
Spectrum Pricing Games with Bandwidth Uncertainty and
Spatial Reuse in Cognitive Radio Networks

Gaurav S. Kasbekar
Department of Electrical and Systems

Engineering
University of Pennsylvania

kgaurav@seas.upenn.edu

Saswati Sarkar
Department of Electrical and Systems

Engineering
University of Pennsylvania

swati@seas.upenn.edu

Abstract
In cognitive radio networks (CRN), primary users can

lease out their unused bandwidth to secondary users in re-
turn for a fee. We study price competition in a CRN with
multiple primaries and multiple secondaries in a region,
where each primary tries to attract secondaries by setting
a lower price for his bandwidth than other primaries. A
CRN has two distinctive features, which makes the price
competition very different from that in traditional com-
modity markets. First, in every slot, each primary may
or may not have unused bandwidth available. So pri-
maries are uncertain about the number of other primaries
from whom they face competition. Second, spectrum is
a commodity that allows spatial reuse: the same band
can be simultaneously used at far-off locations without
interference; on the other hand, simultaneous transmis-
sions at neighboring locations on the same band inter-
fere with each other. As a result, a primary cannot offer
bandwidth at all locations, but must select an indepen-
dent set of locations at which to offer it. Also, the choice
of the independent set and the prices at those locations
must be made jointly. We formulate price competition
in a CRN as a game, taking into account both bandwidth
uncertainty and spatial reuse. We analyze the game in a
single slot, as well as its repeated version. In each case,
we not only prove the existence of a Nash equilibrium,
but also explicitly compute it. The expressions we obtain
provide interesting insights into how the price competi-
tion evolves for different values of the system parame-
ters. Moreover, for the game in a single slot, we prove
the uniqueness of the Nash equilibrium in the class of
symmetric equilibria.

1 Introduction
The last decade has seen a tremendous growth in wire-

less networks, resulting in a proportionate increase in de-
mand for spectrum. But spectrum is limited, which has
led to the design of techniques such as Cognitive Radio
Technology [2], for using the available spectrum more
efficiently. In Cognitive Radio Networks (CRNs), there
are two types of spectrum users: (i) a primary user who
leases a certain portion (channel or band) of the spectrum
directly from the regulator, and (ii) secondary users who
can use the channel when it is not used by the primary.

We consider a CRN with multiple primary and sec-

ondary users in a region. Time is slotted, and in every
slot, each primary has unused bandwidth with some prob-
ability, which he would like to sell to secondaries. Now,
secondaries would like to buy bandwidth from the pri-
maries that offer it at a low price, which results in price
competition among the primaries. If a primary quotes a
low price, it will attract buyers, but at the cost of reduced
revenues. This is a common feature of an oligopoly [1],
in which multiple firms sell a common good to a pool
of buyers. Price competition in an oligopoly is naturally
modeled using game theory [15], and has been exten-
sively studied in economics using for example the clas-
sical Bertrand game [1] and its variants.

However, a CRN has several distinguishing features,
which makes the price competition very different from
oligopolies encountered in economics. First, in every
slot, each primary may or may not have unused band-
width available. So a primary who has unused bandwidth
is uncertain about the number of primaries from whom
he will face competition. A low price will result in un-
necessarily low revenues in the event that very few other
primaries have unused bandwidth, because even with a
higher price the primary’s bandwidth would have been
bought, and vice versa. Second, spectrum is a commod-
ity that allows spatial reuse: the same band can be simul-
taneously used at far-off locations without interference;
on the other hand, simultaneous transmissions at neigh-
boring locations on the same band interfere with each
other. Thus, spatial reuse provides an opportunity to pri-
maries to increase their profit by selling the same band
to secondaries at different locations, which they can uti-
lize subject to satisfying the interference constraints. So
when multiple primaries own bandwidth in a large region,
each needs to decide on a set of non-interfering locations
(called independent set (I.S.)) within the region, at which
to offer bandwidth. This is another source of strategic in-
teraction among the primaries– each primary would like
to select a maximum-sized I.S. to offer bandwith at; but
if a lot of primaries offer bandwidth at the same loca-
tions, there is intense competition at those locations. So
a primary would have benefited by instead offering band-
width at a smaller I.S. and charging high prices at those
locations. To the best of our knowledge our work is the
first to consider either of these distinguishing features in
context of price competition in wireless networks.



We model the problem using game theory, and our
model captures both uncertain bandwidth availability and
spatial reuse. We first consider (i) a one-shot game, in
which bandwidth trading is done only once, and subse-
quently (ii) a repeated game in which there are an infinite
number of slots, and bandwidth trading is done every slot.
We analyze the games at a single location, and at multiple
locations with spatial reuse constraints, and seek a Nash
equilibrium [15] (NE) in each case.

In the one-shot game at a single location (Section 3),
we show that there does not exist a pure-strategy NE,
i.e., one in which each primary deterministically selects
a price (Section 3.3). This is in sharp contrast with the
Bertrand game [1], where each seller always has his ware
available - the only equilibrium then is a pure-strategy
one in which each seller chooses the lowest possible
price [8]. We then explicitly find a mixed-strategy NE
in which each primary randomly chooses a price from a
range, and prove that it is unique in the class of symmetric
equilibria (Section 3.3). As the probability that a primary
has bandwidth available decreases, this range of prices
becomes increasingly concentrated at the highest possi-
ble price. This confirms the intuition that when spectrum
holes are rarely available, whenever a primary has a spec-
trum hole, he can afford to set a high price in view of the
limited competition he anticipates from others. Using the
explicit expressions, we quantify the loss of total revenue
incurred due to competition under symmetric equilibria
(Section 3.4). Our numerical computations reveal that
this loss, or equivalently, the efficiency of the symmetric
equilibria, exhibits interesting threshold behavior, which
we also analytically prove in the asymptotic regime (i.e.,
when the number of primaries is large).

Next, we consider a one-shot game when the primaries
offer bandwidth at multiple locations arranged in a line
and also in a square grid (Fig. 3) (Section 4), and prove
that there exists a unique symmetric NE which we ex-
plicitly compute (Sections 4.1,4.2). When the number of
such locations is even, there are two disjoint I.S. of max-
imum size, and we prove that at the equilibrium each pri-
mary selects between the two maximum I.S. with equal
probability (Sections 4.1.1,4.2). When the number of lo-
cations is odd, there exists a unique maximum I.S., and a
slightly smaller one. We show that when the bandwidth
availability probability q is smaller than a threshold, all
primaries offer bandwidth only at the maximum I.S. at
equilibrium (Sections 4.1.2.1,4.2). This is because even
though a primary would be able to charge a high price
at each node by unilaterally deviating to the smaller I.S.,
he prefers to stay at the maximum I.S. because the lat-
ter is larger and the competition is likely to be limited.
But when q exceeds the threshold, primaries randomize
between offering bandwidth at the maximum and second
largest I.S. (Sections 4.1.2,4.2). We explicitly compute
the above threshold, the probabilities of the above se-
lection as also the distribution for selecting the price at
each node in the selected independent set for both odd
and even number of locations (Sections 4.1.1,4.1.2,4.2).

Next, we analyze the repeated game version of the

one-shot game at a single location (Section 5), and show
that there exists an efficient NE in which each primary
sets the highest possible price and as a result, the sum of
expected revenues of the primaries is maximized. This
is achieved through a threat mechanism: if any primary
lowers his price in a slot, all others retaliate in future slots
by playing the one-shot game NE strategy and hence the
primary suffers in the long run.

Our main contribution is that we are able to explic-
itly compute NE in all the games we consider. Since the
prices can take real values, the strategy sets of players are
continuous. Thus, classical results do not establish exis-
tence and uniqueness of NE for the games we consider,
and there is no standard algorithm for finding a NE, un-
like when each player’s strategy set is finite [15]. The
explicit computations provide valuable insight; in partic-
ular, they clearly reveal the effect of the system parame-
ters on equilibrium behavior. All proofs are deferred to
the Appendix.

2 Related Work
Pricing related issues have been extensively stud-

ied in the context of wired networks and the Internet;
see [7] for an overview. Price competition among spec-
trum providers in wireless networks has been studied
in [16], [17], [18], [19], [20], [21]. Specifically, Niyato
et. al. analyze price competition among multiple pri-
maries in CRNs [20], [21]. However, neither uncertain
bandwidth availability, nor spatial reuse is modeled in
any of the above papers. Also, most of these papers do
not explicitly find a NE (exceptions are [17], [20]). Our
model incorporates both uncertain bandwidth availability
and spatial reuse, which makes the problem challenging;
despite this, we are able to explicitly compute a NE. Zhou
et. al. [22] have designed double auction based spectrum
trades in which an auctioneer chooses an allocation tak-
ing into account spatial reuse and bids. However, in the
price competition model we consider, each primary in-
dependently sells bandwidth, and hence a central entity
such as an auctioneer is not required.

In the economics literature, the Cournot game and
the Bertand game are two basic models that have been
widely used to study competition among sellers in
oligopolies [1]. In a Cournot game, sellers choose the
quantity of a good to produce as opposed to prices in a
Bertrand game, and hence the latter is more relevant to
our model. In a Bertrand game, each seller quotes a price
for a good, and the buyers buy from the seller that quotes
the lowest price 1 [1]. Several variants of the Bertrand
game have been studied, e.g., [4], [5], [6], [25]. Os-
borne et al [4] consider price competition in a duopoly,
when the capacity of each firm is constrained. Chawla
et. al. [25] consider price competition in networks where
each seller owns a capacity-constrained link, and decides
the price for using it; the consumers choose paths they
would use in the networks based on the prices declared
and pay the sellers accordingly. The capacities in both

1If two or more sellers quote the lowest price, the demand is
equally shared between them.



cases are deterministic, whereas the availability of band-
width is random in our model. The work most closely
related to ours is the paper by Janssen et al [6], which
analyze the case where each seller may be inactive with
some probability. However, none of the above pa-
pers [4], [5], [6], [25] consider the spectrum-specific is-
sue of spatial reuse, which introduces a new dimension,
that each player not only needs to determine the price
of the commodity he owns (as in [4], [5], [6], [25]),
but also select an independent set to compete in. The
joint decision problem significantly complicates the anal-
ysis. Also, the results in [6] are restricted to the case of
one buyer; but, a CRN is likely to have multiple secon-
daries, which our model allows. This again complicates
the analysis since multiple primaries can now sell their
available bandwidths. Finally, unlike [6], we consider re-
peated interactions among primaries, unequal probabili-
ties of availability of unused bandwidth, random valua-
tions for secondaries (Sections 5,6.1, 6.2).

3 Price Competition at a Single Location
3.1 Model

Suppose there are n ≥ 2 primaries and k ≥ 1 secon-
daries in a region. Each secondary may constitute a cus-
tomer who requires 1 unit of bandwidth, or may simply
be a demand for 1 unit of bandwidth. We initially con-
sider the case that the primaries know k, and later general-
ize our results to allow for random, and apriori unknown,
k. Time is divided into slots of equal duration. In every
slot, each primary has 1 unit of unused bandwidth with
probability q and 0 units with probability 1− q, where
0 < q < 1. We initially assume that the bandwidth avail-
ability probability q is the same for all primaries, but sub-
sequently allow unequal probabilities in Section 6.1. A
primary i who has unused bandwidth in a slot can lease
it out to a secondary for the duration of the slot, in return
for an access fee of pi. Leasing in a slot incurs a cost of
c ≥ 0. This cost may arise, for example, if the secondary
uses the primary’s infrastructure to access the Internet.
We assume that pi ≤ v for each primary, for some con-
stant v > c. This upper bound v may arise as follows:

1. The spectrum regulator may impose this upper
bound to ensure that primaries do not excessively
overprice bandwidth even when competition is lim-
ited owing to bandwidth scarcity or high demands
from secondaries, or when the primaries collude.

2. Alternatively, the valuation of each secondary for 1
unit of bandwidth may be v, and no secondary will
buy bandwidth at a price that exceeds his valuation.

We initially assume that the primaries know this upper
limit v, which is likely to be the case for the first interpre-
tation. For the second interpretation, the primaries need
not know the secondaries’ valuations, – we consider this
generalization in Section 6.2.

Secondaries buy bandwidth from the primaries that of-
fer the lowest price. More precisely, in a given slot, let Z
be the number of primaries who offer unused bandwidth.
Then the bandwidth of the min(Z,k) primaries that offer
the lowest prices is bought (ties are resolved at random).

3.2 Game Formulation
We formulate the above price competition among pri-

maries as a game, which is any situation in which mul-
tiple individuals called players interact with each other,
such that each player’s welfare depends on the actions
of others [1]. In our model, the primaries are the play-
ers, and the action of primary i is the price pi that he
chooses 2. In Sections 3, 4, we study the interaction of
the primaries in a single slot, which is referred to as the
one-shot game. In Section 5, we consider a setting where
the one-shot game is repeated an infinite number of times,
which is referred to as the repeated game.

The utility or payoff of a player in a game is a nu-
merical measure of his satisfaction level [1], which in our
context is the corresponding primary’s net revenue. In
(the one-shot version of) our game, the utility of primary
i is 0 if he has no unused bandwidth. Let ui(p1, . . . , pn)
denote his utility if he has unused bandwidth 3 and pri-
mary j sets a price of p j, j = 1, . . . ,n. Thus,

ui(p1, . . . , pn)=

{
pi − c if primary i sells his bandwidth
0 otherwise

Recall that the distribution function (d.f.) [24] of a ran-
dom variable (r.v.) X is the function:

G(x) = P(X ≤ x), x ∈ R

where R is the set of real numbers. Now, a strategy [1]
for primary i is a plan for choosing his price pi. We allow
each primary i to choose his price randomly from a set of
prices using an arbitrary d.f. ψi(.), which is referred to as
the strategy of primary i. A d.f. that concentrates its entire
mass on a single value allows a primary to deterministi-
cally choose this value as his price - such a ψ(.) is re-
ferred to as a pure strategy. The vector (ψ1(.), . . . ,ψn(.))
of strategies of the primaries is called a strategy pro-
file [1]. Let ψ−i = (ψ1(.), . . . ,ψi−1(.),ψi+1(.), . . . ,ψn(.))
denote the vector of strategies of primaries other than
i. Let E{ui(ψi(.),ψ−i)} denote the expected utility of
player i when he adopts strategy ψi(.) and the other play-
ers adopt ψ−i.

A Nash equilibrium (NE) is a strategy profile such that
no player can improve his expected utility by unilaterally
deviating from his strategy [1]. Thus, (ψ∗

1(.), . . . ,ψ
∗
n(.))

is a NE if for each primary i:

E{ui(ψ∗
i (.),ψ

∗
−i)} ≥ E{ui(ψ̃i(.),ψ∗

−i)}, ∀ ψ̃i(.) (1)

When players other than i play ψ−i, ψ∗
i (.) maximizes i’s

expected utility and is thus his best-response [1] to ψ−i.
3.3 Nash Equilibria

If k ≥ n, then the number of buyers is always greater
than or equal to the number of sellers. So a primary i

2If primary i has no unused bandwidth, it does not matter
what price pi he sets. Yet, for convenience, we speak of pi as
being his action.

3If instead, ui(p1, . . . , pn) were defined to be primary i’s net
revenue, unconditional on whether he has unused bandwidth or
not, then the expected utilities in the one-shot game analysis
would all be scaled by q.



will sell his unused bandwidth even when he chooses the
maximum possible price v. So the strategy profile under
which all primaries deterministically choose the price v is
the unique NE. So henceforth, we assume that k ≤ n−1.
THEOREM 1. There is no pure strategy NE (i.e., one
where every primary selects his price deterministically)
in the above game.

In contrast, in the Bertrand game, which corresponds
to q = 1 in our model, the pure strategy profile un-
der which each primary deterministically selects c as his
prices is the unique NE [1]. This strategy profile is not a
NE in our context as this provides 0 utility for each pri-
mary, whereas by quoting any price above c (and below
v) each primary can attain a positive utility since he will
sell his unused bandwidth at least when he is the only
primary that has unused bandwidth which happens with
positive probability (since q < 1). We have shown that no
other deterministic strategy profile is a NE either.

Next, we focus on a specific class of Nash equi-
libria, known as symmetric Nash equilibria. A NE
(ψ∗

1(.), . . . ,ψ
∗
n(.)) is a symmetric NE if all players play

identical strategies under it, i.e., ψ∗
1(.) = ψ∗

2(.) = . . . =
ψ∗

n(.). In practice it is challenging to implement any
other NE - the simple example of two primaries and a NE
of (ψ∗

1(.),ψ
∗
2(.)) elucidates the inherent complications in

the current context. If ψ∗
1(.) ̸= ψ∗

2(.), then since players
have the same action sets, utility functions and probabil-
ity of having unused bandwidth (such games are referred
to as symmetric games), (ψ∗

2(.),ψ
∗
1(.)) also constitutes

a NE. If player 1 knows that player 2 is playing ψ∗
2(.)

(ψ∗
1(.) respectively), he would choose the best response

ψ∗
1(.) (ψ∗

2(.) respectively), but he can not know player 2’s
choice between the two options without explicitly coor-
dinating with him, which is again ruled out due to the
competition between the two. Under symmetric NE, all
players play the same strategy, and thus this quandary is
somewhat limited - symmetric NE has indeed been advo-
cated for symmetric games by several game theorists [3].
The natural question now is whether there exists at least
one symmetric NE, and also whether there is a unique
symmetric NE (only uniqueness will eliminate the above
quandary). Note that some symmetric games are known
to have multiple symmetric NE. For example, consider
the simple “Meeting in New York game” [1] with two
players, where each player can either be at Grand Central
or at Empire State Building, and both receive unit util-
ity if they meet and zero utility otherwise. The strategies
where each player is at Grand Central, and where each
player is at Empire State Building, both constitute sym-
metric NE. We prove existence of a symmetric NE, by
explicitly computing one, and subsequently prove that it
is the unique symmetric NE in our context.

We first provide the intuition behind our design of
a symmetric NE. To simplify our exposition, we intro-
duce the notion of “pseudo-price” for each primary. The
pseudo-price of primary j, p′j, is the price he selects if he

has unused bandwidth; p′j = v+1 otherwise 4. Consider
primary 1 and let p′(k) denote the k’th smallest pseudo-
price among the pseudo-prices of the rest of the pri-
maries, i.e., p′j, j ∈ {2, . . . ,n} (which 1 will know only
after choosing his price or equivalently pseudo-price).
Since the primaries choose their prices randomly and
since their bandwidth availabilities are random, p′(k) is a
random variable, and let F(.) be its d.f. If primary 1 offers
a price of x, he sells his bandwidth only if p′(k) > x (since
there are k secondaries who opt for the lowest available
prices), which happens with probability (1−F(x)); the
sale fetches a utility of x− c. Then, primary 1’s expected
utility is (x− c)(1−F(x)). Now, under NE, primary 1’s
price distribution being his best response to those of oth-
ers, he must attain the same expected utility for the entire
range of prices he is randomly choosing his price from,
more technically, in the entire support set 5 of his price
distribution; this is because his best response price dis-
tribution will never select from the less profitable ones
which will not therefore be in its support set. Thus,
(x− c)(1−F(x)) is the same (i.e., a constant) for all x
in the support set for his NE price distribution. Hence,
F(x) is fully specified once this constant is known, which
we determine by considering F(v). Note that F(v) is
the probability that p′(k) ≤ v, which happens when k or
more primaries have unused bandwidth (among those in
{2, . . . ,n}); this probability therefore is w(q,n), where:

w(q,n) =
n−1

∑
i=k

(
n−1

i

)
qi(1−q)n−1−i. (2)

Thus, F(v) = w(q,n). Hence, the constant in question
is (v− c)(1−F(v)) = (v− c)(1−w(q,n)) . Thus, in the
support set of F(.), F(x) = 1− (v−c)(1−w(q,n))

x−c . The x at
which F(x) = 0 provides the lower limit of this support
set, which, from the above expression, is:

p̃ = v−w(q,n)(v− c). (3)

Thus,

F(x) =
{

0, x ≤ p̃
x−p̃
x−c , p̃ < x ≤ v. (4)

We now only need to determine a price d.f. ψ(.) for
each primary that leads to the above d.f. F(.) for the kth
smallest pseudo-price of n− 1 primaries. Note that the
pseudo-price for any given primary is less than or equal to
x (where x ≤ v) whenever he has unused bandwidth and
he quotes a price of x or less: the probability that both
these events occur is qψ(x). Thus, since F(x) is the prob-
ability that k or more pseudo-prices (among those n−1)
are less than or equal to x, F(x) equals

n−1

∑
i=k

(
n−1

i

)
[qψ(x)]i[1−qψ(x)]n−1−i,

4The choice v+1 is arbitrary. Any other value greater than
v would also work.

5The support set of a d.f. is the smallest closed set such that
its complement has probability zero under the d.f. [24].



for all x ≤ v. Thus, since we know F(.) from (4), we can
compute ψ(x) = (1/q)ϕ(x), where ϕ(x) is the solution of
the following equation:

n−1

∑
i=k

(
n−1

i

)
[ϕ(x)]i[1−ϕ(x)]n−1−i = F(x). (5)

We can in fact formally prove that:
LEMMA 1. Equation (5) has a unique solution ϕ(x) ∈
[0,1]. The function ϕ(x) is strictly increasing and contin-
uous on [p̃,v]. Also, ϕ(p̃) = 0 and ϕ(v) = q.

And, the symmetric NE price d.f. ψ(.) is:

ψ(x) =


0, x ≤ p̃
1
q ϕ(x), p̃ < x ≤ v
1, x ≥ v

(6)

From the properties of the ϕ(.) function obtained in
Lemma 1, ψ(x) is a continuous d.f6.

The above intuitive justification however glosses over
some technical, nonetheless important, details: we im-
plicitly assume that F(.) is continuous and that the set of
best responses of a primary is a convex set. In the formal
proof, we prove both the above for any symmetric NE
and subsequently establish that:
THEOREM 2. The strategy profile in which each pri-
mary i chooses his price pi according to ψ(.), where ψ(.)
is defined by (6), (5), (4) is the unique symmetric NE.

This random selection of prices as per ψ(.) can be in-
terpreted as follows: each primary i sets a base price v and
randomly holds “sales” to attract secondaries by lowering
the price to some value pi ∈ [p̃,v]7.

Example: For n = 2 and k = 1, we have w(q,n) = q,
p̃ = v−q(v− c), and

ψ(x) =


0 x ≤ p̃
1
q

(
x−p̃
x−c

)
p̃ < x ≤ v

1 x ≥ v
(7)

REMARK 1. Our results readily generalize to allow for
a random number of secondaries (K). Then the primaries
apriori know only the probability mass function (p.m.f.)
for K, Pr(K = k) = γk, but not the value of K. Unlike in
(2), we now define w(q,n) as:

w(q,n) =
n−1

∑
k=1

γk

n−1

∑
i=k

(
n−1

i

)
qi(1−q)n−1−i (8)

Also, (5) is replaced by:
n−1

∑
k=1

γk

n−1

∑
i=k

(
n−1

i

)
[ϕ(x)]i[1−ϕ(x)]n−1−i = F(x) (9)

Now, ψ(.) computed as before, but with the above modi-
fications in w(., .),ϕ(.), again constitutes the unique sym-
metric NE strategy of each primary.

6A function f (x) is a d.f. iff it is increasing, right contin-
uous, and has limits 0 and 1 as x tends to −∞ and ∞ respec-
tively [24].

7This interpretation has been suggested in [10] for random
selection of prices in a different context.

3.4 Performance Evaluation under the
Unique Symmetric NE

We first define the efficiency, η, of a NE as η =
RNE

ROPT
,

where RNE is the expected sum of utilities of the n pri-
maries at the NE and ROPT is the maximum possible (opti-
mal) expected sum of utilities. Note that ROPT is attained
only when all primaries cooperate and each selects the
maximum possible price v so as to ensure that bandwidth
is always sold at this price. Clearly, η ≤ 1 quantifies the
loss in total net revenue incurred owing to lack of coop-
eration among primaries. Also, owing to its uniqueness,
the efficiency of the symmetric NE we obtain quantifies
fundamental limits on the performance of symmetric NE.

Now, ROPT = E[min(Z,k)](v−c), where Z is the num-
ber of primaries who have unused bandwidth (Z is a
Binomial(n,q) r.v.). Also, as discussed in Section 3.3, at
the unique symmetric NE, whenever a primary has un-
used bandwidth, he attains an expected utility of (v −
c)(1 − F(v)) = (v − c)(1 − w(q,n)) irrespective of the
price he offers. Thus, since there are n primaries and each
has unused bandwidth w.p. q, RNE = nq(1−w(q,n))(v−
c). Hence,

η =
nq(1−w(q,n))

E[min(Z,k)]
. (10)

Fig. 1 plots η of the symmetric NE that we obtain ver-
sus k for three values of q. It is interesting to note that
η exhibits a sharp threshold behavior: for k below (re-
spectively, above) a threshold the efficiency is close to 0
(respectively, 1). Also, this threshold is around nq, the
expected number of primaries who have free bandwidth.
Intuitively, this is because, when the supply nq exceeds
the demand k for bandwidth (i.e., k < nq), there is intense
price competition, driving down the equilibrium prices.
On the other hand as k increases, w(q,n) decreases, p̃
increases (see (3)), and becomes closer to v. Hence, the
d.f. ψ(.) becomes increasingly concentrated at the high-
est possible price v. Intuitively, this is because, when the
demand exceeds the supply, a primary expects to sell even
at a high price, and sets his price accordingly. The plots
for the density of the unique symmetric NE price distribu-
tion for different sets of values of parameters n,k,q reveal
the same phenomenon as well (Fig. 2).

In fact, we can analytically establish this threshold be-
havior for large n:
LEMMA 2. Let q ∈ (0,1) be fixed.

1. If k ≤ (n−1)(q− ε) for some ε > 0, then η → 0 as
n → ∞.

2. If k ≥ (n−1)(q+ ε) for some ε > 0, then η → 1 as
n → ∞.

4 Price Competition at Multiple Locations
with Spatial Reuse of Spectrum

We now consider the price competition game when
primaries can simultaneously offer bandwidths at multi-
ple locations. Each of the n primaries now owns a chan-
nel throughout a large region. The primary’s own usage
of the channel is such that in every slot, he either uses
his channel throughout the region (with probability (w.p.)
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c = 0, and v = 100.
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Figure 2. The density ψ′(x) for three sets of nq: 9, 10
and 11, for the three curves from right to left. The
other parameters are c = 0, v = 100 and k = 10.

1−q), or does not use it anywhere in the region (w.p. q).
A typical scenario where this happens is when the pri-
mary broadcasts the same signal over the entire region,
e.g., if the primary is a television broadcaster. Now, the
region contains smaller parts, which we refer to as loca-
tions. For example, the large region may be a state, and
the locations may be towns within it. We initially assume
that there are k secondaries at each location, and later
outline how the results can be generalized to allow for
random and potentially unequal number of secondaries at
different locations. As in Section 3, each primary quotes
a price of at most v, and incurs a cost of c at each location
at which it leases bandwidth.

We now describe the spatial reuse constraints that arise
owing to simultaneous spectrum usage at multiple loca-
tions. The region can be represented by an undirected
graph [23] G , called the conflict graph, in which each
node represents a location, and there is an edge between
two nodes iff transmissions at the corresponding loca-
tions interfere with each other. Recall that an independent
set [23] (I.S.) in a graph is a set of nodes such that there
is no edge between any pair of nodes in the set. Now, a
primary who is not using his channel must offer it at a set
of mutually non-interfering locations, or equivalently, at
an I.S. of nodes; otherwise secondaries8 will not be able

8Note that secondaries are usually customers or local
providers, and purchase bandwidth for communication (and not

to successfully transmit simultaneously using the band-
width they purchase, owing to mutual interference. Thus,
each primary must jointly select an I.S. at which to offer
bandwidth, and the prices to set at the nodes in it. Pri-
maries can randomize their selections over multiple I.S.,
and also over chosen price ranges.

A strategy of a primary now provides the price distri-
bution he uses at each node and a probability mass func-
tion (p.m.f.) for selection among the I. S. (both selections
contingent on having unused bandwidth). Note that we
allow a primary to use different (and arbitrary) price dis-
tributions for different nodes (and therefore allow, but do
not require, the selection of different prices at different
nodes), and arbitrary p.m.f. (i.e., discrete distributions)
for selection among the different I.S. The definitions of
NE and symmetric NE do not change.

We now argue that under any symmetric NE the price
distributions at nodes are uniquely specified once the I.S.
selection strategy is determined. Let there be M indepen-
dent sets, and let each primary select among them as per
the p.m.f. (r1, . . . ,rM) (recall that each primary uses the
same p.m.f. under a symmetric NE). This provides the
probabilities with which a primary offers bandwidth at
each node when he has unused bandwidth (this probabil-
ity for a given node equals the sum of the probabilities
associated with all the I.S. that contain the node). Let
this selection probability for node j be denoted α j. Then,
considering that a primary has unused bandwidth w.p. q,
he offers it at node j w.p. qα j. The price selection prob-
lem at each node j is now equivalent to that for the single
location case investigated in Section 3, the difference be-
ing that each primary offers unused bandwidth w.p. qα j,
instead of q, at node j. Thus:
LEMMA 3. Suppose under a symmetric NE each pri-
mary selects node j w.p. α j if he has unused bandwidth.
Then under that NE the price distribution of each primary
at node j is ψ(.) in Section 3.3, with qα j in place of q.
Thus, a symmetric NE strategy is completely specified
once the I.S. selection p.m.f. (r1, . . . ,rM) (which will
in turn provide the α js) is obtained. We determine this
p.m.f. for one-dimensional and two-dimensional config-
urations of nodes.

For a one-dimensional configuration of nodes, we con-
sider a graph G that is a linear arrangement of nodes as
shown in part (a) of Fig. 3 (Section 4.1), and for a two
dimensional configuration we allow G to be a square grid
of nodes as shown in part (b) of Fig. 3 (Section 4.2). In
both cases, we explicitly compute a symmetric NE, which
also turns out to be unique in the class of symmetric NE.

4.1 Linear Graph
Let Gm denote a graph that is a linear arrangement of

m ≥ 2 nodes as shown in part (a) of Fig. 3, with an edge
between each pair of adjacent nodes. As an example, this
would be the conflict graph for locations along a highway
or a row of roadside shops. Let the nodes be numbered
1, . . . ,m from left to right, and Io = {1,3, . . .} and Ie =

t.v. broadcasts). Thus, two secondaries can not use the same
band simultaneously at interfering locations.
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(a) Linear Graph
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Figure 3. Part (a) shows a linear graph with m= 8 and
part (b) shows a grid graph with m = 7. The darkened
and un-darkened nodes constitute Io and Ie respec-
tively in the linear graph, and I2

o and I2
e respectively

in the grid graph.

{2,4, . . .} be the “odd” and “even” I. S. Note that Io and
Ie are disjoint I. S., and Io ∪ Ie is the set of all nodes.

An intuitive property of any NE is that it does not al-
low a primary to select an I.S. that is not maximal (a max-
imal I.S. is one that is not a proper subset of any other
I.S.). There are however several maximal I.S. in Gm, e.g.,
{1,4,6,8, . . .}. The following lemma allows us to rule
out all of them except Io, Ie under a symmetric NE.
LEMMA 4. A primary never selects any independent set
other than Io or Ie under a symmetric NE.

The proof relies on showing that if each primary in
a given set of n− 1 primaries selects an I.S. other than
Io, Ie with positive probability, the remaining primary’s
best response turns out to be a p.m.f. different from that
used by the others - hence a p.m.f. that assigns positive
probability to any such I.S. can not constitute a symmetric
NE.

Lemma 4 implies that under a symmetric NE the
p.m.f. for I.S. selection is characterized by a single prob-
ability t, with which a primary selects Ie; each primary
selects Io w.p. 1− t. But, then, each primary selects a
node in Ie (Io, resp.) w.p. t (1− t, resp.). Thus, α j = t if
j ∈ Ie, and α j = 1− t otherwise. We will next compute
t under a symmetric NE for the cases m even and odd
separately in Sections 4.1.1 and 4.1.2 respectively.

4.1.1 Even m
Let m ≥ 2 be even. Then, |Io| = |Ie| = m

2 and both
Io and Ie have the maximum size among all I.S. (i.e., are
maximum I.S.). We can show that t = 1/2 under any sym-
metric NE. The first step towards that end is to prove that
under a symmetric NE each primary selects both Io and
Ie with positive probability (i.e., 0 < t < 1). Now, given
others’ strategies, each primary’s expected utility when
he selects Io must equal that when he selects Ie; other-
wise 0 < t < 1 does not constitute his best response as
his utility can be increased by always selecting the one
with the larger expected utility. As it turns out, since
|Io|= |Ie|= m

2 , the two expected utilities are equal if and
only if t = 1/2. Thus, under any symmetric NE, a primary
competes at any given node w.p. 1/2 (if he has unused

bandwidth), i.e., the selection probability for node j, α j
is 1/2 for each node j. Lemma 3 now provides the price
distribution for each primary at each node, and thereby
fully specifies a symmetric NE. Formally:
THEOREM 3. The strategy profile in which each pri-
mary
• selects Io and Ie w.p. 1/2 each, whenever he has

unused bandwidth, and
• decides the price at each node in the chosen in-

dependent set as per the distribution ψ(.) in Sec-
tion 3.3, with q replaced by q/2 all through,

is the unique symmetric NE.
4.1.2 Odd m

Now, let m ≥ 3 be odd. Then, |Io| = m+1
2 , |Ie| = m−1

2
and Io is the unique maximum I.S. Each primary now
faces the following quandary: (i) whether to offer un-
used bandwidth only at the nodes in Io and thereby try to
sell bandwidth at the maximum possible number of nodes
or (ii) to also choose the slightly smaller Ie hoping for
limited competition there. The answers, and thereby the
unique symmetric NE, turn out to be different depending
on the value of w(q,n), the probability that k or more of
the competitors of any primary have unused bandwidth.

4.1.2.1 The Case w(q,n)≤ 2
m+1 :

We can prove that under any symmetric NE, primaries
offer unused bandwidth only in nodes in Io (i.e., t = 0).
This happens because w(q,n) is so low, that a primary
expects to sell his unused bandwidth at each node he of-
fers, and hence he invariably selects the unique maximum
I.S. The proof relies on the fact that the best response
of any primary, irrespective of the I.S. selection strate-
gies of others is to select Io; hence, under any symmet-
ric NE, each primary selects only Io. Thus, the selection
probability α j for any node j in Io (Ie, resp.) is 1 (0,
resp.). Lemma 3 now provides the price distributions at
the nodes, and thereby the symmetric NE.
THEOREM 4. Let m be odd and w(q,n) ≤ 2

m+1 . The
strategy profile in which each primary
• offers unused bandwidth at only the nodes in Io, and
• selects the price at each such node according to the

d.f. ψ(.) in Section 3.3
is the unique symmetric Nash equilibrium.
REMARK 2. This symmetric NE, which unfortunately is
unique, does not allow access to secondary users at nodes
in Ie. But, this scenario is unlikely to arise, especially for
large m, as this requires very low availability probability
q.

4.1.2.2 The Case w(q,n)> 2
m+1 :

Now, w(q,n) is high enough to motivate primaries to
offer unused bandwidth in nodes in Ie with a positive
probability, so as to utilize lower competition there. As
before, under any symmetric NE, the value of t must be
such that a primary’s expected utility when he selects Io
must equal that when he selects Ie. And, the only value of
t that attains this equality is the root of the equation (in
variable x),

w(qx,n)(m−1)−w(q(1− x),n)(m+1)+2 = 0, (11)



which we can prove to be unique in (0,1). Thus, we can
prove that under any symmetric NE, t is the unique root
in (0,1) of (11). And, since α j = t for j ∈ Ie, α j = 1− t
for j ∈ Io, we have the price distribution at nodes from
Lemma 3. Thus:
THEOREM 5. Let m be odd and w(q,n) > 2

m+1 . The
strategy profile in which, whenever a primary has unused
bandwidth,
• selects Ie and Io w.p. t and 1− t respectively, where

t is the unique root in (0,1) of (11), and
• selects the price at each node as per distribution

ψ(.) in Section 3.3, with q replaced by qt (q(1− t)
resp.) whenever he selects Ie (Io resp.)

constitutes the unique symmetric NE.
It can be shown that the selection probability t for Ie is

less than 1/2, and increases with m and tends to 1
2 in the

limit as m→∞. Fig. 4 shows an example. This is because
as m grows, the ratio |Ie|

|Io| =
m−1
m+1 increases, and converges

to 1. Thus, the symmetric NE converges to that for even
m. Fig. 4 also shows that for all m, t is higher for q = 0.7
than for q = 0.5. This is because for a higher value of q,
the competition at Io is more intense and hence primaries
deviate to Ie with a higher probability.
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Figure 4. t versus m for q = 0.5 and q = 0.7. The other
parameter values are c = 0, v = 100, n = 20, k = 9.

4.2 Grid Graph
Now, consider an m×m grid graph Gm,m, in which m2

nodes (locations) are arranged in a square grid as shown
in part (b) of Fig. 3. There is an edge between each pair
of adjacent nodes in the same row or column. For exam-
ple, this graph may represent a shopping complex, with
the nodes corresponding to the locations of shops with
Access Points (AP) for Internet access. The transmis-
sion ranges of the APs are such that the range of each AP
overlaps with those of adjacent APs in the same row and
column, and not with those of other APs.

Let Vi j denote the node in the i’th row from the top and
the j’th column from the left. Let:

I2
o = {Vi j : i+ j is even}

I2
e = {Vi j : i+ j is odd}.

In part (b) of Fig. 3, the darkened and un-darkened nodes
constitute I2

o and I2
e respectively. Note that I2

o and I2
e are

disjoint I.S. and I2
o ∪ I2

e is the set of all nodes. For even m,

I2
o and I2

e are both maximum I.S. of size m2

2 . For odd m,

I2
o is the unique maximum I.S. and has size m2+1

2 ; also,

|I2
e |= m2−1

2 .
The NE analysis is similar to that for the linear graph.

We simply outline the results.
1. When m is even, the strategy presented in Theo-

rem 3, with Io, Ie replaced by I2
o , I

2
e respectively is

the unique symmetric NE.

2. When m is odd, and w(q,n)≤ 2
m2+1 , the strategy pre-

sented in Theorem 4, with Io replaced by I2
o is the

unique symmetric NE.

3. When m is odd, and w(q,n)> 2
m2+1 , the strategy pre-

sented in Theorem 5, with Io, Ie replaced by I2
o , I

2
e re-

spectively and (11) used with m2 instead of m is the
unique symmetric NE.

We end this section with the following remarks which
apply for both the linear and the grid arrangements.
REMARK 3. A primary may offer equal prices at all
nodes in the I.S. he selects, the price being sampled from
the symmetric NE distributions presented so far, or may
decide prices independently at each node, again sampled
using the above distributions - all our analytical results
hold in both cases.
REMARK 4. All our analytical results hold even when
the number of secondaries at different nodes are unequal,
and not known to the primaries apriori, but constitute sta-
tistically identical random variables. The only difference
arises in the expressions for w(q,n) and the price distri-
butions ψ(.), which can be modified as indicated in Re-
mark 1 (starting from those obtained for the correspond-
ing cases with deterministic number of secondaries).
REMARK 5. With the efficiency of a NE defined as in
Section 3.4, the efficiency for the NE found in this section
exhibit threshold behavior similar to that in Lemma 2.

5 Price Competition under Repeated Inter-
actions

We now consider repeated interactions among pri-
maries in multiple slots. We first formulate the problem
in Section 5.1 and then describe our results in Section 5.2.
5.1 Formulation

We consider a repeated game [1] formulation for the
one-shot game at a single location9 described in Sec-
tion 3, where the one-shot game is repeated an infinite
number of times, at τ = 1,2,3, . . .. Each player perfectly
recalls the actions of every player in all preceding times.
The payoff of player i for the overall repeated game is
defined to be ui = ∑∞

τ=1 δτ−1ui,τ, where ui,τ is his payoff
at time τ and δ ∈ (0,1) is the discount factor [1], which
is used to discount future payoffs (see [1], [15] for inter-
pretations of the discount factor). The discount factor is
usually close to 1 [1].

A strategy of a player in a repeated game is a complete
plan for choosing the action in each slot as a function of

9We omit interactions at multiple locations (Section 4) ow-
ing to space constraints.



the actions of all players in all preceding slots [1]. As in a
one-shot game (see Section 3.2), a Nash equilibrium (NE)
in a repeated game is a strategy profile in which no player
can improve his payoff by unilateral deviation from his
strategy [1]. However, NE constitutes a rather weak no-
tion of equilibria in repeated games [1] and hence we fo-
cus on NE with a special property, known as the Subgame
Perfect Nash Equilibria (SPNE) [1]. A subgame [1] of the
repeated game is the part of the game starting from some
slot τ0 ≥ 1, i.e. the stage games in slots τ = τ0,τ0 +1, . . ..
An SPNE is an NE of the repeated game that is also an
NE of every subgame [1].

5.2 Results
It is well-known that for any repeated game, the strat-

egy profile that uses the one shot game NE every time,
is a SPNE [1]. Thus, the symmetric NE we presented
for the one-shot game in Section 3 provides a SPNE in
the repeated game version. The efficiency (as defined in
the first paragraph of Section 3.4) of this SPNE is how-
ever low whenever the symmetric NE has low efficiency,
which happens for certain ranges of n,k,q (Lemma 2).
Our main contribution is to present an SPNE that is also
efficient in the sense that the sum of expected utilities of
the n primaries at equilibrium equals the maximum pos-
sible sum of utilities, provided the discount factor δ is
sufficiently high.

We consider Nash reversion type of strategy pro-
files [1] in which each player plays a specified strategy
(called the pre-deviation strategy) at each time until one
of the players deviates from it, and all players play the
one-shot game NE strategy thereafter.

Strategy for primary i: Select a price of v at τ = 1,
and also for all other τ so long as all other primaries
had chosen v in all previous times. Otherwise, play the
one-shot game Nash equilibrium strategy ψ(.) in (6).
THEOREM 6. The above Nash reversion strategy is an
SPNE if δ ≥ δt , where δt is a threshold given by:

δt =
w(q,n)−β(q,n)

w(q,n)−β(q,n)+qβ(q,n)

and

β(q,n) =
n−1

∑
i=k

(
k

i+1

)(
n−1

i

)
qi(1−q)n−1−i (12)

Note that from (2) and (12), w(q,n)> β(q,n)> 0 and
hence 0 < δt < 1. Thus, for all values of n,k and q, there
exists a threshold such that for values of δ greater than it,
the above Nash reversion strategy is an SPNE.

The efficiency of the above SPNE is 1 because band-
width is always sold at the highest possible price v. Thus,
an efficient NE can be sustained in the repeated game,
unlike in the one-shot game (Lemma 2). This is possible
because of the threat mechanism inherent in the above
SPNE: if a primary tries to undercut the prices of other
primaries, then he will gain temporarily, but will suffer
in the long run because all primaries will switch to the
one-shot game NE strategy immediately afterwards.

We plot δt versus q in Fig. 5 for different values of n.
The plot reveals that δt is not close to 1 except when q
is close to 0. Thus, since players usually have discount
factors δ close to 1 [1], their discount factors would ex-
ceed δt except for very small q, and hence the above strat-
egy profile will constitute a SPNE unless q is very small.
The availability probability of unused bandwidth is rarely
close to 0, and even when it is, we have an alternate SPNE
strategy profile whose efficiency is very close to 1. Now,
when q is very small, the lower limit p̃ in (3), of the sym-
metric NE price distribution ψ(.) in the one shot game in
Section 3 is close to the upper limit v (refer to (6), (5),
(4)), and hence the SPNE that uses this distribution for
each player at each time provides prices close to v as well
at each time, and thereby attains efficiency close to 1.
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Figure 5. The threshold δt versus q for three values of
n. The other parameters are c = 0, v = 100 and k = 10.

6 Generalizations
We now generalize the models to allow for asymmet-

ric q values of the primaries (Section 6.1), and random
valuations of the secondaries (Section 6.2).
6.1 Asymmetric q

So far, we have assumed that each primary has unused
bandwidth with equal probability, q. Now, we consider
that this probability is qi for primary i, and allow for po-
tentially unequal qis. This generality leads to some re-
markable differences in the NE strategies, which we elu-
cidate considering a simple scenario, n = 2 and k = 1.
Without loss of generality, let q1 ≥ q2.

We first describe the equilibrium strategies ψ1(.) and
ψ2(.) of the two primaries for the one shot game at a sin-
gle location. Define:

p̃i = v−qi(v− c), i = {1,2}

Then p̃1 ≤ p̃2. Let ψ1(x) be as in (7) with p̃2 in place of
p̃ and q1 in place of q. Also, let ψ2(x) be as in (7) with
p̃2 in place of p̃ and q2 in place of q.
THEOREM 7. The strategy profile in which primary i se-
lects his price using the d.f. ψi(.), i = 1,2 is a NE

Note that this NE is not in general symmetric, as
ψ1(.) ̸= ψ2(.), which is but expected as q1,q2 need not
be equal. Also, it can be checked that ψ2(.) is continu-
ous, whereas ψ1(.) is not (unless q1 = q2), and primary
1 chooses price v with a positive probability 1− q2

q1
. This

is in contrast to the NE for equal qis (Theorem 2), where



each primary uses a continuous d.f. and hence does not
choose any single price with positive probability.

Now, the above results extend to the multiple location
case similar to Section 4. Specifically, for the linear graph
in part (a) of Fig. 3, the NE strategies are as follows:

1. when m is even, both primaries randomize between
Io and Ie w.p. 1

2 each, and at each node in the chosen
independent set, primary i, i ∈ {1,2}, chooses the
price from the distribution ψi(.) above with q j

2 in
place of q j, j ∈ {1,2}.

When m is odd:

2. if q2 ≤ 2
m+1 , each primary i offers bandwidth only at

nodes in Io, and sets the price at each node according
to the d.f. ψi(.) above.

3. if q2 > 2
m+1 , each primary offers bandwidth at Ie

(resp., Io) w.p. t (resp., 1 − t), where t is the so-
lution of (11) with q2 in place of q. Also, at each
node in Ie (resp., Io), primary i, i ∈ {1,2}, chooses
the price from the distribution ψi(.) above with tq j
(resp., (1− t)q j), j ∈ {1,2} in place of q.

The NE for the grid graph are similar, with the changes
mentioned in Section 4.2.
6.2 Random Valuations

Recall that in Section 3.1, we noted that the parameter
v may also be interpreted as the valuation of each buyer.
Then the primaries may only know a distribution, but not
the exact value, of v. We now generalize the results in the
single location model in Section 3, which were for a de-
terministic v, to the case where v is distributed according
to the d.f. G(x) = P(v ≤ x). Assume that G(x) is con-
tinuous. Also, let g(x) = (x− c)P(v ≥ x). Assume, in
addition, that: (i) g(x) has a unique maximizer vT > c,
and (ii) g(x) is strictly increasing for c ≤ x ≤ vT . Note
that a large class of d.f. G(x) satisfy the above technical
conditions, e.g., the uniform distribution on some range
[v,v], where c < v < v. Note that by continuity of G(x),
g(x) = (x − c)(1 − G(x)) is continuous. For analytical
tractability, we restrict ourselves to the case k = 1; n can
be arbitrary.

First, note that if there is only one primary, then he
sells his unused bandwidth whenever his price does not
exceed the secondary’s (random) valuation. Thus, his ex-
pected utility is g(p) = (p−c)P(v ≥ p) when he quotes a
price p ≥ c for his unused bandwidth. The optimal price
that maximizes this expected payoff is vT , the maximizer
of g(x).

Now, suppose there are n primaries and each primary
i chooses the price pi ∈ [c,vT ] according to the d.f. ψ(.).
As in the constant valuation case in Section 3.3, ϕ(.) is the
distribution of a pseudo-price and F(x) is the distribution
of the minimum of (n− 1) pseudo-prices. A primary’s
pseudo-price is greater than vT if he has no unused band-
width. So:

1−F(vT ) = (1−q)n−1

Hence:

F(vT ) = 1− (1−q)n−1 (13)

Now, if primary i sets a price pi = x, then he sells his
bandwidth if the minimum of the pseudo-prices of the
primaries other than i is greater than x and v ≥ x. So the
expected utility of primary i if he sets a price pi = x and
all other primaries choose the price according to the d.f.
ψ(.) is:

E{ui(x,ψ−i)}= (x− c)(1−F(x))P(v ≥ x) (14)

In a NE, this should be a constant over the range [p̃,vT ]
for some c < p̃ < vT and must equal:

E{ui(p̃,ψ−i)} = (p̃− c)(1−F(p̃))P(v ≥ p̃)
= (p̃− c)P(v ≥ p̃) (15)

since F(p̃) = 0. By (14) and (15):

(x−c)(1−F(x))P(v ≥ x) = (p̃−c)P(v ≥ p̃), x ∈ [p̃,vT ]

Thus,

F(x) = 1− (p̃− c)P(v ≥ p̃)
(x− c)P(v ≥ x)

, x ∈ [p̃,vT ] (16)

Note that since g(x) = (x− c)P(v ≥ x) is increasing, 0 ≤
F(x) ≤ 1 and F(x) is increasing. Now, p̃ can be found
from (13) and (16) to be the solution of:

(p̃− c)P(v ≥ p̃)
(vT − c)P(v ≥ vT )

= (1−q)n−1 (17)

Now, ϕ(x) is the d.f. such that the minimum of (n− 1)
i.i.d. random variables, each with d.f. ϕ(.), has the d.f.
F(.). So similar to (5):

F(x) = 1− (1−ϕ(x))n−1 (18)

Equations (16) and (18) provide an expression for ϕ(.).
Also, similar to Theorem 2, we have:
THEOREM 8. The strategy profile in which each pri-
mary plays ψ(.), where

ψ(x) =


0, x ≤ p̃
1
q ϕ(x), p̃ < x ≤ vT

1, x > vT

(19)

and ϕ(.) is defined by (16) and (18) is a symmetric NE.
The proof is similar to that of Theorem 2.
6.2.1 Uniformly Distributed Valuation

Now, we specialize our results to the case in which v
is uniformly distributed in [v,v], where c < v < v, and ex-
plicitly compute F(x), which then can be used to compute
ϕ(x) and ψ(x). Since v is uniformly distributed in [v,v], it
can be checked that vT = max{v, v+c

2 }. If v ≥ v+c
2 , then

vT = v and the results in the constant valuation case go
through with v replaced by v. This is because for ev-
ery primary i, any price pi > v fetches an expected utility
which is lower than that for pi = v. Thus, henceforth, we
consider vT = v+c

2 .
LEMMA 5. There exists a unique p̃1 in (c,vT ) such that:

(p̃1 − c)(v− p̃1) =
(1−q)n−1(v− c)2

4
. (20)

We consider the cases p̃1 ≥ v and p̃1 < v separately.



6.2.2 Case I: p̃1 ≥ v
In this case, it can be checked that the p̃ in (17) is equal

to p̃1. Also, F(x) in (16) becomes:

F(x) =

{
0, x ≤ p̃1

1− (p̃1−c)(v−p̃1)
(x−c)(v−x) , p̃1 < x ≤ vT

(21)

6.2.3 Case II: p̃1 < v
LEMMA 6. There exists a unique p̃2 in (p̃1,v) such that:

4(p̃2 − c)(v− v)
(v− c)2 = (1−q)n−1. (22)

In this case, it can be checked that the p̃ in (17) is equal
to p̃2. Also, F(x) in (16) becomes:

F(x) =


0, x ≤ p̃2
x−p̃2
x−c , p̃2 < x ≤ v

1− (p̃2−c)(v−v)
(x−c)(v−x) , v < x ≤ vT

7 Conclusions and Future Work
We analyzed price competition in a CRN with multi-

ple primaries and secondaries, taking into account band-
width uncertainty and spatial reuse. We computed NE in
linear and grid conflict graphs; an important problem for
future research is the extension of these results to general
conflict graphs. Also, we assumed that a secondary buys
bandwidth if and only if the price is less than or equal to
his valuation. This is an optimal strategy for a secondary
in a one-shot game. However, for a repeated game, it may
not be optimal– for example a secondary may choose not
to buy bandwidth in a slot even if the price is less than
his valuation, so as to induce primaries to lower prices
in future slots. The analysis of price competition in the
presence of such strategic behavior by secondaries is an
interesting problem for future work. Finally, extension
of the results in this paper to the case where each pri-
mary owns multiple bands is another direction for future
research.
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Appendix
A Proof of Theorem 1

Before proving Theorem 1, we state a definition. A
strategy pi of player i is said to strictly dominate [1] an-
other strategy p′i if:

E{ui(pi, p−i)}> E{ui(p′i, p−i)}, ∀p−i

PROOF OF THEOREM 1. For every primary i, and any
p−i, ui(c, p−i) = 0. Also, E{ui(pi, p−i)} > 0 for all
pi ∈ (c,v] because primary i gets a positive payoff in
the event that no other primary has unused bandwidth,
which happens with positive probability. Thus, the strat-
egy pi = c is strictly dominated by each pi ∈ (c,v], and
hence no primary sets pi = c in any pure-strategy Nash
equilibrium.

Suppose (p1, . . . , pn) is a pure-strategy Nash equilib-
rium, where c < pi ≤ v for i = 1, . . . ,n. Let pmin =
min(p1, . . . , pn), Smin = {i : pi = pmin}, and nmin = |Smin|.
Note that Smin is the set of primaries who set the lowest
price pmin, and nmin is its cardinality. One of the follow-
ing two cases must hold:
Case (i): nmin ≤ k
Since k ≤ n− 1, nmin ≤ n− 1 and hence at least one pri-
mary sets a price above pmin. Since pi ≤ v, i = 1, . . . ,n, it
follows that pmin < v.

Let p j = min{pi : i /∈ Smin} be the second lowest price.
Now, note that ∀i ∈ Smin, ui(pmin, p−i) = pmin − c and
ui(p′i, p−i) = p′i − c ∀p′i ∈ (pmin, p j). This is because the
bandwidth of primary i always gets sold for any p′i < p j,
since it is among the primaries with the nmin ≤ k lowest
prices. So ∀i ∈ Smin:

ui(pmin, p−i)< ui(p′i, p−i) ∀p′i ∈ (pmin, p j)

Hence pi = pmin is not a best response to p−i, which con-
tradicts the assumption that (p1, . . . , pn) is a Nash equi-
librium.

Case (ii): nmin > k
In this case, for i ∈ Smin:

E{ui(pmin, p−i)}= (pmin − c)P(E1)

where E1 is the event that primary i’s bandwidth is bought
by a secondary. Note that P(E1)< 1 because with a posi-
tive probability, k or more primaries, other than i, in Smin
have unused bandwidth. In this case, k randomly selected

primaries, out of the primaries in Smin who have unused
bandwidth, sell their bandwidth, and with a positive prob-
ability, primary i is not among them. Also, note that pri-
mary i’s bandwidth is always sold if it sets a price less
than pmin and the vector of prices of primaries other than
i is p−i. Hence, for small enough ε > 0:

E{ui(pmin − ε, p−i)} = (pmin − ε− c)
> (pmin − c)P(E1)

= E{ui(pmin, p−i)}

Thus, pi = pmin is not a best response, which contra-
dicts the assumption that (p1, . . . , pn) is a Nash equilib-
rium.
B Proof of Theorem 2
B.1 Proof of Lemma 1
PROOF OF LEMMA 1. Let

F (y) =
n−1

∑
i=k

(
n−1

i

)
yi(1− y)n−1−i,y ∈ [0,1]

F (y) is a continuous and strictly increasing function and
F (0) = 0, F (1) = 1 [9]. So F (.) is invertible. Since
F(x) = F (ϕ(x)), we get that ϕ(.) is unique and given by:

ϕ(x) = F −1(F(x)) (23)

Also, since F is a continuous one-to-one map from the
compact set [0,1] onto [0,1], F −1 is continuous (see The-
orem 4.17 in [12]). Also, F(x) is continuous. So from
(23), ϕ(x) is a continuous function of x, since it is the
composition of continuous functions F −1 and F (see
Theorem 4.7 in [12]). Now, F(x) = F (ϕ(x)),F(p̃) = 0
and F(v) = w(q,n). So 0 = F (ϕ(p̃)) and w(q,n) =
F (ϕ(v)). But ϕ(p̃) = 0 and ϕ(v) = q satisfy the above
equations, by (2). The result follows.
B.2 Proof that (6), (5), and (4) Constitute

an NE Strategy
First, we show that the strategy profile in which each

primary i plays the strategy ψ(.) defined by (6), (5), and
(4) is a NE. Suppose primaries {1, . . . ,n}\i play the strat-
egy ψ(.). Recall from Section 3.3 that p′(k) is the k’th
smallest among the pseudo-prices of primaries other than
primary i, and F(x) = P(p′(k) ≤ x). Also, if primary i se-
lects a price pi = x, then its payoff is (x− c) if p′(k) > x
and 0 if p′(k) < x. Since F(x) in (4) is continuous for
x ∈ [p̃,v], P(p′(k) = x) = 0 for x ∈ [p̃,v]. So primary i’s
expected payoff for each price x ∈ [p̃,v] is given by:

E{ui(x,ψ−i)} = (x− c)P(p′(k) > x)

= (x− c)(1−F(x))

= (x− c)
{

1−
(

x− p̃
x− c

)}
= p̃− c (24)

Also, primary i’s expected payoff for a price pi < p̃ is
pi−c< p̃−c and that for a price pi > v is 0. So each pi ∈
[p̃,v] is a best response. Since ψ(.) randomizes among



the prices in [p̃,v], ψ(.) is a best response for primary i.
Hence, the strategy profile in which each primary i plays
ψ(.) is an NE.
B.3 Uniqueness

Suppose in a symmetric NE, primaries 1, . . . ,n set
their prices according to some common distribution ψ(x).
Let ϕ(x) be the d.f. of each pseudo-price, p′i, i = 1, . . . ,n
and F(x) be the d.f. of p′(k), which is the k’th smallest of
p′2, . . . , p′n, as described in Section 3.3. We will show that
ψ(x), ϕ(x) and F(x) satisfy (6), (5), (4).
LEMMA 7. F(x) is continuous on x ∈ [c,v].
PROOF. Suppose F(x) is not continuous on [c,v]. Then
it has a jump, say at x0 ∈ [c,v], i.e. P{p′(k) = x0}> 0. As
shown in the proof of Theorem 1, the strategy pi = c is
strictly dominated for each primary i. Hence, primary i
plays pi = c with 0 probability; so ψ(.), and thereby F(.),
has no jump at c. Thus, x0 > c. We will show that primary
1 gets a higher utility by setting p1 slightly lower than x0,
than by setting p1 = x0, which contradicts the fact that x0
is a best response. Let E2 denote the event that primary
1’s bandwidth is sold. We have:

P{E2|p1 = x0}= P{p′(k) > x0}
+P{E2|p1 = x0, p′(k) = x0}P{p′(k) = x0} (25)

and for every ε > 0:

P{E2|p1 = x0 − ε} ≥ P{p′(k) > x0}+P{p′(k) = x0} (26)

By (25) and (26):

P{E2|p1 = x0 − ε}−P{E2|p1 = x0} ≥
P{p′(k) = x0}(1−P{E2|p1 = x0, p′(k) = x0}) = a (say) (27)

Note that P{E2|p1 = x0, p′(k) = x0}< 1 and hence a > 0.
Now, primary 1’s expected utility if he sets p1 = x0 is:

E{u1(x0,ψ−1)}= (x0 − c)P{E2|p1 = x0}

and if he sets x0 − ε for a small ε > 0 is:

E{u1(x0 − ε,ψ−1)} = (x0 − ε− c)P{E2|p1 = x0 − ε}
≥ (x0 − ε− c)(P{E2|p1 = x0}+a)

by (27). Taking limits:

lim
ε→0+

E{u1(x0 − ε,ψ−1)} ≥ (x0 − c)(P{E2|p1 = x0}+a)

> E{u1(x0,ψ−1)}

Thus, for small enough ε, p1 = x0 − ε yields a higher ex-
pected payoff than p1 = x0. So p1 = x0 is not a best re-
sponse, which is a contradiction. Thus, F(x) cannot have
a jump and is continuous.
By continuity of F(.), for any x, P(p′(k) = x) = 0 and
hence:

E{u1(x,ψ−1)}= (x− c)(1−F(x)) (28)

Next, we show that the set of best responses of primary
1 to the vector of strategies ψ−1, in which each of the
primaries 2, . . . ,n play ψ(.), is a contiguous set.

LEMMA 8. The set of best responses of primary 1 is con-
vex.
PROOF. Let zl and zr be best responses, where c < zl <
zr ≤ v. We show that every z ∈ (zl ,zr) is a best response.
If not, then suppose z0 ∈ (zl ,zr) is not a best response.
One of the following cases must hold:
Case (i): For every ε > 0, there exists a z ∈ (z0−ε,z0+ε)
that is a best response. Then we can find a sequence
z1,z2,z3, . . . such that each zi, i = 1,2,3, . . . is a best re-
sponse and limi→∞ zi = z0 [12]. By (28):

E{u1(z0,ψ−1)} = (z0 − c)(1−F(z0))

= lim
i→∞

(zi − c)(1−F(zi))

(by continuity of F(.))
= (z1 − c)(1−F(z1)) (29)

since (zi − c)(1 − F(zi)) is equal for i = 1,2,3, . . . and
equals the maximum expected payoff. Thus, p1 = z0
yields the maximum expected payoff and z0 is a best re-
sponse, which is a contradiction.
Case (ii): There exists an interval (z0−ε,z0+ε) such that
no z in that interval is a best response. Let:

z̃l = sup{z ≤ z0 − ε : z is a best response}
z̃r = inf{z ≥ z0 + ε : z is a best response}

Note that the supremum and infimum exist because zl and
zr are best responses and hence the sets over which the
supremum and infimum are taken are non-empty. Now,
similar to (29), it can be shown using continuity of F(.)
that z̃l and z̃r are best responses. So:

E{u1(z̃l ,ψ−1)}= E{u1(z̃r,ψ−1)}= umax

where umax is the maximum expected utility. By (28):

F(z̃l) = 1− umax

z̃l − c

F(z̃r) = 1− umax

z̃r − c

By the above two equations, since umax > 0 and z̃l < z̃r:

F(z̃l)< F(z̃r) (30)

But since no z ∈ (z̃l , z̃r) is a best response, for every pri-
mary i, P(pi ∈ (z̃l , z̃r)) = 0. Hence, P(p′(k) ∈ (z̃l , z̃r)) = 0.
That is, F(z̃r−)−F(z̃l) = 0, where F(x−) = limy↑x F(y).
By continuity of F(.), F(z̃r) =F(z̃r−). So F(z̃l) =F(z̃r),
which contradicts (30).
PROOF OF UNIQUENESS IN THEOREM 2. By
Lemma 8, the set of best responses of primary 1 is
convex, and hence is an interval. Also, by continuity of
F(x), it can be shown similar to (29) that the endpoints of
this interval are best responses, i.e. the interval is closed.
Let [zl ,zr] be this interval for some c < zl < zr ≤ v. We
now show that zr = v and zl = p̃.

Suppose zr < v. As shown in Section 3.3, F(v) =
w(q,n). Now, P(pi ∈ (zr,v]) = 0. So, P(p′(k) ∈ (zr,v]) = 0
and hence:

F(zr) = F(v) = w(q,n) (31)



By (28):

E{u1(zr,ψ−1)} = (zr − c)(1−F(zr))

= (zr − c)(1−w(q,n)) (32)
(by (31))

and

E{u1(v,ψ−1)} = (v− c)(1−F(v))
= (v− c)(1−w(q,n)) (by (31))
> E{u1(zr,ψ−1)} (by (32))

which contradicts the fact that zr is a best response.
Hence, we must have zr = v.

The maximum payoff is (v − c)(1 − F(v)) = (v −
c)(1−w(q,n)) = p̃−c. Now, note that F(zl) = 0. Putting
x = zl and F(zl) = 0 in (28):

E{u1(zl ,ψ−1)}= (zl − c)(1−0) = p̃− c

and hence zl = p̃.
Thus, the set of best responses of primary 1 is [p̃,v].
For any x ∈ [p̃,v], F(x) satisfies:

E{u1(x,ψ−1)}= (x− c)(1−F(x)) = p̃− c

which shows that F(x) is given by (4).
Now, as shown in Section 3.3, ϕ(x) must satisfy (5)

and by Lemma 1, this ϕ(x) is unique. Finally, since
ϕ(x) = qψ(x) as shown in Section 3.3, ψ(.) is given by
(6).

C Proof of Lemma 2
PROOF OF LEMMA 2. Since Z, the number of primaries
who have unused bandwidth, has a Binomial distribu-
tion with parameters n and q, its mean and variance are
E(Z) = nq and var(Z) = nq(1− q) respectively. First,
let k ≤ (n− 1)(q− ε) for some ε > 0. Let the random
variable Y be defined as:

Y =

{
k, if Z ≥ k
0, else

Then:

E{min(Z,k)}
≥ E(Y )
= kP(Z ≥ k)
= k(1−P(Z < k))
≥ k(1−P(Z ≤ (n−1)(q− ε)))

(since k ≤ (n−1)(q− ε))
≥ k(1−P(|Z −nq| ≥ (n−1)ε))

≥ k
(

1− nq(1−q)
(n−1)2ε2

)
(33)

(by Chebyshev’s inequality [14])

Now, let Z1 be a Binomial(n− 1,q) random variable.
Note that E(Z1) = (n− 1)q and var(Z1) = (n− 1)q(1−

q). By (2):

1−w(q,n) = P(Z1 < k)
≤ P(Z1 ≤ (n−1)(q− ε))

(since k ≤ (n−1)(q− ε))
≤ P(|Z1 − (n−1)q| ≥ (n−1)ε)

≤ 2exp
(
−2(n−1)2ε2

n−1

)
(by Hoeffding’s inequality [26])

= 2exp
(
−2(n−1)ε2) (34)

By (10), (33) and (34):

η ≤
2nqexp

(
−2(n−1)ε2

)
k
(

1− nq(1−q)
(n−1)2ε2

) → 0 as n → ∞

which proves the first part.
Now, suppose k ≥ (n−1)(q+ε) for some ε> 0. Since

E{min(Z,k)} ≤ E(Z) = nq, by (10):

η ≥ nq(1−w(q,n))
nq

= 1−w(q,n)
= 1−P(Z1 ≥ k)
≥ 1−P(Z1 ≥ (n−1)(q+ ε))

(since k ≥ (n−1)(q+ ε))
≥ 1−P(|Z1 − (n−1)q| ≥ (n−1)ε)

≥ 1− (n−1)q(1−q)
(n−1)2ε2 (by Chebyshev’s inequality)

→ 1 as n → ∞

which proves the second part.

D Proofs of Results in Section 4.1
We first prove Lemma 4. Let I denote the set of all

independent sets in the linear graph with m nodes. In a
symmetric NE, suppose each primary i plays independent
set I ∈ I with probability β(I). We will show that β(I) =
0, ∀I ̸= Io, Ie.

Recall that α j is the total probability with which a pri-
mary offers bandwidth at node j. Note that:

α j +α j+1 ≤ 1, j = 1, . . . ,m−1 (35)

This is because, if α j +α j+1 > 1 for some j, then with
a positive probability, each primary offers bandwidth at
both nodes j and j+1. Moreover, we have the following
result:
LEMMA 9. If α j, j = 1, . . . ,m are probabilities satisfy-
ing (35), then there exist probabilities β(I), I ∈ I such that
if a primary plays independent set I with probability β(I),
then the total probability with which it offers bandwidth
at node j is α j.
PROOF. We prove this result by a reduction to a schedul-
ing problem and using a result in [11]. From the linear
graph Gm with nodes 1, . . . ,m, construct a linear graph
G ′

m+1 with nodes a0,a1, . . . ,am and edges (a j−1,a j), j =



1,2, . . . ,m. For j = 1,2, . . . ,m, let node j in graph Gm
correspond to edge (a j−1,a j) in graph G ′

m+1.
Recall that a matching in a graph is a subset of the

edges such that no two edges in the subset have a node in
common [23]. Note that a set of nodes I constitutes an in-
dependent set in graph Gm if and only if the correspond-
ing set of edges constitutes a matching in graph G ′

m+1.
Let M be the set of all matchings in graph G ′

m+1 and
M(I) ∈ M be the matching in graph G ′

m+1 corresponding
to the independent set I in graph Gm.

It has been shown in [11] (see the corollary to Lemma
1 in [11]) that if α j, j = 1, . . . ,m are given numbers in
[0,1] satisfying (35), then there exists a probability distri-
bution {β′(M) : M ∈ M} such that in graph G ′

m+1, if each
matching M ∈ M is scheduled for a fraction β′(M) of the
time, then edge (a j−1,a j) is active for a total fraction α j
of the time for j = 1,2, . . . ,m, where an edge is active
whenever a matching containing it is scheduled. Note
that the corollary to Lemma 1 in [11] applies to bipartite
graphs, and hence to the graph G ′

m+1, which is bipartite.
Now, for each independent set I ∈ I in graph Gm, let

β(I) = β′(M(I)). From the above one-to-one correspon-
dence between independent sets in graph Gm and match-
ings in graph G ′

m+1, it follows that {β(I) : I ∈ I} is a prob-
ability distribution, and under this distribution, each node
j in graph Gm is selected with a total probability α j.

The result follows.
PROOF OF LEMMA 4. Consider a symmetric NE. As-
sume that β(I) > 0 for some I ̸= Io, Ie. Now, WLOG,
we can assume that I is maximal. So there must exist
nodes j, j + 3 ∈ I for some j (this is because Io and Ie
are the only maximal independent sets in which there do
not exist such j, j + 3). Since I is an independent set,
j + 1, j + 2 /∈ I. If α j+1 + α j+2 + β(I) > 1, then each
primary simultaneously offers bandwidth at neighboring
nodes (α j and α j+1 or α j+2 and α j+3 or α j+1 and α j+2)
with a positive probability. So:

α j+1 +α j+2 ≤ 1−β(I)< 1 (36)

Thus, either α j+1 < 1
2 or α j+2 < 1

2 (or both). WLOG,
assume that α j+1 <

1
2 .

Case (i): α j +α j+1 < 1
In this case, by (36), it follows that a primary i can uni-
laterally increase the probability, α j+1, of offering band-
width at node j+1, and continue to offer bandwidth with
probability αl for each node l ̸= j + 1 without conflict-
ing with node j or j + 2. (Note that Lemma 9 guaran-
tees that there exist β(I) corresponding to the new set of
node probabilities αl .) This will increase the primary’s
expected payoff at node j+1 and hence its total expected
payoff, which contradicts the fact that primary i’s original
strategy was a best response.
Case (ii): α j +α j+1 = 1
Since α j+1 <

1
2 , we have α j >

1
2 ; thus, α j+1 <α j. Now, a

primary can unilaterally reduce α j by a small amount and
increase α j+1 by that amount, without conflicting with
node j+2, by (36). This will increase the primary’s total
expected utility because:

1. by Lemma 3, the expected payoff of a primary at
node l is (v− c)(1−w(qαl ,n)) similar to the sin-
gle location analysis in Section 3.3 (see (24)), and
hence,

2. since w(x,n) is an increasing function of x [9] and
α j+1 < α j, the payoff at node j + 1 ((v − c)(1 −
w(qα j+1,n))) is higher than that at node j ((v −
c)(1−w(qα j,n))).

This is a contradiction.
PROOF OF THEOREM 3. By Lemma 4, in any symmet-
ric NE, each primary offers bandwidth at nodes in Ie (re-
spectively, Io) w.p. t (respectively, 1− t) and at all other
independent sets w.p. 0. First, we show that t = 0 does
not constitute a NE. Suppose primaries {1, . . . ,n}\i offer
bandwidth only at the nodes in Io, and at each node in
Io, play the single-location NE strategy ψ(.) in (6). If
primary i offers bandwidth at the nodes in Io, then its
payoff maximizing strategy would be to play any price
in [p̃,v] at each node in Io– this would give it a pay-
off of p̃− c at each node in Io. So primary i’s total ex-
pected utility if it offers bandwidth at the nodes in Io is
m
2 (p̃− c) = m

2 (v− c)(1−w(q,n)). Primary i total payoff
if it offers bandwidth at the nodes in Ie, and sets the price
v at each node in Ie is m

2 (v− c) > m
2 (v− c)(1−w(q,n)).

Thus, the strategy of offering bandwidth at the nodes in
Io is not a best response. Hence, the symmetric strategy
profile with t = 0 is not a NE.

By symmetry, it follows that the symmetric strategy
profile with t = 1 is not a NE.

Now, consider a symmetric strategy profile with 0 <
t < 1. Under this strategy profile, the payoff of each pri-
mary i if it offers bandwidth at the nodes in Io (respec-
tively, Ie) is m

2 (v − c)(1 − w(q(1 − t),n)) (respectively,
m
2 (v− c)(1−w(qt,n))). These must be equal for Ie and
Io to both be best responses. That is:

m
2
(v− c)(1−w(q(1− t),n)) =

m
2
(v− c)(1−w(qt,n))

The above equality clearly holds for t = 1
2 , and it can

be easily checked, using the fact that w(x,n) is a strictly
increasing function of x [9], that t = 1

2 is the unique solu-
tion.

Finally, we show that the symmetric strategy profile
with t = 1

2 is a NE. Suppose primaries {1, . . . ,n}\i offer
bandwidth w.p. t = 1

2 at Io and Ie, and at each node, play
the single-location NE strategy in (6) with q

2 in place of
q. Then the maximum expected utility of primary i at a
single node is equal for all nodes 1, . . . ,m and equals (v−
c)
(
1−w

( q
2 ,n

))
; also, it is attained when it sets any price

in the range [(v− c)
(
1−w

( q
2 ,n

))
,v] at the node. Thus,

the expected utility of primary i is maximized if it offers
bandwidth at any maximum independent set and sets a
price in the above range at each node in that set. Note
that Io and Ie are the only two maximum independent sets.
Hence, the strategy in which primary i offers bandwidth
w.p. t = 1

2 at Io and Ie, and at each node plays the single-
location NE strategy in (6) with q

2 in place of q is a best
response.



PROOF OF THEOREM 4. Similar to the proof of Theo-
rem 3, it can be shown that the symmetric strategy pro-
file with t = 1 is not a NE because if primaries other
than i offer bandwidth only at the nodes in Ie, then pri-
mary i’s best response would be to offer bandwidth at
only the nodes in Io and set a price of v at each node
in Io. Now, consider the strategy profile with some t,
0 < t < 1. The total expected payoff of each primary
if it offers bandwidth only at the nodes in Io (respec-
tively, Ie) is

(m+1
2

)
(v − c)(1 − w(q(1 − t),n)) (respec-

tively,
(m−1

2

)
(v− c)(1−w(qt,n)). For Io and Ie to be

both best responses, these must be equal, that is:(
m+1

2

)
(v− c)(1−w(q(1− t),n))

=

(
m−1

2

)
(v− c)(1−w(qt,n))

Simplifying, the above condition is equivalent to f4(t) =
0, where:

f4(t) = 2−(m+1)w(q(1−t),n)+(m−1)w(qt,n) (37)

Now, we have the following result, which we prove be-
low.
LEMMA 10. f4(x) is a strictly increasing function of x
on [0,1].
Also:

f4(0) = 2− (m+1)w(q,n)≥ 0

since w(q,n)≤ 2
m+1 . Thus, f4(t)> 0 for all 0 < t < 1; so

the condition f4(t) = 0 is not satisfied for any 0 < t < 1.
Thus, the symmetric strategy profile corresponding to t is
not a NE for any t, 0 < t < 1.

Finally, we show that the symmetric strategy profile
with t = 0 is a NE. Suppose primaries other than i offer
bandwidth only at Io and set the price at each node in Io
according to the single-location NE strategy in (6). Then
the maximum expected utility of primary i at each node in
Io equals p̃− c; also, it is attained when it sets any price
in the range [p̃,v] at the node. So the maximum total
expected utility of primary i if it offers bandwidth at the
nodes in Io is

(m+1
2

)
(p̃−c) =

(m+1
2

)
(v−c)(1−w(q,n)).

Also, the maximum total expected utility of primary i if it
offers bandwidth at the nodes in Ie is attained when it sets
a price of v at each node in Ie and equals

(m−1
2

)
(v− c)

which is less than or equal to
(m+1

2

)
(v− c)(1−w(q,n))

since w(q,n)≤ 2
m+1 . It follows that the strategy in which

primary i offers bandwidth only at Io and sets the price
at each node in Io according to the single-location NE
strategy in (6) is a best response. Hence, the symmetric
strategy profile with t = 0 is an NE.
PROOF OF LEMMA 10. It can be shown that [13] the
derivative of w(x,n) with respect to x is given by:

w′(x,n) = (n−1)
(

n−2
k−1

)
xk−1(1− x)n−k−1.

Note that:

w′(x,n)> 0, ∀0 < x < 1 (38)

Now,

f ′4(x) = (m−1)w′(qx,n)(q)− (m+1)w′(q(1− x),n)(−q)
= q[(m−1)w′(qx,n)+(m+1)w′(q(1− x),n)]
> 0 for x ∈ (0,1),(by (38))

So f4(x) is strictly increasing in [0,1].
PROOF OF THEOREM 5. Similar to the proof of Theo-
rem 3, it can be shown that the symmetric strategy pro-
files with t = 0 or t = 1 are not NE.

Now, a necessary condition for the symmetric strategy
profile with some t, 0 < t < 1, to be a NE is that the
total expected payoffs that a primary gets at Io and Ie are
equal, which is equivalent to the condition f4(t) = 0, for
the function f4(t) in (37). Now, we have the following
result, which we prove below.
LEMMA 11. The function f4(x) in (37) has a unique
root, say t, in (0,1).
Similar to the proof of Theorem 3, it can be shown that
the symmetric strategy profile with t equal to the root of
f4(x) is a NE.
PROOF OF LEMMA 11. We have:

f4(1) = w(q,n)(m−1)−w(0,n)(m+1)+2
= w(q,n)(m−1)+2 (since w(0,n) = 0)
> 0

f4(0) = w(0,n)(m−1)−w(q,n)(m+1)+2
= −w(q,n)(m+1)+2

< 0
(

since w(q,n)>
2

m+1
by assumption

)
Since w(x,n) is continuous, so is f4(x) and hence by the
intermediate value theorem [12], f4(x) has a root in (0,1).

By Lemma 10, f4(x) is strictly increasing in [0,1] and
hence can have at most one root in (0,1).

The result follows.

E Proofs of Results in Section 4.2
Let pi = (pi,( j,l) : j, l ∈ {1, . . . ,m}) denote the vec-

tor of prices that primary i sets at the nodes in the grid,
where pi,( j,l) is the price at node Vjl . pi,( j,l) = ∞ denotes
that primary i does not offer bandwidth at node Vjl . Let
ui,( j,l)(p1, . . . , pn) denote the revenue that primary i gets
at node Vjl when the price vector chosen by primary s
is ps, s = 1, . . . ,n. Also, let ui(p1, . . . , pn) be primary i’s
total revenue over all nodes.

E.1 Even m
Let Ψe be the strategy in which a primary
• selects I2

o and I2
e w.p. 1/2 each, whenever he has

unused bandwidth, and

• decides the price at each node in the chosen indepen-
dent set as per the distribution ψ(.) in Section 3.3,
with q replaced by q/2 all through.

Let p̃e = v−w
( q

2 ,n
)
(v− c).

THEOREM 9. The strategy profile in which each pri-
mary plays the strategy Ψe is a Nash equilibrium.



PROOF. Suppose primaries 2, . . . ,n play the strategy Ψe.
Similar to the single-location analysis, for every node Vjl :

Ep2,...,pn{u1,( j,l)(p1, . . . , pn)}
= p̃e − c if p1,( j,l) ∈ [p̃e,v]
< p̃e − c if p1,( j,l) < p̃e

Note that I2
o and I2

e are maximum independent sets, and
|I2

o | = |I2
e | = m2

2 . So if primary 1 plays Ψe, it gets a total

expected payoff of m2

2 (p̃e − c). Also, if it offers band-
width at any independent set I, it gets a payoff of at most
|I|(p̃e − c) ≤ m2

2 (p̃e − c), since the maximum expected
payoff at any node is p̃e − c. Hence, Ψe is a best re-
sponse.
E.2 Odd m
E.2.1 The Case w(q,n)≤ 2

m2+1
Let Ψo,1 be the strategy in which a primary
• offers unused bandwidth at only the nodes in I2

o , and

• selects the price at each node in I2
o according to the

d.f. ψ(.) in Section 3.3.
THEOREM 10. The strategy profile in which each pri-
mary plays Ψo,1 is a Nash equilibrium.
PROOF. Let p2, . . . , pn be distributed according to Ψo,1.
Let p̃ be as in (3). From the single-location Nash equilib-
rium analysis, if p1 is distributed according to Ψo,1:

Ep2,...,pn{u1(p1, . . . , pn)}=
(

m2 +1
2

)
(p̃− c)

Since at any given node Vjl in I2
o , p1,( j,l) ∼ ψ(.) is a

best response to pi,( j,l) ∼ ψ(.), i = 2, . . . ,n, the above is
the maximum utility obtainable if primary 1 offers band-
width at the nodes in I2

o . Now, suppose primary 1 offers
bandwidth at nodes in some other independent set I ̸= I2

o .
Since I2

o is the unique maximum independent set of size
m2+1

2 :

|I| ≤ m2 +1
2

−1 =
m2 −1

2
So:

u1(p1, . . . , pn) ≤ |I|(v− c)

≤
(

m2 −1
2

)
(v− c)

≤
(

m2 +1
2

)
(p̃− c)

where the last inequality holds if and only if w(q,n) ≤
2

m2+1 (this follows by algebraic simplification).
Since w(q,n) ≤ 2

m2+1 by assumption, it follows that
p1 ∼ Ψo,1 is a best response to p2, . . . , pn ∼ Ψo,1.
E.2.2 The Case w(q,n)> 2

m2+1
We first prove a simple property of independent sets in

Gm,m. To that end, we first consider a linear graph. Recall
that Gm denotes a graph with m nodes 1, . . . , m, with
edges ( j, j+ 1), j = 1, . . . ,m− 1. Let Im

l = {1,3, . . . ,m}
and Im

s = {2,4, . . . ,m−1}.

LEMMA 12. Let m ≥ 3 be odd. In graph Gm, let I be an
independent set with ml nodes from Im

l and ms nodes from
Im
s . Then:

ml +ms

(
m+1
m−1

)
≤ m+1

2
(39)

PROOF. We prove the result by induction. For m = 3, the
only possibilities are I = {1},{2},{3},{1,3}. In each
case, (39) clearly holds.

Suppose (39) is true for m, where m is odd. We will
now prove the result for m+2. Consider an independent
set I in graph Gm+2.

Case 1: m+ 1 /∈ I. Assume, WLOG, that m+ 2 ∈ I.
In addition, suppose there are ml and ms nodes from Im

l
and Im

s respectively in I. Hence, there are (ml +1) and ms

nodes from Im+2
l and Im+2

s respectively in I. We have:

ml +1+ms

(
m+3
m+1

)
=

m(ml +ms)+(ml +3ms)+(m+1)
m+1

=
[m(ml +ms)+(ms −ml)]+2(ml +ms)+(m+1)

m+1

≤
m2−1

2 +2(ml +ms)+(m+1)
m+1

(by (39), which is true by induction hypothesis)

≤
m2−1

2 +2
(m+1

2

)
+(m+1)

m+1

=
m+3

2
which proves the result. The last inequality follows from
the fact that ml +ms is the size of an independent set in the
subgraph {1, . . . ,m} of Gm+2 and hence ml +ms ≤ m+1

2 .
Case 2: m+1 ∈ I. Again, suppose there are ml and ms

nodes from Im
l and Im

s respectively in I. Since m+1 ∈ I,
m /∈ I. So, since {1,3, . . . ,m} is the only independent set
of size m+1

2 in {1, . . . ,m}, I\{m+ 1} is an independent
set of size at most m−1

2 , i.e.:

ml +ms ≤
m−1

2
(40)

Now:

ml +(ms +1)
(

m+3
m+1

)
=

m(ml +ms)+(ml +3ms)+(m+3)
m+1

=
[m(ml +ms)+(ms −ml)]+2(ml +ms)+(m+3)

m+1

≤
m2−1

2 +2
(m−1

2

)
+(m+3)

m+1
(by induction hypothesis and (40))

=
m+3

2



This proves the result for m+ 2 and hence the proof is
complete by induction.

Now, using the above lemma, we prove a property of
Gm,m.
LEMMA 13. Let m ≥ 3 be odd. In graph Gm,m, let I be
an independent set with ml nodes from I2

o and ms nodes
from I2

e . Then:

ml +ms

(
m2 +1
m2 −1

)
≤ m2 +1

2
(41)

PROOF. We construct the linear graph Gm2 from Gm,m
by deleting some edges, as follows. Retain all horizontal
edges (see part (b) of Fig. 3). Retain only the follow-
ing vertical edges: (V1,m,V2,m), (V2,1,V3,1), (V3,m,V4,m),
(V4,1,V5,1), . . . , (Vm−2,m,Vm−1,m), (Vm−1,1,Vm,1). Delete
the rest of the vertical edges. Note that the resulting graph
is Gm2 , the linear graph with m2 nodes, and m2 is odd.
Also, the nodes in I2

o and I2
e in Gm,m constitute the inde-

pendent sets Im2

l and Im2
s in Gm2 .

Now, since Gm2 is obtained from Gm,m by deleting
some edges, I is an independent set in Gm2 as well. So
by (39) in Lemma 12, we get (41).

Now, similar to Lemma 11, we get the following result
using the fact that w(q,n)> 2

m2+1 .
LEMMA 14.

f5(x) = w(qx,n)(m2 −1)−w(q(1− x),n)(m2 +1)+2
(42)

has a unique root, say t2, in (0,1).
Let Ψo,2 be the strategy in which, whenever a primary

has unused bandwidth,
• it selects I2

e and I2
o w.p. t2 and 1− t2 respectively,

where t2 is the unique root in (0,1) of (42), and

• selects the price at each node as per the distribution
ψ(.) in Section 3.3, with q replaced by qt2 (q(1− t2)
resp.) whenever he selects I2

e (I2
o resp.).

Let p̃l = v − w(q(1 − t2),n)(v − c) and p̃s = v −
w(qt2,n)(v − c). From the fact that f5(t2) = 0 (see
Lemma 14), it follows that:(

m2 +1
2

)
(p̃l − c) =

(
m2 −1

2

)
(p̃s − c) (43)

THEOREM 11. The strategy profile in which each pri-
mary plays the strategy Ψo,2 is a Nash equilibrium.
PROOF. Suppose primaries 2, . . . ,n play Ψo,2. Similar to
the single-location Nash equilibrium analysis, if at a node
Vjl ∈ I2

o , primary 1 offers a price p1,( j,l) ∈ [p̃l ,v], then:

Ep2,...,pn{u1,( j,l)(p1, . . . , pn)}= p̃l − c

If primary 1 offers a price p1,( j,l) < p̃l , then:

u1,( j,l)(p1, . . . , pn)< p̃l − c

Similar results hold for nodes Vjl ∈ I2
e . Now, if primary

1 offers bandwidth at the nodes in I2
o (respectively, I2

e )
and offers a price p1,( j,l) ∈ [p̃l ,v] (respectively, p1,( j,l) ∈
[p̃s,v]) at each node Vjl ∈ I2

o (respectively, Vjl ∈ I2
e ),

then its expected payoff is
(

m2+1
2

)
(p̃l − c) (respectively,(

m2−1
2

)
(p̃s − c) =

(
m2+1

2

)
(p̃l − c) by (43)). Since Ψo,2

randomizes among these strategies, its expected payoff is(
m2+1

2

)
(p̃l − c).

Now, we will show that the expected total revenue un-
der any strategy is at most

(
m2+1

2

)
(p̃l − c), which will

show that Ψo,2 is a best response.
Consider a strategy which offers bandwidth at an inde-

pendent set I with ml nodes in I2
o and ms nodes in I2

e . As
shown above, the maximum expected revenue at a node
in I2

o (respectively, I2
e ) is (p̃l − c) (respectively, (p̃s − c)).

So the revenue of this strategy is at most:

ml(p̃l − c)+ms(p̃s − c)

= ml(p̃l − c)+ms

(
m2 +1
m2 −1

)
(p̃l − c) (by (43))

= (p̃l − c)
[

ml +ms

(
m2 +1
m2 −1

)]
≤ (p̃l − c)

(
m2 +1

2

)
(by Lemma 13)

Thus, Ψo,2 is a best response and the strategy profile in
which each primary plays Ψo,2 is a Nash equilibrium.

F Proofs of Results in Section 5
PROOF OF THEOREM 6. Let uOS

i be the expected payoff
that primary i receives in the one-shot game Nash equilib-
rium, in which each primary plays the strategy ψ(.) in (6).
Let uPD

i be his expected payoff in each stage game of the
repeated game when all primaries play the pre-deviation
strategy in the above Nash reversion strategy. Also, let
usup

i be the supremum over the possible expected payoffs
that primary i can get in a single stage game by using
any strategy, when all primaries played the pre-deviation
strategy in all slots until the previous stage game, and pri-
maries other than i play the pre-deviation strategy in the
current stage game.

It can be shown that a sufficient condition for the
above Nash reversion strategy to be a SPNE is (the proof
is similar to that of (12.AA.1) in [1]):

usup
i +

qδ
1−δ

uOS
i ≤ uPD

i +
qδ

1−δ
uPD

i (44)

Note that the left-hand side is primary i’s maximum (dis-
counted) payoff starting from a given slot if he deviates
from the pre-deviation strategy, and the right-hand side is
the payoff if he does not deviate. The factor q appears in
the second term on either side to account for the fact that
primary i would have free bandwidth in each future slot
with probability q. So if condition (44) is met, primary i
would not deviate from its pre-deviation strategy.

Next, we compute uPD
i , uOS

i and usup
i . Let E(n,q) be

the event that when primary 1 has bandwidth available,
and sets p1 = v, and each primary i = 2, . . . ,n sets pi =
v (provided he has bandwidth available), then primary 1
is among the k randomly selected primary from whom



bandwidth is bought by the k secondaries. Let the random
variable A be the number of primaries from 2, . . . ,n who
have bandwidth available. A has a binomial distribution
with parameters n−1 and q. Conditioning on A:

P(E(n,q)) =
n−1

∑
i=0

P(E(n,q)|A = i)P(A = i)

Now,

P(E(n,q)|A = i) =
{

1, i < k( k
i+1

)
, i ≥ k

Putting these along with P(A = i) =
(

n−1
i

)
qi(1 −

q)n−1−i into the expression for P(E(n,q)), we get:

P(E(n,q)) =
k−1

∑
i=0

(
n−1

i

)
qi(1−q)n−1−i

+
n−1

∑
i=k

(
k

i+1

)(
n−1

i

)
qi(1−q)n−1−i

= 1−w(q,n)+β(q,n) (45)

where w(q,n) is as in (2) and β(q,n) is as in (12).
Now, uOS

1 = (v − c)(1 − w(q,n)) as derived in Sec-
tion 3. Also, by definition of the event E(n,q), uPD

1 =
(v− c)P(E(n,q)). Finally, since the strategy p1 = v− ε
yields the payoff v − ε − c for every ε > 0, we have
usup

1 = (v− c). Substituting these expressions into (44),
putting the value of P(E(n,q)) from (45), and some alge-
braic simplification, yields that the above Nash reversion
strategy is an SPNE if δ ≥ δt .

G Proofs of Results in Section 6
PROOF OF THEOREM 7. Let p1, p̃2 ≤ p1 ≤ v, be fixed.
If p1 < p2, then primary 1’s bandwidth is sold, and if
p1 > p2, then primary 1’s bandwidth is sold iff primary 2
has no unused bandwidth. So primary 1’s utility is given
by:

u1(p1, p2) =

{
p1 − c if p1 < p2
(p1 − c)(1−q2) if p1 > p2

(46)

Suppose primary 2 uses the mixed strategy ψ2(.). Note
that for fixed p1, since ψ2(.) is continuous, the event p2 =
p1 has zero probability. Hence,

Ep2 [u1(p1, p2)] = (p1 − c)P(p2 > p1)

+(p1 − c)(1−q2)P(p2 < p1)

= (p1 − c)[1−ψ2(p1)]

+(p1 − c)(1−q2)ψ2(p1)

= (p1 − c)(1−q2ψ2(p1))

= (p1 − c)
(

1−q2
1
q2

(
p1 − p̃2

p1 − c

))
= (p1 − c)

(
p̃2 − c
p1 − c

)
= p̃2 − c

Thus, primary 1’s expected payoff is constant, equal to
p̃2 − c, for p̃2 ≤ p1 ≤ v. For p1 < p̃2, primary 1’s payoff
is at most p1 − c < p̃2 − c. So p1 is a best response to
ψ2(.) for each p1 ∈ [p̃2,v]. Since ψ1(.) randomizes over
p1 ∈ [p̃2,v], ψ1(.) is a best response to ψ2(.).

Now, let p2, p̃2 ≤ p2 < v, be fixed. Similar to (46):

u2(p1, p2) =

{
p2 − c if p2 < p1
(p2 − c)(1−q1) if p2 > p1

Suppose primary 1 uses the mixed strategy ψ1(.). Since
ψ1(p1) is continuous on p̃2 ≤ p1 < v, P(p1 = p2) = 0 for
p̃2 ≤ p2 < v. So for p̃2 ≤ p2 < v:

Ep1(u2(p1, p2)) = (p2 − c)P(p1 > p2)

+(p2 − c)(1−q1)P(p1 < p2)

= (p2 − c)(1−ψ1(p2))

+(p2 − c)(1−q1)ψ1(p2)

= (p2 − c)(1−q1ψ1(p2))

= (p2 − c)
(

1−q1
1
q1

(
p2 − p̃2

p2 − c

))
= (p2 − c)

(
p̃2 − c
p2 − c

)
= p̃2 − c (47)

For p2 < p̃2:

u2(p1, p2)≤ p2 − c < p̃2 − c (48)

Now, let p2 = v. Note that P(p1 = v) = 1− q2
q1

> 0. If
p1 = v, then primary 2’s payoff is (v−c) if primary 1 has
no unused bandwidth or if primary 1 has unused band-
width and the secondary (randomly) selects primary 2 to
buy bandwidth from, and 0 otherwise. Thus, if p1 = v,
then the probability that primary 2’s payoff is (v− c) is
1−q1 +

q1
2 = 1− q1

2 . Thus,

u2(p1,v) =
{

(v− c)(1−q1) if p1 < v
(v− c)

(
1− q1

2

)
if p1 = v



Hence:

Ep1(u2(p1,v))
= (v− c)(1−q1)P(p1 < v)

+(v− c)
(

1− q1

2

)
P(p1 = v)

= (v− c)(1−q1)ψ1(v−)

+(v− c)
(

1− q1

2

)(
1− q2

q1

)
= (v− c)(1−q1)

1
q1

(
v− p̃2

v− c

)
+(v− c)

(
1− q1

2

)(
1− q2

q1

)
≤ 1−q1

q1
(v− p̃2)+(v− c)

(
1− q2

q1

)
=

1
q1

(v−q2(v− c)− p̃2 +q1 p̃2 −q1c)

=
1
q1

(q1(p̃2 − c))

= p̃2 − c (49)

By (47), (48) and (49), each p2, p̃2 ≤ p2 < v, is a best
response.

Since ψ2(.) randomizes over p2 ∈ [p̃2,v), ψ2(.) is a
best response to ψ1(.).

Thus, (ψ1(.),ψ2(.)) is a Nash equilibrium.
PROOF OF LEMMA 5. Let

f2(x) = (x− c)(v− x)− (1−q)n−1(v− c)2

4

It is sufficient to show that the quadratic f2(x) has exactly
one root in (c,vT ), the other root being in (vT ,v). Now,

f2(c) =− (1−q)n−1(v− c)2

4
< 0

f2(vT ) = (vT − c)(v− vT )−
(1−q)n−1(v− c)2

4

=
(v− c)2

4
{

1− (1−q)n−1}> 0

So, since f2(x) is continuous, by the intermediate value
theorem [12], it has a root in (c,vT ). Also,

f2(v) =− (1−q)n−1(v− c)2

4
< 0

So again, by the intermediate value theorem, f2(x) has a
root in (vT ,v), and the result follows.
PROOF OF LEMMA 6. Let

f3(x) =
4(x− c)(v− v)

(1−q)n−1(v− c)2

Then:

f3(p̃1) =
4(p̃1 − c)(v− v)
(1−q)n−1(v− c)2

=
v− v

v− p̃1
(by(20))

< 1 (since p̃1 < v < v)

f3(v) =
4(v− c)(v− v)

(1−q)n−1(v− c)2

=
(v− c)(v− v)

(p̃1 − c)(v− p̃1)
(by(20))

So f3(v)> 1 iff:

(v− c)(v− v)> (p̃1 − c)(v− p̃1)

⇔ (v− p̃1)(v+ c− v− p̃1)> 0

which is true because v− p̃1 > 0 and v+c > 2v > v+ p̃1.
Thus, f3(p̃1) < 1 and f3(v) > 1. Since f3(x) is continu-
ous, by the intermediate value theorem [12], there exists
p̃2, where p̃1 < p̃2 < v, such that f3(p̃2) = 1.

Also, since f3(.) is of the form:

f3(x) = a(x− c)

where a > 0, f3 is one-to-one and hence p̃2 is unique.


