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Quality Sensitive Price Competition in Spectrum
Oligopoly

Arnob Ghosh and Saswati Sarkar

Abstract—We investigate a spectrum oligopoly where primary
users allow secondary access in lieu of financial remuneration.
Transmission qualities of the licensed bands fluctuate randomly.
Each primary needs to select the price of its channel with the
knowledge of its own channel state but not that of its competitors.
Secondaries choose among the channels available on sale based
on their states and prices. We formulate the price selection
as a non-cooperative game and prove that a symmetric Nash
equilibrium (NE) strategy profile exists uniquely. We explicitly
compute this strategy profile and analytically and numerically
evaluate its efficiency. Our structural results provide certain key
insights about the unique symmetric NE.

I. INTRODUCTION

Recent investigations augur that demand for mobile broad-
band – driven by the large scale proliferation of wireless
industry – will surpass the availability of wireless spectrum
in imminent future. Yet, as recent measurements suggest, the
licensed bands remain largely under-utilized. A reasonable
conjecture therefore is that unlicensed access of idle (but
licensed) spectrum bands, commonly referred to as secondary
spectrum access, would avert the impending crisis. Recently,
FCC has legalized the access of TV white space spectrum,
and the advent of cognitive radios together with the design of
a plethora of sophisticated algorithms have enabled intelligent
selection of bands. Large-scale secondary spectrum access can
not however be realized only through the availability of the
enabling technology and the regulatory progress: secondary
access must also be rendered profitable for the license holders.
Accordingly, we investigate a spectrum oligopoly [14] where
license holders (hitherto referred to as primaries) allow un-
licensed users (hitherto referred to as secondaries), in lieu
of financial remuneration, access to the channels (licensed
bands) that are not in use. Different channels offer different
transmission rates to the secondaries depending on their states
which evolve randomly and reflect the usage levels of the
primaries as also transmission quality fluctuations owing to
fading. Each primary quotes a price for the channel that it
offers and secondaries select among the available channels
depending on the states and the prices quoted. Thus, if a
primary quotes a high price, it will earn a large profit if it
sells its channel, but may not be able to sell at all; on the
other hand a low price will enhance the probability of a sale
but also fetch lower profits in the event of a sale.

Price selection in oligopolies may be modeled as a non-
cooperative game and has naturally been extensively investi-
gated in economics, implementing Bertrand Game [14] and its
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modifications [1], [11], [18]. However, all the above papers
ignore the uncertainty of competition which distinguishes
spectrum markets from standard oligopolies: a primary knows
the state of its channel but does not know those of its
competitors before deciding the price for its channel. Pricing in
communication services have been explored to a great extent (
[2] prsenets a brief overview). References [5], [12], [13], [16],
[17], [22] have analyzed price competition among spectrum
providers. References [16], [17] modeled price competition
among multiple players. But all the above papers suffer from
drawbacks: first, they did not assay uncertainty of states of
channels of competitors ; second, most of them did not explic-
itly determine a Nash Equilibrium (NE) (exceptions are [13],
[16]). On the other hand, the papers that consider uncertainty
of competition, namely [6]–[10], assume that the commodity
on sale can be in one of two states: available or otherwise. This
assumption does not capture different transmission qualities
offered by the available channels. The consideration of the
latter significantly complicates the analysis of the game. A
primary may now need to employ different pricing strategies
for different states, while in the former case a single pricing
strategy will suffice as a price need not be quoted for an
unavailable commodity. Our investigation seeks to contribute
in this space.

We have modeled the price selection as a game with
primaries as the players (Section II) and seek a NE pricing
strategy. We consider that the preference of the secondaries can
be captured by a penalty function which associates a penalty
value to each channel that is available for sale depending
on its state and price quoted. Given the state of a channel,
there is a one-to-one correspondence between the price quoted
and the penalty perceived by a secondary. Thus, the strategy
for selection of a price for a channel in a given state may
be equivalently represented as a strategy for selection of
penalty that the channel offers to a secondary. Since prices
and therefore the penalties take real values, the strategy set
of the players are continuous; also the payoff functions for
the primaries turn out to be discontinuous. Thus, classical
results do not guarantee the existence, let alone the uniqueness,
of a NE. In addition, existing literature does not provide
algorithms for computing a NE does not exist unlike when
the strategy set is finite [15]. Starting from a general set of
strategy profiles for the primaries which allows for selecting
penalties using arbitrary probability distributions, we show that
for a large class of penalty functions, there exists a unique
symmetric NE strategy profile, which we explicitly compute
(Section III). Our analysis reveals several interesting insights
about the structure of the symmetric NE. First, we learn that
if a channel in state i provides a higher transmission rate
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to a secondary than that in state j, then the symmetric NE
strategy profile selects the penalties for i, j respectively from
ranges [Li, Ui], [Lj , Uj ] where Ui ≤ Lj . Thus, a secondary
will always prefer a channel in state i to a channel in state
j considering both the prices and the states. This negates
the intuition that prices ought to be selected for the states
so as to render them equally preferable to a secondary -
symmetric NE strategy profiles in fact price the channels so
as to retain the preference order provided by the states. The
analysis also reveals that the unique symmetric NE strategy
profile consists “nice” probability distributions in that they are
continuous and strictly increasing; the former rules out pure
strategy symmetric NEs and the latter ensures that the support
sets are contiguous. Finally, utilizing the explicit computation
algorithm for the symmetric NE strategies, we analytically
and numerically investigate the reduction in expected profit
suffered under the unique symmetric NE pricing strategies
as compared to the maximum possible value allowing for
collusion among primaries (Section IV).

All the proofs are deferred to the Appendix.

II. SYSTEM MODEL

We consider a spectrum market with n primaries and
m secondaries. We will initially consider the case that the
primaries know m, later generalize our results for random,
apriori unknown m. Each primary has access to a channel
which can be in states 0, 1, . . . , n+ 1, where state i provides
a lower transmission rate to a secondary than state j if i < j
and state 0 arises when the channel is not available for sale
and provides 0 transmission rate. Different channels constitute
disjoint frequency bands leased by the primaries. A channel
is in state i ≥ 1 w.p. qi and in state 0 w.p. 1 − q where
q =

∑n
i=1 qi, independent of the states of other channels. If

a primary quotes a price p for a channel in state i, then the
channel offers a penalty gi(p) to a secondary. Each gi(·) is
continuous, strictly increasing in its argument, and therefore
invertible. We denote fi(·) as the inverse of gi(·); clearly fi(·)
is continuous and strictly increasing in its argument as well.
No secondary buys a channel whose penalty is higher than v,
and as the name suggests a secondary prefers a channel with
a lower penalty (a secondary’s preference depends entirely
on the penalty). Thus, we must have gi(p) > gj(p) and
fi(x) < fj(x) for each x, p and i < j. Each primary also
incurs a transition cost c > 0 for an available channel, and
therefore never selects a price lower than c. We assume that

fj(y)− c
fk(y)− c

<
fj(x)− c
fk(x)− c

for all x > y > gj(c), j < k (1)

A large class of penalty functions gi(·) satisfy the above
property required of the corresponding inverses, e.g., gi(p) =
ζ (p− h(i)) , gi(p) = ζ (x/h(i)) where ζ(·), h(·) are continu-
ous, strictly increasing functions, gi(p) = pr − h(i), gi(p) =
prh(i), gi(p) = exp(p) − h(i), gi(p) = log(p) − h(i) for
r > 0 and a strictly increasing, continuous h(·). In addition,
gi(·) such that the inverses are of the form fi(x) = h1(x) +
h2(i), fi(x) = h1(x)h2(i), where h1(·), h2(·) are continuous
and strictly increasing satisfy the above assumption.

If primary i quotes a price p for its channel then its
profit(payoff) is{

p− c if the primary sells its channel
0 otherwise

Note that if Y is the number of channels offered for sale
for which the penalties are upper bounded by v, then those
with min(Y,m) lowest penalties are sold since secondaries
select channels in increasing order of penalties. The ties among
channels with identical penalties are broken randomly and
symmetrically among the primaries.

Each primary selects the penalty for its channel with the
knowledge of the state of the channel, but without knowing
the states of the other channels; a primary however knows
l,m, n, q1, . . . , qn. Note that the choice of the penalty uniquely
determines the price since there is a one-to-one correspon-
dence between the two given the state of a channel. Primary i
chooses its penalty using an arbitrary probability distribution
function (d.f.) 1ψi,j(.) when its channel is in state j ≥ 1. If
j = 0 (i.e., the channel is unavailable), i chooses a penalty
of v+ 1: this is equivalent to considering that such a channel
is not offered for sale as no secondary buys a channel whose
penalty exceeds v. For j ≥ 1, each primary selects its price
so as to maximize its expected profit. Thus, if m ≥ l,
primaries select the highest penalty for each state 1, . . . , n,
since all available channels will be sold. So, we consider
m < l. Si = (ψi,1, ...., ψi,n) denotes the strategy of primary
i, and (S1, ..., Sl) denotes the strategy profile of all primaries
(players).

Definition 1. S−i denotes the strategy profile of primaries
other than i. E{ui,j(ψi,j , S−i)} denotes the expected profit
when primary i’s channel is in state j and it uses strategy
ψi,j(·) and other primaries use strategy S−i.

Definition 2. A Nash equilibrium (S1, . . . , Sn) is a strategy
profile such that no primary can improve its expected profit
by unilaterally deviating from its strategy [14]. So, with Si =
(ψi,1, ...., ψi,n), (S1, . . . , Sn), is a Nash equilibrium (NE) if
for each primary i and channel state j

E{ui,j(ψi,j , S−i)} ≥ E{ui,j(ψ̃i,j , S−i)} ∀ ψ̃i,j . (2)

A NE (S1, . . . , Sn) is a symmetric NE if Si = Sj for all i, j.

The above game is a symmetric one since primaries have
the same action sets, payoff functions and their channels are
statistically identical. We therefore consider only symmetric
NEs2. Clearly, for any symmetric NE, we can represent the
strategy of any primary as S = (ψ1(.), ψ2(.), ....., ψn(.))
where we drop the index corresponding to the primary.

1Recall the definition of distribution function (d.f) of a random variable X
is the function G(x) = P (X ≤ x) x ∈ < [3]

2For a symmetric game, an asymmetric NE is rarely realized. For example.
for two players, if (S1, S2) is a NE, (S2, S1) is also a NE. The realization
of such a NE is possible only when each player knows whether the other uses
S1 or S2. This complication is somewhat alleviated for a symmetric NE as
all players play the same strategy; this complication is eliminated only when
there is a unique symmetric NE. Note that, there are plethora of examples
of symmetric games, which have multiple NEs. We prove that that there is a
unique symmetric NE for the game we consider.
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Let φj(x) denote the expected profit of a primary whose
channel is in state j and who selects a penalty x and r(x)
denote the probability that a channel quoted at penalty x is
sold. Note that the dependence of φj(x), r(x) on the strategy
profile of the primaries is not explicitly indicated to ensure
notational simplicity. Also, note that r(x) does not depend on
the state of the channel since secondaries select the channels
based only on the penalties. Next,

φj(x) = (fj(x)− c)r(x). (3)

(recall that the inverse of the penalty function gj(·), fj(·),
provides the price that corresponds to penalty x and channel
state j).

Definition 3. A best response penalty for a channel in state
j ≥ 1 is x if and only if

φj(x) = sup
y∈<

φj(y).

Let uj,max = φj(x) for a best response x for state j, j ≥ 1
i.e., uj,max is the maximum expected profit that a primary
earns under NE strategy profile, when its channel is in state
j, j ≥ 1 .

III. A SYMMETRIC NE: EXISTENCE, UNIQUENESS AND
COMPUTATION

First, we identify key structural properties of a symmetric
NE (should it exist). Next we show that the above proper-
ties leads to a unique strategy profile which we explicitly
compute - thus the symmetric NE is unique should it exist.
We finally prove that the strategy profile resulting from the
structural properties above is indeed a symmetric NE thereby
establishing existence.

A. Structure of a symmetric NE

We start with by providing some important properties that
any symmetric NE (ψ1(·), . . . , ψn(·)) must satisfy.

Theorem 1. ψi(.), i ∈ {1, .., n} is a continuous probability
distribution.

The above theorem rules out any pure strategy symmetric
NE.

Definition 4. We denote the lower and upper endpoints of the
support set3 of ψi(.) as Li and Ui respectively i.e.

Li = inf{x : ψi(x) > 0}

Ui = inf{x : ψi(x) = 1}

We next show that the support sets are ordered in increasing
order of the state indices.

Theorem 2. Ui ≤ Lj , if j < i

We finally rule out any “gaps” inside the support sets and
between the support sets for different ψi(·), i = 1, .., n. This
also establishes that ψi(·) is strictly increasing in [Li, Ui].

3The support set of a probability distribution is the smallest closed set such
that the probability of its complement is 0.

Theorem 3. The support set of ψi(.), i = 1, .., n is [Li, Ui]
and Ui = Li−1 for i = 2, .., n, U1 = v.

Remark: The structure of the symmetric NE identified in
Theorems 1 to 3 provide several interesting insights:
• Theorem 2 implies that the primaries select the highest

penalties for the worst states. The primaries therefore do
not strive to render all states equally preferable to the
secondaries through price selection.

• Theorems 1 and 3 reveal that the symmetric NE strategy
profile consists of “well-behaved” distribution functions.

B. Computation and Uniqueness of a Symmetric NE

We now show that the structural properties of a symmetric
NE identified in Theorems 1, 2, 3 are satisfied by a unique
strategy profile, which we explicitly compute. This proves the
uniqueness of a symmetric NE subject to existence. We start
with the following definitions.

w(x) =

l−1∑
i=m

(
l − 1

i

)
xi(1− x)l−i−1 (4)

wi = w(

n∑
j=i

qj) fori = 1, ..., n andwn+1 = 0 (5)

Clearly, for x ∈ [0, 1], w(x) is the probability of at least m
successes out of l-1 independent Bernoulli trials, each of which
occurs with probability x. Note that w(·) is continuous and
strictly increasing in [0, 1] [21], so its inverse exists. Note
that wi > wj if i < j, i, j ∈ {1, ..., n} as wi is the success
probability of at least m successes out of (l-1) independent
Bernoulli Events, where each of which occurs with probability∑n

j=i qj .

Lemma 1. For 1 ≤ i ≤ n,

ui,max = pi − c
where, pi = c+ (f1(v)− c)(1− w1)

+

i−1∑
j=1

(fj+1(Lj)− fj(Lj))(1− wj+1) (6)

and Li = gi(
pi − c

1− wi+1
+ c) (7)

Using (6) and (7), ui,max, Li can be computed recursively
starting from i = 1. Note that as 1−wi > 0,∀i ∈ {1, . . . , n},
thus, pi − c > 0. Hence, from the definition of Lk (7), it is
evident that

fk(Lk) > c (8)

Expressions of Li and pi are used in the following lemma to
determine the unique ψi(·), if it exists

Lemma 2. A symmetric NE strategy profile (ψ1(·), . . . , ψn(·))
comprises of:

ψi(x) =0, if x < Li

1

qi
(w−1(

fi(x)− pi
fi(x)− c

)−
n∑

j=i+1

qj), if Li−1 ≥ x ≥ Li

1, if x > Li−1 (9)
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where Li, i = 1, .., n are as defined in (7) and L0 = v.

Next lemma will ensure that ψi(·) as defined in lemma 2 is
indeed a d.f.

Lemma 3. ψi(·) as defined in Lemma 2 is a strictly increasing
and continuous distribution function.

C. Existence of a symmetric NE

In this section, We prove that symmetric strategy profile
identified in previous section is indeed a NE strategy profile.

Theorem 4. (ψ1(·), . . . , ψn(·)) j = 1, .., n as defined in
lemma 2 is a symmetric NE.

a) Remark: Note that all our results readily generalize to
allow for random number of secondaries (M) with probability
mass functions (p.m.f.) Pr(M = m) = γm. A primary does
not have the exact realization of number of secondaries, but it
knows the p.m.f. . We only have to redefine w(x) as-

max(M)∑
k=0

γk

l−1∑
i=k

(
l − 1

i

)
xi(1− x)l−1−i (10)

and wn+1 = γ0 .

IV. PERFORMANCE EVALUATION OF THE SYMMETRIC NE

Definition 5. Let RNE denote the total expected profit at Nash
equilibrium. Then,

RNE = l.

n∑
i=1

(qi.(pi − c)) (11)

Lemma 4. Let cj = gj(c), j = 1, .., n.
1) If m ≥ (l − 1)(

∑n
j=1 qj + ε) for some ε > 0, then

RNE → l.
∑n

j=1 qj .(fj(v)− c) as l→∞.
2) If (l − 1)(

∑n
j=i−1 qj − ε) ≥ m ≥ (l − 1)(

∑n
j=i qj +

ε), i ∈ {2, .., n}, for some ε > 0, then RNE →
l.
∑n

j=i qj .(fj(ci−1)− c) as l→∞.
3) If m ≤ (l − 1)(qn − ε) for some ε > 0, then RNE → 0

as l→∞.

Note that, for j > i, cj < ci (as gj(c) < gi(c)),
thus, asymptotically RNE decreases as m decreases. This is
expected as competition increases with decrease in m, and
thus prices are chosen progressively closer to the lower limit,
that of the transition cost, c.

Definition 6. Let ROPT be the maximum expected profit
earned through collusive selection of prices by the primaries.

Efficiency η is defined as
RNE

ROPT
.

Efficiency is a measure of the reduction in the expected
profit owing to competition. Asymptotic behavior of η is
characterized by the following lemma:

Lemma 5. 1) If m ≥ (l−1)(
∑n

j=1 qj+ε) for some ε > 0,
then η → 1 as l→∞.

2) If m ≤ (l − 1)(qn − ε) for some ε > 0, then η → 0 as
l→∞.
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Fig. 1: Efficiency versus m for three different sets of values
of probabilities for l = 20 and n = 3, q1 = q2 = q3 = r,
v = 100, c = 1, gi(x) = x10 − i7.

The lemma does not characterize the asymptotic limits for η
for m ∈ [(l− 1)

∑n
j=1 qj , (l− 1)qn]. However, our numerical

computation reveals that η increases from 0 to 1 with increase
in m (figure 1) - the variation is largely monotonic barring
for a few discrepancies owing to n,m being finite. Intuitively,
demand increases with increase in m; thus primaries set their
penalties close to the highest possible value for all states
which leads to higher efficiency. On the other hand, when m
decrease, competition becomes intense and primaries chooses
prices close to c and expected profits under the symmetric
NE decreases: RNE is very small as lemma 4 reveals. But,
if primaries collude, primaries can judiciously offer only the
channels of highest possible states to the secondaries to gain
a large profit. Hence, the decrease in ROPT with decrease in
m is slower, which leads to lower efficiency for low m.

Similarly, when qis increases, competition becomes intense
and primaries chooses price closer to c, hence RNE decrease.
But, when primaries collude, they still sell at highest possible
penalty for a channel and hence η decrease. On the other hand,
when, qis decrease, primaries set their prices closer to highest
possible values for all states and thus, η increase.
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V. APPENDIX

First, we introduce some terminologies and observation that
we will use throughout this section.

Definition 7. Let Xm be the mth smallest offered penalty
offered by primaries i = 2, . . . , l, and let F (·) denote the
distribution function of Xm.

For a symmetric strategy profile, F (·) would remain the
same if we had considered any l − 1 primaries rather than
2, . . . , l.

Observation 1. Any point y ≤ gj(c) can not be a best
response (definition 3) for channel state j.

The observation is evident as the profit φj(·) of a primary is
non-positive if the selected penalty is ≤ gj(c). But, φj(x) > 0
for gj(c) < x ≤ v as 0 <

∑n
i=1 qi < 1.

A. Proof of Section III-A

Proof of Theorem 1: Suppose, ψj(·) has a jump4 at x,
then all primaries select x as their penalties with positive
probability whenever their channel states are j. As, no primary
selects a penalty other than a best response with positive
probability, thus, x has to be a best response to primaries
whenever their channel state is j. Hence, Observation 1 entails
that x > gj(c). We will complete the proof by showing that
primary 1 can attain better expected profit by choosing penalty
just below x, when channel state is j.
We have,

r(x) = P (Xm > x) + r(x|Xm = x)P (Xm = x) (12)

4A d.f. G(x) is said to have a jump at y of size a, if G(y)−G(y−) = b,
where G(y−) = limx↑y G(x)

For every ε > 0, it is worthy to note the following relation

r(x− ε) ≥ P (Xm > x) + P (Xm = x) (13)

Thus, from (12) and (13), for every ε > 0,

r(x− ε)− r(x) ≥ P (Xm = x) · (1− r(x|Xm = x))

= γ (14)

where, γ = P (Xm = x)(1 − r(x|Xm = x)). Note that
r(x|Xm = x) < 1 and P (Xm = x) > 0, due to symmetry
and l > m. So, γ > 0.
Now, expected profit to primary 1 for channel state j at penalty
x− ε is:

φj(x− ε) = (fj(x− ε)− c)r(x− ε) (from(3))

≥ (fj(x− ε)− c)(r(x) + γ) (15)

Let, δ = fj(x)− fj(x− ε), so from (15)

φj(x− ε) ≥ (fj(x)− δ − c)(r(x) + γ)

= (fj(x)− c)(r(x) + γ)− δ(r(x) + γ) (16)

fj(·) is continuous and strictly increasing (fj(x) > c),γ > 0
and independent of ε, so ∃ε > 0, such that

φj(x− ε) > (fj(x)− c)r(x) = φj(x)

which contradicts that x is a best response and hence, the
result follows.

Now, we will show the following lemma and observation,
which will facilitate our later analysis.

Lemma 6. F (·) is continuous in [cmin, v] and if∑n
j=1 ψj(y) >

∑n
j=1 ψj(x), then F (y) > F (x)

where, cmin = min
i∈{1,..,n}

gi(c)

Proof. Suppose a ∈ [cmin, v]. At any time slot, the event that
primary 1 selects penalty less than or equal to a and state of
a channel is i ≥ 1, occurs with probability qi · ψi(a). Hence,
the event that primary 1 offers penalty less than or equal to a
occurs with probability

∑n
i=1 qi · ψi(a). Thus,

F (a) = P (Xm ≤ a) = w(

n∑
i=1

ψi(a)) (Recall(4))

Continuity of F (·) follows from the fact that ψi(·), i =
1, . . . , n are continuous (Theorem 1).

Now l < m, and
∑n

i=1 qi < 1, thus F (·)increases if∑n
i=1 ψi(.), i ∈ {1, .., n} increases (as ψi(.) is d.f. so it is

non-decreasing).

Lemma 6 implies that P (Xm = x) = 0 for each x and thus
r(x) = 1− F (x). Hence,

φj(x) = (fj(x)− c)(1− F (x)) (17)

Observation 2. Every element in the support set of ψi(·) is
a best response; thus, so are Li, Ui.

Proof. Suppose there exists a point z in the support set of
ψi(·), which is not a best response. Therefore, primary 1 plays
at z with probability 0 when channel state is i.
Now, one of the following two cases must arise.
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Case I: ∃ a neighborhood [20] of radius δ > 0 around z,
such that no point in this neighborhood is a best response.
Neighborhood of radius δ > 0 of z is an open set (theorem
2.19 of [20]). Hence, we can eliminate that neighborhood and
can attain a smaller closed set, such that its complement has
probability zero under ψi(·), which is against the definition of
support set.
Case II: For every ε > 0, ∃y ∈ (z− ε, z+ ε), such that y is a
best response. Then, we must have a sequence zk, k = 1, 2, . . .
such that each zk is a best response, and lim

k→∞
zk = z [20].

But profit to primary 1 for channel state i at each of zk is
(fi(zk) − c)(1 − F (zk)). Now, from continuity of fi(·) and
F (·) (lemma 6)-

lim
k→∞

φi(zk) = (fi(zk)− c)(1− F (zk))

= (fi(z)− c)(1− F (z)) = φi(z) (18)

As each of zk, k = 1, 2, . . . is a best response, ui,max =
φi(zk), k = 1, 2, . . .. Hence, from (18) ui,max = φi(z) and z
is a best response. We can conclude the result by noting that
Ui, Li (Definition 4) are in the support set of ψi(·).

Proof of Theorem 2: From Observation 2 it is sufficient to
show that for any x, y such that cmin < x < y ≤ v, if x
is a best response when the state of the channel is j, then y
can not be a best response when the state of the channel is i
for i > j. If not consider y > x such that x, y are the best
responses when channel states are respectively j, i. Now, from
Observation 1 fi(y) > c, fj(x) > c. Also,

ui,max = (fi(y)− c)(1− F (y)) (19)
φj(y) = (fj(y)− c)(1− F (y))

= ui,max.
fj(y)− c
fi(y)− c

(from(19))

uj,max ≥ ui,max.
fj(y)− c
fi(y)− c

(20)

Next,

uj,max = (fj(x)− c)(1− F (x))
φi(x) = (fi(x)− c)(1− F (x))

= uj,max.
fi(x)− c
fj(x)− c

(21)

Using (20) and (21), we obtain-

φi(x) ≥ ui,max.
(fj(y)− c)(fi(x)− c)
(fi(y)− c)(fj(x)− c)

(22)

But, then, since y > x, i > j, (1) implies that φi(x) > ui,max

which contradicts the definitions of ui,max and φi(x).
Proof Of Theorem 3: Suppose the statement is not true.

But, it follows from Theorem 2 that there exists an interval
(x, y) ⊆ [Ln, v], such that no primary offers penalty in the
interval (x, y) with positive probability. So, we must have ã
such that

ã = inf{b ≤ x : ψj(b) = ψj(x),∀j}

By definition of ã, ã is a best response for at least one state
i. But, as primaries do not offer penalty in the range (ã, y), so

from (17), φi(z) > φi(ã) for each z ∈ (ã, y). This is because
F (y) = F (ã) and fi(ã) < fi(z). Thus, ã can not be a best
response for state i.

B. Proofs of Section III-B

proof of Lemma 1: We first prove (6) using induction, (7)
follows from (6).

From theorem 3, ψi(·)’s support set is [Li, Li−1], i =
{2, ..., n} and [L1, v] for i = 1. As v is the best response
for channel state 1,

u1,max = (f1(v)− c)(1− w(
n∑

i=1

qi)) = p1 − c (23)

Thus, (6) holds for i = 1. Let, (6) be true for i = t < n. We
have to show that (6) is satisfied for i = t+ 1 assuming that
it is true for i = t. Thus,by induction hypothesis,

ut,max = pt − c = (f1(v)− c)(1− w1)

+

j=t−1∑
j=1

(fj+1(Lj)− fj(Lj))(1− wj+1) (24)

Now, Lt is a best response for state t, and

φt(Lt) = (ft(Lt)− c)(1− wt+1) = pt − c (25)

Now, as Lt is also a best response for state t+1,

φt+1(Lt) = (ft+1(Lt)− c)(1− wt+1) = ut+1,max (26)

Using (25), (24) in (26) we obtain-

ut+1,max = (f1(v)− c)(1− w1)

+

j=t−1∑
j=1

(fj+1(Lj)− fj(Lj))(1− wj+1)

+ (ft+1(Lt)− ft(Lt))(1− wt+1)

= (f1(v)− c)(1− w1)

+

j=t∑
j=1

(fj+1(Lj)− fj(Lj))(1− wj+1)

= pt+1 − c

Thus, ut+1,max = pt+1 − c and it satisfies (6). Thus, (6)
follows from mathematical induction.

(7) follows since (fi(Li)− c)(1−wi+1) = pi− c and gi(·)
is the inverse of fi(·).

proof of Lemma 2: Li, Li−1 are the end-points of the support
set of ψi(·) from definition 4, and their values have been
computed in lemma 1. We should have for x < Li, ψi(x) = 0
and for x > Li−1,ψi(x) = 1. From theorem 3, every point
x ∈ [Li, Li−1] is a best response for state i, and hence,

(fi(x)− c)(1− w(
n∑

j=i+1

qj + qi.ψi(x))) = ui,max = pi − c.

Thus, the expression for ψi(·) follows. We conclude the proof
by noting that the domain and range of w(.) is [0, 1], and
pi − c

fi(x)− c
< 1 for x ∈ [Li, Li−1]: so w−1(.) is defined at

1− pi − c
fi(x)− c

. .
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Now, we will state an observation, that we will use through-
out the rest of this section.

Observation 3.

pi − c = (fi(Li−1)− c)(1− wi) (27)

where L0 = v.

Proof. From(6), for i ≥ 2-

pi−1 − c = pi − c− (fi(Li−1)− fi−1(Li−1))(1− wi) (28)

From (7), (28) and the fact that fi(·) = g−1i (·), we obtain-

pi−1 − c = (fi−1(Li−1)− c)(1− wi)

pi − c− (fi(Li−1)− fi−1(Li−1))(1− wi)

= (fi−1(Li−1)− c)(1− wi)

pi − c = (fi(Li−1)− c)(1− wi)

We can conclude the result for i = 1, by replacing v with L0

in (6).

proof of lemma 3: Note that,

ψi(Li) =
1

qi
(w−1(1− pi − c

fi(Li)− c
)−

n∑
j=i+1

qj)

=
1

qi
(w−1(wi+1)−

n∑
j=i+1

qj) from(7)

= 0 (by(5)) (29)

From (9) and (27), we obtain

ψi(Li−1) =
1

qi
(w−1(1− pi − c

fi(Li−1 − c)
)−

n∑
j=i+1

qj)

=
1

qi
(w−1(wi)−

n∑
j=i+1

qj)

=
1

qi
.qi = 1 (aswi = w(

n∑
j=i

qj) (30)

w(.) is continuous, strictly increasing on compact set
[0,
∑n

j=1 qj ], so w−1 is also continuous (theorem 4.17 in [20]).

Also,
pi − c

fi(x)− c
is continuous for x ≥ Li as fi(x) > c, so

ψi(.) is continuous as it is a composition of two continuous
functions. Again, w−1(.) is strictly increasing (as w(·) is

strictly increasing), 1 − pi − c
fi(x)− c

is strictly increasing (as

fi(·) is strictly increasing), so ψi(.) is strictly increasing on
[Li, Li−1] ( as it is a composition of two strictly increasing
functions (theorem 4.7 in [20])) .

C. Proof of Section III-C

First, it is worthy to note the following observation

Observation 4. For t > s, t, s ∈ {1, . . . , n}

pt − c = (ps − c)
t−1∏
i=s

fi+1(Li)− c
fi(Li)− c

(31)

Proof. From Observation 3 and (7), (8), it follows that

pi−1 − c = (pi − c)
fi−1(Li−1)− c
fi(Li−1)− c

(32)

We obtain the result using recursion.

proof of Theorem 4: If state of channel of primary 1 is j ≥ 1
and it select penalty x, then its expected profit is-

φj(x) = (fj(x)− c)r(x)

= (fj(x)− c)(1− w(
n∑

i=1

qi.ψi(x))) (33)

First, suppose x ∈ [Lj , Lj−1]. From (33) and (9), we obtain

(fj(x)− c)(1− w(
n∑

i=1

qiψi(x)))

= (fj(x)− c)(1− w(
n∑

k=j+1

qk + qjψj(x)))

= (fj(x)− c)(1− w(w−1(1−
pj − c

fj(x)− c
)))

= pj − c (34)

It remains to show that for x ∈ [Lk, Lk−1], k 6= j, k ∈
{1, .., n}, profit to primary 1 is at most pj − c, when channel
state is in j.

Now, let x ∈ [Lk, Lk−1]. If primary 1 selects penalty x at
channel state j, then its expected profit would be φj(x) =
(fj(x)− c)r(x). But,

φk(x) = (fk(x)− c)r(x)

= (fk(x)− c)(1− w(
n∑

i=1

qiψi(x)))

= pk − c (35)

From (8), we have fk(x) > c, as x ∈ [Lk, Lk−1]. So,
using(35)-

φj(x) =
(pk − c)(fj(x)− c)

fk(x)− c

Hence,

φj(x)− (pj − c) =
(pk − c)(fj(x)− c)

fk(x)− c
− (pj − c) (36)

We will show that φj(x)− (pj−c) is non-positive. As, k 6= j,
so only the following two cases are possible.
Case I: k < j
From (1) and for i < j, we have-

fi(Li−1)− c
fi(Li)− c

>
fj(Li−1)− c
fj(Li)− c

(asLi < Li−1) (37)
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From Observation 4 and (37), we obtain-

pj − c =
(pk − c)(fj(Lj−1)− c)

fk(Lk)− c

j−1∏
i=k+1

fi(Li−1)− c
fi(Li)− c

pj − c ≥
(pk − c)(fj(Lj−1)− c)

fk(Lk)− c

j−1∏
i=k+1

fj(Li−1)− c
fj(Li)− c

=
(pk − c)(fj(Lj−1)− c)

fk(Lk)− c
.
(fj(Lk)− c)
fj(Lj−1)− c

=
(pk − c)(fj(Lk)− c)

fk(Lk)− c

Hence, from (36), we obtain-

φj(x)− (pj − c)

≤ (pk − c)(
fj(x)− c
fk(x)− c

− fj(Lk)− c
fk(Lk)− c

) (38)

Now, x ∈ [Lk, Lk−1], j > k. Hence, from (38) and assumption
1, we have-

φj(x)j(x) ≤ pj − c (39)

Case II: j < k
From, Observation 4,

(pk − c) = (pj − c)
k−1∏
i=j

fi+1(Li)− c
fi(Li)− c

(40)

Now, for i ≥ j from (1), we have-

fi+1(Li)− c
fj(Li)− c

<
fi+1(Li+1)− c
fj(Li+1)− c

(asLi > Li+1) (41)

Now, from (40) and using (41), we obtain-

pk − c = (pj − c)
k−1∏
i=j

fi+1(Li)− c
fi(Li)− c

= (pj − c).
fk(Lk−1)− c
fj(Lj)− c

k−1∏
i=j+1

fi(Li−1)− c
fi(Li)− c

≤ (pj − c).
fk(Lk−1)− c
fj(Lj)− c

k−1∏
i=j+1

fj(Li−1)− c
fj(Li)− c

= (pj − c).
fk(Lk−1)− c
fj(Lj)− c

fj(Lj)− c
fj(Lk−1)− c

= (pj − c).
fk(Lk−1)− c
fj(Lk−1)− c

Thus, from (36), we obtain-

φj(x)− (pj − c)

≤ (pj − c)(
fk(Lk−1)− c
fj(Lk−1)− c

.
fj(x)− c
fk(x)− c

− 1)

≤ 0(asx ≤ Lk−1, j < k and from Assumption 1) (42)

Hence, from(42), (39) and (34), every x ∈ [Lj , Lj−1] is a
best response to primary 1 when channel state is j and thus
(9) constitute a Nash Equilibrium strategy profile.

D. Proofs of Section IV

We will first establish part 1 and 3 of lemma 4 . Part 2 of
lemma 4 is cumbersome and we defer its proof until the end
of the section. Lemma 5 will readily follow from part 1 and
part 3 of lemma 4.

proof of part 1 of Lemma 4: First, note that a primary can
achieve profit of at most fi(v)−c, when channel state is i ≥ 1.
Hence,

RNE ≤ l ·
n∑

i=1

qi · (fi(v)− c) (43)

When, primary 1 selects penalty v, at channel state i ≥ 1, then
its expected profit is φi(v) = (fi(v)− c)(1−w1). Now, from
Theorem 4 under NE strategy profile,

pi − c ≥ φi(v) = (fi(v)− c)(1− w1) (44)

Hence,

RNE ≥ l.(
n∑

i=1

qi.(vi − c))(1− w1) (45)

Now, let Zi, i = 1, .., l−1 be the Bernoulli trials with success
probabilities

∑n
i=1 qi and let Z =

∑l−1
i=1 Zi, so P (Z ≥ m) is

equal to w1 by (5). Since m ≥ (l− 1)(
∑n

i=1 qi + ε), E(Z) =
(l − 1)

∑n
i=1 qi, thus, by weak law of large numbers [19],

w1 → 0 asl → ∞. Hence the result follows from (45) and
(43). .

proof of Lemma part 3 of Lemma 4: Now, suppose that
m ≤ (l − 1)(qn − ε), for some ε > 0. Let, Zi, i = 1, ..., l − 1
be the Bernoulli trials with success probabilities qn and Z =∑l−1

i=1 Zi, E(Z) = (l − 1)qn. Hence,

1− wn ≤ P (Z ≤ m)

≤ P (Z ≤ (l − 1)(qn − ε))
≤ P (|Z − (l − 1)qn| ≥ (l − 1)ε)

≤ 2 exp(−2(l − 1)2ε2

l − 1
)

(from Hoeffding’s Inequality [4])
= 2 exp(−2(l − 1)ε2) (46)

1 − wi < 1 − wj (if j > i), fk(Lk−1) > fk−1(Lk−1).
Hence, it can be readily seen from(6) that

pi − c ≤ (v1 − c)(1− wn)+
i∑

k=2

(fk(Lk−1)− fk−1(Lk−1))(1− wn) (47)

Thus,

RNE ≤ l · (1− wn)(

n∑
j=1

qj .((f1(v)− c)

+

j∑
k=2

(fk(Lk−1)− fk−1(Lk−1)))) (48)

As fi(c) ≤ Li ≤ v, hence, the result follows from (46) .
Note the bound of RNE (from (46) and (48)) for m ≤

(l − 1)(qn − ε), ε > 0,

RNE ≤ l · γ · exp(−2ε2.(l − 1)) (49)
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where γ = 2
∑n

j=1 qj .((v1 − c) +
∑j

k=2(fk(Lk−1) −
fk−1(Lk−1))). We will use this bound later.

From, the definition of η, it should be clear that

η ≤ 1 (50)

Now, we will show lemma 5
proof of part 1 of lemma 5: First suppose that m ≥ (l −

1)(
∑n

i=1 qi + ε). From, definition of ROPT , it is obvious that

ROPT ≤ l.(
n∑

i=1

(qi.(vi − c))) (51)

Hence the result follows from part 1 of lemma 4 and (50).
proof of part 2 of Lemma 5: Now, suppose m ≤ (l−1)(qn−

ε), for some ε > 0.
Let, Z be the number of primaries, whose channel is in state
n. Hence,

ROPT ≥ E(min(Z,m))(vn − c)
ROPT

vn − c
≥ E(min(Z,m)) (52)

Note that E(Z) = l · qn, V ar(Z) = l · qn(1− qn).
We introduce a new random variable Y as follows-

Y =

{
m, ifZ ≥ m
0, otherwise

So,

E(min(Z,m)) ≥ E(Y )

= m.P (Z ≥ m)

= m.(1− P (Z < m))

≥ m.(1− P (Z ≤ (l − 1)(qn − ε)))
≥ m.(1− P (|Z − l.qn| ≥ (l − 1)ε)

≥ m.(1− l.qn.(1− qn)
(l − 1)2.ε2

)

(From Chebyshev’s Inequality) (53)

Hence, from (49) and (53), we obtain-

η ≤ l.γ. exp(−2(l − 1)ε2)

m.(1− l.qn.(1− qn)
(l − 1)2.ε2

).(vn − c)

Thus, η tends to zero for m ≤ (l − 1)(qn − ε),as l tends to
infinity,(as m 6= 0). .

proof of part 3 of Lemma 4: Suppose that (l −
1)(
∑n

j=i−1 qj−ε) ≥ m ≥ (l−1)(
∑n

j=i qj+ε), i ∈ {2, . . . , n}
for some ε > 0. Recall from (5) that, wi is the probability of
at least m successes out of l− 1 independent Bernoulli trials,
each of which occurs with probability

∑n
j=i qj . Hence from

weak law of large numbers [19]

wi → 0 asl→∞
1− wi → 1 asl→∞ (54)

Since wj < wi, for j > i (from (5)), we have for j ≥ i

1− wj → 1 asl→∞ (55)

Again, as m ≤ (l−1)(
∑n

j=i−1 qj−ε),so, from weak law of
large numbers [19], for every ε > 0, ∃L, such that 1−wi−1 <
ε, whenever l ≥ L. Hence,

1− wi−1 →
l→∞

0

1− wj →
l→∞

0 (forj < i) (56)

Now, ci ≤ Li ≤ v, thus, it is evident from (6) and (56)-

pj − c →
l→∞

0 (forj < i) (57)

Hence,

Li−1 →
l→∞

ci−1 (58)

Using (56) in (6), we obtain for j ≥ i

pj − c =
j∑

k=i

(fk(Lk−1)− fk−1(Lk−1))(1− wk)

pj − c →
l→∞

j∑
k=i

(fk(Lk−1)− fk−1(Lk−1))(from(55)) (59)

Next, we will evaluate the limits of Lj , j ≥ i as l tends to ∞.
Now, using (27), we obtain for j ≥ i,

pj − c = (fj(Lj−1)− c)(1− wj)

pj →
l→∞

fj(Lj−1) (from(55)) (60)

Again, using (7), we obtain for j ≥ i

pj − c = (fj(Lj)− c)(1− wj+1)

pj →
l→∞

fj(Lj) (61)

fj(·) is strictly increasing, consequently from (60) and (61),
Lj → Lj−1 (for j ≥ i). Hence, for j ≥ i,

Lj →
l→∞

Li−1

Lj →
l→∞

ci−1 (from(58)) (62)

Thus, from (62) and (59), we obtain for j ≥ i

pj − c →
l→∞

j∑
k=i

(fk(ci−1)− fk−1(ci−1))

= (fj(ci−i)− fi−1(ci−1) (63)

Thus, from (57) and (63), we have-

RNE → l ·
n∑

j=i

qj ·
j∑

k=i

(fk(ci−1)− fi−1(ci−1)) (64)

The result follows from the fact that fi−1(ci−1) =
fi−1(gi−1(c)) = c. .


