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ABSTRACT
Wireless Sensor Networks are emerging as a key sensing
technology, with diverse military and civilian applications.
In these networks, a large number of sensors perform dis-
tributed sensing of a target field. Each sensor is a small
battery-operated device that can sense events of interest in
its sensing range and can communicate with neighboring
sensors. A sensor cover is a subset of the set of all sensors
such that every point in the target field is in the interior of
the sensing ranges of at least k different sensors in the subset,
where k is a given positive integer. The lifetime of the net-
work is the time from the point the network starts operation
until the set of all sensors with non-zero remaining energy
does not constitute a sensor cover. An important goal in
sensor networks is to design a schedule, that is, a sequence
of sensor covers to activate in every time slot, so as to max-
imize the lifetime of the network. In this paper, we design a
polynomial-time, distributed algorithm for maximizing the
lifetime of the network and prove that its lifetime is at most
a factor O(log n ∗ log nB) lower than the maximum possible
lifetime, where n is the number of sensors and B is an upper
bound on the initial energy of each sensor. Our algorithm
does not require knowledge of the locations of nodes or di-
rectional information, which is difficult to obtain in sensor
networks. Each sensor only needs to know the distances
between adjacent nodes in its transmission range and their
sensing radii. In every slot, the algorithm first assigns a
weight to each node that is exponential in the fraction of its
initial energy that has been used up so far. Then, in a dis-
tributed manner, it finds a O(log n) approximate minimum
weight sensor cover which it activates in the slot. Our simu-
lations reveal that our algorithm substantially outperforms
several existing lifetime maximization algorithms.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication
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1. INTRODUCTION
Recent advances in wireless communications and electron-

ics have enabled the development of low-cost sensor nodes [12].
Each sensor node is capable of sensing specific events in its
vicinity and of communicating with adjacent nodes. Thus,
for event sensing applications, a large number of sensor nodes
are deployed in a distribution area and they collaborate to
form an ad-hoc network, referred to as a wireless sensor net-
work (WSN). WSNs have the potential to become the domi-
nant sensing technology in many civilian and military appli-
cations, such as intrusion detection, environmental monitor-
ing, object tracking, traffic control, and inventory manage-
ment. In many of these applications, WSNs need to monitor
the target field for detecting events of interest, e.g., entrance
of an intruder in an intrusion detection application.

Wide-spread deployment of WSNs in target field monitor-
ing is being deterred by the energy consumed in the mon-
itoring process. The challenge is compounded by the fact
that the sensors are battery-powered and owing to size lim-
itations the sensors can only be deployed with low-lifetime
batteries, most of which are not rechargeable. Thus, a sen-
sor ceases to function (e.g., monitor) once its battery ex-
pires, and oftentimes, sensors whose batteries have expired
can not be easily replaced owing to logistics issues such as
remoteness or inaccessibility of distribution areas. Thus, the
success of the WSN technology is contingent upon develop-
ing strategies for intelligently using the available sensors so
as to maximize the duration for which the entire target field
is monitored by sensors. This duration, referred to as the
network lifetime, is an important performance metric for the
network as the coverage of the entire target field is essential
for reliable detection of events of interest.

Owing to large scale availability of low cost sensors, sen-
sors are often deployed with some redundancy, that is, sev-
eral locations in the target field can be monitored by mul-
tiple sensors. Lifetime of the WSNs can be substantially
enhanced by intelligently activating the sensors that mon-
itor the target field at any given time. We seek to maxi-



mize the lifetime of sensor networks by designing algorithms
that dynamically activate sensors based on their residual
energy content. The algorithm we develop is completely
distributed, does not need to know the coordinates of any
sensor, and provides provable guarantees on the attained
lifetimes.

1.1 Related Literature
Coverage, connectivity and lifetime maximization for WSNs

have received considerable attention in the last few years.
Comprehensive surveys can be found in [14, 15]. Most of
the existing papers focus on the coverage and connectivity
aspects [2, 16, 17, 18, 6, 10, 19, 20, 21], and typically pro-
pose computational geometry based approaches for discover-
ing coverage holes and ensuring connectivity. An interesting
connectivity property has been proved in [20, 21] that shows
that if the trasmission radius of each node is at least twice of
its sensing radius, then coverage implies connectivity of the
sensor network. We make the same assumption, and there-
fore seek to maximize lifetime while guaranteeing coverage
without explicitly considering connectivity.

We now summarize the papers that propose topology con-
trol solutions that maximize the network lifetime by schedul-
ing the active periods of the sensors, while preserving cover-
age and connectivity requirements. In [13] Cardei et al. ad-
dress the problem of lifetime maximization when only a
given set of targets needs to be covered. They showed that
the problem is NP-hard and provided heuristic sensor acti-
vation algorithms based on linear programming relaxations.
They also proposed a greedy heuristic activation scheme that
at each round seeks the minimal set of sensors that covers
all the targets. They evaluated the lifetimes attained by the
heuristic solutions using simulations, but did not provide
provable guarantees on the lifetimes of these schemes. To our
knowledge, the only scheme that provides guarantees on the
network lifetime is the one proposed by Berman et al. [11].
They have provided a centralized algorithm that attains a
network lifetime which is within O(log n) of the maximum
possible lifetime, where n is the number of sensors. This
algorithm determines how to activate sensors based on an
approximate solution of a linear program that requires com-
plete knowledge of network topology, coordinates of sensor
locations and initial energy of sensors. Such linear programs
can clearly be solved only by a central entity that knows all
of the above, which is hard to realize in practice. Also, the
sensors rarely know their precise locations since WSNs usu-
ally do not have access to global positioning systems (GPS).
Several sensor positioning systems [23, 24] have been pro-
posed in the literature for learning the locations, without
manual configuration or the use of GPS receivers. However,
they provide only coarse location estimations in practical
settings [25]. Note that several coverage verification algo-
rithms that do not assume knowledge regarding the locations
of the sensors exist [17, 16, 10, 3], but these papers do not
provide any guarantee on the network lifetime. Our con-
tribution is to provide a distributed, coordinate-free sensor
activation scheme that provides provable guarantees on the
network lifetime.

Finally, Wu et al. [22] considered a different notion of life-
time in a recent paper: the maximum time until which all
nodes in the data aggregation tree of choice remain oper-
ational, (a node in this case consumes energy only during
communication). Since we focus on the energy consumed in

sensing, our notion of lifetime, the problem formulation and
solution techniques differ substantially.

1.2 Our Contribution
The contribution of this paper is two-fold.
First, we present the first coordinate-free distributed scheme

that provides provable approximation guarantees on network
lifetime, while providing strict coverage guarantees. This is
a surprising result since the sensors are not aware of their
coordinates in a global coordinate system, and are there-
fore oblivious to their locations relative to each other and to
the target field. To overcome this challenge we assume that
the sensor distribution area is slightly larger than the area
that needs to be monitored. The sensors are divided into
periphery nodes that are located near the boundary of the
distribution area and internal nodes that are internal to this
area. The target field that our scheme is committed to mon-
itor is taken as the closure of the area covered by the internal
nodes. Our scheme at each time slot selects a subset of sen-
sors for monitoring the target field that ensure k-coverage of
the entire target field, for a given integer k ≥ 1, and differ-
ent subsets may be selected in different slots. The selection
process relies on two key steps: (i) each sensor is assigned
a weight that is an exponentially increasing function of the
energy it has consumed so far (ii) the set of sensors that
has the minimum total weight, or an approximation thereof,
among all those that cover the entire target field is acti-
vated. This selection process balances the monitoring load
on all the sensors, and preferentially selects in each slot the
sensors with high residual energy. We demonstrate that the
algorithm can be executed using distributed computations
that do not need to know the locations of the sensors.

Second, we prove that the lifetime of the network when
this algorithm is used is at least 1/O((log n)(log nB)) of the
optimal solution, where n is the number of sensors and B
is a bound on the initial energy level of the nodes. We
prove this approximation ratio, by extending to this problem
the exponential-function technique, originally developed by
Aspnes et al. [26] in the context of online machine scheduling
and virtual circuit routing and later used by Awerbuch et
al. [4] in on-line virtual circuit routing. Thus, our algorithm
attains a provable guarantee which is only slightly worse as
compared with the best available centralized performance
guarantee till date, presented in [11]. We demonstrate via
simulations that our scheme attains a significantly higher
lifetime than several other existing schemes [11, 21, 13].

2. PRELIMINARY

2.1 Network Model
We consider a wireless sensor network (WSN) consisting

of a set S of n sensors that are also called nodes. Each
node u ∈ S can sense events of interest in its sensing range
and communicate with nodes in its transmission range. We
make the natural assumption that there are no two sensors
at the same location. Also, each sensor u ∈ S has a unique
identification number, denoted by ID(u). The sensors are
distributed over a large 2-dimensional area. We refer to the
region obtained by the union of the sensing ranges of all the
sensors as the distribution area and it subsumes the region
that needs to be monitored by the sensors, referred to as the
monitoring area. The latter is typically significantly larger
than the sensing range of a single sensor.



We assume that the sensing and transmission ranges of a
node u are open discs, centered at u, with radii ru and Ru

respectively, where Ru > ru. Let r̂ = maxu∈S ru, and R̂ =
minu∈S Ru. The boundary of the sensing range of any node
u is a circle, which we refer to as the sensing border of node
u. Let du,v denote the Euclidean distance between nodes u
and v. Nodes u and v are termed adjacent or neighbors if
they are included in the transmission range of each other.
Let Nu be the set of neighbors of u.

We assume that nodes only have localized distance infor-
mation. Specifically, each node u knows (a) ru, (b) du,v and
rv for each v ∈ Nu and (c) dv,w for each pair w, v ∈ Nu

such that w and v are neighbors of each other. Thus, we
assume that each node can estimate its sensing radius, and
its distances from its neighbors without learning their orien-
tations, and communicates this information to its neighbors.
Note that recent studies [8, 9] have introduced accurate dis-
tance estimation techniques that are applicable to wireless
sensors.

We assume that there is a periphery band of width at
least r̂ between the boundary of the distribution area and
the edge of the monitoring area. We distinguish between
periphery nodes that are located in the periphery band and
internal nodes that lie in the monitoring area. Although
the sensors are not aware of their locations, we assume that
every sensor knows if it is a periphery or an internal node,
for instance by using the mechanisms in [6, 7].

The time is divided into time slots and we assume that
the sensors have synchronized clocks which notify them at
the beginning of each time slot. Sensor u ∈ S has an initial
energy Bu and, as a normalization, we assume that each
sensor consumes 1 unit of energy in each time slot in which
it is active. For saving energy, a sensor may be in a sleep
mode, in which it does not communicate with its neighbors
nor sense its vicinity. A sensor in sleep mode consumes only
negligible amount of energy, which we assume to be zero.

2.2 The Target Field

An internal node &

its sensing range
A periphery node &

its sensing range

The distribution area

The monitoring area

The target field

Figure 1: An example of a small WSN and its target
field.

Generally speaking, the target field is the area monitored
by the system. This area is obviously subsumed in the dis-
tribution area and it should contain the monitoring area.
Since the sensors are not aware of their locations, they are

oblivious to their locations relative to each other and to the
monitoring area. Addressing this difficulty, we next provide
a precise definition of the target field that our scheme is
committed to monitor.

Definition 1 (The Target Field). The target field
is the area defined by the closure 1 of the union of the sensing
ranges of all the internal sensors.

We assume that the target field subsumes the monitor-
ing area. Figure 1 illustrates a small WSN as well as its
distribution area, monitoring area and target field.

Given a set C ⊆ S of sensors and a positive integer k, we
say that a point in the target field is k-covered by C if it
is in the interior of the sensing range of at least k nodes in
C. The target field is considered as k-covered by C if every
point in the target field is k-covered by C.

Definition 2 (Sensor Cover). A set C of sensors that
k-covers the target field is termed a sensor cover.

If there does not exist a sensor cover C such that all the
nodes in C have non-zero energy, then the network is said
to have a coverage hole.

Since the sensing ranges are open discs, no sensor covers
its sensing border. Thus, any sensor cover must contain
periphery sensors that cover the target-field boundary (see
Fig. 1). Thus, sensor activation schemes must consider both
internal and periphery nodes.

2.3 Problem Statement
We proceed to define the maximum network lifetime prob-

lem.

Definition 3 (The Network Lifetime). The network
lifetime is the time interval from the activation of the net-
work until the first time at which a coverage hole appears.

Definition 4. (The Maximum Network Lifetime Prob-
lem) An activation schedule is a sequence of sensor covers
that are activated in successive slots, such that in every slot,
each sensor in the activated sensor cover has non-zero en-
ergy. The maximum network lifetime problem seeks to find
an activation schedule that maximizes the network lifetime.

In [13], the authors prove that the closely-related target
coverage version of the maximum network lifetime problem
is NP-hard. Moreover, in [10] it has been shown that for
a given subset C ⊆ S, no coordinate-free algorithm can
provably verify whether or not C covers the target field,
if R̂ < 2r̂. So henceforth, we assume that R̂ ≥ 2r̂ and
we present a distributed coordinate-free algorithm for the
maximum network lifetime problem with guarantee on the
lifetime attained by the calculated schedule.

2.4 The Intersection Point Concept
We now present an observation that constitutes a corner-

stone in our solution. Consider two sensors v, z ∈ S. The
sensors are termed intersecting if their sensing borders in-
tersect (but not tangent to each other). In such case, we say
that v intersects with z.

1Recall that the closure of a set A is the smallest closed set
that contains A [27].



Property 1 (Intersection). The sensors v, z ∈ S are
intersecting if and only if dv,z < rv + rz, dv,z + rz > rv and
dv,z + rv > rz.

Note that the sensing borders of any pair v, z ∈ S of inter-
secting sensors have exactly two intersection points denoted
by IP (v, z, 1) and IP (v, z, 2). Moreover, by Property 1,
since the distance dv,z < rv + rz ≤ 2 · r̂ and we assume

that R̂ ≥ 2 · r̂, any two intersecting sensors v, z are adjacent.
We next show that for calculating a sensor cover we just

need to consider sensors that have intersection points on
their sensing borders.

Property 2. Consider a sensor cover C ⊂ S and let
u ∈ C be a sensor without any intersection point on its
sensing border. Then the set C−{u} is also a sensor cover.

Proof. A necessary condition for the target field to be
k-covered by C is that every point in the target field is in the
interior of the sensing ranges of at least k sensors in C. Since
we assume that the target field is larger than the sensing
range of any single sensor, the set C contains additional
sensors beside u. Since u’s sensing border does not intersect
with that of any other sensor in C, then to ensure coverage
of the target field, either (a) the sensing range of u does not
cover any part of the target field or (b) u’s sensing range
is subsumed in the sensing ranges of k other sensors, say
v1, . . . , vk, in C, and hence v1, . . . , vk cover the part of the
target field covered by u. Thus, in both cases C − {u} is
also a sensor cover.

The next corollary directly follows from Property 2.

Corollary 1. Let u ∈ S be a sensor without any inter-
section point on its sensing border and consider a schedule
{C1, C2, · · · , CL} of sensor covers with network lifetime of
L in which node u is active in some slots. Then, the sched-
ule {Ĉ1, Ĉ2, · · · , ĈL}, where Ĉj = Cj − {u}, also defines a
sequence of sensor covers with network lifetime of L.

From Corollary 1 it follows that the network lifetime is
not affected by ignoring sensors without intersection points
on their sensing borders. So henceforth, we will ignore such
sensors.

Let P be the set of intersection points that are in the
target field, referred to as the IP set. Recall that P contains
every intersection point IP (v, z, i), i = {1, 2}, such that
at least one of the nodes v, z ∈ S is an internal node or
IP (v, z, i) is in the sensing range of an internal node.

Theorem 1. Consider a set C ⊂ S of sensors. The set
C is a sensor cover if and only if it k-covers every point in
the IP set P .

Proof. If C k-covers the target field, then by definition
it k-covers every point in P .

To prove the converse, suppose C k-covers every point in
P . First, we prove that every point in the target field that
lies on the sensing border of some sensor is k-covered by C.
Let f be a point in the target field on sensor v’s sensing
border. If f is an intersection point, it is k-covered by C,
by assumption. If not, trace a path from f along v’s sensing
border to first reach an intersection point, say e. Recall
that every sensor that we consider has an intersection point
on its sensing border. So there exists such a point e. By

definition of the target field, e lies in the target field and
hence, by assumption, is k-covered by C. Also, the path
traced from f to e did not cross the sensing border of any
sensor because the path first reached any intersection point
at e. So it follows that f is in the interior of the sensing
ranges of exactly the same subset of sensors of C as e is in 2,
and hence is k-covered by C.

Now, let h be any point in the target field. If h lies on the
sensing border of some sensor, it is k-covered by C, as shown
above. If not, trace a path from h to first reach the sensing
border of some sensor at some point, say g. By definition of
the target field, g lies in the target field. Hence, as shown
above, g is k-covered by C and by arguments similar to those
in the previous paragraph, h is also k-covered by C.

Owing to Theorem 1, we henceforth consider as sensor
cover any set of sensors that k-covers all the intersection
points in P .

3. ALGORITHM OVERVIEW
We now describe the Distributed Lifetime Maximization

(DLM) algorithm that we propose. In this section, we present
a brief overview of the individual building blocks in DLM,
and provide the details in Sections 4, 5.

Our algorithm consists of an initialization phase and an
activation phase. The initialization phase is executed once,
at the beginning of the network operation, and informs the
nodes of some network-parameters. Every node executes
the activation phase at the beginning of each subsequent
time slot, and decides whether to activate itself in the slot
based only on the state information in its neighborhood.
We now describe the above phases, and introduce some new
terminologies towards that end.

Consider a sensor cover C, and let sensor u have weight
wu, a positive real number. The weight of the sensor cover C
is the sum of the weights of the sensors in C, i.e.,

∑
u∈C wu.

Definition 5 (A minimum weight sensor cover). A
minimum weight sensor cover is a sensor cover that has the
minimum weight among all sensor covers. An α−approximate
minimum weight sensor cover is one whose weight is at most
α times that of the minimum weight sensor cover.

Let Pu be the set of intersection points covered by sensor
u, and Tu be the set of sensors v such that sensors u and v
cover a common intersection point.

3.1 Initialization phase
An initialization phase is executed at the beginning of

the network operation, i.e., at time t = 0. During the ini-
tialization phase, each sensor u acquires the following local
information: (i) the set Pu of intersection points that it
covers, (ii) the identities of the sensors in Tu and (iii) the
intersection points in Pu that are covered by each sensor
in Tu (i.e., the set Pu,v = Pu ∩ Pv for each v ∈ Tu). As
we elaborate in Section 5, each sensor u learns this infor-
mation in a distributed manner by merely communicating
with its neighbors and using only localized distance informa-
tion. In addition, each sensor learns the following global net-
work parameters: (i) n, the total number of sensors, and (ii)
the maximum amount B of the initial energy of any sensor

2Recall that the sensing range of each node is an open disc.



(B = maxu∈S Bu). Using the above information, each sen-
sor computes µ, where µ = 4nB. The above constitutes the
only global information each sensor needs to know through-
out the execution of DLM, and can be communicated to
each sensor using one network-wide broadcast.

3.2 Activation phase
The activation phase is executed at the beginning of each

slot. We describe the computations in slot j.
Weight assignment: Let bu(j) be the energy of sensor

u that has been consumed in slots 1, . . . j − 1. Then, at the
beginning of slot j, sensor u has already consumed lu(j) =
bu(j)
Bu

fraction of its energy. If bu(j) > Bu − 1, i.e., sensor
u does not have enough energy to monitor its sensing range
throughout slot j, then it assigns itself a weight of ∞ at the
beginning of slot j; otherwise it assigns itself a weight of
wu(j) = µlu(j)/Bu.

Sensor activation: Sensors that have infinite weights
at the beginning of slot j do not activate themselves in slot
j. Among the rest, sensors are activated (using the DSC
algorithm described in Section 4) so that the subset of ac-
tivated sensors, S(j), constitutes an O(log n)-approximate
minimum weight sensor cover. The sensors that do not ac-
tivate themselves in slot j, sleep in slot j. Refer to Fig. 2 for
a pseudo-code of the activation phase of DLM.

Intuitively, DLM has been designed so that the sensors are
activated so as to cover the target field whenever possible,
and the sensors that have large residual energy are prefer-
entially selected. We will later prove that the lifetime of
DLM is at least 1

O((log n)(log nB))
times that of the maximum

lifetime of the network.
When there does not exist any more, a sensor cover such

that each sensor in the cover has non-zero energy, the net-
work lifetime is considered terminated. After the network
lifetime termination, we can not provide any guarantee on
the target field coverage, although the sensors with finite
weights continue to execute the algorithm, and cover their
sensing ranges.

Note that each sensor can determine its weight based only
on local information. In the next section, we show how each
sensor can execute the activation phase using distributed
computations based only on local information obtained from
its neighbors.

The DLM Activation phase of sensor u in slot j

begin

1: calculate cu(j) = µlu(j) and wu(j) =
cu(j)

Bu
at the beginning of

slot j.
2: Use DSC in Fig. 3 to determine whether to stay active or enter

sleep mode.

end

Figure 2: The DLM Algorithm

4. DISTRIBUTED SENSOR ACTIVATION
We now describe an algorithm, which we call the Dis-

tributed Sensor Cover (DSC) algorithm, using which sen-
sors can determine, using simple distributed computations,
whether to activate themselves in each slot. Clearly, we need
to design a sensor cover with guarantees on its weight using

distributed computations. Note that a sensor cover is an in-
stance of a set cover, and centralized algorithms that attain
a O(log n)-approximate set cover are well known [28]. We
instead accomplish the same goal using distributed compu-
tations only, extending the design technique developed by
Subhadrabandhu et al. [1] for the dominating set problem.
We next describe our approach.

The sensor cover in each slot j is iteratively computed in
an asynchronous manner3. At the beginning of the activa-
tion phase in each slot, all the sensors with finite weights
are contending for staying active in the slot. At any time
during the activation phase, each contending sensor u, de-
termines the number of intersection points in Pu that have
not yet been k-covered by the set of activated sensors, and
computes its activation preference ratio (aru) as the ratio
between its weight in slot j, wu(j), and the above number.
We denote by activation preference (ap) of sensor u, the or-
dered pair apu =< aru, ID(u) >, where ID(u) is sensor u’s
ID. We say that sensor u has lower ap than sensor v, i.e.,
apu < apv if apu has lower lexicographic value than apv,
that is, (i) aru < arv or (ii) aru = arv and ID(u) < ID(v).
Each contending sensor u communicates its activation pref-
erence to the sensors in Tu at the beginning of the activation
phase and each time that its value changes. Recall that the
latter occurs only when one of u’s neighbors in Tu becomes
active. A contending sensor u activates itself once it detects
that it has a lower activation preference than all contending
sensors in Tu. Each sensor u that activates itself informs
other sensors in Tu, accordingly. Once a sensor u detects
that all the intersection points Pu in its sensing range are
k-covered by the already active sensors in Tu, it updates its
neighbors and enters a sleep mode. The activation process,
in each slot, terminates after each sensor decides whether
to stay active or enter a sleep mode. Refer to Fig. 3 for a
pseudo-code.

Clearly, each sensor can execute the above computations
based only on locally available information, and the informa-
tion it acquires in the Initialization phase (Subsection 3.1).
Recall that a sensor u enters a sleep mode only after all
the intersection points Pu in its sensing range are already
k-covered. Thus, according to Theorem 1, during the life-
time of the network (i.e., while there is no coverage hole)
the subset of sensors activated at the end of the activation
phase in each slot j, S(j), induces a sensor cover for the net-
work. Moreover, we will later prove that S(j) constitutes a
O(log n)-approximate minimum weighted sensor cover.

5. THE INITIALIZATION PHASE
During the initialization phase (Sub-Section 3.1), each

sensor u gains the knowledge of, (i) the set Pu of intersec-
tion points that it covers, (ii) the identities of the sensors
in Tu, which share intersection points with node u and (iii)
the set Pu,v of the intersection points in Pu that are cov-
ered by each sensor v in Tu (i.e., Pu,v = Pu ∩ Pv for each
v ∈ Tu). We show that u can determine the above using lo-
calized computations based on simple geometric properties.
In these computations, u only needs to know (a) ru (b)Nu,
and their ids, (c) du,v and rv for each v ∈ Nu and (d) dv,w

for each pair v, w ∈ Nu such that v and w are neighbors of
each other. We first provide a brief overview of the com-

3The sensors just need to know the beginning time of each
time slot.



The Distributed Sensor Cover (DSC) algorithm of sensor u

Definitions:

• Let UCu ⊆ Pu be the set of intersection points that have not
yet been k-covered by the set of activated sensors.

• Let CTu ⊆ Tu be the set of contending neighbors of sensor u.

Begin
1: if wu(j) = ∞ or Pu = ∅ then
2: mode = sleep
3: Return mode
4: else
5: mode = contending
6: UCu = Pu

7: CTu = Tu

8: aru =
wu(j)
|UCu| ; apu =< aru, ID(u) >

9: Send My-Init-AP(apu) message to every sensor w ∈ Tu

10: Receive My-Init-AP(apw) message from every sensor w ∈ Tu

11: // If My-Init-AP message not received from a sensor w ∈ Tu

12: // within a given time period, then w is considered inactive
13: // and it is removed from CTu.
14: if (CTu == ∅ or apu < apw for every w ∈ CTu) then
15: mode = active
16: Send an I-am-Active message to every sensor w ∈ CTu.
17: end if

18: while mode == contending and upon reception of a message
M from sensor v ∈ CTu do

19: if the received message M is I-Am-Active then
20: CTu = CTu − {v}
21: // Let NCu ⊆ UCu ∩ Pu,v be the set of intersection
22: // points that are k-covered (after v’s activation).
23: UCu = UCu −NCu

24: if (UCu == ∅) then
25: mode = sleep
26: Send an I-Am-Sleeping message to every sensor w ∈

CTu.
27: else
28: old apu = apu

29: aru =
wu(j)
|UCu| ; apu =< aru, ID(u) >

30: if (CTu == ∅ or apu < apw for every w ∈ CTu)
then

31: mode = active
32: Send an I-Am-Active message to each sensor w ∈

CTu.
33: else if (old apu 6= apu) then
34: Send a New-AP(apu) message to each sensor w ∈

CTu.
35: end if
36: end if
37: else if the message M is New-AP(apv) then
38: Update apv

39: if (apu < apw for every w ∈ CTu) then
40: mode = active
41: Send an I-am-Active message to each sensor w ∈ CTu.
42: end if
43: else if the received message M is I-Am-Sleeping then
44: CTu = CTu − {v}
45: end if
46: end while
47: Return mode
48: end if

End

Figure 3: The Distributed Sensor Cover (DSC) al-
gorithm.

putations in Sub-section 5.1 and subsequently present the
details in Sub-section 5.2.

5.1 Overview
We assume that during the system activation every sensor

u initially evaluates its distance to each one of its neighbors
in Nu and it broadcasts these distances du,v, v ∈ Nu, as well
as its sensing radius ru to its neighbors. Next, u detects each
neighbor v ∈ Nu that intersects with u by using Property 1
in Sub-section 2.4 and their joint intersection points. It also
calculates the set Qu of all the intersection points of u’s
sensing border with the sensing borders of its neighbors.
For every intersection point p ∈ Qu, u finds Sp, the set of
sensors that cover p. Then, u communicates these sets Sp,
p ∈ Qu to its neighbors. This process enables every neighbor
v ∈ Nu of u to know that a given intersection point p ∈ Qu

is included in its sensing range and accordingly to add p to
its set Pv of intersection points that it covers (for calculating
(i) above). Moreover, the knowledge of each set Sp, p ∈ Pv,
allows node v to identify its neighbors w that also cover
each point p ∈ Pv and update its set Tv accordingly (for
calculating (ii) above). Node v can also calculate the sets
Pv,w = Pv∩Pw, for each w ∈ Tv (for calculating (iii) above).
Thus, to complete our description, we just need to present
the process for detecting the set Qu of any given sensor u ∈ S
and calculating the set Sp for every point p ∈ Qu.

A major challenge in the initialization process is deter-
mining a unique identification for each intersection point.
Since the sensors do not have any location information, the
coordinates of the intersection points are unknown and can-
not be used as identifiers. To overcome this difficulty, every
intersection point of any pair u, v of intersecting sensors is
identified by a triplet IP (u, v, i), where u is the sensor with
lower id, v is the sensor with higher id, and i = {1, 2} de-
notes the point index. Since every pair u, v of intersecting
sensors have two common intersection points, the node with
the lower id, say u, arbitrarily determines the index i of each
point. In addition, u also calculates the set Spi for both
points pi = IP (u, v, i), i = {1, 2} and communicates these
sets to its neighbors, including node v. This ensures that
each calculated set Sp corresponds to a single intersection
point that is uniquely defined. We describe the calculation
of such sets Sp in the next sub-section.

5.2 Calculation of Sp

v
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w
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=IP(u,v,1)
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2
=IP(u,v,2)

d
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d
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Figure 4: A pair of intersecting nodes and their in-
tersection points.

Consider a pair u, v of intersecting sensors and let pi =
IP (u, v, i), i = {1, 2} denote their intersection points, as
depicted in Figure 4. We now describe a simple method for
calculating the covering set Spi , i = 1, 2. First, note that a
simple application of the triangle law on the distance metric



and the fact that R̂ ≥ 2r̂ establishes that Spi ⊆ Nu ∩ Nv.
Now, our calculation proceeds in two steps. In Step 1, we
partition Nu ∩ Nv in three sets: nodes that cover (i) none,
(ii) only one (iii) both of p1, p2. In Step 2, we identify which
nodes among the second set in the above partition cover
p1 (p2, respectively). This completes the computation of
both Sp1 , Sp2 . In absence of location information, we rely on
the Cosine Rule throughout. Let da,b, da,c and db,c denote
the distances between three points a, b and c in a plane,
accordingly, and let ∠a, b, c denote the angle between the
rays [b, a] and [b, c]. The Cosine Rule states that

2 · da,b · db,c · cos ∠a, b, c = d2
a,b + d2

b,c − d2
a,c (1)

5.2.1 Step 1
For every node w ∈ Nu ∩ Nv that intersects with both

u and v, we check if it covers one or both of the points
pi, i = {1, 2}. Recall that the straight line (u, v) that
traverses through the nodes u, v, partitions the plane into
two halves, each one of which contains one of the points pi,
i = {1, 2}. Without loss of generality, assume that w is lo-
cated in the same half as p1 and therefore, it is closer to
p1 than to p2. We first find the angle ∠w, u, p1 as follows.
As shown in Figure 4, since p1 and w are in the same half-
plane, ∠w, u, p1 = |∠v, u, w − ∠v, u, p1| (recall that unlike
the case presented in Figure 4, ∠w, u, p1 may also be equal
to ∠v, u, p1 − ∠v, u, w). Since the distances du,v, du,w, dv,w,
du,p1 = ru and dv,p1 = rv are known, the cosine rule applied
on the triangles 4u, w, v and 4u, v, p1 enable us to calcu-
late the angles ∠v, u, w and ∠v, u, p1, and hence the angle
∠w, u, p1. Now, in 4u, w, p1, the distance du,w is known
and du,p1 = ru. So dw,p1 can be found using the Cosine
rule. Thus, we can check whether w covers p1 by checking
whether dw,p1 < rw.

Similarly, we check if w covers p2 by considering the trian-
gle 4u, w, p2. In this case the angle ∠p2, u, w = ∠v, u, w +
∠v, u, p2. From symmetry, ∠v, u, p2 = ∠v, u, p1. Thus, the
angle ∠p2, u, w is known and dw,p2 can be calculated by the
cosine rule in 4u, w, p2. Note that this process can also be
used to calculate the distances dw,p1 and dw,p2 if w is lo-
cated on the line (u, v). In such case, dw,p1 = dw,p2 ; thus w
covers both points or none of them.

5.2.2 Step 2
We now consider the set Z ⊆ Nu∩Nv of sensors that cover

only one of the points p1, p2 and determine which sensors in
Z cover p1. Consider an arbitrary sensor w ∈ Z and, without
loss of generality, let p1 be the point that it covers. Now,
for each sensor x ∈ Z, x 6= w, we check, as described next,
whether x covers p1. As explained above, none of the nodes
in Z is located on the line (u, v). Thus, all the sensors in
Z that are located in the same half plane as w cover p1,
while the others cover p2. Thus, we just need to check if
x and w are in the same half. If w and x cover the same
point, (and are therefore in the same half-plane), they must
be neighbors. Thus, all the distances between every pair
of nodes in {u, v, w, x} are known and accordingly the three
angles ∠v, u, x, ∠v, u, w, ∠w, u, x can be calculated using the
Cosine Rule. We use Property 3 to verify if x and w are in
the same half-plane.

Property 3. Two sensors w, x ∈ Z are located in the
same half-plane, defined by the line (u, v), if and only if (1)
∠w, u, x = |∠v, u, w−∠v, u, x| and (2) ∠w, u, x+∠v, u, w +

∠v, u, x < 360◦.

We omit the proof due to space constraints.

6. DETECTION OF LIFETIME TERMINA-
TION

We now augment our scheme with a simple distributed
mechanism for detecting the termination of the network life-
time. By definition the network lifetime terminates when
there no longer exists a sensor cover such that every sensor
in the cover has non-zero energy. Thus, from Theorem 1,
the network lifetime ends once one of the intersection points
in the IP set P (Sub-Section 2.4) cannot be k-covered by
the sensors that still have non-zero energy. Note that every
point p ∈ P is included in the closure of the sensing range
of at least one internal node. Thus, once an internal node u
decides whether to remain active in the slot and knows the
activity status of all its neighbors in Nu, it checks if each
one of the intersection points in Pu ∪Qu is k-covered by the
set of the active nodes in Nu ∪ {u}. This is a simple test,
as for every point p ∈ (Pu ∪Qu), the set Sp of sensors that
cover p is already known ( Section 5). Node u informs the
administrators about the coverage hole once this test fails.

7. SCHEME ANALYSIS
We now prove correctness and performance guarantees for

the DLM algorithm. In Subsection 7.1, we prove the guar-
antees for DSC which DLM invokes. Using the above, in
Subsection 7.2 we prove the guarantees for DLM.

7.1 DSC Algorithm– Analysis
We prove that DSC computes an O(log n)-approximate

minimum weight sensor cover. Note that all the proofs al-
low for arbitrary, but finite transit times of status update
messages transmitted by nodes to their neighbors.

Theorem 2. At every activation phase, (i) DSC com-
putes a sensor cover if there is no coverage hole, (ii) DSC
terminates in at most 2nW time if W is an upper bound
on the transit delay of status update messages between the
neighbors and (iii) DSC terminates in finite time, if the tran-
sit delays are finite but can not be upper-bounded.

Proof. First, note that at the beginning of the activation
phase in a slot, each sensor u knows its current ap and the
current aps of the sensors in Tu. The contending sensor
v that has the minimum ap among all contending sensors
knows that it has a lower ap than the sensors in Tv. Thus,
v activates itself at this time. Now, (ii) follows if we can
show that while there exists at least one contending sensor,
the difference between two consecutive activation times is
at most 2W . Consider an arbitrary activation time t of a
sensor, say x. Let there be at least one contending sensor at
t+2W , and no sensor activate itself in (t, t+2W ) (otherwise,
there is nothing to prove). By time t + W , every sensor in
Tx learns that x activated itself and transmits its updated
ap to its neighbors. So, at t + 2W , every contending sensor
u knows its current ap and the current aps of the sensors
in Tu. Thus, the contending sensor that has the minimum
ap among all contending sensors activates itself at this time.
Next, (iii) follows using a similar argument. Now, we prove
(i). First consider the time t in a given slot at which DSC
has terminated. Let the target field not have a coverage hole.



Then, each intersection point w in P is covered by k or more
contending sensors at the beginning of the activation phase.
Since a contending sensor u decides to sleep only when all the
intersection points in Pu are k-covered by activated sensors,
all intersection points in P are k-covered by activated sensors
at t. The result follows by Theorem 1.

Now, recall that finding a minimum weight sensor cover is
an instance of the minimum weight set cover problem. We
now describe the well-known greedy Centralized Set Cover
(CSC) algorithm that computes a O(log n)-approximate min-
imum weight set cover [28]. At each iteration, it selects the
sensor which has the lowest activation preference (ap) among
all the sensors, where ap is defined in the same way as for
DSC, and then updates the ap’s of the unselected sensors.
This process continues until the set of selected sensors con-
stitutes a sensor cover.

Theorem 3. For a given setting and a set of weights
to the sensors, DSC and CSC select the same set of sen-
sors. Thus, DSC obtains an O(log n)-approximate minimum
weight sensor cover.

Proof. Let Y C = {v1, · · · , vmC} and Y D = {u1, · · · , umD}
be the sets of selected sensors by CSC and DSC, respectively,
sorted in increasing order according to their ap values at the
time that they were selected 4 (i.e., decided to stay active).
Let vj and uj be the j-th sensors in Y C and Y D respec-
tively, and let apC

j and apD
j be their ap values. Moreover,

let Y C
j =

⋃
i=1,j vj and Y D

j =
⋃

i=1,j uj be the first j sen-

sors in sets Y C and Y D respectively. Not that the sensors
in Y C are arranged in the order in which they were selected
by CSC. However, the order on the sensors in Y D is not
necessarily the order in which they are activated by DSC.

Our proof utilizes the following properties:
(1) During the execution of DSC, the ap of each node is an
increasing function of time.
(2) Consider any node u ∈ Y D. Every sensor w ∈ Y D ∩ Tu

with lower ap value than u was selected before u by DSC.
Similarly, any node w ∈ Y D ∩ Tu with higher ap value than
u was selected after node u by DSC.
This property follows from property (1) and from the fact
that under DSC, a sensor u becomes active only when (and
if) it has lower ap value than its unselected neighbors in Tu.
(3) The ap value of any node u during the execution of CSC
and DSC is determined only by its already selected neighbors
in Tu.
(4) Suppose u ∈ Y D becomes active at time t1 under DSC.
Then, for each w ∈ Y D ∩ Tu that became active before t1,
u received an activation message from w before time t1.
If this were not true for some w, then note that u would not
have activated itself at t1, since it would find its own ap to
be higher than that of w.

We seek to prove that Y C = Y D. Let Y C 6= Y D instead,
and let j be the lowest index such that vj 6= uj . Initially,
let us show by contradiction that j ≤ min(mC , mD). First,
let mC > mD and j > mD. But, then, the first mD sensors
selected by CSC constitute a sensor cover and therefore CSC
terminates after selecting at most the first mD sensors. Now,
let mC < mD and j > mC (in particular j = mC + 1) and
consider the vicinity of the node uj . From Property (2),

4Here, by ap value of a node u ∈ Y D, we mean the latest
ap value calculated by u.

node uj was selected by DSC after every node in Y D
j−1 ∩

Tuj = Y D
mC ∩ Tuj = Y C ∩ Tuj . However, since Y C is a

sensor cover, all intersection points in uj ’s sensing range are
k-covered once DSC selects the nodes in Y C ∩ Tuj . Thus,
DSC does not select uj after it has selected the sensors in
Y D

j−1 ∩ Tuj , and thus it does not select uj at all. Thus,

j ≤ min(mC , mD).
We now show that apD

j ≥ apC
j . If not, let apD

j < apC
j

and consider the j-th iteration of CSC. The algorithm selects
as the j-th active sensor, the unselected sensor with minimal
ap value. Recall that at this stage uj has not been selected
by CSC. Since Y C

j−1 = Y D
j−1, from properties (2), (3) and

(4) above, it follows that at the j-th iteration of CSC the
ap value of node uj is the same as apD

j calculated by DSC.
This is true since the ap value of node uj depends only on
its selected neighbors in Y C

j−1 ∩Tuj = Y D
j−1 ∩Tuj , which

are the same sets 5 for both algorithms. Thus, CSC should
select node uj rather than node vj , which contradicts the
assumption that apD

j < apC
j . Thus apD

j ≥ apC
j .

We next show that apD
j ≤ apC

j . If not, apD
j > apC

j .

Since vj is in Y C , it holds that nodes in Y C
j−1 do not cover

all the intersection points covered by the node vj . Thus,
there are some nodes, denoted by set W , in the vicinity
of vj , i.e., Pw ∩ Pvj 6= ∅ ∀w ∈ W , that were selected by

DSC and are not in Y D
j−1. First, assume that vj is the

first node in W selected by DSC. From Property (3) above,
vj ’s ap value is determined only by the selected sensors in
Y D

j−1 = Y C
j−1. Thus, by Property (4), vj ’s ap value at the

time it is selected by DSC, is the same value as that at the
time it is selected by CSC, i.e., vj ’s ap value is apC

j , which

contradicts the assumption that apD
j > apC

j . Thus, vj is
not the first node in W selected by DSC. Let x ∈ W , x 6= vj

be the first node in W selected by DSC and let apD
x denote

its ap value at the time it was selected by DSC, say time tx.
From our assumption, it follows that apD

x ≥ apD
j > apC

j .
Now, consider the ap value of node vj as calculated by DSC
just before time tx when node x is selected. Since x 6= vj

is the first node in W selected by DSC, just before time tx,
the neighbors of vj selected by DSC must be from the set
Y D

j−1 (all the neighbors of vj need not be in Y D
j−1). From

Property (3), it holds that the ap value of vj is determined
only by its selected neighbors. Thus, the ap value of vj just
before time tx as calculated by DSC, denoted by apD

vj
, is

at most apC
j . Thus, apD

vj
≤ apC

j < apD
j ≤ apD

x. But,

then, vj should have been selected by DSC rather than node
x and its ap value should have been apD

vj
, which contradicts

the assumption that apD
j > apC

j .

Thus, apD
j = apC

j . Hence, ID(uj) = ID(vj). Thus,
uj = vj , which is a contradiction. The result follows.

7.2 DLM Algorithm– Analysis
We now prove an approximation ratio for the lifetime at-

tained by the Distributed Lifetime Maximization (DLM) al-
gorithm in Fig. 2. Our analysis is similar to the ones used by
Aspnes et al. [26] for online machine scheduling and virtual
circuit routing problems, and Awerbuch et. al [4], [5] for the
online virtual circuit routing problem.

Recall from Section 2.1 that a sensor that is active in a

5Note that by property (4), just before uj selected itself
under DSC, it had updated its ap to account for the fact
that all nodes in Y D

j−1 ∩ Tuj had activated themselves.



slot consumes 1 unit of energy and a sensor in sleep mode
consumes no energy. Throughout this section, all logarithms
are to the base 2. Finally, for proving the approximation
ratio, we additionally assume that the initial energy of each
sensor is large enough:

Assumption 1. Bu ≥ log µ, u ∈ S.

For simplicity, in the proof, we assume that Bu, u ∈ S are
integers. The proof can be easily extended to the case when
they are real numbers.

7.2.1 The DLM-T Algorithm
We describe in Fig. 5 DLM-T (Truncated DLM), a mod-

ified version of DLM, that will be used to prove an approx-
imation ratio for DLM.

The DLM-T Algorithm

begin

1: Let cu(j) = µlu(j) and wu(j) =
cu(j)

Bu
be the weight of sensor u

at the beginning of slot j.
2: At the beginning of slot j:
3: Using DSC in Fig. 3, find an O(log n)-approximate minimum

weight sensor cover S(j) with weight:

W (j) =
∑

u∈S(j)

wu(j)

4: If W (j) ≤ 2n, then activate the sensor cover S(j) in slot j, oth-
erwise declare the network as dead.

end

Figure 5: The DLM-T Algorithm

Note that DLM-T differs from DLM in the following: (i)
the criterion it uses to declare the network as dead (step 4)
(ii) it does not use a weight equal to ∞ for a sensor u with
0 remaining energy, but a weight of µ

Bu
(iii) it considers all

nodes in the sensor cover selection process whereas DLM
considers only those that have at least one unit of energy
remaining. It is therefore not clear whether DLM-T selects
nodes that have at least one unit of energy left. The next
lemma however shows that this is indeed the case.

Lemma 1. Under the DLM-T algorithm, if a sensor is
activated at the beginning of slot j, it has at least one unit
of energy remaining.

Proof. We need to show that for any j ≥ 1, for any
u ∈ S(j), lu(j) ≤ 1 − 1

Bu
. Note that W (j) ≤ 2n. Thus, for

any such u,

wu(j) ≤ W (j) ≤ 2n

Hence,

µlu(j) = Buwu(j) ≤ 2nBu ≤ 2nB =
µ

2
= µ

1− 1
log µ

where the last equality follows since the logarithms are to
the base 2. So,

lu(j) ≤ 1− 1

log µ
≤ 1− 1

Bu

by Assumption 1. The result follows.

The next result establishes the relation between the life-
times of the DLM and DLM-T algorithms.

Lemma 2. The lifetime of the network under the DLM
algorithm is greater than or equal to that under DLM-T.

Proof. Consider two identical networks– one running
DLM and the other running DLM-T. We show that both
networks run identically until the beginning of slot j′, which
is the first slot when the sensor cover S(j′) found by DLM-T
has weight W (j′) > 2n. We show this by induction. In the
first slot, every sensor has at least 1 unit of energy. Since
DLM and DLM-T use the same weights and the DSC algo-
rithm, both algorithms select the same sensor cover. As in-
duction hypothesis, suppose both algorithms select the same
sensor cover in slots 1, . . . , j − 1, where j ≤ j′ − 1.

Now, we show that the sensor cover S̃(j) found by DLM in
slot j is the same as the sensor cover S(j) found by DLM-T.
At the beginning of slot j, let X ⊆ S be the set of sensors
with at least 1 unit of energy, and Y = S \X be the set of
sensors in S with 0 energy. Now, since j ≤ j′ − 1, in slot j,
in the sensor cover S(j) selected by DLM-T, no sensor has
0 energy by Lemma 1. Hence:

S(j) ⊆ X (2)

Note that DLM runs DSC on the set of sensors X and
DLM-T runs DSC on the set of sensors X ∪ Y = S. By
Theorem 3, the DSC algorithm run by DLM (respectively,
DLM-T) finds the same set of sensors as the Centralized Set
Cover (CSC) algorithm running on the set of sensors X (re-
spectively, X ∪ Y ). It is therefore sufficient to show that
if DLM and DLM-T were to use CSC (instead of DSC) in
slot j, they would have selected the same sensor cover in
slot j. Denote the CSC algorithm corresponding to the net-
work running DLM-T by CSC-T to distinguish it from the
CSC algorithm corresponding to the network running DLM
(denoted simply by CSC).

Now, we show by induction on the iterations of CSC and
CSC-T, that each algorithm selects the same set S(j). Let
ui (respectively, wi) be the sensor selected by CSC-T (re-
spectively, CSC), in the i’th iteration. At the beginning of
the first iteration, the ap of each node u ∈ X is the same

in CSC and CSC-T (it equals < wu(j)
Pu

, ID(u) >). Since

u1 ∈ S(j) ⊆ X by (2), u1 is the node with lowest ap in X∪Y
and hence in X. So CSC selects u1, i.e., w1 = u1. As in-
duction hypothesis, assume that w2 = u2, . . . , wi−1 = ui−1.

Now, consider the beginning of the i’th iteration in CSC-T
and CSC. Recall that the ap value of a node under the CSC
and CSC-T algorithms depends only on the set of already
selected sensors [28], which is the same in both algorithms.
Also, by (2), ui ∈ X and it is the node with lowest ap among
the unselected nodes in X∪Y and hence in X. It follows that
CSC selects ui in iteration i, i.e., wi = ui. This completes
the induction on i and hence S̃(j) = S(j).

This, in turn, completes the induction on j and hence we
have shown that the networks running DLM and DLM-T run
identically until the beginning of slot j′. At the beginning
of slot j′, the network running DLM-T declares itself dead,
while the network running DLM possibly continues. This
concludes the proof.

Note that unlike DLM, DLM-T requires not only the de-
termination of a O(log n)-approximate minimum weight sen-
sor cover, but also the calculation of its weight. The latter
requires network-wide coordination. Nevertheless, it follows
from Lemma 2 that any approximation ratio that holds for
the lifetime of DLM-T, holds for DLM as well. We therefore



prove an approximation ratio for DLM, by proving one for
DLM-T next.

7.2.2 Approximation Ratio
Let OPT be an optimal algorithm for the maximum life-

time problem, L be the network lifetime under the DLM-T
algorithm and L∗ be the network lifetime under OPT. Also,
let L = {1, . . . , L} be the set of slots when the network is
alive under the DLM-T algorithm and L∗ = {L+1, . . . , L∗}
be the set of slots when the network is dead under the DLM-
T algorithm, but alive under OPT.

We can view the situation after the network dies under
DLM-T as if at the beginning of every slot j ∈ L∗, the
network finds an approximate minimum weight sensor cover
(it finds the same sensor cover for each j ∈ L∗) and since the
weight of this cover is greater than 2n, it does not activate it.
Under DLM-T, no sensor is activated after slot L and hence
the weights of all sensors remain unchanged thereafter.

Let S(j) be the sensor cover found by DLM-T and S∗(j)
be the sensor cover used by OPT in slot j. Also, let W (j)
be the weight of S(j) and W ∗(j) be the sum of the weights
of the sensors in S∗(j) at the beginning of slot j when the
network is running DLM-T. We emphasize that the sensor
cover S∗(j) is the one used by OPT in slot j, but the weights
of the sensors in W ∗(j) are those when the network is run-
ning DLM-T.

Now, in every slot, the DLM-T algorithm finds an O(log n)-
approximate minimum weight sensor cover. Hence, there
exists a constant α such that:

W (j) ≤ (α log n)W ∗(j) (3)

The following theorem proves the approximation ratio achieved
by the DLM-T algorithm.

Theorem 4. L∗ is at most an O((log n)(log µ)) factor
greater than L.

The proof proceeds as follows. We first upper bound the
amount by which the network lifetime under OPT can ex-
ceed that under the DLM-T algorithm (Lemma 3). Next,
we lower bound the lifetime achieved by DLM-T (Lemma 4).

Finally, we obtain an upper bound on the ratio L∗
L

by com-
bining the above bounds.

Lemma 3.

L∗ − L ≤ α log n

2n

∑
u∈S

cu(L + 1) (4)

Proof. We define the indicator function:

I{u ∈ S∗(j)} =

{
1 if u ∈ S∗(j)
0 else

Since W (j) > 2n for j ∈ L∗, from (3) it follows that:

W ∗(j) ≥ 2n

α log n
∀j ∈ L∗

Summing the above over j ∈ L∗, we get:

∑
j∈L∗

W ∗(j) ≥ 2n

α log n
(L∗ − L)

Hence,

2n

α log n
(L∗ − L)

≤
∑

j∈L∗

∑

u∈S∗(j)

1

Bu
cu(j)

=
∑

j∈L∗

∑

u∈S∗(j)

1

Bu
cu(L + 1) (5)

=
∑

j∈L∗

∑
u∈S

cu(L + 1)

Bu
I{u ∈ S∗(j)}

=
∑
u∈S

cu(L + 1)

[
1

Bu

∑
j∈L∗

I{u ∈ S∗(j)}
]

=
∑
u∈S

cu(L + 1) (6)

where in (5), we used the fact that since the network is
dead under DLM-T at the beginning of slot L + 1, the
energy of each sensor remains same thereafter and hence
cu(j) = cu(L + 1) ∀j ∈ L∗. We get (6) from the fact that∑

j∈L∗ I{u ∈ S∗(j)} is the number of slots in L∗ in which
sensor u is activated under OPT and must not exceed the
initial energy Bu of the sensor.

Lemma 4. ∑
u∈S

cu(L + 1) ≤ n(2L log µ + 1) (7)

Proof. We begin by upper bounding the total growth in
the functions cu(.) of sensors u ∈ S(j) over slot j. For slot
j ∈ L, we have:

∑

u∈S(j)

(cu(j + 1)− cu(j)) =
∑

u∈S(j)

(µ
lu(j)+ 1

Bu − µlu(j))

=
∑

u∈S(j)

µlu(j)(2
log µ
Bu − 1)

≤
∑

u∈S(j)

µlu(j)

(
log µ

Bu

)
(8)

= log µ
∑

u∈S(j)

µlu(j)

Bu

≤ 2n log µ (9)

where (8) results from the facts that log µ
Bu

≤ 1 by Assump-

tion 1 and 2x − 1 ≤ x ∀x ∈ [0, 1]. Inequality (9) follows
from:

∑

u∈S(j)

µlu(j)

Bu
≤ 2n

which is true because the network is not declared dead by
DLM-T at the beginning of slot j.

Now, in slot j, the energy of sensors u /∈ S(j) does not
change and hence cu(j + 1) = cu(j) ∀u /∈ S(j). So we get:

∑
u∈S

(cu(j + 1)− cu(j)) =
∑

u∈S(j)

(cu(j + 1)− cu(j))

≤ 2n log µ

Summing this inequality over j ∈ L:

L∑
j=1

∑
u∈S

(cu(j + 1)− cu(j)) ≤ 2nL log µ



The left hand side is a telescoping sum. So we get:
∑
u∈S

cu(L + 1) ≤ 2nL log µ +
∑
u∈S

cu(1)

But cu(1) = µ0 = 1 ∀u ∈ S. Thus,
∑
u∈S

cu(L + 1) ≤ n(2L log µ + 1)

Proof of Theorem 4. By Lemmas 3 and 4:

L∗ ≤ L(α(log n)(log µ) + 1) +
α log n

2

The result follows since α is a constant.

8. SIMULATIONS
We now evaluate the performance of DLM using simula-

tions. We consider a WSN with n sensors, each with an
initial energy of B units, sensing and transmission radii of
10 and 22 units respectively, deployed uniformly at random
in a 50 × 50 units2 target field, and examine the lifetime
attained by DLM as functions of n and B. Each time slot
was 1 unit long.

We compared the lifetimes of the network under three al-
gorithms: the DLM algorithm (Fig. 2), the Garg-Konemann
(GK) algorithm [11] and a heuristic proposed in [13, 21]
that we denote by Min-Num. At every slot, Min-Num finds
a sensor cover with the minimum number of nodes (up to
an O(log n) factor) and activates it. GK [11] generates
a sequence of sets of weights to assign to the sensors and
finds minimum weight sensor covers for each set of weights.
When the initial energy of each sensor is the same, each sen-
sor cover selected by GK is activated for an equal amount
of time, which is a monotonically increasing function of an
input parameter ε. Thus, the number of sensor cover com-
putations per slot, and hence the computation time required
for GK, increases as ε decreases. The lifetime approxima-
tion ratio guaranteed for the GK algorithm however worsens
with increase in ε 6.

First, we plot in Fig. 6, lifetimes achieved by DLM, Min-
Num, GK as a function of n, for B = 15. For GK, we select
(i) ε such that it computes sensor covers at the same rate per
unit time as DLM, Min-Num (i.e., approximately once every
slot) (denoted by GK(1 slot)) and (ii) ε = 0.1 (denoted by
GK(ε = 0.1)). In (ii), GK computes sensor covers at least
32 times per slot on an average for the range of n we con-
sidered. Next, in Fig. 7, we plot the lifetimes of DLM, Min-
Num and GK(1 slot) 7 as a function of B for n = 150 and ε
such that GK computes a sensor cover approximately once
every slot. The figures reveal that GK and DLM perform
similarly only when GK computes sensor covers much more
frequently than DLM, and DLM outperforms GK otherwise.
Thus, although GK guarantees a better approximation ratio
(while using centralized computation and location informa-
tion), in practice, DLM outperforms GK. DLM substantially

6The network lifetime under the GK algorithm is guaran-
teed to be at most a factor (1 + ε)f less than the optimal
lifetime, where f = O(log n) is the approximation ratio of
the algorithm used for finding minimum weight sensor cov-
ers [11].
7The values of ε used for GK(1 slot) lie in [0.67,0.71] for
Fig. 6 and in [0.35,0.70] for Fig. 7.

out-performs Min-Num as well, which suggests that lifetime
can be substantially enhanced by deciding which sensors to
activate based on their residual energy.
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Figure 6: Plot of lifetimes of DLM, GK (1 slot),
Min-Num and GK (ε = 0.1) vs. n for B = 15 units
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Recall that DLM assigns weights to sensors using a pa-
rameter µ. In order to study the sensitivity of DLM to the
value of µ, we fixed the values of n and B and plot in Fig. 8,
the lifetime of DLM using values of µ between 2 and 32000.
The plot shows that the lifetime achieved by DLM is roughly
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Figure 8: Plot of lifetimes of the DLM algorithm
vs. µ for (n = 150, B = 20), (n = 175, B = 20) and
(n = 150, B = 50)

the same for different values of µ. This suggests that high
lifetimes can be attained even without selecting µ = 4nB,
as required for proving the approximation guarantee. Thus,
in practice, the sensors need not exchange any global in-
formation (specifically, n, B) even during the initialization
phase.



9. CONCLUSION
We designed a distributed, coordinate-free algorithm for

attaining high lifetimes in sensor networks, subject to en-
suring the k-coverage of the target field during the network
lifetime. We proved that the lifetime attained by our algo-
rithm approximates the maximum possible lifetime within a
logarithmic approximation factor. Simulation results reveal
that our algorithm substantially outperforms other schemes
for lifetime maximization.
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