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ABSTRACT
Cognitive radio networks are emerging as a promising tech-
nology for the efficient use of radio spectrum. In these net-
works, there are two categories of networks on different chan-
nels: primary networks and secondary networks. A primary
network on a channel has prioritized access to the channel
and secondary networks can use the channel when the pri-
mary network is not using it. The access allocation problem
is to select the primary and secondary networks on each
channel. We develop an auction-based framework that al-
lows networks to bid for primary and secondary access based
on their utilities and traffic demands, and uses the bids to
solve the access allocation problem. We develop algorithms
for the access allocation problem and show how they can be
used either to maximize the auctioneer’s revenue given the
bids, or to maximize the social welfare of the bidding net-
works, while enforcing incentive compatibility. We first con-
sider the case when the bids of a network depend on which
other networks it will share channels with. When there can
be only one secondary network on a channel, we design an
optimal polynomial-time algorithm for the access allocation
problem based on reduction to a maximum matching prob-
lem in weighted graphs. When there can be two or more
secondary networks on a channel, we show that the optimal
access allocation problem is NP-Complete. Next, we con-
sider the case when the bids of a network are independent
of which other networks it will share channels with. We
design a polynomial-time dynamic programming algorithm
to optimally solve the access allocation problem when the
number of possible cardinalities of the set of secondary net-
works on a channel is upper-bounded. Finally, we design
a polynomial-time algorithm which approximates the access
allocation problem within a factor of 2 when the above upper
bound does not exist.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Wireless
Communication
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1. INTRODUCTION
With the proliferation of different wireless network tech-

nologies like cellular networks, Wireless Local Area Net-
works, Wireless Meteropolitan Area networks etc., demand
for radio spectrum is increasing. Currently, spectrum is reg-
ulated by a government agency like the Federal Communi-
cations Commission (FCC) and it allocates spectrum by as-
signing exclusive licenses to users to operate their networks
in different geographical regions.

There is a widespread belief that radio spectrum is be-
coming increasingly crowded. However, spectrum measure-
ments indicate that the allocated spectrum is under-utilized,
i.e. at any given time and location, much of the spectrum
is unused [2]. Cognitive radio networks are emerging as a
promising solution to this dilemma. In these networks, there
are two levels of networks on a channel– primary networks
and secondary networks. A primary or secondary network
is a network of multiple wireless devices, which we call pri-
mary and secondary nodes respectively. A primary node has
priortized access to the channel, i.e. it can transmit on the
channel regardless of the transmissions of secondary nodes.
On the other hand, a secondary node can transmit on the
channel provided primary nodes are not transmitting. So
whenever a secondary node wants to transmit on the chan-
nel, it senses the channel to check for ongoing transmissions.
It initiates a transmission only if a primary node is not trans-
mitting. Moreover, if a secondary node is transmitting and
a primary node wishes to transmit, then the secondary node
suspends its transmission until after the primary node fin-
ishes its transmission. Cognitive radio technology [4] allows
secondary nodes to detect which channel is not being used
by primary nodes, share this channel with other secondary
nodes and vacate the channel when a primary node is de-
tected. Surveys on cognitive radio networks can be found
in [1] and [4].

An important question faced by a spectrum regulator is
how to allocate the rights to be primary and secondary net-
works on its channels. Different networks may attach dif-
ferent value to being primary and secondary. A network
may wish to mainly transmit delay-sensitive traffic like voice
or video. Such a network will attach a high value to the



rights to be primary. On the other hand, a network may
be mainly interested in transmitting delay-insensitive traf-
fic like email or file transfer. Such a network would not
need primary rights and would prefer secondary rights since
the latter would be priced lower than the former. Also,
a network whose traffic is a mixture of delay-sensitive and
delay-insensitive traffic would want primary rights on some
channels and secondary rights on some channels.

Auctions are suitable for selling the rights to be primary
and secondary on the channels. Since the regulator need
not know the values that bidders attach to primary and
secondary rights, auctions provide a mechanism for the reg-
ulator to get a higher revenue than that obtainable through
static pricing [9]. Auctions are also beneficial for the bidders
since in general they assign goods to the bidders who value
them most [9]. FCC has been conducting spectrum auctions
since 1994 to allocate licenses for radio spectrum [3] (how-
ever, so far, no auctions have been conducted for cognitive
radio networks).

Spectrum auctions have been studied in [9], [6], [7], [8].
We now explain how our work differs from previous work.
In some of the existing work on spectrum auctions [9], [8],
each channel is assigned to a single network, i.e. there is no
notion of primary and secondary networks on a single chan-
nel. We consider the case when there is a primary network
and one or more secondary networks on each channel. Now,
there are two possibilities [10] for allocating secondary rights
on the channels. In one possibility, the regulator allocates
channels to primary networks and the primary networks in-
dependently allocate unused portions on their channels to
the secondary networks. Auctions have been designed for
this scenario in [6] and [7]. In the other possibility, the reg-
ulator allocates the rights to be the primary and secondary
networks on the channels in a single allocation [10]. To the
best of our knowledge, no work has been done in design-
ing auctions for this scenario. In this paper, we develop a
comprehensive auction framework using which a regulator
can simultaneously allocate the rights to be primary and
secondary on the channels. This scenario may be more de-
sirable than the first possibility above in certain cases. For
example, it gives a greater degree of control over the alloca-
tion to the regulator than in the case when primary networks
allocate unused portions on their channels to the secondary
networks.

We consider a scenario in which the regulator conducts
an auction to sell the rights to be primary and secondary
networks on a set of channels. Networks can bid for these
rights based on their utilities and traffic demands. The reg-
ulator uses these bids to solve the access allocation problem,
i.e. the problem of deciding which networks will be the pri-
mary and secondary networks on each channel. The goal of
the regulator may be either to maximize its revenue or to
maximize the social welfare of the bidding networks. Now,
networks can have utilities or valuations that are functions
of the number of channels on which they get primary and
secondary rights, on how many and which other networks
they share these channels with etc. The number of valua-
tions of a network may be large and an exponential amount
of space may be required to express a bid for each valuation.
So we design bidding languages, that is, compact formats for
networks to express bids for their valuations. For different
bidding languages, we design algorithms for the access allo-
cation problem.

The paper is organized as follows. We describe the sys-
tem model in Section 2. In Section 3, we describe how the
bidding languages and algorithms that we design in the pa-
per can be used to maximize the auctioneer’s revenue or to
maximize social welfare. In Section 4, we describe a model
in which the bids of a network depend on which other net-
works it will share channels with. In Section 4.1, we design
an optimal algorithm for the access allocation problem for a
simple case with only one secondary network on each chan-
nel. We show the intractability (NP-Competeness of the
access allocation problem or exponential size of bids) of the
extensions of this simple case in Section 4.2. In Section 5,
we consider the case in which the bids of a network are in-
dependent of which networks it will share channels with and
provide an optimal polynomial-time algorithm for the access
allocation problem when the number of cardinalities of the
set of secondary networks on a channel is upper-bounded. In
Section 6, we describe a bidding language that can be used
for the independent bids case when the above bound does
not exist and provide a greedy 2-approximation algorithm
for the access allocation problem.

Due to space constraints, we omit the proofs of several
results and outline the proofs for some others.

2. SYSTEM MODEL
We consider a scenario in which there are M identical or-

thogonal channels in a region. A regulator conducts an auc-
tion to sell the rights to be the primary and secondary net-
works on the channels. N bidders participate in the auction.
Each bidder is an independent network of multiple wireless
nodes. Each bidding network submits bids to the regulator
and based on the bids, the latter allocates the rights to be
the primary and secondary networks on the channels.

A primary network on a channel must have priortized ac-
cess to the channel. If two or more independent networks
were to be the primary networks on a single channel, then
the access of each one of them would be constrained by the
transmissions of the other primary networks, which would
transmit at the same priority level. To avoid this, we as-
sume that there is exactly one primary network on each
channel. However, we allow multiple networks to have sec-
ondary rights on a channel.

We assume that all the secondary networks on a channel
have equal rights on the channel. This is because compli-
cated multiple access protocols [5] would be required to grant
access at different priority levels to different secondary net-
works on a channel (with all of them getting lower priority
access than the primary network). On the other hand, sim-
ple multiple access protocols would suffice if all secondary
networks have equal rights on the channel.

Now, since a primary network has priortized access on
a channel, the average delay of its traffic is low. On the
other hand, the average delay of a secondary network’s traf-
fic is high. Hence, primary rights (respectively secondary
rights) are suitable for communicating delay-sensitive (re-
spectively delay-insensitive) traffic. We assume that each
network has two kinds of traffic: (a) delay-sensitive traffic
like voice, video etc. and (b) delay-insensitive or elastic traf-
fic like email, file-transfer etc. A network uses its primary
rights to transmit its delay-sensitive traffic and its secondary
rights to transmit its elastic traffic.

We allow a single network i to be both the primary net-
work and one of the secondary networks on a channel. In this



case, we assume that it transmits its delay-sensitive traffic as
a primary network, i.e. with high-priority and elastic traffic
as a secondary network, i.e. when it has no delay-sensitive
traffic to transmit. Also, the other secondary networks on
the channel can transmit whenever network i is not trans-
mitting its delay-sensitive traffic.

Let K be the set of all possible ways in which the M
channels can be allocated to the N bidders. For example,
consider the simple case in which M = 3, N = 9 and there
can be at most four secondary networks on a channel. An
example of an allocation of the channels is one in which
network 1 becomes the primary network on channels 1 and 2,
network 2 becomes primary on channel 3, network 3 becomes
the sole secondary network on channel 1, networks 4 and 5
become secondary networks on channel 2, networks 1, 4, 6
and 7 become secondary networks on channel 3 and networks
8 and 9 do not become primary or secondary networks on
any channel.

Let xi(k) be network i’s valuation or utility from the chan-
nel allocation k ∈ K, i.e., the value that it conjectures or
expects to derive from the allocation k. Note that since
network i will share channels with other networks in the al-
location k, the actual utility that network i will derive from
an allocation k depends on the transmission patterns of the
other networks that are not completely known to network i.
Hence, each network i bids for access based on its conjec-
tures about its actual utility. Henceforth, we use the terms
valuation or utility for xi(k), but they should be understood
to mean the conjectured utility or valuation of network i for
the channel allocation k.

The valuations xi(.) of network i for the allocations in K
depend on its traffic demands, i.e. the volumes of delay-
sensitive and elastic traffic that it wants to transmit. Now,
for given traffic demands, the valuation of a network i for
a channel allocation k ∈ K may depend upon the number
of channels on which network i has primary and secondary
rights in the allocation k, how many and which other net-
works have rights on each of the channels on which network
i has primary or secondary rights etc. Note that network i
may have the same valuation for different allocations k ∈ K.

Network i’s net utility is of the form:

ui(k, τi, xi) = xi(k) − τi (1)

where τi is the payment that network i makes to the auc-
tioneer. The auctioneer determines the channel allocation
and the payment τi that each network i makes to the auc-
tioneer. The social welfare of an allocation k is defined to
be the quantity:

N∑
i=1

xi(k)

Thus, the social welfare is the sum of utilities of all bidders
from the allocation k.

Now, there could be two goals for designing the auction:
revenue maximization and maximizing social welfare. In the
first goal, based on its valuations, each network submits a
set of bids to the auctioneer. Let zi(k) be the bid of network
i for the allocation k ∈ K, i.e. the amount of money it is
willing to pay if the allocation k ∈ K is chosen. Let k∗

be the channel allocation that maximizes the revenue of the
auctioneer, given the bids zi(.) for bidders 1, . . . , N . That

is, k∗ satisfies:

N∑
i=1

zi(k
∗) ≥

N∑
i=1

zi(k) ∀k ∈ K (2)

As we will see in Section 3, when zi(.) are not the bids of the
networks, but have a different interpretation, the channel al-
location that maximizes the social welfare of the N networks
can be found by finding the k∗ satisfying the above equation.
The access allocation problem is to determine the channel
allocation k∗ satisfying (2). Depending on the interpretation
of zi(.), this allocation k∗ either maximizes the auctioneer’s
revenue or the social welfare of the N networks.

Now, the set K of possible channel allocations may be
exponential in size. As noted earlier, a bidder i may have
the same valuation for two or more allocations in K and
hence it need not specify a bid for each k ∈ K. The to-
tal number of different valuations of network i may still be
exponential. However, it is not feasible to communicate a
bid for each valuation in this large set. So we introduce bid-
ding languages for the auction models that we consider. A
bidding language [11] is a format to compactly encode the
bid information of a bidder. When there are an exponential
number of valuations, a bidding language expresses the bids
approximately, not exactly.

3. SOLUTION FRAMEWORK
As stated earlier, an auction could be designed for two

different objectives. In our context, the first objective is to
choose the channel allocation that maximizes the regulator’s
revenue for a given set of bids of the bidders. This can be
done by choosing the allocation k∗ satisfying (2) when zi(k)
is the bid of network i for the channel allocation k.

The second possible objective for the auction could be to
achieve efficiency, that is, to choose the allocation that max-
imizes social welfare. To this end, each bidder is asked to
declare its valuation function xi(.). With an abuse of nota-
tion, let zi(k) denote the declared valuation of network i for
the allocation k, which may be different from xi(k) if bidder
i believes that falsely declaring its valuations will improve
its net utility. Truth-telling is said to be a weakly-dominant
strategy [17] for network i, if for any possible declarations of
networks other than i, the net utility of network i is maxi-
mized when it sets zi(k) = xi(k) ∀k ∈ K. It follows from the
revelation principle [17] that to maximize social welfare, it
is sufficient to consider mechanisms in which the payments
τi are chosen such that for each bidder i, truth-telling is
a weakly dominant strategy. Such a mechanism is called
incentive compatible.

To date, the Vickrey-Clarke-Groves (VCG) mechanism [17]
is the only known general incentive compatible mechanism
that can be used to maximize social welfare. Under this
mechanism, given the declared valuation functions zi(.) of
the bidders, the allocation k∗ satisfying (2) is chosen and
the payments are chosen so as to enforce incentive compat-
ibility [17]. It can be shown that the VCG mechanism can
be implemented by running an algorithm for the access al-
location problem (in equation (2)) (N +1) times– once with
all bidders and once each for the set of bidders {1, . . . , N}\i
for i = 1, . . . , N .

Now, in general, the set of different valuations of a bidding
network is exponential in size. First we consider the special
case when the number of different valuations of each bidding



network is of poynomial space complexity (but K can still be
exponential in size). Even in this case, it is sometimes com-
putationally intractable to devise an algorithm to find the
optimal allocation k∗ satisfying (2), possibly because this is
NP-hard, but instead an approximation algorithm for the
access allocation problem can be devised. In this case, the
VCG mechanism cannot be used to enforce incentive com-
patibility. To address this problem, Nisan and Ronen [19]
devised the second-chance mechanism which enforces incen-
tive compatibility under the assumption that there is a limit
on the computational resources of each bidder. Moreover,
the social welfare attained by the second-chance mechanism
is at least as good as the social welfare of the approximation
algorithm used for the access allocation problem.

Now, in some cases, the set of valuations of a bidder takes
an exponential amount of space and hence bidders have to
use incomplete bidding languages (see Section 2) to convey
their valuations. In this case as well, the VCG mechanism
cannot be used to enforce incentive compatibility. As a solu-
tion to this problem, Ronen [20] devised the extended second-
chance mechanism that, under reasonable assumptions [20],
can be used to enforce incentive compatibility and achieve a
social welfare at least as good as that of the approximation
algorithm used for the access allocation problem.

In this paper, we propose several spectrum auction models
and design bidding languages and algorithms for the access
allocation problem. These can be used for the objective of
maximizing the revenue of the auctioneer or for maximizing
the social welfare of the bidders in conjunction with the
VCG, second-chance or extended second-chance mechanism,
as appropriate.

For notational convenience, throughout the paper, we as-
sume that zi(.) are the bids expressed by bidder i and view
the access allocation problem as the problem of maximiz-
ing the revenue of the auctioneer. However, our framework
applies without change to the problem of maximizing social
welfare.

4. AUCTION WITH DEPENDENT BIDS
A primary or secondary network on a channel shares the

channel with other networks and hence its actual utility from
the channel depends on the transmissions of those networks.
A network may have some knowledge or beliefs about the
typical transmission patterns of the other bidding networks.
For example, the agency owning the network may conduct a
survey on the typical transmission patterns of the other net-
works in its region or, if auctions are periodically conducted
to allocate spectrum in the region, the agency may gain this
knowledge about the networks with whom it shared chan-
nels previously. Thus, the conjectured utilities and hence
the bids of a network would depend on which networks it
will share different channels with.

4.1 Basic Model
In the basic model with dependent bids, we consider the

model described in Section 2 with the following additional
assumptions.

Assumption 1. There is only one secondary network on
each channel.

Assumption 2. Each network can be either the primary
or the secondary network on only one channel.

We explore the effect of relaxing either of these assump-
tions in Section 4.2. We assume that N ≥ 2M , so that all
M channels can be allocated.

A secondary network on a channel can use the channel
whenever the primary network is not using it. So the through-
put and delay of the secondary network on the channel de-
pends on the channel usage behavior of the primary on the
channel, i.e. on the rate of its transmissions on the channel
and how these transmissions are spread over time. On the
other hand, the primary network on a channel has priortized
access to the channel. That is, when the secondary network
wants to transmit on the channel, it senses the channel and
can transmit only if it finds that the primary network is not
transmitting. However, due to the imperfect nature of sens-
ing, the secondary network will sometimes transmit while
the primary network is transmitting, resulting in a collision.
Hence the primary network’s utility depends on the chan-
nel usage behavior of the secondary network on the channel.
Thus, the actual utility of a primary or secondary network
depends on which network it shares a channel with. As
explained above, a network may in general have certain be-
liefs about the channel usage behavior of other networks and
hence may wish to express bids dependent on the network
with whom it shares the channel. To model this, let

zp
i (j), j ∈ {1, . . . , N}\{i}

be the bid of network i for the case when it is the primary
network on a channel and network j is the secondary network
on the channel. Similarly, let

zs
i (j), j ∈ {1, . . . , N}\{i}

be the bid of network i for the case when it is the secondary
network on a channel and network i is the primary network.

Let

k = {(i1, j1), . . . , (iM , jM )}
be an allocation of the M channels to a set of networks. k
is a set of M orderered pairs (it, jt) such that network it
is the primary network on channel t and network jt is the
secondary network on channel t. Note that the revenue of
the allocation k is:

M∑
t=1

(zp
it

(jt) + zs
jt

(it))

We describe an algorithm for determining k∗, the allocation
that maximizes the revenue, by reduction to a maximum
weight matching problem in a graph. Let G be a weighted
undirected graph with N nodes, one node corresponding to
each network. G is a complete graph, i.e. between every
pair of nodes, there is an edge. Let the weight of the edge
joining nodes i and j be

wij = max(zp
i (j) + zs

j (i), z
p
j (i) + zs

i (j)) (3)

Note that the weights are nonnegative real numbers. The
interpretation of the weights wij is as follows. If network i
(respectively network j) is the primary network on a chan-
nel and network j (respectively network i) is the secondary
network, then the sum of the amounts paid by networks i
and j is zp

i (j) + zs
j (i) (respectively, zs

i (j) + zp
j (i)). So wij ,

the greater of these two quantities, is the maximum sum of
payments of networks i and j if they are the two networks
on the same channel.



A matching M in a graph is defined to be a subset of the
edges such that no two edges in the subset share a common
node. The weight of a matching is the sum of the weights
of its edges.

The following algorithm finds the channel allocation k∗

that maximizes the revenue:
STEP1: In graph G, find a matching M∗

M of maximum
weight among matchings with exactly M edges (we say how
later).

STEP2: Let e1, . . . , eM be the M edges in the matching
M∗

M . Let e1
t and e2

t be the two endpoints of edge et. The
allocation k∗ is chosen such that for t = 1, . . . , M , networks
e1

t and e2
t become the two networks (primary and secondary)

on channel t. If

zp

e1
t
(e2

t ) + zs
e2

t
(e1

t ) ≥ zp

e2
t
(e1

t ) + zs
e1

t
(e2

t )

then network e1
t becomes the primary network on channel t

and network e2
t becomes the secondary network, otherwise

network e2
t becomes the primary network on channel t and

network e1
t becomes the secondary network.

Theorem 1. The allocation k∗ found from the matching
M∗

M in the above algorithm is the one that maximizes the
revenue.

Proof. (Outline) There is a many-to-one correspondence
between the set of channel allocations and the set of match-
ings with exactly M edges. (It is many-to-one since the
allocations obtained from any allocation by swapping the
roles of the primary and secondary networks on one or more
channels correspond to the same matching). From the in-
terpretation of the weight of an edge given above, it fol-
lows that the weight of a matching MM has the maximum
revenue among the revenues of the channel allocations that
correspond to it. Moreover, Step 2 of the above algorithm
selects the primary network on each channel from the two
networks on the channel so as to maximize the sum of pay-
ments of the two networks. Finally, since M∗

M is the max-
imum weight matching among all matchings with exactly
M edges, we get the desired result that the channel allo-
cation k∗ obtained from the matching M∗

M is the one that
maximizes the revenue.

Now, it remains to show how to find the matching M∗
M .

Edmonds [13] gave a polynomial-time algorithm for find-
ing the maximum weight matching (with any number of
edges) in a graph. However, we are interested in a maximum
weight matching among matchings with M edges, which can-
not be directly obtained by Edmonds’ algorithm. It can be
obtained in O(M4 + M2N2) time using White’s modifica-
tion [14], [15] to the algorithm.

4.2 Intractability of Extensions
We now explore the effect of relaxing either one of As-

sumptions 1 and 2. Suppose Assumption 1 is relaxed and
Assumption 2 is retained. That is, we assume that each net-
work can be the primary or a secondary network on only one
channel. However, there can be multiple secondary networks
on a channel. We show that even if there are two secondary
networks on a channel, the problem of finding a channel
allocation that maximizes the revenue is NP-Complete.

Suppose there is one primary network and r−1 secondary
networks on each channel. Let zp

i (j1, . . . , jr−1) be the bid of
network i for the case in which it is primary on a channel and

networks j1, . . . , jr−1 are secondary. Let zs
j1(i, j2, . . . , jr−1)

be the bid of network j1 for the case in which network i is
the primary and networks j1, . . . , jr−1 are the secondary net-
works. We now define the r-Network Dependent Bid Access
Allocation Problem (r-NDBAA).

Definition 1 (The r-NDBAA Problem). Suppose M
channels are to be allocated to N bidders such that on each
channel, one network is primary and r−1 networks are sec-
ondary, where r is a fixed positive integer. Each bidder can
be a primary or secondary network on at most one chan-
nel and the bids of networks are as given above. Find the
allocation that maximizes the revenue.

The decision version of r-NDBAA is as follows: given a
bound D, is there a channel allocation such that the rev-
enue under the allocation is at least D? We next show that
(the decision version of) 3-NDBAA is NP-Complete.

Theorem 2. 3-NDBAA is NP-Complete.

Proof. (Outline) Given an allocation of the M channels,
we can verify in polynomial time whether the revenue under
the allocation is at least D. This shows that 3-NDBAA is
in the class NP.

Next, we show that the 3-Dimensional Matching problem
(3DM), which is known to be NP-complete [18], is polynomial-
time reducible to 3-NDBAA, i.e. 3DM ≤p 3-NDBAA. An
instance of 3DM is as follows [18]: Given disjoint sets A, B,
C of m elements each and a set T of ordered triples of the
form (a, b, c), where a ∈ A, b ∈ B and c ∈ C, do there exist
a set of m triples in T so that each element of A ∪ B ∪ C is
contained in exactly one of these triples?

From this instance of 3DM, we construct an instance of
3-NDBAA as follows. Let there be M = m channels and
3m networks– one network corresponding to each element
of A ∪ B ∪ C. For every set {i, j, l} of three networks such
that (i, j, l) (or one of its permutations (j, l, i), (l, j, i) etc.)
is a triple in T , define all of the following bids to be equal to
1
3
: zp

i (j, l), zp
j (i, l), zp

l (i, j), zs
i (j, l), zs

i (l, j), zs
j (i, l), zs

j (l, i),
zs

l (i, j), zs
l (j, i). For every set {i, j, l} of three networks such

that no permutation of (i, j, l) is a triple in T , let all of the
above bids be equal to 1

6
. In this 3-NDBAA problem, we

ask: is there a channel allocation of the m channels with
revenue of at least D = m? It can be shown that the answer
is yes if and only if the answer in the original 3DM problem
is yes. This shows that 3DM ≤p 3-NDBAA and hence that
3-NDBAA is NP-Complete.

By an analogous reduction from r-Dimensional Matching,
it can be shown that r-NDBAA is NP-Complete for fixed
r > 3. Note that for r > 3, r-Dimensional Matching is
NP-Complete, which follows from a trivial reduction from
3-Dimensional Matching. Moreover, if r is unbounded, then
each bidder i would have to submit an exponential num-
ber of bids zp

i (j1, . . . , jr−1) and zs
i (j1, . . . , jr−1). Also, we

assumed that exactly r − 1 networks are the secondary net-
works on a channel. If different numbers of networks can be
the secondary networks, then each network would have to
submit an even greater number of bids.

Now, suppose we relax Assumption 2 and retain Assump-
tion 1. Then each network can become a primary or sec-
ondary network on up to M channels. As explained above,
the utility of a network from the primary or secondary rights



on a given channel depends upon the channel usage behav-
ior of the network it shares the channel with. However, the
channel usage behavior of this network on the channel may
in turn depend upon the number of channels on which it
has primary and secondary rights and the channel usage be-
havior of the networks it shares those channels with and
so on. Thus, in general, the utility of a network may de-
pend upon which networks are the primary and secondary
networks on each channel. The number of possible ways
of choosing the primary and secondary networks on the M
channels is clearly exponential. Thus, relaxing Assumption 2
in the auction with dependent bids would require a network
to express an exponential number of bids, which is infeasible.

5. AUCTION WITH INDEPENDENT BIDS
In Section 4, we noted that when networks have some

knowledge of the channel usage behavior of other networks,
they would like to express bids dependent on which networks
they will share channels with. However, it is quite possible
in some scenarios that networks have no knowledge of the
channel usage behavior of the other bidding networks. In
this case, their conjectures about the utility that they will
actually get from a channel allocation would be based only
on the number of channels on which they will get primary
and secondary rights and the number of other networks they
will share these channels with in the allocation and would be
independent of which other networks they will share chan-
nels with. Thus, they would submit bids, based on these
conjectured utilities, that are independent of which networks
share different channels with them.

Moreover, in Section 4.2, we showed that bids of expo-
nential size are needed in the auction with dependent bids
when Assumptions 1 and 2 are relaxed. This motivates the
idea that even when networks have some knowledge of the
channel usage behavior of the other networks, we can obtain
a compact bidding language, that is, a means for networks
to approximately convey their bids, by imposing the restric-
tion that the bids of a network be independent of which
other networks it shares different channels with. We study
the auction resulting from imposing this restriction in this
section.

We describe the model in Section 5.1 and provide an opti-
mal dynamic-programming algorithm for the access alloca-
tion problem in Section 5.2.

5.1 Model
Consider the model in Section 2 with the following addi-

tions. On each channel, one network can be the primary
network and m1, m2, . . . , m(n−1) or mn networks can be
the secondary networks, where 1 ≤ m1 < m2 < . . . < mn.
Note that n is the number of possible cardinalities of the set
of secondary networks on a channel.

When the results of the auction are declared, let ni,0 be
the number of channels on which bidder i is the primary
network. Let ni,j , j = 1, . . . , n be the number of channels
on which bidder i is a secondary network along with mj − 1
other secondary networks.

Suppose there are mj secondary networks on a channel.
Recall from Section 2 that each of these mj secondary net-
works have equal rights on the channel. The share of each
of these networks in the secondary rights on the channel is
called a secondary part of type j. Also, the channel is said
to be divided into mj secondary parts of type j. Similarly,

since exactly one network becomes a primary network on a
channel, if a network is the primary network on l channels,
we say that it is allocated l primary parts. Also, we re-
fer to the throughput received by a network as a secondary
network as its secondary throughput.

In general, network i’s utility may depend not only on the
total expected secondary throughput that it gets, but also
on the distribution of this secondary throughput over the
M channels. For example, it may get the same expected
secondary throughput if (a) it is the secondary network on
two channels with one other secondary network on each and
(b) if it is the sole secondary network on one channel. But
it may prefer one of these scenarios over the other. This is
because a network has to sense different channels on which
it has secondary rights for ongoing transmissions and also
communicate on them. There may be costs due to delays
for switching the antennas of the network’s nodes between
different channels. To take into account this possibility, in
this section, we assume that the utility of network i de-
pends not just on the expected secondary throughput (and
the number of primary parts) it receives, but on the vector
(ni,0, ni,1, . . . , ni,n). We allow bidder i to submit bids as a
function of this vector.

Each bidder i submits the following bid vector to the auc-
tioneer:

{zi(ni,0, ni,1, . . . ni,n) : 0 ≤ ni,0, ni,1, . . . ni,n ≤ M,

ni,1 + ni,2 + . . . + ni,n ≤ M ; ni,j integer, j = 0, 1, . . . n}
where zi(ni,0, ni,1, . . . ni,n) is network i’s bid for becoming
the primary network on ni,0 channels and becoming a sec-
ondary network on ni,j channels along with mj − 1 other
secondary networks, for j = 1, 2, . . . n.

The following result can be easily proved.

Lemma 1. The size of the bid vector submitted by each
network is O(Mn+1).

We say that an allocation {ni,j : i = 1, . . . , N ; j = 0, . . . , n}
is feasible if it is possible to assign to networks, the rights to
be primary and secondary on each of the M channels such
that network i, i = 1, . . . , N is allocated ni,0 primary parts
and ni,j secondary parts of type j for j = 1, . . . , n. The fol-
lowing lemma describes necessary and sufficient conditions
for an allocation to be feasible.

Lemma 2. An allocation {ni,j : i = 1, . . . , N ; j = 0, . . . , n}
is feasible if and only if ni,0, ni,1 . . . ni,n for i = 1, . . . , N are
integers such that for some nonnegative integers Mj , j =
1, . . . n satisfying M1 + . . . + Mn = M :

0 ≤ ni,0 ≤ M, i = 1, . . . , N (4)

N∑
i=1

ni,0 = M (5)

0 ≤ ni,j ≤ Mj , i = 1, . . . , N ; j = 1, . . . , n (6)

N∑
i=1

ni,j = mjMj , j = 1, . . . , n (7)

Note that the integer Mj in the above lemma corresponds to
the number of channels that are divided into mj secondary
parts of type j. We assume that the number of bidders is at
least m1 so that a feasible allocation exists.



From a feasible allocation {ni,j : i = 1, . . . , N ; j = 0, . . . , n},
it is easy to construct a consistent specification of the pri-
mary and secondary networks on each channel. Hence, the
access allocation problem reduces to finding the feasible allo-
cation {ni,j : i = 1, . . . , N ; j = 0, . . . , n} that maximizes the
auctioneer’s revenue given the submitted bid vectors zi(.).

5.2 Algorithm to find the Optimal Feasible
Allocation

In this section, we present an exact algorithm for finding
the feasible allocation that maximizes the auctioneer’s rev-
enue. The algorithm is polynomial-time when n, the num-
ber of possible cardinalities of the set of secondary networks
on a channel, is fixed (and mn is allowed to grow with the
problem size). This special case can be useful in practice be-
cause even with small n, flexibility in channel allocation can
be achieved by choosing m1, . . . , mn judiciously. For exam-
ple, with n = 3, we can choose m1 = 1, m2 = 4 and m3 = 8.
In this case, large chunks of secondary throughput can be
allocated to a network by having it the sole secondary net-
work on several channels and small chunks can be allocated
to networks by having 4 or 8 networks share a channel.

A dynamic programming algorithm is given in [12] and [11]
for the winner determination problem in a combinatorial
auction with multiple units of a fixed number of different
types of objects. We generalize the algorithm in [12], [11] in
two directions: (a) the objects in a combinatorial auction are
indivisible, whereas we need to decide into how many sec-
ondary parts to divide each channel and (b) in our auction,
the allocation has to be feasible according to the conditions
in Lemma 2.

Due to space constraints, we only outline our algorithm
without giving details. Given the bids zi(.), our goal is to
find the feasible allocation {ni,j : i = 1, . . . N ; j = 0, . . . , n}
which maximizes revenue. Fix M1, . . . , Mn satisfying M1 +
. . . + Mn = M such that Mj channels are divided into mj

secondary parts of type j, for j = 1, . . . , n. For these fixed
values, let T (j0, j1, . . . jn, i) denote the maximum possible
revenue from all participating networks when j0 primary
parts and jt secondary parts of type t, t = 1, . . . , n, are
to be allocated and networks 1, . . . , i are participating in
the auction. Thus, T (M, m1M1, . . . mnMn, N) is the max-
imum revenue from all N networks when Mj channels are
divided into mj secondary parts of type j, for j = 1, . . . , n
and can be found using the following dynamic programming
algorithm.

Initialization

T (j0, j1, . . . jn, 1) = z1(j0, j1, . . . , jn, 1)

if j0 ≤ M, jt ≤ Mt, t = 1, . . . , n

= −∞ otherwise (8)

Recurrence

T (j0, j1, . . . , jn, i) = max(

T (j0 − l0, j1 − l1, . . . , jn − ln, i − 1) + zi(l0, l1, . . . , ln) :

l0 ∈ {0, 1, . . . , min(j0, M)}, lv ∈ {0, 1, . . . , min(jv, Mv)},
v = 1, . . . , n)

(9)

It can be shown that T (M, m1M1, . . . mnMn, N) found from
the above recurrence is the revenue of the feasible allocation
{ni,j : i = 1, . . . N ; j = 0, . . . , n} that achieves the maximum
revenue for the fixed values M1, . . . , Mn assumed. Also, the
revenue maximizing feasible allocation itself can be found
from the array T (j0, j1, . . . jn, i).

For all sets M1, . . . , Mn such that M1 + . . . + Mn = M ,
T (M, m1M1, . . . mnMn, N) and the revenue maximizing fea-
sible allocation are found as explained above. Then the op-
timal set (M∗

1 , . . . , M∗
n) is found as follows:

(M∗
1 , . . . , M∗

n) = argmax
M1+...+Mn=M

T (M,m1M1, . . . mnMn, N)

(10)
The revenue maximizing feasible allocation with M1 = M∗

1 ,
. . . , Mn = M∗

n is the one that maximizes revenue among all
feasible allocations.

Lemma 3. The running time of the above algorithm is
O(M3n+2mn

nN).

Lemma 4. The maximum amount of storage required at
any given time during the execution of the algorithm is
O(Mn+1mn

nN).

Note that the running time and space complexity of the
algorithm are polynomial for fixed n.

6. A GREEDY 2-APPROXIMATION
ALGORITHM

The scheme described in Section 5 is feasible for fixed n,
the number of possible cardinalities of the set of secondary
networks on a channel. However, if n is allowed to grow, the
set of bids of a network is exponential in size as Lemma 1
shows and hence the scheme is infeasible. In this section, we
first provide a compact bidding language for the case with
large n, i.e. a means for networks to approximately convey
their bids. We conjecture that under this bidding language,
the access allocation problem is NP-hard. We give a basis for
this conjecture in Section 7. We provide a polynomial-time
algorithm that approximates the maximum revenue of the
auctioneer within a factor of 2. Note that this algorithm can
also be used to approximate the maximum social welfare of
the bidding networks within a factor of 2 using the extended
second-chance mechanism described in Section 3.

We describe the bidding language in Section 6.1. In Sec-
tion 6.2, we introduce residual bid functions, a concept used
in the approximation algorithm. We describe the algorithm
in Section 6.3 and prove that it achieves an approximation
ratio of 2 in Section 6.4.

6.1 Bidding Language
Consider the model in Section 5 with the following changes.

Let the bandwidth of each of the M channels be W bps.
We assume that the primary network on a channel uses the
channel for an expected fraction of time α, where 0 < α < 1.
When auctions are repeated periodically to assign spectrum,
α can be estimated based on long-term measurements of the
primary networks’ channel usage. Alternatively, it can be
estimated via simulations. Since secondary networks can
use the channel whenever the primary is not using it, an ex-
pected bandwidth of W (1− α) is available on a channel for
the secondary networks. So when mj secondary networks



share a channel, each one of them can get an expected sec-

ondary throughput of W (1−α)
mj

on the channel. In this sec-

tion, we allow a network i to express bids as a function of
the number of channels ni,0 on which it is primary and its
total expected secondary throughput T s

i on all M channels.
Note that:

T s
i =

n∑
j=1

ni,jW (1− α)

mj
(11)

In the sequel, for brevity, we simply say secondary through-
put instead of expected secondary throughput. Moreover,
we assume that the utility, and hence the bid zi(ni,0, T

s
i ), of

each network i when it is primary on ni,0 channels and has
T s

i units of secondary throughput, is separable, i.e. of the
form:

zi(ni,0, T
s
i ) = wi(ni,0) + yi(T

s
i ) (12)

where wi(ni,0) is its bid for being primary on ni,0 chan-
nels and yi(T

s
i ) is its bid for T s

i units of throughput as
a secondary network. This assumption is a good approx-
imation since networks transmit different kinds of traffic
(delay-sensitive and elastic respectively) as a primary and
secondary network.

Under this assumption, the access allocation problem sep-
arates out into two independent problems– allocating the
primary parts and allocating the secondary parts. The prob-
lem of allocating the primary parts can be optimally solved
in O(M2N) time using the dynamic programming algorithm
in Section 5.2 with n = 0. In this section, we focus on giving
a 2-approximation algorithm for the problem of allocating
the secondary parts so as to maximize the auctioneer’s rev-
enue. In the rest of the section, “revenue” refers to the auc-
tioneer’s revenue from selling the secondary rights on the M
channels.

Assume that yi(.) is a concave increasing function for each
network i. We use piecewise linear concave functions to com-
pactly represent the bid functions of the networks. They
can be used to closely approximate arbitrary concave func-
tions [16] and have been previously used in the context of
spectrum auctions in [9]. Each network i specifies its bid
for at most P different levels of secondary throughput, for a
positive integer P . More precisely, let Pi ≤ P be a positive
integer and let:

0 = qi,1 < qi,2 < . . . < qi,Pi (13)

For v = 1, . . . , Pi, network i specifies yi(qi,v), which is its
bid for qi,v units of secondary throughput. Network i’s bid
for q units of secondary throughput, where qi,v < q < qi,v+1

is found by linear interpolation:

yi(q) = yi(qi,v) +

(
yi(qi,v+1) − yi(qi,v)

qi,v+1 − qi,v

)
(q − qi,v) (14)

We assume that for each network i, qi,1 = 0, that yi(qi,1) =
yi(0) = 0 and that

qi,Pi ≥ MW (1 − α). (15)

Since MW (1 − α) is the total secondary throughput avail-
able on the M channels, the second assumption means that
network i’s bid for any amount of secondary throughput on
the M channels can be found by linear interpolation.

6.2 Residual Bid Functions
Our algorithm uses the following concept.

Definition 2. Let q̃ ≥ 0. The q̃-residual bid function of
network i is the function ỹi(.) given by:

ỹi(q) = yi(q̃ + q) − yi(q̃) (16)

We will sometimes say, “the residual bid function after ac-
counting for q̃” instead of the q̃-residual bid function. Infor-
mally, once network i has been allocated q̃ units of secondary
throughput, ỹi(.) acts as its bid function for allocations of
additional secondary throughput. It can be shown that the
residual bid function can be efficiently computed from the
bid function. We omit the proof due to space constraints.
The following lemma gives some simple properties about the
q̃-residual bid function.

Lemma 5. Let ỹi(q) be the q̃-residual bid function of net-
work i for some q̃ ≥ 0. Then

1. ỹi(q) ≤ yi(q) ∀q ≥ 0.

2. ỹi(q) is a concave increasing function.

The significance of the q̃-residual bid function is given by
the following lemma.

Lemma 6. Suppose the bid function of network i is yi(.)
and it is successively allocated secondary throughputs of
q1, q2, . . . , qf . Let yv

i (.) denote the (q1 + . . .+qv)-residual bid
function of network i, for v = 1, . . . , f . Then

yi(q1 + . . . + qf ) = yi(q1) + y1
i (q2) + . . . + yf−1

i (qf ) (17)

Thus, the significance of the residual bid function is that if
a network i is successively allocated chunks q1, . . . , qf of
secondary throughput (e.g. by successive steps of an algo-
rithm), then we can keep track of its residual bid function
after every allocation so that the extra money that network i
is willing to pay for the v’th allocation qv is simply yv−1

i (qv).
Moreover, this tracking can be done using the update rule
in part 1 of the following lemma to calculate yv+1

i (.) from
yv

i (.).

Lemma 7. Let ỹi(.) and y+
i (.) be the q̃-residual bid func-

tion and (q̃ + q̂)-residual bid function of network i respec-
tively. Then

1. y+
i (q) = ỹi(q + q̂) − ỹi(q̂) ∀q ≥ 0

2. y+
i (q) ≤ ỹi(q) ∀q ≥ 0.

Note that y+
i (.) is the q̂-residual bid function corresponding

to the bid function ỹi(.).

6.3 Algorithm Description
We now describe the 2-approximation algorithm. For each

network i, the residual bid function ỹi(.) is initialized to
yi(.).

The algorithm successively determines into how many sec-
ondary parts channel l is to be divided and which networks
are to be the secondary networks on that channel, for l =
1, . . . , M , one channel at a time. Suppose we have taken
these decisions for channels 1, 2, . . . , l − 1 and for each net-
work i, have set ỹi(.) to be equal to its residual bid function
after accounting for the secondary throughput allocated to
it in the first l − 1 channels. Assign channel l using the
following steps:

STEP1: For j = 1, . . . , n, find the maximum increase in
revenue Rl

j obtainable from channel l by dividing the channel



into mj secondary parts using the following rule. Sort the

set of numbers ỹi

(
W (1−α)

mj

)
, i = 1, . . . , N into decreasing

order. Let ỹ(v)

(
W (1−α)

mj

)
denote the v’th largest element.

Then Rl
j is given by:

Rl
j =

mj∑
v=1

ỹ(v)

(
W (1− α)

mj

)

STEP2: Find the maximum among Rl
1, . . . , R

l
n. Suppose

Rl
j is the maximum. Then divide the l’th channel into mj

secondary parts. On the l’th channel, the mj networks with

the mj largest values ỹ(1)

(
W (1−α)

mj

)
, . . . , ỹ(mj )

(
W (1−α)

mj

)
be-

come secondary networks.
STEP3: Update the function ỹi(.) of each one of the mj

networks that become the secondary networks on channel l
to its residual bid function after accounting for the secondary
throughput allocated to it in the first l channels.

6.3.1 Comments on Algorithm
Once channels 1, . . . , l−1 have been allocated, steps 1 and

2 allocate channel l so as to obtain the maximum possible
increase in revenue over the revenue from channels 1, . . . , l−
1. In Step 3, the rule in part 1 of Lemma 7 can be used
to update the residual bid functions of the networks who
become secondary networks on channel l.

6.4 Approximation Ratio

Theorem 3. Let R∗ be the maximum possible revenue
under any allocation of the rights to be secondary networks
on the M channels and let RG be that achieved by the above
greedy algorithm. Then RG ≥ R∗

2
.

Proof. Let Rl be the increase in revenue obtained by the
greedy algorithm from allocating the l’th channel. Denote
by qG

i,l, the amount of secondary throughput allocated by
the greedy algorithm to network i in the l’th channel. Let
yl

i(.) be the (qG
i,1 + . . .+qG

i,l)-residual bid function of network
i, that is, its residual bid function after accounting for the
secondary throughput allocated to it in channels 1 to l. By
part 2 of Lemma 7:

yl
i(q) ≤ yl−1

i (q) ∀q ≥ 0 (18)

From the discussion after Lemma 6, it follows that after
channels 1, . . . , l were allocated, the extra money network i
is willing to pay for its share in channel (l + 1) is yl

i(q
G
i,l+1).

Moreover, if the greedy algorithm were to allocate the l’th
channel to the same set of networks to whom it actually allo-
cated the (l+1)’st channel, then (a) after channels 1, . . . , l−1
were allocated, the extra money network i would be willing
to pay for its share in channel l would have been yl−1

i (qG
i,l+1)

and hence by (18), (b) the increase in revenue from the l’th
channel would have been at least Rl+1. But the actual in-
crease in revenue from the l’th channel, Rl, is by definition
of the greedy rule, the maximum possible from allocating
the l’th channel. Hence Rl ≥ Rl+1. Thus, we get:

R1 ≥ R2 ≥ . . . ≥ RM

Since RG = R1 + . . . + RM , we get:

RM ≤ RG

M
(19)

Now, let q∗i be the total secondary throughput allocated
by the optimal algorithm to network i and qG

i be that al-
located by the greedy algorithm. Also, let S∗

l be the set of
secondary networks on the l’th channel, l = 1, . . . , M , in the
optimal allocation. Next, we will upper bound R∗−RG, the
excess revenue of the optimal allocation over the greedy al-
location. To this end, for each network i, we account for its
payment for max(q∗i − qG

i , 0), the excess secondary through-
put if any, of the optimal allocation over the greedy algo-
rithm’s allocation, by accounting for its payments for the
chunks qe

i,l, l = 1, . . . , M . Here, qe
i,l is the contribution of

channel l to the excess max(q∗i − qG
i , 0), once the contribu-

tions of channels 1, . . . , l − 1 have been accounted for and is
given by:

qe
i,l = min

(
W (1− α)

|S∗
l |

,

max(q∗i − qG
i − qe

i,1 − . . . − qe
i,l−1, 0)

)
, i ∈ S∗

l (20)

qe
i,l = 0, i /∈ S∗

l (21)

We get the expression in (20) as follows. First, since chan-

nel l is shared by |S∗
l | networks, qe

i,l ≤ W (1−α)
|S∗

l
| . The sec-

ond term in the min is equal to the as yet unaccounted
for excess, if any, obtained by subtracting the contributions
qe

i,1, . . . , q
e
i,l−1 of channels 1, . . . , l − 1 from the total excess

throughput max(q∗i − qG
i , 0).

Let ye
i,l(.) be the (qG

i +qe
i,1+. . .+qe

i,l)-residual bid function
of network i. That is, ye

i,l(.) is the residual bid function
after accounting for the amount of secondary throughput
allocated to network i by the greedy algorithm (qG

i ) and the
contributions qe

i,1, . . . , q
e
i,l of the first l channels to the excess

max(q∗i − qG
i , 0).

Now,

R∗ − RG

≤
M∑

l=1

⎛
⎝∑

i∈Sl

ye
i,l−1(q

e
i,l)

⎞
⎠ (22)

≤
M∑

l=1

⎛
⎝∑

i∈Sl

yM−1
i (qe

i,l)

⎞
⎠ (23)

≤
M∑

l=1

⎛
⎝∑

i∈Sl

yM−1
i

(
W (1 − α)

|S∗
l |

)⎞
⎠ (24)

≤
M∑

l=1

RM (25)

= MRM (26)

≤ M

(
RG

M

)
(27)

= RG (28)

from which it follows that R∗ ≤ 2RG. We get (22) as fol-
lows. The excess revenue R∗ − RG arises from the extra
payment that each network i makes for the excess secondary
throughput max(q∗i − qG

i , 0), if any, that it receives under
the optimal allocation over the greedy allocation. Expres-
sion (22) accounts for these extra payments by adding, for
channels l = 1, . . . , M , the total payments (see the discus-
sion after Lemma 6) of all networks i ∈ Sl for the contri-



butions qe
i,l of channel l to the excess secondary throughput

max(q∗i − qG
i , 0). There is an inequality instead of equality

in (22) because qG
i may be greater than q∗i for some net-

works i. Inequality (23) follows by part 2 of Lemma 7, since
yM−1

i (.) is the residual bid function of network i after ac-
counting for the amount of secondary throughput allocated
to it by the greedy algorithm in the first M − 1 channels,
whereas ye

i,l−1(.) is the residual bid function after account-
ing for the secondary throughput allocated to it in all M
channels as well as the contributions qe

i,1, . . . , q
e
i,l−1 of the

first l − 1 channels to the excess max(q∗i − qG
i , 0). Inequal-

ity (24) follows from the fact that qe
i,l ≤ W (1−α)

|S∗
l
| and since

yM−1
i (.) is increasing by part 2 of Lemma 5. In inequality

(25), we use the fact that

∑
i∈Sl

yM−1
i

(
W (1− α)

|S∗
l |

)
≤ RM (29)

which is true because when the greedy algorithm was about
to allocate channel M , the increase in revenue it would have
got from the channel if it allocated the channel to the |S∗

l |
networks in the set S∗

l is equal to the expression on the left
hand side of (29). This expression is at most RM , since
the greedy algorithm allocates the M ’th channel so as to
maximize the increase in revenue from it. Finally, inequality
(27) follows from (19).

Lemma 8. The running time of the above greedy algo-
rithm is O(nMN log(PN) + MPmn).

7. CONCLUSIONS AND FUTURE WORK
We developed a comprehensive framework for access al-

location in cognitive radio networks. We proposed three
bidding languages, each less expressive than the previous
one, but suitable for larger auctions. Also, we developed a
number of algorithms for the access allocation problem for
these bidding languages.

In Section 6, we gave a polynomial-time 2-approximation
algorithm for the problem, described in Section 6.1, of allo-
cating secondary rights so as to maximize the auctioneer’s
revenue. We conjecture that it is NP-hard to solve it op-
timally. Our conjecture is motivated by the facts that (a)
the bid function of each network can be an arbitrary real-
valued function satisfying the conditions in Section 6.1, (b)
the number of secondary networks on each channel can be se-
lected from a possibly large set {m1, . . . , mn} and (c) the set
of secondary networks on each channel can be an arbitrary
subset of the set of all N networks. We leave the question
of NP-hardness as an open problem for future research.

Also, we considered the case when the M channels are
identical. The extension to non-identical channels can be
considered as part of future work.
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