rateλq(j) and is served w.p.λq(j) whenever it is non-empty. It follows
that the departure-process of this queueAj(· · ·) satisfies SLLN with rateλq(j). Now, (1) follows. Now,
(2) and (3) follows as in the base case.

The lemma follows from (3).

Appendix P: Proof of Lemma 14

We prove Lemma 14 using Lemma 20 and another supporting lemma, Lemma 30, which we state and
prove next.

Lemma 30: Consider an arrival rate vector~λ′ such that
∑

j∈Sk∪{k}
λ′

q(j) < 1. Then the packet queue
of every session-link will almost surely become empty infinitely often. Furthermore, for every session-link
j and timet, E[Bj,t] < ∞.

Proof: Now, αj(t) and D̃j(t) denote the number of arrivals and departures respectively for session-
link j in slot t. Let Qj(t) be the number of packets for the session of session-link j waiting for transmission
at the source of session-linkj at the end of slott. Let Sj ∪ {j} = Xj, and n̂ = |Xj |. First, we obtain
relations among these parameters. If session-linkj satisfy Qj(ν) > 0 for every ν ∈ [t, t + τ ], then for
everyν ∈ [t, t + τ ], ∑

k∈Xj

D̃k(ν) ≥ 1. (36)

Qj(t) +

t+τ∑

ν=t+1

αj(ν) ≤
t+τ∑

ν=1

Aq(j)(ν)

≤ tαmax +
t+τ∑

ν=t+1

Aq(j)(ν). (37)

Now we have,

P {Bj,t > τ}

≤ P






t+τ⋂

v=t









∑

k∈Xj

Qk(t) +

v∑

ν=t+1

∑

k∈Xj

αk(ν) −
v∑

ν=t+1

∑

k∈Xj

D̃k(ν) > 0















≤ P






t+τ⋂

v=t+1





∑

k∈Xj

Qk(t) +
v∑

ν=t+1




∑

k∈Xj

αk(ν) − 1



 > 0









 (from (36))
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≤ P





∑

k∈Xj

Qk(t) +
t+τ∑

ν=t+1

∑

k∈Xj

αk(ν) − τ > 0






≤ P





tn̂αmax

τ
+

1

τ

t+τ∑

ν=t+1

∑

k∈Xj

AFq(k)
(ν) − 1 > 0




 (from (37))

= P





tn̂αmax

τ
+
∑

k∈Xj

(
1

τ

t+τ∑

ν=t+1

AFq(k)
(ν) − λ′

q(k)

)
> 1 −

∑

k∈Xj

λ′
q(k)




 .

Let δ = 1 −
∑

k∈Xj
λ′

q(k). Clearly,δ > 0. Thus,

P {Bj,t > τ}

≤ P






{
tn̂αmax

τ
>

δ

n̂ + 1

} ⋃

k∈Xj

{
1

τ

t+τ∑

ν=t+1

AFq(k)
(ν) − λ′

q(k) >
δ

n̂ + 1

}



≤ P

{
tn̂αmax

τ
>

δ

n̂ + 1

}
+
∑

k∈Xj

P

{
1

τ

t+τ∑

ν=t+1

AFq(k)
(ν) − λ′

q(k) >
δ

n̂ + 1

}

=
∑

k∈Xj

P

{
1

τ

t+τ∑

ν=t+1

AFq(k)
(ν) − λ′

q(k) >
δ

n̂ + 1

}
if τ >

n̂(n̂ + 1)tαmax

δ
.

Now, from (6), the packet queue of every session-link will almost surely become empty infinitely often.
Also,

E[Bj,t] =

∞∑

τ=1

P {Bj,t > τ} < ∞.

Lemma 14 follows from part (a) of Lemma 20 and Lemma 30.

PROOFS OF ANALYTICAL RESULTS INSECTION VII (L EMMAS 15 AND 17 AND THEOREM 3)

Appendix Q: Proof of Lemma 15

Let X = {~λ = (λ1, . . . , λN) : if λi > 0,
∑

j∈Si∪{i}
λj ≤ 1, ∀ i = 1, . . . , N.} From Lemma 19, if

~λ ∈ X, ~λ ∈ ΛMS.
Now, let ~λ 6∈ X. Then there exists a sessioni such thatλi > 0 and

∑
j∈Si∪{i}

λj > 1. Let λj > 0
for m sessions inSi, wherem ≤ |Si|. Let these sessions bej1, . . . , jm. For simplicity, we assume that
λk, k ∈ {j1, . . . , jm} are rational numbers. LetZ be an integer such thatZλk is an integer for all
k ∈ {j1, . . . , jm}. Consider an arrival process in which the arrivals forj1, . . . , jm are periodic with period

Z, andjl generates packets in
(
Z
∑l−1

p=1 λp mod Z
)

th to
(
Z(
∑l

p=1 λp) − 1 modZ
)

th slots of the period,

l = 1, . . . , m. Note that for this arrival process at least one session in{j1, . . . , jm} generates a packet
in every slot. Consider a maximal scheduling policy that resolves contention among sessions that have
packets to transmit as follows. Ifj1 has a packet to transmit, it transmits. For2 ≤ k ≤ m, if jk has a
packet to transmit, and none of the sessions in{j1, . . . , jk−1} that interfere withjk are transmitting,jk

transmits. Note that this policy schedules one session in{j1, . . . , jm} every slot, and thus never schedules
i. Thus,di = 0 < λi. Thus,~λ 6∈ ΛMS. Thus,ΛMS = X. The result follows.
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Appendix R: Proof of Lemma 17

We prove Lemma 17 when each session spans one link. First, we show that if a session generates
packets at rater or higher, and if it is sampled at rater or higher at every bucket associated with it, then
it receives tokens at rater or higher from each of its buckets (Lemma 31). We next show that a session’s
sampling rate at any of its buckets equals its maxmin fair rate (Lemma 32). Now, the result follows, as
by definition, a session’s maxmin fair rate is less than or equal to its packet generation rate. We prove
Lemmas 31 and 32 in sections R.1 and R.2. Thus, like in the current section, throughout sections R.1
and R.2, we will assume that every session spans one link.

We introduce some terminologies and subsequently state Lemmas 31 and 32. LetSi,n(t) be the number
of times sessioni is sampled at token-bucketn in the interval(0, t], L = maxi bi, σ = maxi σi, andβ, γ
are constants that are specified later.

Lemma 31: Consider an arbitraryK and a sequence ofK disjoint intervals,(tl, wl], l = 1, . . . , K,
that satisfies the following property for sessioni, for every positive integerM ′ and every sequence of
sub-intervals(xm, ym], m = 1, . . . , M ′, (xm, ym] ⊂ (tl, wl], for somel: At every bucketn associated with
i,

M ′∑

m=1

(Si,n(ym) − Si,n(xm)) ≥ r
M ′∑

m=1

(ym − xm) − e − M ′f, (38)

wheree and f are constants that do not depend onM ′ and the sub intervals(xm, ym], m = 1, . . . , M ′.
Let λi ≥ r and W ≥ 3bi−1(f + σi)/2. Then, at every bucketn associated withi,

K∑

l=1

(Ci,n(wl) − Ci,n(tl)) ≥ r
K∑

l=1

(wl − tl) − 2bi−1e − K3bi−1(f + σi). (39)

Lemma 32: Consider any positive integerK, and an arbitrary non-decreasing sequence of times
x1, y1, . . . , xK , yK. Let W ≥ 3L−1(ε1(F ) + σ)/2, where ε1(F ) is defined in (43) to (48). For every
bucketn associated with sessioni,

K∑

k=1

(Si,n(yk) − Si,n(xk)) ≥ d∗
i

K∑

k=1

(yk − xk) − β

−Kγ, (40)
K∑

k=1

(Ci,n(yk) − Ci,n(xk)) ≥ d∗
i

K∑

k=1

(yk − xk) − β

−Kγ, (41)
K∑

k=1

(Ci,n(yk) − Ci,n(xk)) ≤ d∗
i

K∑

k=1

(yk − xk) + β

+Kγ. (42)

Here, β and γ are constants that do not depend onx1, y1, . . . , xK , yK.
We introduce the notion of “rank” of a session for definingβ andγ. A session has rankp if its maxmin

fair rate isd̂p, the pth lowest among the maxmin fair rates of different sessions.Let F be the number of
distinct ranks,F ≤ N.

ς1(1) = 0. (43)

ε1(1) = 1. (44)

ς2(p) = 2L−1ς1(p). (45)

ε2(p) = 3L−1(ε1(p) + σ). (46)

ς3(p) = 2σ + max(L, 2) (ς2(p) + ε2(p))
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1 1 1 2 2 2 1 1

t w t w1 1 2 2

u u v u11 21 21 22

Fig. 13. We show two intervals(t1, w1] and (t2, w2], and some type1 and2 slots. We also show the correspondingu andv slots. Here
(t1, u11], (t2, u21], (v21, u22] are example sub-intervals that end inu−slots and start from the nearestv−slot or ti−slot.

+2LW. (47)

ε3(p) = ε2(p). (48)

ς1(p + 1) = (L − 1)ς3(p). (49)

ε1(p + 1) = (L − 1)ε3(p) + 1. (50)

Now, β = ς3(F ) andγ = ε3(F ).
Now, for any given~λ, Lemma 17 follows from (41) and (42) of Lemma 32 with̺= β + γ and

W0 = 3L−1(ε1(F ) + σ)/2.
Appendix R.1: Proof of Lemma 31:We first present the intuition behind the proof. The proof is by

induction on the number of buckets associated with a session. The sessions with one bucket form the
base case. Note that any such session receives a token at its bucket every time it is sampled at its bucket
and has a packet that has not been released, since no adjacentbucket applies back-pressure. Now, the
lemma follows for the base case from the lower bounds on the sampling and packet generation rates. We
next assume that the lemma holds for all sessions withp buckets, and then prove the lemma for sessions
with p + 1 buckets. Consider a session withp + 1 buckets and adjacent bucketsn andn + 1 associated
with it. Bucket n + 1 does not prevent the generation of any token atn unless the number of tokens at
n is W more than that atn + 1. If the number of tokens atn is W more than that atn + 1, n does not
prevent any token generation atn + 1, and the bucketsn + 1, n + 2, . . . generate tokens oblivious to the
presence of the buckets1, . . . , n, as though they constitute a session with fewer buckets. By induction
hypothesis, and from the sampling and packet generation rates, the session receives tokens at rater or
higher atn + 1 in these intervals. In all these slots, the number of tokens at n exceeds that atn + 1 by
W. Thus,n’s token generation rate is lower bounded byn + 1’s token generation rate which is at leastr.
In other slots,n + 1 does not prevent the generation of any token atn. Thus, the token generation at the
buckets1, . . . , n resembles that for a session with fewer buckets. Thus, by induction hypothesis and the
assumption on the sampling rate, in all slots,n generates tokens at rater or higher for the session.

Proof: We prove by induction on the number of bucketsp associated with a session.
First consider a sessioni with one bucketn. Let n not be at the source node ofi. The lemma holds

from the assumption on the sampling rate (condition (38)). Now, let n be at the source node ofi. Let
ANR

i (t) be the number of packets of sessioni at its source at timet that have not been released. We now
define a slotzl. If ANR

i (t) > 0 for all t ∈ (tl, wl], zl = tl, elsezl = max
t∈(tl ,wl],A

NR
i (t)=0 t. If zl > tl,

Ci,n(zl) − Ci,n(tl) = Ai(zl) − Ai(tl) + ANR
i (tl)

≥ Ai(zl) − Ai(tl)

≥ r(zl − tl) − σi. (51)

The last inequality follows from (10) and sincer ≤ λi. Clearly, (51) also holds ifzl = tl. Bucket n
generates a token for sessioni every time it samplesi in (zl, wl], ∀ l.

K∑

l=1

(Ci,n(wl) − Ci,n(zl))

=

K∑

l=1

(Si,n(wl) − Si,n(zl))
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≥ r

K∑

l=1

(wl − zl) − e − Kf (from (38)). (52)

K∑

l=1

(Ci,n(wl) − Ci,n(tl))

=

K∑

l=1

(Ci,n(wl) − Ci,n(zl)) +

K∑

l=1

(Ci,n(zl) − Ci,n(tl))

≥ r
K∑

l=1

(wl − tl) − e − K(f + σi) (from (51) and (52)).

Thus, (39) holds in the base case.
We now assume that (39) holds for all sessions withp or fewer buckets, and prove (39) for an arbitrary

sessioni with p + 1 buckets. Consider an arbitrary bucketn associated withi. If the number of tokens of
i at n does not exceed that at buckets adjacent ton by W or more in the intervals(tl, wl), l = 1, . . . , K,
then the token generation process fori at n is not affected by back-pressure, and the proof is similar tothe
base case. Thus, we assume that there exists a bucketB that is adjacent ton, andCi,n(t) = Ci,B(t) + W
at some timet in these intervals. ClearlyB ∈ {n− 1, n + 1}. We consider the case thatB = n + 1. The
proof whenB = n − 1 is similar.

Let a slott whereCi,n(t) exceedsCi,n+1(t) by W be a type1 slot, and a slott whereCi,n+1(t) exceeds
Ci,n(t) by W be a type2 slot; a slot may neither be type1 nor type2. Consider each(tl, wl] interval
separately. Consider the sequences of type1 and2 slots that are obtained after removing the slots without
numbers. The last slot in such a sequence of type−1 (2) slots is denoted a “u” (“v”) slot. Themth “u-slot”
(“v-slot”) of the lth interval isulm (vlm) (Figure 13). Note that

Ci,n(ulm) = Ci,n+1(ulm) + W ∀ l, m. (53)

Ci,n+1(vlm) = Ci,n(vlm) + W ∀ l, m. (54)

Ci,n(t) ≤ Ci,n+1(t) + W, ∀ t. (55)

Consider a sub-interval that ends at au slot and starts from atj (not inclusive) or av−slot (not inclusive),
whichever is the nearest to theu−slot (Figure 13). Let there beJl such sub-intervals in(tl, wl], and∑K

l=1 Jl = I1. These sub-intervals do not consist of any type2 slot. Thus,n does not prevent any session
i token generation atn+1 in these sub-intervals. Hence, in these sub-intervals, thetoken generation fori
in bucketsn+1, . . . , p+1 resembles that in the buckets of a session withp+1−n buckets, wheren > 0.
Condition (38) holds fori in each of these buckets for every set of sub-intervals of theseI1 sub-intervals,
since any such sub-interval is in(tl, wl] for somel. Thus, the number of tokens generated fori in these
I1 sub-intervals in each of these buckets can be lower bounded using the induction hypothesis. The sub-
intervals in(tl, wl] are (tl, ul1] and(vlm−1, ulm], m > 1, if vl1 > ul1 as in Figure 13; the sub-intervals are
(vlm, ulm], m ≥ 1, otherwise. We assume thatvl1 > ul1 for all l; the argument is similar ifvl1 < ul1 for
some or alll. From induction hypothesis,

K∑

l=1

((Ci,n+1(ul1) − Ci,n+1(tl)) +

Jl∑

m=2

(Ci,n+1(ulm) − Ci,n+1(vlm−1)))

≥ r

K∑

l=1

(

(ul1 − tl) +

Jl∑

m=2

(ulm − vlm−1)

)

− 2p−1e − I13
p−1(f + σi). (56)

Ci,n(ul1) − Ci,n(tl)

≥ Ci,n+1(ul1) + W − Ci,n+1(tl) − W (from (53) and (55))

= Ci,n+1(ul1) − Ci,n+1(tl). (57)
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From (53) and (54),

Ci,n(ulm) − Ci,n(vlm−1) = Ci,n+1(ulm) − Ci,n+1(vlm−1) + 2W. (58)

K∑

l=1

((Ci,n(ul1) − Ci,n(tl)) +

Jl∑

m=2

(Ci,n(ulm) − Ci,n(vlm−1)))

≥
K∑

l=1

((Ci,n+1(ul1) − Ci,n+1(tl))) +

Jl∑

m=2

(Ci,n+1(ulm) − Ci,n+1(vlm−1)))

+2W (I1 − K) (from (57) and (58))

≥ r

K∑

l=1

(

(ul1 − tl) +

Jl∑

m=2

(ulm − vlm−1)

)

− 2p−1e − K3p−1(f + σi)

+(I1 − K)(2W − 3p−1f − 3p−1σi) (from (56)). (59)

Now, consider the sub-intervals obtained after removing theseI1 sub-intervals from∪K
l=1(tl, wl]. These

new sub-intervals do not contain any type1 slot. Thus,n + 1 does not prevent any sessioni token
generation atn. Hence, the sessioni token generation in buckets1, . . . , n resembles that of a session
with n buckets, wheren ≤ p. The number of sessioni tokens generated atn in these sub-intervals can
be lower bounded from the induction hypothesis. There are atmostI1 + K such sub-intervals, which are
of the form (ulm, vlm] and (uJl

, wl], since we assume thatvl1 > ul1 ∀ l.

Thus,
K∑

l=1

(
(Ci,n(wl) − Ci,n(uJl

)) +

Jl−1∑

m=1

(Ci,n(vlm) − Ci,n(ulm))

)

≥ r
K∑

l=1

(
(wl − uJl

) +

Jl−1∑

m=1

(vlm − ulm)

)
− 2p−1e − (I1 − K)3p−1(f + σi) − 2K3p−1(f + σi). (60)

Adding (59) and (60),

K∑

l=1

(Ci,n(wl) − Ci,n(tl))

≥ r

K∑

l=1

(wl − tl) − 2pe − K3p(f + σi) + (I1 − K)(2W − 3p (f + σi)). (61)

Note thatp + 1 ≤ bi and thus,W ≥ 3p(f + σi)/2. We have implicitly assumed that at least one type−1
slot exists in each interval(tl, wl]; this justifies the summation froml = 1 to K in (56). Under this
assumption,I1 ≥ K. Hence, (39) holds for sessioni at bucketn. If there is no type−1 slot in (tl, wl] for
somel, then the summation in (56) must be over the intervals(tl, wl] that have at least one type−1 slot.
Let K1 be the number of such intervals. Now,(I1 −K) must be replaced with(I1 −K1). SinceI1 ≥ K1,
(39) holds at all buckets associated withi.

Appendix R.2: Proof of Lemma 32:We outline the proof for the special case that all sessions always
have packets to transmit, i.e.,λi > 1 for all i. We use induction on the rankp of a session. For the base
case (p = 1), using a property of the round robin sampling, we show that all sessions are sampled at a
rate d̂1 or higher at every bucket. Now, (41), the lower bound on the token generation rate follows from
Lemma 31. Next, we show (42), i.e., the token generation rates are upper bounded bŷd1 for all sessions
with rank 1. This follows because the sampling and hence the token generation rate is upper bounded by
d̂1 at the bottleneck bucket, and due to back-pressure the tokengeneration rates for a session are equal
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at different buckets in the session’s path. Now, consider the induction case, i.e., arbitraryp. The token
generation rates of sessions with rank lower thanp are upper bounded by their respective maxmin fair
rates which are upper bounded bŷdp. Sessions of rankp or higher are sampled in a certain minimum
fraction of the slots in which the sessions with rank lower than p do not receive tokens. Therefore, the
lower bound on the sampling rate of sessions with rankp or higher follows. Again, the lower bound on
the token generation rate follows from Lemma 31. We prove, asin the base case, the upper bound on the
token generation rate for sessions with rankp.

In the formal proof, we relax the assumption that all sessions always have packets to transmit, i.e.,
we consider arbitrary~λ. We would like to clarify the usage of a particular notation before proceeding
further. We have so far numbered token-buckets based on the sessions traversing them. In this terminology,
bucketn of sessioni is i’s nth bucket, andCi,n(t), Si,n(t) are the number of tokens generated for session
i at and the number of times sessioni is sampled at itsnth bucket respectively. In the following proof,
we number token-buckets separately. Thus, for example, we consider token-bucketn and all sessions
associated withn. Now, n(i) will denote the number for the bucketn amongi’s buckets. Thus, we need
to useCi,n(i)(t), Si,n(i)(t) instead ofCi,n(t), Si,n(t). For simplicity, we still useCi,n(t), Si,n(t). Thus, in the
following proof,Ci,n(t), Si,n(t) really stand forCi,n(i)(t), Si,n(i)(t) respectively. Note that this inconsistency
is limited to the following proof only, and does not lead to any error, because none of the analytical
guarantees in other lemmas (including those that are used inthe following proof and those whose proof
use Lemma 32) depend on the token-bucket number.

Proof: We prove the following for ranksp = 1, . . . , F, by induction onp.
For each bucketn, for each sessioni that is associated withn and has rank greater than or equal top,

for any positive integerK, and for any nondecreasing sequence of timesx1, y1, . . . , xK , yK ,
K∑

k=1

(Si,n(yk) − Si,n(xk)) ≥ d̂p

K∑

k=1

(yk − xk) − ς1(p) − Kε1(p). (62)

For each bucketn, for each sessioni that is associated withn and has rank greater than or equal top,
for any positive integerK, and for any nondecreasing sequence of timesx1, y1, . . . , xK , yK ,

K∑

k=1

(Ci,n(yk) − Ci,n(xk)) ≥ d̂p

K∑

k=1

(yk − xk) − ς2(p) − Kε2(p). (63)

If a sessioni has rankp, andd∗
i = λi,

ANR
i (t) ≤ σi + ς2(p) + ε2(p) ∀ t. (64)

For each bucketn, for each sessioni that is associated withn and has rankp, for any positive integer
K, and for any nondecreasing sequence of timesx1, y1, . . . , xK , yK ,

K∑

k=1

(Ci,n(yk) − Ci,n(xk)) ≤ d̂p

K∑

k=1

(yk − xk) + ς3(p) + Kε3(p). (65)

We first prove (62) to (65) forp = 1. Note thatd̂1 = min(1/L, mini λi). Consider a bucketn. Let X be
the set of sessions associated withn. Since at least one session is sampled atn in a slot, in any interval
(xk, yk], ∑

j∈X

(Sj,n(yk) − Sj,n(xk)) ≥ yk − xk.

Since sessions are sampled in round robin order,Si,n(yk) − Si,n(xk) ≥ Sj,n(yk) − Sj,n(xk) − 1 for any
two sessionsi, j associated withn. Thus, for any sessioni associated withn,

|X | (Si,n(yk) − Si,n(xk) + 1) ≥ yk − xk,

Si,n(yk) − Si,n(xk) ≥
yk − xk

|X |
− 1.
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Thus, every session associated with bucketn is sampled at least
∑Q

k=1(yk − xk)/|X | − Q times for
any arbitrary sequence of nondecreasing timesx1, y1, . . . , xQ, yQ, and any arbitraryQ. Since |X | ≤ L,
d̂1 ≤ 1/|X |. Thus, (62) holds withς1(1) = 0, ε1(1) = 1.

Since εF (1) ≥ ε1(1), W ≥ 3L−1(ε1(1) + σ)/2. Hence, (63) follows from Lemma 31 withς2(1) =
2L−1ς1(1) andε2(1) = 3L−1(ε1(1) + σ).

Now, we prove (64) forp = 1. Consider a sessioni with rank 1 andd∗
i = λi. Thus, d̂1 = λi. Let n be

the bucket at the source node ofi.

ANR
i (t) = Ai(t) − Ci,n(t)

≤ (λi − d̂1)t + σi + ς2(1) + ε2(1) (from (10) and (63) forp = 1)

= σi + ς2(1) + ε2(1) (sinced̂1 = λi).

Thus, (64) follows forp = 1.
Now, we prove (65) forp = 1. Consider a sessioni with rank 1. Let n be a bucket associated withi.

Consider a sequence of non-decreasing timesx1, y1, . . . , xK , yK.

K∑

k=1

(Ci,n(yk) − Ci,n(xk))

= Ci,n(yK) − Ci,n(x1) −
K−1∑

k=1

(Ci,n(xk+1) − Ci,n(yk))

≤ Ci,n(yK) − Ci,n(x1) − d̂1

K−1∑

k=1

(xk+1 − yk) + ς2(1) + (K − 1)ε2(1) (from (63) for p = 1). (66)

Sinced̂1 = d∗
i andd∗

i ≤ λi, d̂1 ≤ λi. First, let d̂1 < λi. Thus, from Lemma 16,i has a bottleneck constraint
and hence a bottleneck bucket,B. Let X be the set of sessions associated withB. Since i has rank1,
|X | = L, rank(j) = 1 ∀ j ∈ X , and d̂1 = 1/L.

Ci,B(yK) − Ci,B(x1)

≤ yK − x1 −
∑

m∈X\{i}

(Cm,B(yK) − Cm,B(x1))

≤ yK − x1 − (L − 1)
(
d̂1(yK − x1) − ς2(1) − ε2(1)

)
(from (63) since rank(j) = 1, ∀ j ∈ X )

= d̂1(yK − x1) + (L − 1) (ς2(1) + ε2(1)) (sinced̂1 = 1/L). (67)

Now, let d̂1 = λi. Let B be the bucket at the source ofi.

Ci,B(yK) − Ci,B(x1)

≤ ANR
i (x1) + Ai(yK) − Ai(x1)

≤ σi + ς2(1) + ε2(1) + λi(yK − x1) + σi (from (64) and (10))

= d̂1(yK − x1) + 2σi + ς2(1) + ε2(1) (sinced̂1 = λi). (68)

From (67) and (68), there exists a bucketB associated withi such that

Ci,B(yK) − Ci,B(x1)

≤ d̂1(yK − x1) + 2σi + max(L − 1, 1) (ς2(1) + ε2(1)) . (69)

Now, |Ci,n(t) − Ci,B(t)| ≤ biW ∀ t. (70)
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Ci,n(yK) − Ci,n(x1)

≤ Ci,B(yK) − Ci,B(x1) + 2biW (from (70))

≤ d̂1(yK − x1) + max(L − 1, 1) (ς2(1) + ε2(1)) + 2biW + 2σi (from (69)). (71)

From (66) and (71),
K∑

k=1

(Ci,n(yk) − Ci,n(xk))

≤ d̂1

K∑

k=1

(yk − xk) + max(L, 2) (ς2(1) + ε2(1)) + 2biW + 2σi + Kε2(1). (72)

Thus, forp = 1, (65) follows from (72) withς3(1) = max(L, 2) (ς2(1) + ε2(1))+ 2LW +2σ andε3(1) =
ε2(1).

Now, we assume (62) to (65) for1, . . . , p, and show that (62) to (65) hold forp + 1.
We first prove (62). Consider a sessioni with rank greater than or equal top+1. Consider a bucketn as-

sociated withi. Let Y= {w : w is associated withn, rank(w) ≤ p} andZ= {w : w is associated withn,
rank(w) ≥ p + 1}. In any interval(xk, yk],

∑

j∈Z

(Sj,n(yk) − Sj,n(xk)) +
∑

j∈Y

(Cj,n(yk) − Cj,n(xk))

≥ yk − xk.

Since sessions are sampled in round robin order,Si,n(yk) − Si,n(xk) ≥ Sj,n(yk) − Sj,n(xk) − 1 for any
two sessionsi, j associated withn. Thus,

|Z| (Si,n(yk) − Si,n(xk) + 1)

≥ yk − xk −
∑

j∈Y

(Cj,n(yk) − Cj,n(xk)) .

Thus,
K∑

k=1

(Si,n(yk) − Si,n(xk))

≥
1

|Z|

(
K∑

k=1

(yk − xk) − K|Z| −
∑

j∈Y

K∑

k=1

(Cj,n(yk) − Cj,n(xk))

)

≥

(
1 −

∑
j∈Y d∗

j

)∑K

k=1(yk − xk)

|Z|
−

|Y|

|Z|
ς3(p) − K

|Z| + |Y|ε3(p)

|Z|
.

The last inequality follows since rank(w) ≤ p, and d∗
w = d̂rank(w), ∀ w ∈Y . Also, ς3(j) ≥ ς3(j − 1),

ε3(j) ≥ ε3(j − 1), ∀j. Thus, induction hypothesis (inequality (65)) applies. Now,

K∑

k=1

(Si,n(yk) − Si,n(xk))

≥

∑
j∈Z d∗

j

∑K

k=1(yk − xk)

|Z|
−

|Y|

|Z|
ς3(p) − K

|Z| + |Y|ε3(p)

|Z|
(since

∑

w∈Z

d∗
w +

∑

w∈Y

d∗
w ≤ 1)

≥ d̂p+1

K∑

k=1

(yk − xk) −
|Y|

|Z|
ς3(p) − K

|Z| + |Y|)ε3(p)

|Z|
. (73)
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The last step follows since rank(w) ≥ p + 1, and henced∗
w ≥ d̂p+1, ∀ w ∈Z. Thus, from (73), (62)

holds forp + 1, with ς1(p + 1) = (L − 1)ς3(p), andε1(p + 1) = (L − 1)ε3(p) + 1.
Consider a sessioni with rank greater than or equal top+1. Note thatλi ≥ d̂p+1, andW ≥ 3L−1(ε1(p+

1)+σ)/2. Thus, (63) follows from Lemma 31, withς2(p+1) = 2L−1ς1(p+1) andε2(p+1) = 3L−1(ε1(p+
1) + σ).

The proof for (64) is similar to that in the base case.
Now, we prove (65) forp + 1. The argument is similar to that for the base case. We point outthe

differences. Consider a sessioni with rank p + 1. Let n be a bucket associated withi. Consider any
sequence of non-decreasing timesx1, y1, . . . , xK , yK .

K∑

k=1

(Ci,n(yk) − Ci,n(xk))

= Ci,n(yK) − Ci,n(x1) −
K−1∑

k=1

(Ci,n(xk+1) − Ci,n(yk))

≤ Ci,n(yK) − Ci,n(x1) − d̂p+1

K−1∑

k=1

(xk+1 − yk) + ς2(p + 1) + (K − 1)ε2(p + 1). (74)

The last inequality follows from (63) forp + 1.
Since d̂p+1 = d∗

i and d∗
i ≤ λi, d̂p+1 ≤ λi. Now, first let d̂p+1 < λi. Sinced∗

i = d̂p+1, d∗
i < λi. Thus,

from Lemma 16,i is associated with a bottleneck constraint, and hence a bottleneck bucket,B. Let X
be the set of sessions associated withB. Sincei has rankp + 1, ranks of all sessions associated withB
are less than or equal top + 1.

Ci,B(yK) − Ci,B(x1)

≤ yK − x1 −
∑

m∈X\{i}

(Cm,B(yK) − Cm,B(x1))

≤ yK − x1 −
∑

m∈X\{i}

(d∗
m(yK − x1) − ς2(p + 1) − ε2(p + 1)) (from (63))

= d̂p+1(yK − x1) + (|X | − 1)(ς2(p + 1) + ε2(p + 1)). (75)

The last step follows sincêdp+1 +
∑

m∈X\{i} d∗
m = 1.

Now, let d̂p+1 = λi. Let B be the bucket at the source node ofi. Like in the base case, using (63) and
(10), we can prove that

Ci,B(yK) − Ci,B(x1) ≤ d̂p+1(yK − x1) + 2σi + ς2(p + 1) + ε2(p + 1). (76)

From (75) and (76), there exists a bucketB associated withi such that,

Ci,B(yK) − Ci,B(x1)

≤ d̂p+1(yK − x1) + 2σi + max(L − 1, 1) (ς2(p + 1) + ε2(p + 1)) . (77)

From (77), like in the base case,

Ci,n(yK) − Ci,n(x1)

≤ d̂p+1(yK − x1) + 2σi + 2biW + max(L − 1, 1) (ς2(p + 1) + ε2(p + 1)) . (78)

From (74) and (78),
K∑

k=1

(Ci,n(yk) − Ci,n(xk))

≤ d̂p+1

K∑

k=1

(yk − xk) + 2biW + 2σi + Kε2(p + 1) + max(L, 2) (ς2(p + 1) + ε2(p + 1)) . (79)
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Thus, (65) follows from (79) withς3(p+1) = max(L, 2) (ς2(p + 1) + ε2(p + 1))+2LW +2σ andε3(p+
1) = ε2(p + 1). Thus, (62) to (65) hold in the induction case.

Note thatςi(x), εi(x) are increasing in bothi andx. Thus, from (62), (63) and (65), Lemma 32 holds
with β = ς3(F ) andγ = ε3(F ).

Appendix S: Proof of Theorem 3

We present the proof when each session traverses one link. Let AR
i (t) be the number of packets of

sessioni that have been released at its source node in(0, t]. Note that a packet is released for session
i at its source if and only if a new token is generated for session i at the bucket at its source. Thus,
∀ t, AR

i (t) = Ci,n(t) wheren is the bucket ati’s source. Now, from Lemma 17, there exists constants

̺, W0, such that whenW ≥ W0, ∀ t, |
AR

i (t)

t
−d∗

i | ≤ ̺

t
. Thus, the packet release rate vector is~d∗ ∈ ΛMS.

Since only the released packets are available for scheduling and the release rate vector is inΛMS, the
departure rate vector exists and equals the release rate vector. The result follows.


