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End-to-end bandwidth guarantees through fair local
spectrum share in wireless ad hoc networks

Saswati Sarkar and Leandros Tassiulas

Abstract—Sharing the common spectrum among the links
in a vicinity is a fundamental problem in wireless ad-hoc
networks. Lately, some scheduling approaches have been
proposed that guarantee fair share of bandwidth among the
links. The quality of service perceived by the applications
however depends on the end-to-end bandwidth allocated to
the multihop sessions. We propose an algorithm that pro-
vides provably maxmin fair end-to-end bandwidth to ses-
sions. The algorithm combines a link scheduling that avoids
collisions, a fair session service discipline per link, and a
hop-by-hop window flow control. All the stages of the algo-
rithm are implementable based on local information, except
the link scheduling part that needs some network-wide co-
ordination.

I. Introduction

Link transmission scheduling in multihop wireless net-
works has been investigated over the last twenty years. The
earlier work was focused on guaranteeing end-to-end con-
nectivity whenever that was feasible [1], [8], [14]. Transmis-
sion scheduling algorithms that provide some guarantees on
the rates obtained by each link have lately been proposed
[6], [7], [15], [11], [22]. The quality of service perceived by
the applications however depends on the end-to-end band-
width allocated to the multihop sessions. We address the
objective of providing maxmin fair end-to-end bandwidth
to sessions.

Providing end-to-end rate guarantees in wired networks
has been studied extensively [4], [13]. Nevertheless, a sepa-
rate investigation is necessary for wireless ad hoc networks
as the scheduling constraints are different from the wireline
networks. For example, the strategies in wireline networks
rely on the feature that links can be scheduled indepen-
dent of each other. But, in wireless ad hoc networks links
traversing the same node can not simultaneously transmit
packets. Different design techniques are required to address
these scheduling dependencies. Also, in ad hoc networks
the scheduling decisions are taken at the MAC layers of
individual nodes that do not have access to network-wide
information. But, the fair rate of each session depends
on several network wide attributes, e.g., the routes and
packet generation rates of different sessions, the conges-
tion in vicinity of each node, etc. It therefore appears that
attaining end-to-end fair bandwidth would require cross-
layer optimization, knowledge of network wide information
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at each node and coordination of the scheduling at different
nodes in a session’s path.

We combine features of network control approaches for
wired networks with wireless link scheduling techniques to
design a provably maxmin fair rate allocation algorithm.
The algorithm combines a link scheduling that avoids col-
lisions, a fair session service discipline per link and a hop-
by-hop window flow control. It does not need the nodes
to know any network or transport layer information, e.g.,
the end-to-end session routes, the packet arrival rates, etc.,
and does not compute the fair rates apriori. Thus, the opti-
mality result that proves maxmin fairness of the resulting
end-to-end rates is an important contribution of this pa-
per, and indicates that cross-layer optimization does not
introduce significant additional complexity in this case.

The proposed algorithm is centralized. It is however
worthwhile to observe that the only centralized component
is the link scheduling that needs to compute a maximum
weighted matching of the network graph. We will discuss a
possible approach based on a recent result in scheduling [9],
for approximating this computation by a distributed policy.
This may lead to a fully distributed solution with subop-
timal performance. Note that like many other scheduling
strategies proposed for wireless networks, e.g., [5], [12], [21],
[22], we need this computation for optimally resolving the
link dependencies, and not for sessions being multi-hop.

Recently, Radunovic et al. [16] have proposed a central-
ized algorithm for computing the end-to-end maxmin fair
rates. It may be possible to use these computed rates to
regulate the source’s release of packets (e.g., at the trans-
port layer) so as to obtain the maxmin fair rates. The
disadvantage of this sequential approach is that the rates
must be recomputed every time the topology or the packet
arrival rates change. This does not happen with our al-
gorithm since it does not have a pre-computation phase.
Furthermore, they assume that a node can transmit simul-
taneously on multiple links, which several transceivers can
not do.

Finally, fairness can be defined in many different ways,
and maxmin fairness is one of these notions. Another no-
tion for fairness is to maximize the sum of the certain func-
tions of the rates (utilities) of all users. Recently, algo-
rithms have been proposed for attaining this goal in wire-
less networks [3], [9], [12], [23].

In Section II, we describe the fairness objective and the
network model, and present conditions that are necessary
and sufficient for a bandwidth allocation to be maxmin
fair. In Section III, we present a scheduling strategy that
attains maxmin fairness and describe its performance guar-
antees. In Section IV, we investigate via simulation the
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performance of the algorithm for different values of certain
parameters. In Section V, we discuss several implementa-
tion related features of our algorithm. We summarize the
frequently used symbols in table I, and present the proofs
in the appendix.

II. Fairness Objective and Network Model

Symbol Meaning
N Number of sessions
ri Session i′s maxmin fair rate
ρi Session i′s packet generation rate
σi Burstiness of session i′s packet

generation process, σ = maxi σi

W Window Parameter
Li Number of nodes in session i’s path
L Maximum number of nodes in the path

of sessions
Rn Set of sessions node n relays
Sn Set of sessions that originate at node n
Dn Set of sessions that terminate at node n
dn (degree Sum of the number of sessions that
of node A) originate or terminate at node n and

twice the number of sessions that
node n relays (| Sn|+ | Dn|+ 2| Rn|)

dmax Maximum degree of a node
F Number of distinct ranks in the system
Si,n(t) Number of times session i has been

sampled at node n in interval (0, t)
Ci,n(t) Number of tokens of session i generated

at node n in interval (0, t)
Pi(t) Number of packets of session i generated

at its source in interval (0, t)
PNR

i (t) Number of packets of session i at its
source at time t that have not been
released

TABLE I

Summary of the frequently used symbols

We consider a wireless network with V nodes, E links
and N multihop sessions. Each session has a source, desti-
nation and some relay nodes. The session routes are prede-
termined. Time is slotted. Every node has one radio unit.
Thus, in a slot, a node can either transmit one packet,
or receive one packet, or remain idle. We assume that
all packets have the same number of bits. Every link can
transmit 1 packet per slot. Thus, if a session i transmits
at the rate of r packets per slot, each of its relays must
serve (transmit or receive) i’s packets for 2r fraction of
total time, and i’s source and destination must serve i’s
packets for r fraction of total time. Every node has a fre-
quency that is unique in its two-hop neighborhood. Thus,
only the transmissions that have a common node interfere
with each other. Hence, the links that are active at any
slot must constitute a matching. For example, a bluetooth
network satisfies the above assumptions [10]. We do not

consider channel errors.
A bandwidth allocation (r1, . . . , rN ) is feasible if there

exists a scheduling sequence that attains rate ri for each
session i. We examine the conditions for feasibility of a
bandwidth allocation. First, assume that the source node
for each session has an infinite supply of packets at all
times. Let Sn (Dn) be the set of sessions that originate
(terminate) at node n, and Rn be the set of sessions node
n relays. Hajek et al. [5] showed that if the network is a
bipartite graph∗, then a bandwidth allocation (r1, . . . , rN )
is feasible if and only if at each node n, 2

∑
i∈Rn

ri +∑
i∈nSn∪Dn

ri ≤ 1. Intuitively, 2
∑

i∈Rn
ri +

∑
i∈Sn∪Dn

ri

is the bandwidth consumed by sessions traversing node n
as a session i can receive a rate ri only if each of its re-
lay nodes serve it for 2ri fraction of the total time and
its source and destination serve it for ri fraction of the
total time. Thus, a bandwidth allocation (r1, . . . , rN ) is
feasible if and only if at each node n the sum of the band-
width consumed at n by all sessions traversing n is less
than or equal to 1. Many wireless networks, e.g., blue-
tooth networks are bipartite graphs. For non-bipartite
graphs, a sufficient (but not necessary) condition for the
feasibility of a bandwidth allocation (r1, . . . , rN ) is that
2
∑

i∈Rn
ri +

∑
i∈nSn∪Dn

ri ≤ 2/3 for each node n [5]. In
practice, bandwidth is allocated so as to utilize the band-
width capacity of the nodes only partially under normal
circumstances, and reserve the rest of the capacity for use
during transient overloads. Thus, combining the two cases,
we assume that a condition for feasibility of a bandwidth
allocation 2

∑
i∈Rn

ri +
∑

i∈nSn∪Dn
ri ≤ α where α is the

desired bandwidth utilization factor (α ≤ 2/3 for non-
bipartite graphs and α ≤ 1 for bipartite graphs). We refer
to this constraint as the node capacity constraint.

A source may not have an infinite supply of packets. If a
session i generates packets at rate ρi, then its bandwidth ri

is upper bounded by ρi, ri ≤ ρi. We refer to this constraint
as the demand constraint.

Definition 1: A bandwidth allocation is feasible if and
only if it satisfies both the demand and the node capacity
constraints.

Definition 2: A feasible bandwidth allocation (r1, r2, . . . ,
rN ) is maxmin fair, if it satisfies the following prop-
erty w.r.t. any other feasible bandwidth allocation
(s1, . . . , sN ) : if there exists a i such that ri < si, then
there exists a j such that rj ≤ ri and sj < rj .

Maxmin fairness is considered to be a good notion of fair-
ness, as it guarantees equal bandwidth to sessions that tra-
verse paths of similar congestion level and generate packets
at equal rates. Note that the maxmin fair rate allocation
is unique since the feasible set is compact and convex [17].

For non-bipartite topology graphs the feasible set as de-
fined before (referred to as F) is a subset of the actual
feasible set (referred to as F). Thus, the maxmin fair al-
location ( ~M) in F is an approximation of that ( ~M) in F .
We now comment on the nature of this approximation. We

∗A bipartite graph is one where the vertex set can be partitioned in
two sets such that there is no edge between the vertices in the same
set.
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first describe the notion of relative fairness proposed in [17].
Definition 3: A bandwidth allocation ~A is fairer than an-

other bandwidth allocation ~B if: (a) ~A 6= ~B, and (b) exis-
tence of an i such that Ai < Bi, implies that there exists a
j such that Aj ≤ Ai and Bj < Aj .

This definition leads to another equivalent definition of a
maxmin fair bandwidth allocation [19].

Definition 4: A feasible bandwidth allocation ~A is
maxmin fair if and only if it is fairer than all other fea-
sible bandwidth allocations.
The feasible set F̄ obtained by selecting α = 1 in the node-
capacity constraints is a superset of F . It turns out that
the maxmin fair bandwidth allocation ~̄M in F̄ has the fol-
lowing properties: (a) ~̄M = 3/2 ~M, and (b) ~̄M is fairer than
or equal to ~M. Thus, for non-bipartite graphs the approx-
imate maxmin fair bandwidth allocation ~M is in the worst
case 2/3 times a bandwidth allocation that is fairer than
the actual maxmin fair bandwidth allocation ~M. Hence-
forth, for simplicity, in the non-bipartite topology graphs,
we will refer to the approximate maxmin fair bandwidth
allocation ~M as the maxmin fair bandwidth allocation.

We now present a necessary and sufficient condition for
maxmin fairness.

Definition 5: A node n is a bottleneck node of a ses-
sion i if session i′s bandwidth is the maximum among the
bandwidth of the sessions traversing n and 2

∑
i∈Rn

ri +∑
i∈nSn∪Dn

ri is equal to the bandwidth utilization factor
α.

We next present a necessary and sufficient condition for
maxmin fairness in multihop wireless networks, which is
similar to the bottleneck condition for maxmin fairness in
wireline networks [2].

Lemma 1: A feasible bandwidth allocation is maxmin
fair if and only if the following holds: for every session
i, either the bandwidth allocated to session i is equal to ρi,
or the session has a bottleneck node.

III. A back-pressure based fair bandwidth
allocation algorithm

We propose a modular approach for attaining maxmin
fairness for multihop sessions. The first module estimates
the maxmin fair bandwidth share of each session in each
node in the session’s path, and releases packets for trans-
mission in accordance with these estimates. The second
module schedules the transmission of the released packets
so as to attain the estimates. Note that the modules op-
erate in parallel. This modularization allows the use of
different algorithms in the first module for different fair-
ness objectives e.g., weighted maxmin fairness (Section V).
The bandwidth shares computed as per the desired objec-
tive can now be attained using, in the second module, the
existing maximum difference backlog scheduling [21]. This
scheduling can stabilize the network for any feasible ar-
rival process. Since the packet release process is fair and
hence feasible, the overall framework attains the desired
fairness objective. We present the basic algorithm that
attains maxmin fairness in subsection III-A, and consider

Procedure Token Generation (node m)
begin

α fraction of slots are designated as sampling slots; m samples in a slot
t only if t is a sampling slot and in slot t− 1 m did not generate token
to a session it relays.
Node m samples sessions in round robin order.
Let session i traverse node m, and
nodes l, n be adjacent to node m in session i′s path.
When session i is sampled in slot t:
if Ci,m(t) < Ci,l(t) + W and Ci,m(t) < Ci,n(t) + W , then

Generate a token for session i in slot t (Ci,m(t + 1) = Ci,m(t) + 1);
else

Do not generate token for session i (Ci,m(t + 1) = Ci,m(t)), and
Sample the next session in the round robin order.

end

Procedure Packet Release (source i)
begin

Release a new session i packet for transmission at session i source when
a token is generated for the session at the source.

end

Procedure Packet Scheduling For Transmission (link
e)
begin

Let e be the link between the nodes m and n,
Le be the set of sessions traversing link e, and

PR
i,n(t) be the number of released packets of session i waiting at node

n at time t.
We(t) = maxi∈Le

(
PR

i,m(t)− PR
i,n(t)

)
(/*Weight of link is the maxi-

mum difference in backlog across the link */),
Schedule the links that constitute a maximum weighted matching.
If link e is scheduled, then
transmit a packet of session j from node m to node n if

PR
j,m(t) − PR

j,n(t) = maxi∈Le

(
PR

i,m(t)− PR
i,n(t)

)
/*session j has the

maximum difference of backlog across e*/.

end

Fig. 1. Pseudo code of the fair bandwidth allocation algorithm for
saturated sessions

generalizations in subsection III-B and Section V.

A. Basic Algorithm

We consider the special case that every session is satu-
rated, i.e., its source node always has a packet (ρi = ∞,
∀ i). We present the algorithm in Figure 1. Here, we de-
scribe each part. Fair bandwidth is estimated by a token
generation process. Every node generates tokens for all ses-
sions traversing the node. The token generation process is
so designed that the tokens are generated for each session
at the session’s maxmin fair rate. Whenever a new token
is generated for a session at the session’s source, the source
node releases a new packet for transmission. Thus, the
packet release process is maxmin fair. Only the released
packets are eligible for transmission.

We describe the token generation process for a session
i at node m. Node m samples in round robin order the
sessions traversing it. Node m samples sessions in at most
α fraction of slots. Also, whenever m generates a token
for a session it relays, it does not sample in the next slot.
Thus, the sum of the token generation rates of sessions
originating or terminating at m and twice the token gen-
eration rates of sessions m relays does not exceed α. Let
l and n be the immediate upstream and downstream (i.e.,
adjacent) nodes of node m in session i′s path. Let Ci,p(t)
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be the number of tokens generated for session i at node
p in the interval [0, t]. Let m sample session i in slot t.
Then, m generates a token to session i in slot t if and only
if Ci,m(t) < min (Ci,l(t), Ci,n(t)) + W. Thus, session i re-
ceives a token at m unless the number of tokens for session i
at m substantially exceeds that at the adjacent nodes; this
prohibitive difference is the window parameter, W. In slot
t, m samples the next session in the round robin order if
and only if m does not generate a token for session i. Note
that the source (destination) node of a session has only one
adjacent node for the session, and thus decides whether to
generate a token based on the number of tokens at only
one adjacent node. Tokens are never removed from a node.

We now explain why for each session the token gener-
ation rate equals the maxmin fair rate. The maxmin fair
rate of a session is determined by the bandwidth offered
by the session’s bottleneck node which is the most con-
gested node in the session’s path. Intuitively, a session’s
token generation rate at any node in its path should equal
that at its bottleneck node; the difficulty in attaining this
equality is that the nodes do not have explicit information
about the bottleneck node. A node learns the bottleneck
information implicitly by relating the token generation pro-
cess for a given session to that at the adjacent nodes in the
session’s path. The number of tokens for a session at two
adjacent nodes in the session’s path differ by at most W
at any time t, and the difference is at most LW for that at
any two nodes in the session’s path, where L is the max-
imum number of nodes in the session’s path. Thus, the
rates of token generation for a session are equal at any two
nodes in the session’s path. A session’s bottleneck node
samples it at the least rate in its path. Hence, a session’s
token generation rate at each node is upper bounded by its
sampling rate at its bottleneck node; the token generation
rate in fact equals this sampling rate which turns out to be
the session’s maxmin fair rate.

Lemma 2: Let r1, r2, . . . rN be the maxmin fair rates of
the sessions. Let Ci,n(t) be the number of tokens generated
for session i at node n in interval (0, t). Then, in any time
interval (x, y), |Ci,n(y)−Ci,n(x)−ri(y−x)| ≤ %, if W ≥ W0,
where W0 and % are constants.
We define W0 and % in the proof of Lemma 2, in terms of
N,L, dmax, α (refer to Table I and Figure 1 for definitions
of these quantities). Note that the values of W0 and % do
not depend on the interval (x, y).

The implicit discovery of the bottleneck information
from the bandwidth allocation process at neighboring
nodes has been motivated by fair bandwidth allocation al-
gorithms in wireline networks [4]. This is commonly termed
as “back-pressure.” The mechanisms used in this discov-
ery, e.g., the sampling and the token generation, and also
the link scheduling are however significantly different due
to the dependence between the scheduling of different links
in wireless networks which does not arise in wireline net-
works.

Whenever the source node of a session generates a new
token for the session, it releases a new packet. The max-
imum difference in backlog scheduling [21] transmits the

released packets along the pre-specified routes to the de-
sired destinations. The maximum difference in backlog
scheduling assigns a weight to each link as follows. The
difference in backlog of a session in a link is equal to the
difference between the number of released packets of the
session waiting at the source node of the link and that at
the destination node of the link. The weight of a link is the
maximum difference in backlog of the sessions traversing
the link. Note that only a session’s source may have pack-
ets that have not been released. The links that constitute
a maximum weighted matching are scheduled for service.
When a link is scheduled, a released packet of the session
that has the maximum difference in backlog in the link
is served. The maximum difference in backlog scheduling
stabilizes a network if the packet arrival process is feasible
[20]. The packet arrival process in the current network is
the packet release process. Tokens and hence packets are
released for each session at the maxmin fair rate (Lemma 2)
which is feasible by definition. The network is thus stable,
and hence the rate of delivery of packets of a session to the
session’s destination equals the session’s packet release rate
which is the session’s maxmin fair rate.

Theorem 1: Let r1, r2, . . . rN be the maxmin fair rates of
the sessions. Let Di(t) be the number of packets for session
i that have reached session i′s destination by time t. Then,
in any time interval (x, y), |Di(y)−Di(x)− ri(y−x)| ≤ κ,
if W ≥ W0, where, W0 and κ are constants.
Note that κ, which we define in the following proof, does
not depend on the interval (x, y).
Proof of Theorem 1: From Lemma 2, the number of
packets of session i released from i’s source in any interval
(x, y) differs from ri(y−x) by at most %. Since (r1, . . . , rN )
is feasible, results in [20] show that the packet queue length
at any time in any node is bounded by a constant κ1, if the
maximum difference in backlog scheduling is used. Thus,
the number of i’s packets that reach i′s destination in any
interval (x, y) differs from ri(y − x) by at most a constant
κ, where κ = Lκ1 + %. Note that κ1 and % depend on
N,L, dmax, α and not on the interval (x, y). 2

Theorem 1 shows that in any interval the number of
packets of a session delivered to the destination differs from
the maxmin fair number by at most a constant. Thus, the
long term rates are maxmin fair.

B. Generalization for addressing the unsaturated case

A session i is unsaturated if its source does not always
have packets for transmission, i.e., ρi < ∞. When some
or all sessions are unsaturated, the maxmin fair rates can
be attained by altering the token generation procedure at
the source node in the basic algorithm in Section 1; refer
to Figure 2 for the modification. The source node of a
session now does not generate a new token for the session
if it does not have a packet that has not been released.
The rest of the algorithm remains the same. Note that the
modification applies to all sessions; therefore, the algorithm
need not know which sessions are saturated. If a session
is saturated, then the modification will not be executed
as its source will always have packets that have not been
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Procedure Token Generation at Source Node (source i)
begin

Let node n be the source of session i.
Let PNR

i (t) be the number of packets of session i at time t that have
been generated at n but not been released.
Sampling procedure is the same as that in Figure 1 for all sessions
traversing n.
Token generation procedure for all sessions other than i is similar to
that in Figure 1.
Let node l in session i′s path be the immediate downstream node of
node n.
When session i is sampled in slot t:

if Ci,n(t) < Ci,l(t) + W and PNR
i (t) > 0, then

generate token for session i (Ci,n(t + 1) = Ci,n(t) + 1);
else

Do not generate token for session i (Ci,n(t + 1) = Ci,n(t)), and
Sample the next session in the round robin order.

end

Fig. 2. Pseudo code of the token generation process at the source
nodes for systems with some unsaturated sessions.

released.
If a session has a low rate of packet generation, then it re-

ceives fewer tokens at the source and subsequently at other
nodes as well, since back-pressure upper bounds by a con-
stant LW the difference between the number of tokens for
a session in any two nodes. Thus, the session obtains fewer
transmission opportunities, and hence, less bandwidth as
required for maxmin fairness.

We prove Lemma 2 in the appendix for pseudo-
deterministic (ρ, σ) arrival processes in which the number
of packets generated for any session i in any interval of
length t is upper bounded by tρi + σi and lower bounded
by tρi − σi for any t. Here, ρi is the long term arrival rate
of a session i, and σi is the burstiness. Similar to the
saturated case, Theorem 1 can be proved using Lemma 2,
and thus the modified algorithm attains the maxmin fair
rates. Let σ = maxi σi. Now, W0, %, κ1 and κ depend on
N,L, dmax, α and σ.

IV. Performance Evaluation

We now examine using simulations (a) the time re-
quired for convergence of the token generation rates to the
maxmin fair rates, and (b) how the convergence depends
on the choice of the window parameter W . Note that we do
not have a tight analytical bound on the convergence time.
The lower bound on W, W0, needed to guarantee the con-
vergence results in Lemma 2 and Theorem 1, depends on
N,L, dmax, α and σ. Thus, this bound is impossible to com-
pute without explicit knowledge of the network topology.
This motivates the investigation of the impact of different
choices of W on the convergence of the token generation
rates to the maxmin fair values.

We present simulation results for a network of 21 nodes
and 14 sessions that is shown in Figure 3. Here, W = 5.
We simulate the token generation procedure in C. We do
not simulate the maximum difference in backlog schedul-
ing, as it has been known to attain any feasible rate if the
packet arrival process is feasible [20]. We consider the rela-
tive difference between the long term token generation rate
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Fig. 3. The first figure shows the topology with 21 nodes and 14
sessions that is used in the simulations. The second figure considers
the case when all the sessions are saturated. The third figure considers
the case when all the sessions are saturated, except session 7 which
receives packets at the rate 0.1 per unit time.

for each session i at its source (Ci,n(t)/t) and the maxmin
fair rate (ri). The relative difference, which we call rela-
tive error, at time t for session i is |1− Ci,n(t)

rit
|. We plot the

maximum and average relative errors over all sessions as
a function of t in Figure 3. In Figure 3, the second figure
considers the case when all the sessions are saturated; the
third figure considers the case when all sessions are satu-
rated except session 7 that receives packets at the rate 0.1
per unit time.

We observe the following from Figure 3. The average rel-
ative error decays fast, e.g., it is less than 0.05 within 500
slots. The maximum relative error decays slower indicat-
ing that a few sessions experience slower convergence. The
token generation rates converge to the maxmin fair rates
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even though W = 5; the lower bound W0 for guaranteed
convergence is 270! We observed similar trends for several
other topologies. We conclude that on an average, the to-
ken generation rate converges rapidly to the maxmin fair
bandwidth. Also, in practice, convergence is not sensitive
to the choice of W and moderate values of W, e.g., W ≈ 5,
ensure convergence. Thus, small window sizes can be used
to control the delay and buffer requirements.

V. Discussion and Conclusion

The token generation and the scheduling can operate in
parallel. A sequential operation increases the overall delay
in attaining the desired bandwidth allocation.

The scheme need not restart if new sessions join or old
sessions leave. The analytical performance guarantees hold
even in this dynamic scenario.

The analytical performance guarantees hold even when
a node knows the number of tokens at its neighbors after
a delay, as long as the delay is upper bounded. We have
shown in [18] that the rates obtained by a similar back-
pressure technique converges to the maxmin fair rates ir-
respective of the feedback delay. The guarantees also hold
when the scheduling decisions are taken, and/or tokens are
generated at intervals, as long as the intervals are upper
bounded. When tokens are generated at intervals, multiple
tokens must be generated to each session simultaneously.

The algorithm is adaptive as it does not need the statis-
tics of the arrival process.

The algorithm requires per-flow states at the nodes. But,
this is not likely to substantially increase the complexity in
wireless networks as the number of sessions traversing a
node is limited by the available bandwidth rather than by
the computational complexity.

A node can execute the token generation and the packet
release processes with the knowledge of the status of only
its one-hop neighbors. The maximum difference backlog
scheduling is however a centralized procedure as it requires
the computation of a maximum weighted matching. A
maximal matching† can however be computed in a dis-
tributed manner [9]. Recently, performance guarantees
have been obtained for maximal matching based schedul-
ings [9]. It may be possible to use these results to prove that
the combination of the current token generation scheme,
packet release process and a scheduling that uses maximal
matching instead of the maximum backlog scheduling at-
tain approximately maxmin fair rates. This is a topic of
future investigation.

The system does not remove any token. Thus, the regis-
ter storing the number of tokens may overflow. The perfor-
mance guarantees hold if equal number of tokens of a ses-
sion are removed from each node in the session’s path. The
removal process can be executed by periodic exchange of
synchronization information. The additional system over-
head is small as the periods are long.

†A set of edges is a maximal matching if it is a matching and if
every edge not in the matching shares an end-point with some edge
in the matching.

We now consider some important generalizations. We
first consider the more generalized notion of weighted
maxmin fairness. Let the weight of session i be Gi. A
feasible bandwidth allocation (r1, r2, . . . , rN ) is weighted
maxmin fair, if it satisfies the following property w.r.t. any
other feasible bandwidth allocation (s1, . . . , sN ) : if there
exists a i such that ri < si, then there exists a j such that
rj/Gj ≤ ri/Gi and sj < rj . Unequal weights allow allo-
cation of bandwidth on the basis of the quality of service
requirements. A session with a higher weight can have a
bandwidth higher than another even if both sessions travel
the same path and generate packets at the same rate. The
sampling procedure in the basic algorithm presented in Sec-
tion 1 must be altered to attain the weighted maxmin fair
rates. In any slot t, node n samples the session that has
the minimum weighted number of tokens, i.e, the mini-
mum value of Ci,m(t)/Gi among all sessions i traversing
the node. Thus, the sessions with higher weights are sam-
pled more often. The rest of the algorithm remains the
same. Theorem 1 and Lemma 2 hold.

We have so far assumed that every link can transmit
1 packet per unit time. We now consider that link l can
transmit cl packets per unit time‡. First, the node capacity
condition for feasibility changes because of this generaliza-
tion. Let Li,n be the set of links in session i’s path that
are incident on node n. Note that Li,n consists of two links
if n relays i and one link if n is the source or destina-
tion of i. Now the node capacity constraint is that at each
node n

∑
i:i traverses n

∑
l∈Li,n

ri/cl ≤ α [23]. A modified
token generation and scheduling algorithm will attain the
maxmin fair rates. The token generation process differs
in that a node now generates fractional number of tokens.
More specifically, when a node n samples a session i it gen-
erates 1∑

l∈Li,n
(1/cl)

tokens and it samples the sessions in all

sampling slots (nodes no longer idle in slots succeeding the
token generation slots since they now generate fractional
tokens). The source of each session maintains a queue of
packets that it has generated but not released for transmis-
sion, and releases a packet from this queue only when the
difference between the amount of tokens and the number of
released packets is 1 or more. The source does not generate
any token if this queue is empty. The rest of the token gen-
eration process is the same. We assume that cl is rational
for each l. Let cl = al/bl where al, bl are relatively co-prime
integers. Let J be the least common multiple of bls for all
links. The scheduling process differs in that the scheduling
must be computed at the beginning of intervals of J slots
and persisted with during the interval. This is necessary
since the links can not transmit fractional packets.

We now outline a scheduling algorithm that would at-
tain the maxmin fair rates in the actual feasible set in
non-bipartite graphs. For simplicity, we again assume that
cl = 1 for each l. Let M(i, Q) be the set of links that are
in session i’s path and have both end points in a set Q of
nodes. A rate allocation vector is feasible in a non-bipartite

‡For simplicity, we still assume that all packets have the same num-
ber of bits, but this can be relaxed easily.
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graph if and only if for each subset of nodes, Q, with odd
cardinality (i.e., odd |Q|),

∑N
i=1 ri|M(i, Q)| ≤ (|Q| − 1)/2

[5]. There exists a token-generator for each constraint,
which will be denoted by the corresponding subset. Each
token generator samples in round-robin order all the ses-
sions involved in the constraint. Let Mi,Q(t) be the num-
ber of tokens generated by the token generator for con-
straint Q for session i till time t. When the generator for
Q samples i, it generates 1/|M(i, Q)|| token to i if and
only if the total number of tokens generated by a gener-
ator corresponding to another constraint involving i is at
least MiQ(t) − W where W is a parameter. Note that if
M(i, Q) = φ, then session i is not involved in constraint
Q. Session i releases a packet for transmission whenever
minQ MiQ(t) increases, and the released packets are trans-
mitted as per the maximum difference in backlog schedul-
ing described before. The rate of packet delivery at each
destination is maxmin fair in the actual feasible set. This
token generation can be implemented in distributed man-
ner by maintaining separate token generators for different
constraints at each node involved in the constraint, and
relating the generation processes in the adjacent nodes as
described before. The token generation will still require ex-
ponential number of generators per node and therefore con-
sume exponential computation complexity per slot. This
limits its practical utility. Some open research problems are
to determine whether there exists a polynomial complexity
token generation scheme for attaining the exact maxmin
fair rates in non-bipartite topology graphs, and designing
one if one such exists.

We now summarize the contributions of this paper. We
consider the objective of attaining maxmin fairness in mul-
tihop wireless ad hoc networks. We present conditions that
are necessary and sufficient for a bandwidth allocation to
be maxmin fair. We present an adaptive scheduling strat-
egy that attains maxmin fairness for sessions with different
traffic demands. The strategy can be generalized to attain
other fairness objectives such as weighted maxmin fairness.

Appendix

I. Proof of Lemma 1

Consider a feasible bandwidth allocation (r1, . . . , rN ).
Assume that for each i, either ri = ρi, or session i has
a bottleneck node. We show that (r1, . . . , rN ) is maxmin
fair. Consider any session i. If ri = ρi, then i’s bandwidth
can not be increased while maintaining feasibility. Let i
have a bottleneck node, n. If i’s bandwidth is increased,
the bandwidth of some other session j that traverses n
must be decreased to satisfy the node capacity constraint.
Bandwidth of any session traversing n is either less than
or equal to that of i. Thus any increase in i’s bandwidth
will decrease that of some session j that has bandwidth
less than or equal to i′s bandwidth. Thus, (r1, . . . , rN ) is
maxmin fair.

Now consider a maxmin fair bandwidth allocation
(r1, . . . , rN ). We will show that for each i, either ri = ρi, or
session i has a bottleneck node. Consider any session i. Let
ri < ρi and let i not have a bottleneck node. Thus, at each

node in i′s path, either there exists a session j such that
rj > ri, or the sum of the bandwidth of all sessions travers-
ing node n is less than α. In either case, i’s bandwidth can
be increased without decreasing that of any other session
that has bandwidth less than or equal to i’s bandwidth
and without violating the feasibility conditions. This con-
tradicts the fact that (r1, . . . , rN ) is maxmin fair. 2

II. Proof of Lemma 2

We prove Lemma 2 for a system that consists of both sat-
urated and unsaturated sessions. Let, Pi(t) be the number
of packets generated for session i at i′s source in interval
(0, t).

Then, |Pi(t)− ρit| ≤ σi ∀ t (1)

Let α = µ/η, where µ and η are relatively prime positive
integers. Let each node sample the sessions in µ slots in
every contiguous η slots.

We prove using the following steps. (a) We show that
if a session generates packets at rate r or higher, and if it
is sampled at rate r or higher at every node in its path,
then it receives tokens at rate r or higher from every node
in its path (Lemma 3). (b) We next show that a session’s
sampling rate at any node in its path equals its maxmin
fair rate (Lemma 4). By definition, a session’s maxmin fair
rate is less than or equal to its packet generation rate. The
result follows.

We introduce some terminologies and subsequently state
Lemmas 3 and 4. Let Si,n(t) be the number of times session
i is sampled at node n in the interval (0, t), Li be the
number of nodes in session i′s path, L = maxi Li, and
β, γ are constants that will be formulated later. We prove
Lemmas 3 and 4 in sections C and D.

Lemma 3: Consider an arbitrary K and a sequence of
K disjoint intervals, (tl, wl), l = 1, . . . ,K, that satisfies the
following property for session i, for every positive integer M
and every sequence of subintervals (xm, ym), m = 1, . . . ,M,
(xm, ym) ⊂ (tl, wl), for some l. At every node n in i′s path,

M∑
m=1

(Si,n(ym)− Si,n(xm)) ≥ r
M∑

m=1

(ym−xm)−e−Mf, (2)

where e and f are constants that do not depend on M and
the sub intervals (xm, ym), m = 1, . . . ,M. Let ρi ≥ r and
W ≥ 3Li−1(f + σi)/2. Then, at every node n in i′s path,

K∑
l=1

(Ci,n(wl)− Ci,n(tl)) ≥ r
K∑

l=1

(wl − tl)− 2Li−1e

−K3Li−1(f + σi). (3)
Lemma 4: Let r1, . . . , rN be the maxmin fair rates

of sessions 1, . . . , N. Consider any positive integer K,
and an arbitrary non-decreasing sequence of times
x1, y1, . . . , xK , yK . Let W ≥ 3L−1(ε1(F ) + σ)/2, where
ε1(F ) is defined in (7) to (12). For each node A and for
each session i traversing A,

K∑
k=1

(Si,A(yk)− Si,A(xk)) ≥ ri

K∑
k=1

(yk − xk)− β
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−Kγ, (4)
K∑

k=1

(Ci,A(yk)− Ci,A(xk)) ≥ ri

K∑
k=1

(yk − xk)− β

−Kγ, (5)
K∑

k=1

(Ci,A(yk)− Ci,A(xk)) ≤ ri

K∑
k=1

(yk − xk) + β

+Kγ. (6)

Here, β and γ are constants that do not depend on
x1, y1, . . . , xK , yK .

We introduce the notion of “rank” of a session for defin-
ing β and γ. A session has rank p if its mamin fair rate is
r̂p, the pth lowest among the maxmin fair rates of different
sessions. Let, F be the number of distinct ranks, F ≤ N.

ς1(1) = 0. (7)
ε1(1) = η + 1. (8)
ς2(p) = 2L−1ς1(p). (9)
ε2(p) = 3L−1(ε1(p) + σ). (10)
ς3(p) = 2σ + max(dmax, 2) (ς2(p) + ε2(p))

+2LW + η − 1. (11)
ε3(p) = ε2(p). (12)

ς1(p + 1) = (dmax − 1)ς3(p). (13)
ε1(p + 1) = (dmax − 1)ε3(p) + η + 1. (14)

Now, β = ς3(F ) and γ = ε3(F ).
Proof of Lemma 2: Lemma 2 follows from (5) and (6) of
Lemma 4 with % = β + γ and W0 = 3L−1(ε1(F ) + σ)/2. 2

III. Proof of Lemma 3

We first present the intuition behind the proof. The
proof is by induction on the number of nodes in a session’s
path. The sessions with one node form the base case (allow-
ing such sessions simplify the proof). Note that any such
session receives a token every time it is sampled and has a
packet that has not been released, since no adjacent node
applies back-pressure. Now, the lemma follows for the base
case from the lower bounds on the sampling and packet
generation rates. We next assume that the lemma holds
for all sessions with p nodes, and then prove the lemma for
sessions with p + 1 nodes. Consider a session with p + 1
nodes and adjacent nodes A and B in its path (Figure 4).
Node B does not prevent the generation of any token at A
unless the number of tokens at A is W more than that at
B. If the number of tokens at A is W more than that at
B, A does not prevent any token generation at B, and the
nodes from B to the destination generate tokens as though
they constitute a session with fewer nodes, oblivious to the
presence of the nodes from A to the source. By induction
hypothesis, and from the sampling and packet generation
rates, the session receives tokens at rate r or higher at B in
these intervals. In all these slots, the number of tokens at
A exceed that at B by W. Thus, A′s token generation rate
is lower bounded by B’s token generation rate which is at

A BS DC

Fig. 4. We show the path of a session between source S and destina-
tion D. The A−set consists of nodes S, C, A and the B−set consists
of nodes B, D.

least r. In other slots, B does not prevent the generation
of any token at A. Thus, the token generation at the nodes
from the source to A resembles that for a session with fewer
nodes. Thus, by induction hypothesis and the assumption
on the sampling rate, in all slots, A generates tokens at
rate r or higher for the session. Note that a session span-
ning 2 nodes can also be taken as the base case, but then
the proof becomes longer. Also, sessions of all path lengths
need not be present in the system.
Proof of Lemma 3: We prove by induction on the
number of nodes p in a session’s path.

First consider a session i with one node n. Let n not be
the source of i. The lemma holds from the assumption on
the sampling rate (condition (2)). Now, let n be the source
of i. Let zl be the last slot in interval (tl, wl) in which i
does not have a packet that has not been released. Also,
recall that PNR

i (t) is the number of packets of session i at
its source at time t that have not been released.

Ci,n(zl)− Ci,n(tl) = Pi(zl)− Pi(tl) + PNR
i (tl)

≥ Pi(zl)− Pi(tl)
≥ ρi(zl − tl)− σi (from (1))
≥ r(zl − tl)− σi (since r ≤ ρi).(15)

Node n generates a token for session i every time it samples
i in (zl, wl), ∀ l.

K∑
l=1

(Ci,n(wl)− Ci,n(zl))

=
K∑

l=1

(Si,n(wl)− Si,n(zl))
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1 1 1 2 2 2 1 1

t w t w1 1 2 2

u u v u11 21 21 22

Fig. 5. We show two intervals [t1, w1] and [t2, w2], and some type 1
and 2 slots. We also show the corresponding u and v slots. Here
[t1, u11], [t2, u21], (v21, u22] are example sub-intervals that end in
u−slots and start from the nearest v−slot or ti−slot.

≥ r
K∑

l=1

(wl − zl)− e−Kf (from (2)). (16)

K∑
l=1

(Ci,n(wl)− Ci,n(tl))

=
K∑

l=1

(Ci,n(wl)− Ci,n(zl)) +
K∑

l=1

(Ci,n(zl)− Ci,n(tl))

≥ r

K∑
l=1

(wl − tl)− e−K(f + σi) (from (15) and (16)).

Thus, (3) holds in the base case.
We assume that (3) holds for all sessions with p or fewer

nodes, and prove (3) for an arbitrary session i with p + 1
nodes. Consider an arbitrary node A in i′s path. If the
number of tokens of i at A does not exceed that at nodes
adjacent to A in i′s path by W or more in the intervals
(tl, wl), l = 1, . . . ,K, then the token generation process for
i at A is not affected by back-pressure, and the proof is
similar to the base case. Thus, we assume that there exists
in i′s path a node B that is adjacent to A, and Ci,A(t) =
Ci,B(t) + W at some time t in these intervals. Let a slot t
where Ci,A(t) exceeds Ci,B(t) by W be a type 1 slot, and
a slot t where Ci,B(t) exceeds Ci,A(t) by W be a type 2
slot; a slot may neither be type 1 nor type 2. Consider
each [ti, wi] interval separately. Consider the sequences of
type 1 and 2 slots that are obtained after removing the
slots without numbers. The last slot in such a sequence
of type−1 (2) slots is denoted a “u” (“v”) slot. The mth
“u-slot” (“v-slot) of the lth interval is ulm (vlm) (Figure 5).

Note that

Ci,A(ulm) = Ci,B(ulm) + W ∀ l,m. (17)
Ci,B(vlm) = Ci,A(vlm) + W ∀ l, m. (18)

Ci,A(t) ≤ Ci,B(t) + W, ∀ t. (19)

If the link between A and B is removed, then the nodes
in i’s path that remain connected to A (B) is the A−set
(B−set) (Figure 4). Let A−set (B−set) consist of a (b)
nodes. Note that a + b = p + 1, a > 0, b > 0. Thus,
a ≤ p, b ≤ p. Consider a sub-interval that ends at a u slot
and starts from a tj (inclusive) or a v−slot (not inclusive),
whichever is the nearest to the u−slot (Figure 5). Let there
be Jl such subintervals in (tl, wl), and

∑K
l=1 Jl = I1. These

sub-intervals do not consist of any type 2 slot. Thus, A
does not prevent any session i token generation at B in
these subintervals. Hence, in these sub-intervals, the token
generation for i in the nodes in the B−set resembles that
in the nodes of a session of length b. Condition (2) holds for
i in every node in the B− set for every set of subintervals
of these I1 sub-intervals, since any such subinterval is in
[tl, wl] for some l. Thus, the number of tokens generated
for i in these I1 subintervals in each node of the B− set
can be lower bounded using the induction hypothesis. The
sub-intervals in [tl, wl] are [tl, ul1] and (vlm−1, ulm], m > 1,
if vl1 > ul1 as in Figure 5; the subintervals are (vlm, ulm],
m ≥ 1, otherwise. We assume that vl1 > ul1 for all l; the
argument is similar if vl1 < ul1 for some or all l. From
induction hypothesis,

K∑
l=1

((Ci,B(ul1)− Ci,B(tl))

+
Jl∑

m=2

(Ci,B(ulm)− Ci,B(vlm−1))

)

≥ r
K∑

l=1

(
(ul1 − tl) +

Jl∑
m=2

(ulm − vlm−1)

)
−2p−1e− I13p−1(f + σi). (20)

Ci,A(ul1)− Ci,A(tl)
≥ Ci,B(ul1) + W − Ci,B(tl)−W (from (17) and (19))
= Ci,B(ul1)− Ci,B(tl). (21)

Ci,A(ulm)− Ci,A(vlm−1)
= Ci,B(ulm)− Ci,B(vlm−1) + 2W (22)

The last equality follows (from (17) and (18)).

K∑
l=1

((Ci,A(ul1)− Ci,A(tl))

+
Jl∑

m=2

(Ci,A(ulm)− Ci,A(vlm−1))

)

≥
K∑

l=1

((Ci,B(ul1)− Ci,B(tl))
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+
Jl∑

m=2

(Ci,B(ulm)− Ci,B(vlm−1))

)
+2W (I1 −K) (from (21) and (22))

≥ r
K∑

l=1

(
(ul1 − tl) +

Jl∑
m=2

(ulm − vlm−1)

)
−2p−1e−K3p−1(f + σi)
+(I1 −K)(2W − 3p−1f − 3p−1σi) (from (20)).(23)

Now, consider the subintervals obtained after removing
these I1 subintervals from ∪K

l=1(tl, wl). These new sub-
intervals do not contain any type 1 slot. Thus, B does
not prevent any session i token generation at A. Hence,
the session i token generation in the nodes in the A−set
resembles that of a session of length a, a ≤ p. The number
of session i tokens generated at A in these sub-intervals can
be lower bounded from the induction hypothesis. There are
at most I1 + K such sub-intervals, which are of the form
(ulm, vlm] and (uJl

, wl], since we assume that vl1 > ul1 ∀ l.

Thus,
K∑

l=1

((Ci,A(wl)− Ci,A(uJl
))

+
Jl−1∑
m=1

(Ci,A(vlm)− Ci,A(ulm))

)

≥ r
K∑

l=1

(
(wl − uJl

) +
Jl−1∑
m=1

(vlm − ulm)

)
−2p−1e− (I1 −K)3p−1(f + σi)
−2K3p−1(f + σi). (24)

Adding (23) and (24),

K∑
l=1

(Ci,A(wl)− Ci,A(tl))

≥ r
K∑

l=1

(wl − tl)− 2pe−K3p(f + σi)

+(I1 −K)(2W − 3p (f + σi)). (25)

Note that p + 1 ≤ Li and thus, W ≥ 3p(f + σi)/2. We
have implicitly assumed that at least one type−1 slot exists
in each interval (tl, wl); this justifies the summation from
l = 1 to K in (20). Under this assumption, I1 ≥ K. Hence,
(3) holds for session i at node A. If there is no type−1
slot in [tl, wl] for some l, then the summation in (20) must
be over the intervals [tl, wl] that have at least one type−1
slot. Let K1 be the number of such intervals. Now, (I1−K)
must be replaced with (I1 −K1). Since I1 ≥ K1, (3) holds
at all nodes in i′s path. 2

IV. Proof of Lemma 4

We outline the proof for the special case that all ses-
sions are saturated. We use induction on the rank p of a
session. For the base case (p = 1), using a property of

the round robin sampling, we show that all sessions are
sampled at a rate r̂1 or higher at every node. Now, (5),
the lower bound on the token generation rate follows from
Lemma 3. Next, we show (6), i.e., the token generation
rates are upper bounded by r̂1 for all sessions with rank
1. This follows because the sampling and hence the token
generation rate is upper bounded by r̂1 at the bottleneck
node, and due to back-pressure the token generation rates
for a session are equal at different nodes in the session’s
path. Now, consider the induction case, i.e., arbitrary p.
The token generation rates of sessions with rank lower than
p are upper bounded by their respective maxmin fair rates
which are upper bounded by r̂p. Sessions of rank p or higher
are sampled in a certain minimum fraction of the slots in
which the sessions with rank lower than p do not receive
tokens. Therefore, the lower bound on the sampling rate
of sessions with rank p or higher follows. Again, the lower
bound on the token generation rate follows from Lemma 3.
We prove, as in the base case, the upper bound on the
token generation rate for sessions with rank p.

We consider both saturated and unsaturated sessions in
the formal proof.
Proof of Lemma 4: We prove the following for ranks
p = 1, . . . , F, by induction on p.
For each node A, for each session i that traverses A

and has rank greater than or equal to p, for any positive
integer K, and for any nondecreasing sequence of times
x1, y1, . . . , xK , yK ,

K∑
k=1

(Si,A(yk)− Si,A(xk)) ≥ r̂p

K∑
k=1

(yk−xk)−ς1(p)−Kε1(p).

(26)
For each node A, for each session i that traverses A

and has rank greater than or equal to p, for any positive
integer K, and for any nondecreasing sequence of times
x1, y1, . . . , xK , yK ,

K∑
k=1

(Ci,A(yk)− Ci,A(xk)) ≥ r̂p

K∑
k=1

(yk−xk)−ς2(p)−Kε2(p).

(27)
If a session i has rank p, and ri = ρi,

PNR
i (t) ≤ σi + ς2(p) + ε2(p) ∀ t. (28)

For each node A, for each session i that traverses A and
has rank p, for any positive integer K, and for any nonde-
creasing sequence of times x1, y1, . . . , xK , yK ,

K∑
k=1

(Ci,A(yk)− Ci,A(xk)) ≤ r̂p

K∑
k=1

(yk−xk)+ς3(p)+Kε3(p).

(29)
We first prove (26) to (29) for p = 1. Note that r̂1 =

min(α/dmax,mini ρi). Consider a node A. Let X be the set
of sessions traversing A and RA be the set of sessions A
relays. Note that RA ⊆ X and dA = |X |+ |RA|. From the
sampling process, in any interval (xk, yk),∑

j∈X
(Sj,A(yk)− Sj,A(xk))
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+
∑

j∈RA

(Cj,A(yk)− Cj,A(xk))

≥ α(yk − xk)− η.

Now, using Sj,A(yk)− Sj,A(xk) ≥ Cj,A(yk)− Cj,A(xk),∑
j∈X

(Sj,A(yk)− Sj,A(xk))

+
∑

j∈RA

(Sj,A(yk)− Sj,A(xk))

≥ α(yk − xk)− η.

Since sessions are sampled in round robin order, Si,A(yk)−
Si,A(xk) ≥ Sj,A(yk)−Sj,A(xk)− 1 for any two sessions i, j
traversing A. Thus, for any session i traversing A,

dA (Si,A(yk)− Si,A(xk) + 1) ≥ α(yk − xk)− η,

Si,A(yk)− Si,A(xk) ≥ α/dA(yk − xk)− η − 1.

Thus, every session traversing node A is sampled at least
α/dA

∑Q
k=1(yk − xk) − Q(η + 1) times for any arbitrary

sequence of nondecreasing times x1, y1, . . . , xQ, yQ, and any
arbitrary Q. Since dA ≤ dmax, r̂1 ≤ α/dA. Thus, (26) holds
with ς1(1) = 0 and ε1(1) = η + 1.

Since εF (1) ≥ ε1(1), W ≥ 3L−1(ε1(1) + σ)/2. Hence,
(27) follows from Lemma 3 with ς2(1) = 2L−1ς1(1) and
ε2(1) = 3L−1(ε1(1) + σ).

Now, we prove (28) for p = 1. Consider a session i with
rank 1 and ri = ρi. Thus, r̂1 = ρi. Let n be the source of i.

PNR
i (t) = Pi(t)− Ci,n(t)

≤ (ρi − r̂1)t + σi + ς2(1) + ε2(1)
(from (1) and (27) for p = 1)

= σ + ς2(1) + ε2(1) (since r̂1 = ρi and σi ≤ σ).

Thus, (28) follows for p = 1.
Now, we prove (29) for p = 1. Consider a session i with

rank 1. Let A be a node in i’s path. Consider a sequence
of non-decreasing times x1, y1, . . . , xK , yK .

K∑
k=1

(Ci,A(yk)− Ci,A(xk))

= Ci,A(yK)− Ci,A(x1)−
K−1∑
k=1

(Ci,A(xk+1)− Ci,A(yk))

≤ Ci,A(yK)− Ci,A(x1)− r̂1

K−1∑
k=1

(xk+1 − yk)

+ς2(1) + (K − 1)ε2(1). (30)

The last step follows from (27) for p = 1. First, let r̂1 < ρi.
Thus, i has a bottleneck node, B. Let X be the set of
sessions traversing node B. Since i has rank 1, dB = dmax,
rank(j) = 1, ∀j ∈ X , and r̂1 = α/dmax. Recall that SB∪DB

is the set of sessions that originate or terminate at B and
RB is the set of sessions that B relay. Let X 1 = SB∪DB .

First, let B be i’s source or destination.

Ci,B(yK)− Ci,B(x1)

≤ α(yK − x1)−
∑

m∈X 1\{i}

(Cm,B(yK)− Cm,B(x1))

+2
∑

m∈RB

(Cm,B(yK)− Cm,B(x1)) + η − 1

≤ α(yK − x1)
−(dmax − 1) (r̂1(yK − x1)− ς2(1)− ε2(1)) + η − 1
(from (27) since rank(j) = 1,∀j ∈ X )

= r̂1(yK − x1) + (dmax − 1) (ς2(1) + ε2(1)) + η − 1
(since r̂1 = α/dmax). (31)

Now, let B relay i.

2 (Ci,B(yK)− Ci,B(x1))

≤ α(yK − x1)− 2
∑

m∈RB\{i}

(Cm,B(yK)− Cm,B(x1))

+
∑

m∈X 1

(Cm,B(yK)− Cm,B(x1)) + η − 1

≤ α(yK − x1)
−(dmax − 2) (r̂1(yK − x1)− ς2(1)− ε2(1)) + η − 1
(from (27) since rank(j) = 1,∀ j ∈ X )

= 2r̂1(yK − x1) + (dmax − 2) (ς2(1) + ε2(1)) + η − 1
(since r̂1 = α/dmax).

Ci,B(yK)− Ci,B(x1)
≤ r̂1(yK − x1) + (dmax − 2) (ς2(1) + ε2(1)) /2 + (η − 1)/2.

Now, let r̂1 = ρi. Let B denote the source of i.

Ci,B(yK)− Ci,B(x1)
≤ PNR

i (x1) + Pi(yK)− Pi(x1)
≤ σi + ς2(1) + ε2(1) + ρi(yK − x1) + σi

(from (28) and (1))
= r̂1(yK − x1) + 2σi + ς2(1) + ε2(1) (since r̂1 = ρi). (32)

From (31), (32) and (32), there exists a node B in i’s path
such that

Ci,B(yK)− Ci,B(x1)
≤ r̂1(yK − x1) + 2σi + max(dmax − 1, 1) (ς2(1) + ε2(1))

+η − 1. (33)

Now, |Ci,A(t)− Ci,B(t)| ≤ LiW ∀ t. (34)

Ci,A(yK)− Ci,A(x1)
≤ Ci,B(yK)− Ci,B(x1) + 2LiW (from (34))
≤ r̂1(yK − x1) + max(dmax − 1, 1) (ς2(1) + ε2(1))

+2LiW + 2σi + η − 1 (from (33)). (35)
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From (30) and (35),

K∑
k=1

(Ci,A(yk)− Ci,A(xk))

≤ r̂1

K∑
k=1

(yk − xk) + max(dmax, 2) (ς2(1) + ε2(1))

+2LiW + 2σi + η − 1 + Kε2(1). (36)

Thus, for p = 1, (29) follows from (36) with ς3(1) =
max(dmax, 2) (ς2(1) + ε2(1))+2LW +2σ+η−1 and ε3(1) =
ε2(1).

Now, we assume (26) to (29) for 1, . . . , p, and show that
(26) to (29) hold for p + 1.

We first prove (26). Consider a session i with rank
greater than or equal to p + 1. Consider a node A in
i′s path. Let Y= {w : w traverses A, rank(w) ≤ p},
Z= {w : w traverses A, rank(w) ≥ p + 1}, Y1 = {w :
w ∈Y, A relays w} and Z1 = {w : w ∈Z, A relays w}.
Now, Y1 ⊆Y, Z1 ⊆Z and Z includes i. From the sam-
pling process, in any interval (xk, yk),∑

j∈Z
(Sj,A(yk)− Sj,A(xk)) +

∑
j∈Z1

(Cj,A(yk)− Cj,A(xk))

+
∑
j∈Y

(Cj,A(yk)− Cj,A(xk)) +
∑
j∈Y1

(Cj,A(yk)− Cj,A(xk))

≥ α(yk − xk)− η.

Now, using Sj,A(yk) − Sj,A(xk) ≥ Cj,A(yk) − Cj,A(xk) for
each j,∑

j∈Z
(Sj,A(yk)− Sj,A(xk)) +

∑
j∈Z1

(Sj,A(yk)− Sj,A(xk))

≥ α(yk − xk)−
∑
j∈Y

(Cj,A(yk)− Cj,A(xk))

−
∑
j∈Y1

(Cj,A(yk)− Cj,A(xk))− η.

Since sessions are sampled in round robin order, Si,A(yk)−
Si,A(xk) ≥ Sj,A(yk)−Sj,A(xk)− 1 for any two sessions i, j
traversing A. Thus,

(|Z|+ |Z1|) (Si,A(yk)− Si,A(xk) + 1)

≥ α(yk − xk)−
∑
j∈Y

(Cj,A(yk)− Cj,A(xk))

−
∑
j∈Y1

(Cj,A(yk)− Cj,A(xk))− η.

Thus,

K∑
k=1

(Si,A(yk)− Si,A(xk))

≥ 1
|Z|+ |Z1|

(
α

K∑
k=1

(yk − xk)−K|Z| −K|Z1|

−Kη −
∑
j∈Y

K∑
k=1

(Cj,A(yk)− Cj,A(xk))

−
∑
j∈Y1

K∑
k=1

(Cj,A(yk)− Cj,A(xk))


≥

(
α−

∑
j∈Y rj −

∑
j∈Y1

rj

)∑K
k=1(yk − xk)

|Z|

− |Y|+ |Y1|
|Z|+ |Z1|

ς3(p)

−K
|Z|+ |Z1|+ η + (|Y|+ |Y1|)ε3(p)

|Z|+ |Z1|
.

The last inequality follows since rank(w) ≤ p, and rw =
r̂rank(w), ∀ w ∈Y, and Y1 ⊆Y. Also, ς3(j) ≥ ς3(j − 1),
ε3(j) ≥ ε3(j − 1), ∀j. Thus, induction hypothesis (inequal-
ity (29)) applies. Now,

K∑
k=1

(Si,A(yk)− Si,A(xk))

≥
(
∑

j∈Z rj +
∑

j∈Z1
rj)
∑K

k=1(yk − xk)
|Z|+ |Z1|

− |Y|+ |Y1|
|Z|+ |Z1|

ς3(p)

−K
|Z|+ |Z1|+ η + (|Y|+ |Y1|)ε3(p)

|Z|+ |Z1|
(since α ≥

∑
w∈Z

rw +
∑

w∈Z1

rw +
∑
w∈Y

rw +
∑

w∈Y1

rw)

≥ r̂p+1

K∑
k=1

(yk − xk)− |Y|+ |Y1|
|Z|+ |Z1|

ς3(p)

−K
|Z|+ |Z1|+ η + (|Y|+ |Y1|)ε3(p)

|Z|+ |Z1|
. (37)

The last step follows since rank(w) ≥ p + 1, and hence
rw ≥ r̂p+1, ∀ w ∈Z. Thus, from (37), (26) holds for p + 1,
with ς1(p + 1) = (dmax − 1)ς3(p), and ε1(p + 1) = (dmax −
1)ε3(p) + η + 1.

Consider a session i with rank greater than or equal to
p + 1. Note that ρi ≥ r̂p+1, and W ≥ 3L−1(ε1(p + 1) +
σ)/2. Thus, (27) follows from Lemma 3, with ς2(p + 1) =
2L−1ς1(p + 1) and ε2(p + 1) = 3L−1(ε1(p + 1) + σ).

The proof for (28) is similar to that in the base case.
Now, we prove (29) for p + 1. The argument is similar

to that for the base case. We point out the differences.
Consider a session i with rank p + 1. Let A be a node in
i′s path. Consider any sequence of non-decreasing times
x1, y1, . . . , xK , yK .

K∑
k=1

(Ci,A(yk)− Ci,A(xk))

= Ci,A(yK)− Ci,A(x1)−
K−1∑
k=1

Ci,A(xk+1)− Ci,A(yk)

≤ Ci,A(yK)− Ci,A(x1)− r̂p+1

K−1∑
k=1

(xk+1 − yk)

+ς2(p + 1) + (K − 1)ε2(p + 1). (38)
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The last inequality follows from (27) for p + 1.
Now, first let r̂p+1 < ρi. Since ri = r̂p+1, ri < ρi. Thus, i

has a bottleneck node, B. Since i has rank p+1, all sessions
traversing B must have rank less than or equal to p + 1.
Recall that SB∪DB is the set of sessions that originate or
terminate at B and RB is the set of sessions that B relay.
Let X 1 = SB∪DB . First, let i originate or terminate at B.

Ci,B(yK)− Ci,B(x1)

≤ α(yK − x1)−
∑

m∈X 1\{i}

(Cm,B(yK)− Cm,B(x1))

−2
∑

m∈RB

(Cm,B(yK)− Cm,B(x1)) + η − 1

≤ α(yK − x1) + η − 1−
∑

m∈X 1\{i}

rm(yK − x1)

−2
∑

m∈RB

rm(yK − x1)

−(|X 1|+ 2|RB | − 1) (ς2(p + 1) + ε2(p + 1))
(from (27))

= r̂p+1(yK − x1) + η − 1
+(dB − 1)(ς2(p + 1) + ε2(p + 1)). (39)

The last step follows since α = r̂p+1 +
∑

m∈X 1\{i} rm +
2
∑

m∈RB
rm.

Now, let B relay i.

2 (Ci,B(yK)− Ci,B(x1))

≤ α(yK − x1)−
∑

m∈X 1

(Cm,B(yK)− Cm,B(x1))

−2
∑

m∈RB\{i}

(Cm,B(yK)− Cm,B(x1)) + η − 1

≤ α(yK − x1) + η − 1−
∑

m∈X 1

rm(yK − x1)

−2
∑

m∈RB\{i}

rm(yK − x1)

−(|X 1|+ 2|RB | − 2) (ς2(p + 1)− ε2(p + 1))
(from (27))

= 2r̂p+1(yK − x1) + η − 1
+(dB − 2)(ς2(p + 1) + ε2(p + 1))

The last step follows since α = 2r̂p+1 +
∑

m∈X 1
rm +

2
∑

m∈RB\{i} rm. Thus,

Ci,B(yK)− Ci,B(x1)
≤ r̂p+1(yK − x1) + η/2− 1/2

+(dB − 2) (ς2(p + 1) + ε2(p + 1)) /2. (40)

Now, let r̂p+1 = ρi. Let B denote the source of i. Like in
the base case, using (27) and (1), we can prove that

Ci,B(yK)− Ci,B(x1)
≤ r̂p+1(yK − x1) + 2σi

+ς2(p + 1) + ε2(p + 1). (41)

From (39), (40) and (41), there exists a node B in i’s path
such that,

Ci,B(yK)− Ci,B(x1)
≤ r̂p+1(yK − x1) + 2σi

+max(dmax − 1, 1) (ς2(p + 1) + ε2(p + 1))
+η − 1. (42)

From (42), like in the base case,

Ci,A(yK)− Ci,A(x1)
≤ r̂p+1(yK − x1) + 2σi

+max(dmax − 1, 1) (ς2(p + 1) + ε2(p + 1))
+2LiW + η − 1 (43)

From (38) and (43),

K∑
k=1

(Ci,A(yk)− Ci,A(xk))

≤ r̂p+1

K∑
k=1

(yk − xk)

+max(dmax, 2) (ς2(p + 1) + ε2(p + 1))
+2LiW + 2σi + η − 1 + Kε2(p + 1). (44)

Thus, (29) follows from (44) with ς3(p + 1) =
max(dmax, 2) (ς2(p + 1) + ε2(p + 1)) + 2LW + 2σ + η − 1
and ε3(p + 1) = ε2(p + 1). Thus, (26) to (29) hold in the
induction case.

Note that ςi(x), εi(x) are increasing in both i and x.
Thus, from (26), (27) and (29), Lemma 4 holds with
β = ς3(F ) and γ = ε3(F ). 2
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