Data Structures and Algorithms (EE 220):
Homework 2 Solutions

Contact TA for any Queries about the Solutions
Posted 03/04/2003

Problem 1: (5 pts) There are two basic functionalities associated with Queue data
structure, lets call them In and Out. In(z) causes element z to enter the queue and
Out() takes out an element that was entered first among all existing elements.

Our algorithm for queue implementation using two stacks is simple. Name the
stacks as IN_stack and OUT _stack. As names suggest, whenever an element enters
the queue it is pushed onto IN_stack and the elements leaving the queue are popped
from OUT stack. If OUT stack is empty, then all the elements from IN_stack are
transfered to OUT _stack by successive POP and PUSH operations.

Complete algorithm is as follows.

In(x)

{
PUSH(x,IN_stack)

Out()
{
IF (OUT_stack not empty)
THEN
POP(OUT stack)
ELSE
WHILE (IN_stack not empty)
PUSH(POP(IN_stack),OUT _stack)
POP(OUT stack)

Observe that In(z) is ©(1), while Out() is ©(n) in the worst case, where n is
the stack size. It is worthwhile to note that even though Out() is expensive in the
worst case, it is just ©(1) in the amortized sense. To clarify the point, lets consider
a case when Out() operation corresponds to transferring m elements from IN_stack
to OUT_stack. Observe that the next m operations are just ©(1). Hence the total
cost of these m successive Qut operations is 2m. Thus on an average Out operation

is ©(1).



Problem 2: (5 pts) Observe that if we have some data structure in which an
element can be inserted in the front or at the back, then the sorting of a given
sequence can be done using the following algorithm

FOR(i =1 to n)
{
IF (a; < a)
Insert_front(a;)
ELSE
Insert_back(a;)

The data structure that allows the required functionality is circular linked lists
(discussed in the class). In this data structure each insert operation is ©(1) and we
need n inserts. Hence the complexity of the complete sorting algorithm is O(n).

Problem 3: (5 pts) A simple and yet an efficient algorithm for palindrome verifi-
cation is as follows. Let the given word be stored in Llist;.

STEP 1: Invert list Llist; and store the inverted list in Llist, (this operation is
discussed in the class). Let hl and h2 be the head pointers for the Llist; and
Lluistsy, respectively.

STEP 2:
WHILE (h1 # NULL)
{

IF (hl.letter = h2.letter)

hl = hl.next
h2 = h2.next
ELSE

return(Word is NOT palindrome)

}

return(Word is palindrome)

Observe that the STEP 1 is ©(n) and traversing the lists in STEP 2 is also
©(n). Hence the palindrome verification algorithm is O(n).

Problem 4: (10 pts) Let f(x) and g(z) be two polynomials of degree n. Without
loss of generality, let n be the poser of 2.

Now, let
f@) = apo1z™ '+ ...+ a1z +ag
g(z) = by 12"+ ...+ bz + by
We define,
fa(@) = ap 12 ' a,0x3 24+ an1Z + 0z



Similarly,
9(z) = z2gn(x) + gr().

With this construction observe that

f(2)g(z) = 2" fu(2)gu(@) + 2% [fu(2)ge(2) + fo(@)gn(@)] + fu(z)gp(@).

Observe that we have converted a polynomial multiplication problem having
polynomials of degree n into four polynomial multiplication problems involving poly-
nomials of degree 3.

Observe that dividing polynomials is O(n) and then we need to combine the
terms with equal powers in polynomial products fy(z)gr(x) and fr(x)gg(z), which
is also O(n). Thus, if T'(n) denotes the time required to solve the problem, then we

have the following recursion.
T(n) = 4T(g) +0(n)
= O(n?) By Master’s Thm.

Hence the above divide and conquer algorithm obtains the polynomial product
is O(n?) time.



