Optimization Based Rate Control for Multipath Sessions
K. Kar?, S. Sarkar® and L. Tassiulas®

2ECE Department, University of Maryland,
College Park, MD 20742, USA

PEE Department, University of Pennsylvania,
Philadelphia, PA 19104, USA

In this paper, we consider the rate control problem for multipath sessions with the
objective of maximizing the total user (session) utility. This problem provides a framework
in which flow control and routing are jointly optimized. We consider two cases of this
problem, and develop two different rate control algorithms for these two cases. The first
algorithm is an end-to-end rate control algorithm which requires, on the part of the user,
explicit knowledge of the paths that the user uses. The second algorithm is a hop-by-
hop rate control algorithm which does not require the user to keep track of the paths it
uses. Both the algorithms are distributed and do not require the network to know the
user utility functions. We analyze the convergence properties of these algorithms, and
discuss how they can be implemented in a real network. Both of these algorithms are
computationally simple, and have very low communication overhead.

1. Introduction

Effective rate control of traffic sources is required in order to control congestion in
a communication network. A rate control strategy should ensure that the network is
used efficiently, while guaranteeing that the traffic offered to the network by different
traffic sources remain within the limits that the network can carry. Besides these, it is
also desirable that the rate control algorithm would ensure that the available network
resources are shared by the competing streams of traffic in some fair manner.

An optimization based approach to rate control was suggested in [4]. Here each user
is associated with an utility function, which connects the bandwidth given to the user
with the “value” associated with the bandwidth (note that throughout the paper, the
terms “user”, “session” and “end-host” are used synonymously). The utility could be
some measure of say, the perceived quality of audio/video, the user satisfaction, or even
the amount paid by the user for the bandwidth allotted to it, and could be different for
different users. The rate control objective is to achieve traffic rates that maximize the
sum of the user utilities, subject to the link capacity constraints. This problem provides
a framework for achieving a wide range of fairness objectives, by choosing the user utility
functions appropriately. This utility maximization problem has received considerable
attention in recent literature, and several algorithms, based on different approaches, have

been proposed for this problem (see [10],[5],[9],[8],[7])-

Most of the above-mentioned work is concerned only with the case where a session
sends traffic over a single path. In this paper, however, we consider a generalization of
this problem, where there can be multiple paths between the source and the destination
of a session. The multipath routing problem has received significant attention in recent
literature (see [2],[3],[15],[16],[11]). However, most of the work done in this context is
concerned with finding and establishing “good”, loop-free multipaths, and with the for-
warding of packets on these paths. The problem of congestion-sensitive rate control on
these multipaths has not been thoroughly explored. Note that multiple paths can be used
for load balancing, thus allowing more efficient use of the network. In the multipath rate
control problem, an user not only determines how much traffic to send, but also how to
split the traffic amongst the multiple paths. Thus the multipath rate control problem can
be viewed as one in which flow control and routing are jointly optimized.

The optimization-based multipath flow control problem has not been adequately ad-
dressed in the literature so far. Although this problem has been addressed in [5], the
approaches proposed in [5] have certain limitations. From a practical perspective, an
important limitation of the algorithms is their high communication overhead. In these al-
gorithms, the “congestion feedback” communicated from the network to the end-hosts are
real numbers, and this poses a difficulty in conveying the feedback using a small number
of bits without sacrificing precision.

Moreover, in the algorithms proposed in [5], the user has to keep track of the different
paths it uses, and explicitly adjust the traffic rates on these paths. Therefore, these
algorithms do not scale as the number of paths increases (note that there could be an
exponential number of paths between a source and a destination), and are not applicable
in cases where the user does not have any explicit knowledge about the paths it uses.

In this paper, we consider two formulations of the multipath utility maximization prob-
lem, and develop two different algorithms based on them. The first formulation is the
same as the one in [5]. Based on this formulation, we present an end-to-end flow control
algorithm that has guaranteed convergence, and has very low overhead of computation
and communication (Section 2). However, this algorithm, like previous approaches, as-
sumes that the user knows the set of paths it uses, and is able to directly monitor the
traffic rates on these paths. Thus it is applicable to source routing or similar other schemes
where the source knows the set of paths and determines which path a packet will follow
(such as those in [2],[3]).

The second formulation is new, and it allows us to develop a hop-by-hop flow control
algorithm that achieves the optimal rates for our problem (Section 3). This algorithm too
has a very low overhead of computation and communication. Moreover, this algorithm
does not require the user to keep track of the different paths it uses, and therefore scales
with increasing number of paths. It is applicable to destination-based routing or similar
other schemes where the each router in the path of the packet determines its next-hop
node (such as those in [11],[15],[16]).

The motivation, derivation and analysis of algorithms presented in this paper are heavily
based on results in non-differentiable optimization theory, mainly those by B.T. Poljak
[12] and N.Z. Shor [13].

It is also worth noting here that the second algorithm presented in this paper could

be used to solve the well-known network flow problem [1] (as well as its concave and
multicommodity generalizations) in a distributed and scalable way.

2. Multipath Flow Control with Explicit Knowledge of Paths

In this section, we consider the case where the set of paths used by an user is known
to the user, and it is able to explicitly adjust the traffic rates on these paths. Typically,
source-routing schemes satisfy these conditions, and therefore, the algorithm that we
propose in this section is applicable to such schemes.

2.1. Problem Formulation

Next we describe the network model that we consider, and present a convex program-
ming based formulation of the problem, which will form the basis of the algorithm that
we develop.

Consider a network consisting of a set L of unidirectional links, where a link [€ L
has capacity ¢; (0 < ¢ < o0). The network is shared by a set J of unicast (possibly
multipath) sessions. Each session j is associated with a utility function U; : R, — R,
which is assumed to be concave, differentiable, bounded and increasing in [0, 00).

In the following, we assume that the the set of paths used by an user is already deter-
mined/established by some multipath route-finding algorithm (like those in [2],[3]). We
are interested in the problem of finding the optimal traffic rates on these paths.

Let P; be the set of paths used by session j € J. We assume that P; is known to session
(user) j. Let P = Ujc;P; be the set of all paths (over all sessions). For any path p € P,
let the set of links on the path be denoted by flp. Let P, denote the set of paths (of all
sessions) on any link [€ L. Associate a rate variable y, with each path p € P. Note that
the traffic rate of session j is equal to 3°,¢ P; Yp- Our objective is to maximize the “social
welfare”, i.e., the sum of the utilities over all the sessions, subject to the link capacity
constraints. The problem can be posed as:

P;: maximize Z Uj(Z yp)

jedJ pEP;
subject to >y, < ¢ VieL (1)
pEP,
yp > 0 VpeP (2)

Constraints (1) indicate that the total rate of traffic on a link cannot exceed the capacity of
the link, and (2) represent the non-negativity constraints on the rate variables. Note that
in the problem formulation, we have not assumed any maximum/minimum constraints
on the session/path rates, apart from the obvious non-negativity constraints. However,
if some additional maximum/minimum constraints exist on the session/path rates, our
algorithm can easily be modified to take those into account.

We make the following assumption on the utility functions U; :

Assumption 1 (Bounded slope) There exists an A < oo such that Uj(§) < A Vg €
[0,00) for all j € J.

2.2. An Iterative Algorithm

Next we present an iterative algorithm for the problem P;. Later we will describe how
this algorithm can be implemented in a real network in a distributed way.

Let yz(,") denote the value of the rate variable y, at the nth iterative step. For each link

l € L, define el(") as

w [0 i Yy <g
A T S OB)
peb Yp !

We will refer to the variable e; as the “link congestion indicator” of link /. Thus a link [
is considered “congested” if ¢, = 1, and “uncongested” if e; = 0.

The iterative rate update procedure, as will be stated shortly, has a very simple inter-
pretation. In the procedure, the traffic rate on a path of a session is increased according
to the derivative of the session’s utility function, while it is decreased according to the
number of congested links on the path.

Now let us state the rate update procedure formally. Consider a path p of session 7,
i.e., p € P;. In the following, [- |+ denotes a projection on [0, c0) (therefore, for any scalar
7, [7]+ = max(0,7)). At the nth iterative step, the rate variable y, is updated as follows

y = [y (U0 90 = k(D V) (4)

P EP; L,

where k is a positive constant, and A, > 0 is the step-size at the nth iterative step.

Note that (Zzeip e;) is the number of congested links in path p. In the next subsec-
tion, we investigate the convergence properties of this iterative algorithm under certain
conditions on the constant x and the step-sizes.

2.3. Convergence Analysis

In the following, let y = (y,,p € P) denote the vector of all path rates. Let y™ denote
the value of this vector at the nth iterative step. Also, let Y* be the set of optimal
solutions of Py (note that the optimal solution can be non-unique).

Define the overall user utility function U : §R|f‘ — Ras U(y) = Xjes Uj(Xpep, ¥p), and
U* be the corresponding optimal value. Thus U* = U(y*) for any y* € Y*. Also let
p(y,S) = min,es ||y — z|| denote the Euclidean distance of a point y from any compact
set, S. Now we state some convergence results under various conditions of the step-sizes.

Assume that the sequence of step-sizes {\,} in (4) satisfies the following criteria

Jim A, =0 o0 LA =00 (5)

As an example,)\, = (1/n) is a sequence that satisfies (5).
The following theorem shows that our algorithm converges to the optimum if the step-
sizes satisfy the above condition.

Theorem 1 Consider the iterative procedure stated in (3)-(4), with the step-sizes satis-
fying (5). Then for all k > A,

lim p(y™,Y*) =0

n—oo

The above theorem is proved in [6]. Note that from the continuity of U it follows that
lim,, oo U(y™) = U*. The above theorem basically states that the distance of the rate
vector from the set of optimal rates decreases to zero. In the special case where this
optimum is unique, the rate vector converges to the unique optimum.

Note that the condition lim,_,,, A, = 0 is required for exact convergence. In practice,
however, it may not be possible (due to precision limitations) or efficient (since it could
slow down the convergence rate considerably) to decrease the step-size beyond a certain
value. Next we investigate the convergence of our algorithm with constant step-sizes.

If the step-sizes are constant, we can prove a slightly weaker convergence result, as we
state below. For any compact set S, let ®,(S) be the set of all points at a distance of r
or less from S, i.e., ®,.(S) = {y : p(y,S) < r}.

Theorem 2 Let {y™(\)} denote the sequence of rate vectors defined by (3)-(4) with
An = A Vn. Then there exists a function r(\) such that limy_ o4 r(A) = 0, and for all
k> A,

lim p(y™(N), D, (Y*) =0 ¥A>0

Theorem 2 can be proved along the same lines as Theorem 1. The theorem states that
for a constant step-size, the rate vector converges to a neighborhood around the optimum,
and the size of this neighborhood becomes arbitrarily small with decreasing step-size. For
a given constant step-size, the size of the neighborhood depends on the parameters of the
problem Pj, including the utility functions (refer to [6] to see how () can be calculated
in terms of A). Note that the above theorem also implies that given any neighborhood
around the optimum, we can choose the step-size A to be sufficiently small so that our
algorithm (with constant step-sizes) converges to that neighborhood.

2.4. Distributed Implementation

Now let us see how the iterative algorithm described above can be implemented in an
asynchronous network environment in a distributed way.

Assume that the variable ¢; is stored and updated at link / (i.e., at the node where link
[originates). Also assume that the rate computation for all paths of a session (according
to (4)) is carried out at the source of the session.

Now assume that the source of a session periodically sends out some rate packets (RPs),
each containing a rate field R, on the paths of that session. Before sending out an RP,
the source sets the R field to the current transmission rate on the path over which the
packet is routed. The links on the path of the packet read the R field in order to know the
current traffic rate on that path. These rate values are used to update the link congestion
indicator.

Note that in order to update the path rates, a source needs to know only the total
number of congested links on its path and not the exact set of congested links. Now
assume that the receiver of a session periodically sends out some congestion packets
(CPs), each containing a rate field C, on the paths (in the backward direction) of that
session. The receiver sets the C field to 0 before sending out the CP. Subsequently, when
the CP goes through a link on its path, the link adds its congestion indicator to the entry
in the C field of the CP. Thus when the CP reaches the source node, the field C of the

CP contains the number of congested links on that particular path, which is used in the
computation of the new path rates at the source.

Note that although we have described the RPs and the CPs as separate packets, in
practice, they can simply be piggybacked on the data and acknowledgement (ACK) pack-
ets (in an ACK based protocol). Thus the R field can be a part of the data packet, and
the C field a part of the ACK packet.

The link and session algorithms are described below (the step-size is assumed to be
constant). In the algorithms, the rates and the link congestion indicators are updated
periodically.

Link [’s algorithm:

On receiving an RP of path p:

Read the R field of the RP to know the new value of y,, and forward the RP onto the next link.
Periodically :

Update e; as

e 0 1:10 Zper, Up <
1 if Epeﬁl Yp > €]

On receiving a CP :
Add e to the C field of the CP and forward the CP onto the next link.

Session j’s algorithm:

On receiving a CP of path p:

Read the C field of the CP to know (3°,. i, e1), the current number of congested links in p.
Periodically :

1. For each p € Pj, update y, as

v = [y A (U gy) —s(Xe))]y

p’EPj lei/p

2. For each p € P;, send an RP on p, setting the field R to .

2.5. Discussion

One drawback of the algorithm described above is that the actual rates need to be
communicated from the users to the links. This not only results in a communication
overhead, but also requires the links to maintain states on a per-path basis. In practice,
however, the traffic on a link can be estimated, and this estimated rate can be used to
update the link congestion indicator. Note that only the total traffic rate on a link needs
to be estimated, and not the individual path rates. Therefore, with estimation of traffic
rates at the links, we do not require per-path or per-session information to be maintained
at the links. This also removes the overhead of communicating the rates from the users
to the links.

Now consider the overhead of communicating to the user the number of congested links
on the user’s path. Note that the value in the C field of the CP can be at most L, the
maximum number of links on the path of any session. Thus the congestion field C' needs
to be logy(|L] + 1) bits long. Therefore for most real networks, including the internet,
allocating just one byte (or even half a byte) to the C field should be enough (note that

one byte would allow a maximum of 255 links on a session’s path, while half a byte would
allow a maximum of 15 links). Thus the overhead of the network congestion feedback to
the users is quite small.

Note that in the algorithm described above, the storage and processing complexity at
the end-host is linear in the number of paths it uses. Therefore, this algorithm does not
scale as the number of paths between a source-destination pair increases.

3. Multipath Flow Control without Explicit Knowledge of Paths

In this section, we present a rate control algorithm which does not require the user to
keep track of the different paths it uses. The algorithm works on a hop-by-hop basis,
and is applicable in scenarios where each node in the network directly controls the traffic
rates on the links leading to the next-hop nodes. In this algorithm, the storage/processing
complexity at the network nodes/end-host does not depend significantly on the number
of paths used. In this case, however, the nodes in the network need to keep track of the
sessions whose paths pass through that node. This algorithm, therefore, requires per-
session information to be maintained at the network nodes. In certain practical scenarios,
however, this state overhead at the network nodes could be reduced considerably, as
discussed in Section 3.5.

3.1. Problem Formulation

Next we provide an alternative formulation of the multipath flow control problem, which
forms the basis of the algorithm that we develop. In the following, we assume that each
node on a session path maintains a set of input links (the links through which traffic of
that session arrives at that node) and a set of output links (the links through which traffic
of that session departs from that node) for the session. Note that the set of input links of
a session at a node is a subset of the set of all incoming links at that node; similarly, the
set of output links of a session at a node is a subset of the set of all outgoing links at that
node. We assume that set of paths used by a session, and therefore, the sets of input and
output links of the session at a node, are already determined by some multipath route-
finding algorithm (like those in [15],[16]). We are interested in determining the traffic
rates on these links/paths so that the total user utility is maximized.

Consider a network consisting of a set L of unidirectional links, where a link [€ L
has capacity ¢ (0 < ¢ < o0). Let the set of nodes of the network be denoted by K.
The network is shared by a set J of unicast (possibly multipath) sessions. Let s; and d;
respectively denote the source and destination nodes of a session j € J. Let K; C K
denote the set of nodes which session j traverses (including s; and d;). We will refer to
the nodes in the set K; \ {s;,d;} as the “intermediate nodes” of session j. Let J, C J
denote the set of sessions that use link [€ L. Also let L; C L denote the set of links used
by session j € J. Let Iy and Oy respectively denote the set of incoming and outgoing
links at node k. Let Iy; C I; and O; C Oy respectively denote the set of input and
output links of session j at node k. Note that I,,;; = Og,; = ¢. As before, each session
J is associated with a utility function U; : R, — R, which is assumed to be concave,
differentiable, bounded and increasing in [0, co).

Now for each link [€ L; for each session j € J, associate a variable z;; denoting the

traffic rate of session j on link /. Then the utility maximization problem can be posed as:

Py: maximize > U;j(Y)

JjEJ lEOSjj
subject to Y x; = > m; VkeK;j\{s;dj} VielJ (6)
lEij lEij
Z Zij < ¢ Viel (7)
Jed
Zij > 0 VlELj Vjed (8)

Each constraint in (6) states the flow constraint of a session at a node, i.e., the total
input flow of a session at an intermediate node is equal to the total output flow of that
session at that node. Constraints (7) are the link capacity constraints, while (8) are the
non-negativity constraints on the rates.

3.2. An Iterative Algorithm

Next we present an iterative algorithm for the problem P5. The algorithm is developed
using techniques similar to those used in deriving the algorithm of Section 2. We will
describe a distributed implementation of this algorithm in Section 3.4.

Let xl(;z) denote the value of the rate variable z;; at the nth iterative step. For each link

I € L, define &™ as
1 if EjEJI xl;l) >q

The variable ; is the “link congestion indicator” of link [(g; is similar to the variable ¢

defined in the Section 2.2). Now for each node k£ € K \ {s;,d;} for each session j € J,

define 1/,(;;) as

0 if ZlEij Zl(‘;L) = Eleokj ‘,El(;b)
() _ 1 i (n) (n) (10)
Vkj i Dien,; Tij” > Zieoy; Tij
—1 if Zlelk]’ xl(;L) < Zleokj xl(;z)

We will refer to the variable v; as the “node congestion indicator” of node £ for session j.
For a session j, an intermediate node k is considered “balanced” if v; = 0, “congested”
if vp; = 1, and “underutilized” if v}; = —1.

In the following, we will refer to the node where a link originates as the start node of
the link. Similarly, we will refer to the node where a link ends as the end node of the
link. The rate update algorithm, stated below, has a simple intuitive interpretation. In
the algorithm, the rate of a session on a link decreases if the start node of the link is
underutilized or if the end node of the link is congested. Similarly, the rate of a session
on a link increases if the opposite conditions hold, i.e., if the start node of the link is
congested or if the end node of the link is underutilized. Also, the rate of a session on a
link decreases if the link itself is congested. In addition, if the start node of the link is the

source node of the session, then the rate of the session on the link increases according to
the derivative of the session utility.

Now we state the rate update procedure formally. Let 7; and 6; respectively denote the
start node and end node of link I € L. Consider a session j € J, and a link [€ L;. In the

following, [- |4+ denotes a projection on [0, 00), as before. The update procedure of z;; is
. Lol + A (Uj(Sieo,,; 2ip)) —me™” +))1, ifl€ Oy
n+ n n n .
w0 =y Lag) e (=rle™ = i)) 1, if 1 € Iy (11)
[xl;-l) + Ay (—K(El(n) + Vﬁ(,lnj) — 1/7(:]))) 1L otherwise

where & is a positive constant, and)\, > 0 is the step-size at the nth iterative step.

3.3. Convergence Analysis

In the following, let z = (5,1 € L;j,j € J) denote the vector of all rates. Let x(™
denote the value of this vector at the nth iterative step. Also, let X* be the set of optimal
solutions of P5. Next we state some convergence results under various conditions of the
step-sizes, similar to those stated for the algorithm in Section 2. As before, we assume
that the utility functions satisfy Assumption 1.

Theorem 3 Consider the iterative procedure stated in (9)-(11), with the step-sizes satis-
fying (5). Then there exists a k1 < oo, such that for all k > K1,

; (n) y*) —
Jim p(z™, X*) =0
Theorem 4 Let {x(™()\)} denote the sequence of rate vectors defined by (9)-(11) with
An = A Vn. Then there exists a k1 < 0o and a function r(\) such that limy_o4 7()\) =0,
and for all Kk > K1,
Jim p(™(2), @ry (X)) =0 VA >0

The value of k; depends on the parameters of the problem P,, and can be calculated

given a particular instance of the problem (see [6]). In certain important cases, k > A is
sufficient to guarantee the convergence results as stated in the above theorems [6].

3.4. Distributed Implementation

Next we describe how the algorithm described in Section 3.2 can be implemented in a
distributed way in an asynchronous network environment. Let us assume that the link
congestion indicator variable is updated at the start node of the corresponding link. Also
assume that the node congestion indicator variable is updated at the corresponding node.
Thus node 7; is responsible for keeping track of ¢;, while node £ is responsible for keeping
track of vy;. Assume that the rate variable z;; is updated at node m;. In the optimization
process, a node has to communicate with the previous-hop and next-hop nodes. In this
case too, we assume that this communication is carried out using rate packets (RPs)
and congestion packets (CPs). However, unlike the algorithm described in Section 2, the
RPs and CPs in this case are exchanged only between adjacent network nodes and not
between end-hosts. A node on a session path communicates the rate variable updated by
it to the session’s next-hop node through the R field of a rate packet (RP) (note that this

rate variable is required for the update of the node congestion indicator variable at the
next-hop node). The node communicates the node congestion indicator variable updated
by it to the session’s previous-hop node through the C field of congestion packet (CP)
(note that this node congestion indicator variable is required for the update of the rate
variable at the previous-hop node).

The algorithms for the source and intermediate nodes of a session j are stated below.
Note that the destination node does not take part in the optimization process. In the
algorithms described below, the step-size for rate updates is kept constant at A.

Source node s;’s algorithm:

On receiving a CP from 0 :
Read the C field of the CP to know the new value of vy,;.

Periodically :
1. For each | € Os,;, update ¢; as

£ — 0 1:f EjeJl z; < ¢
1 if ZjEJl Ty >

2. For each | € Oy,j, update x; as xj; [z + X (U;(Zleosﬂ, xy;) — k(e +vg5)) Iy
3. Send RPs to the next-hop nodes of session j, setting the R field to the updated value of the
appropriate rate variable x;.

Intermediate node k’s algorithm (k ¢ Iy;;) :

On receiving a CP from 0 :
Read the C field of the CP to know the new value of vy, ;.

On receiving an RP from m; :
Read the R field of the RP to know the new value of x;;.

Periodically :
1. For each | € Oy;, update ; as

& 0 if Yjenmy <a
1 If ZjeJl .Tl] > C|

2. For each | € Oyj, update zi; as xyj + [x5 + X (—k(er +vgj — Vryj)) |-
3. Update vy as

0 If ZZEI]W' :L.lj = Zleij "Lllj
Vkj < Lo it Yer, iy > Yieoy, T
-1 it Yer, Ty < Xicoy; T

4. Send RPs to the next-hop nodes of session j, setting the R field to the updated value of the
appropriate rate variable x;;.

5. Send CPs to previous-hop nodes of session j, setting the C field to the updated value of the
node congestion indicator v;.

Intermediate node k’s algorithm (k € I;;) :

On receiving an RP from ; :
Read the R field of RP to know the new value of xy;.

Periodically :
1. For each | € Oy;, update ¢; as

£ — 0 1:10 Zje]l z; < ¢
1 if ZjGJl Ty >

2. For each | € Oyj, update zi; as 1 + [x5+ X (—k(er —vry)) |-
3. Update vy; as

0 If ZZEij .’Elj = Zleokj $lj
Vgj < 1 if ZlEij Ty > Zleij Tlj
-1 if Ele[kj zyj < ElEij Zij

4. Send CPs to previous-hop nodes of session j, setting the C field to the updated value of the
node congestion indicator vy;.

3.5. Discussion

Note that since the node congestion indicator variables vy; takes only three values
(namely, 0, 1 and -1), the C field of the CP needs to be allocated only 2 bits. Moreover,
note that with measurement-based traffic rate estimation at the nodes, the overhead of
rate communication (from a node to its next-hop node) can be avoided. Thus the total
communication overhead of this algorithm is quite small.

Note that since a node has to maintain a congestion indicator for each of the sessions
going through it, the storage and processing complexity at an intermediate node is pro-
portional to the number of sessions going through it. While maintaining per-session states
is usually not feasible in backbone routers (where there can be thousands of sessions going
through the router), it can be feasible in Virtual Private Networks (VPNs) and intranets.
As pointed out in [14], hop-by-hop congestion control algorithms have certain advantages
over end-to-end algorithms, and could be used in LAN based networks. In backbones,
state aggregation could be used to reduce the overhead of these additional flow states,
thus making the algorithm more feasible (while achieving fairness at a coarser scale). In
particular, we could achieve fairness at the level of the ingress-egress node pairs by main-
taining state per ingress-egress pair at the network nodes (“ingress” /“egress” is the node
(router) where a session enters into/departs from the network). Moreover, note that all
sessions between the same ingress-egress pair will typically have the same set of input
and output links at any network node (since the set of paths that these sessions use will
typically be the same). In such a case, it is possible to achieve optimal session rates while
maintaining state per ingress-egress pair at the network nodes.

An interesting feature of the algorithm presented in this section is that it can be used
in solving the multicommodity flow problem [1] with concave utility functions (note that
the multicommodity flow problem is usually defined with linear objective functions) in a
distributed way. To see this, in problem P, set K; = K Vj € J, so that traffic of a session
could pass through all possible nodes in the network. Also set Iy; = Ij, \ {d;}, Ok; =

Or \ {s;} Vk € K; Vj € J, so that the traffic of an session could pass through all
possible links (except the links going into the source node or coming out of the destination
node, which can obviously be excluded). With these settings, all possible paths between
the source and destination nodes of a session are included in the problem formulation.
Now P, represents a generalized multicommodity flow problem which can be solved in a
distributed way using the algorithm described above.

REFERENCES

1.

10.

11.
12.

13.

14.

15.

16.

R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice-Hall, 1993.

J. Chen, P. Druschel, D. Subramanian, “An Efficient Multi-Path Forwarding Method”,
Proceedings of Infocom 1998, March 1998.

J. Chen, P. Druschel, D. Subramanian, “A Simple, Practical, Distributed Multi-path
Routing Algorithm”, TR98-320, July 1998, Rice University.

F. P. Kelly, “Charging and Rate Control for Elastic Traffic”, European Transactions
on Telecommunications, vol. 8, no. 1, 1997, pp. 33-37.

F. Kelly, A. Maulloo, D. Tan,“Rate Control for Communication Networks: Shadow
Prices, Proportional Fairness and Stability ”, Journal of Operations Research Society,
vol. 49, no. 3, 1998, pp. 237-252.

K. Kar, S. Sarkar, L. Tassiulas, “Optimization Based Rate Control for Multipath
Sessions”, Technical Report TR 2001-1, Institute for Systems Research and University
of Maryland, 2001.

K. Kar, S. Sarkar, L. Tassiulas, “A Simple Rate Control Algorithm for Maximizing
Total User Utility”, Proceedings of Infocom 2001, April 2001.

S. Kunniyur, R. Srikant, “End-to-End Congestion Control Schemes: Utility Functions,
Random Losses and ECN Marks”, Proceedings of Infocom 2000, March 2000.

R. La, V. Anantharam,“Charge-Sensitive TCP and Rate Control in the Internet”,
Proceedings of Infocom 2000, March 2000.

S. Low, D. E. Lapsley, “Optimization Flow Control, I: Basic Algorithm and Conver-
gence”, IEEE/ACM Transactions on Networking, vol. 7, no. 6, December 1999.

J. Moy, “OSPF Version 2”7, STD 54, RFC 2328, April 1998.

B. T. Poljak, “A General Method of Solving Extremum Problems”, Soviet Math Dok-
lady, vol. 8, no. 3, 1967, pp. 593-597.

N. Z. Shor, Minimization Methods for Non-differentiable Functions, Springer-Verlag,
1985.

F. A. Tobagi and W. K. Noureddine, “Back-Pressure Mechanisms in Switched LANs
Carrying TCP and Multimedia Traffic”, IEEE Globecom ’99, Symposium on High-
Speed Networks, December 1999.

S. Vutukury and J.J. Garcia-Luna-Aceves, “MPATH: a loop-free multipath routing
algorithm” | Elsevier Journal of Microprocessors and Microsystems 24 (2000), pp. 319-
327.

W.T. Zaumen, J. J. Garcia-Luna-Aceves, “Loop-free Multipath Routing Using Gen-
eralized Diffusing Computations”, Proceedings of Infocom 1998, March 1998.

