
1

Pricing Games under Uncertain Competition
Gaurav S. Kasbekar and Saswati Sarkar

I. INTRODUCTION

The last decade has seen a tremendous growth in wireless
networks, resulting in a proportionate increase in demand for
spectrum. But spectrum is limited, which has led to the design
of techniques such as Cognitive Radio Technology [2], for
using the available spectrum more efficiently. In Cognitive
Radio Networks (CRNs), there are two types of spectrum
users: (i) a primary user who leases a certain portion (channel
or band) of the spectrum directly from the regulator, and (ii)
secondary users who can use the channel when it is not used
by the primary.

We consider a CRN with multiple primary and secondary
users in a region. Time is slotted, and in every slot, each
primary has unused bandwidth with some probability, which
he would like to sell to secondaries. Now, secondaries would
like to buy bandwidth from the primaries that offer it at a low
price, which results in price competition among the primaries.
If a primary quotes a low price, it will attract buyers, but at
the cost of reduced revenues. This is a common feature of an
oligopoly [1], in which multiple firms sell a common good to a
pool of buyers. Price competition in an oligopoly is naturally
modeled using game theory [15], and has been extensively
studied in economics using for example the classical Bertrand
game [1] and its variants.

However, a CRN has several distinguishing features, which
makes the price competition very different from oligopolies
encountered in economics. First, in every slot, each primary
may or may not have unused bandwidth available. So a
primary who has unused bandwidth is uncertain about the
number of primaries from whom he will face competition.
A low price will result in unnecessarily low revenues in the
event that very few other primaries have unused bandwidth,
because even with a higher price the primary’s bandwidth
would have been bought, and vice versa. Second, spectrum is
a commodity that allows spatial reuse: the same band can be
simultaneously used at far-off locations without interference;
on the other hand, simultaneous transmissions at neighboring
locations on the same band interfere with each other. To the
best of our knowledge, our work is the first to consider either
of these distinguishing features in context of price competition
in wireless networks.

We model the problem using game theory, and our model
captures both uncertain bandwidth availability and spatial
reuse. In this part of the paper, we focus on the case where all
the primaries and secondaries are located in a single location;
Part II deals with spatial reuse. We first consider (i) a one-
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shot game, in which bandwidth trading is done only once,
and subsequently (ii) a repeated game in which there are an
infinite number of slots, and bandwidth trading is done every
slot. We seek a Nash equilibrium [15] (NE) in each case.

In the one-shot game (Section III), we show that there
does not exist a pure-strategy NE, i.e., one in which each
primary deterministically selects a price (Section III-C). This
is in sharp contrast with the Bertrand game [1], where each
seller always has his ware available– the only equilibrium
then is a pure-strategy one in which each seller chooses the
lowest possible price [8]. We then explicitly find a mixed-
strategy NE in which each primary randomly chooses a price
from a range, and prove that it is unique in the class of
symmetric equilibria (Section III-C). As the probability that a
primary has bandwidth available decreases, this range of prices
becomes increasingly concentrated at the highest possible
price. This confirms the intuition that when spectrum holes
are rarely available, whenever a primary has a spectrum hole,
he can afford to set a high price in view of the limited
competition he anticipates from others. Using the explicit
expressions, we quantify the loss of total revenue incurred due
to competition under symmetric equilibria (Section III-D). Our
numerical computations reveal that this loss, or equivalently,
the efficiency of the symmetric equilibria, exhibits interesting
threshold behavior, which we also analytically prove in the
asymptotic regime (i.e., when the number of primaries is
large).

Next, we analyze the repeated game version of the one-
shot game (Section IV), and show that there exists an efficient
NE in which each primary sets the highest possible price and
as a result, the sum of expected revenues of the primaries is
maximized. This is achieved through a threat mechanism: if
any primary lowers his price in a slot, all others retaliate in
future slots by playing the one-shot game NE strategy and
hence the primary suffers in the long run.

Finally, we consider two generalizations (Section V): (ii) in
the first, the probability that a primary has unused bandwidth
is different for different primaries (Section V-B) and (i) in the
second, the reservation price or valuation of a secondary is
not known to the primaries with certainty, but is randomly
distributed (Section V-A).

Our main contribution is that we are able to explicitly
compute NE in all the games we consider. Since the prices
can take real values, the strategy sets of players are contin-
uous. Thus, classical results do not establish existence and
uniqueness of NE for the games we consider, and there is no
standard algorithm for finding a NE, unlike when each player’s
strategy set is finite [15]. The explicit computations provide
valuable insight; in particular, they clearly reveal the effect of
the system parameters on equilibrium behavior. All proofs are
deferred to the Appendix.



2

II. RELATED WORK

Pricing related issues have been extensively studied
in the context of wired networks and the Internet;
see [7] for an overview. Price competition among spec-
trum providers in wireless networks has been studied
in [16], [17], [18], [19], [20], [21]. Specifically, Niyato et. al.
analyze price competition among multiple primaries in CRNs
[20], [21]. However, neither uncertain bandwidth availability,
nor spatial reuse is modeled in any of the above papers. Also,
most of these papers do not explicitly find a NE (excep-
tions are [17], [20]). Our model incorporates both uncertain
bandwidth availability and spatial reuse, which makes the
problem challenging; despite this, we are able to explicitly
compute a NE. Zhou et. al. [22] have designed double auction
based spectrum trades in which an auctioneer chooses an
allocation taking into account spatial reuse and bids. However,
in the price competition model we consider, each primary
independently sells bandwidth, and hence a central entity such
as an auctioneer is not required.

In the economics literature, the Cournot game and the
Bertand game are two basic models that have been widely
used to study competition among sellers in oligopolies [1].
In a Cournot game, sellers choose the quantity of a good to
produce as opposed to prices in a Bertrand game, and hence
the latter is more relevant to our model. In a Bertrand game,
each seller quotes a price for a good, and the buyers buy from
the seller that quotes the lowest price 1 [1]. Several variants of
the Bertrand game have been studied, e.g., [4], [5], [6], [25].
Osborne et al [4] consider price competition in a duopoly,
when the capacity of each firm is constrained. Chawla et
al. [25] consider price competition in networks where each
seller owns a capacity-constrained link, and decides the price
for using it; the consumers choose paths they would use in
the networks based on the prices declared and pay the sellers
accordingly. The capacities in both cases are deterministic,
whereas the availability of bandwidth is random in our model.
The work most closely related to ours is the paper by Janssen
et al [6], which analyzes the case where each seller may
be inactive with some probability. However, none of the
above papers [4], [5], [6], [25] consider the spectrum-specific
issue of spatial reuse, which introduces a new dimension,
that each player not only needs to determine the price of the
commodity he owns (as in [4], [5], [6], [25]), but also select
an independent set to compete in. The joint decision problem
significantly complicates the analysis. Also, the results in [6]
are restricted to the case of one buyer; but, a CRN is likely to
have multiple secondaries, which our model allows. This again
complicates the analysis since multiple primaries can now sell
their available bandwidths. Finally, unlike [6], we consider
repeated interactions among primaries, unequal probabilities
of availability of unused bandwidth and random valuations
for secondaries (Sections IV,V-B, V-A).

1If two or more sellers quote the lowest price, the demand is equally shared
between them.

III. PRICE COMPETITION IN A SINGLE SLOT

A. Model

Suppose there are n ≥ 2 primaries and k ≥ 1 secondaries
in a region. Each secondary may constitute a customer who
requires 1 unit of bandwidth, or may simply be a demand
for 1 unit of bandwidth. We first consider the case that the
primaries know k, and later generalize our results to allow
for random, and apriori unknown, k (see Remark 1). Time is
divided into slots of equal duration. In every slot, each primary
has 1 unit of unused bandwidth with probability q and 0 units
with probability 1− q, where 0 < q < 1. We initially assume
that the bandwidth availability probability q is the same for
all primaries, but subsequently allow unequal probabilities in
Section V-B. A primary i who has unused bandwidth in a slot
can lease it out to a secondary for the duration of the slot, in
return for an access fee of pi. Leasing in a slot incurs a cost of
c ≥ 0. This cost may arise, for example, if the secondary uses
the primary’s infrastructure to access the Internet. We assume
that pi ≤ v for each primary, for some constant v > c. This
upper bound v may arise as follows:

1) The spectrum regulator may impose this upper bound
to ensure that primaries do not excessively overprice
bandwidth even when competition is limited owing to
bandwidth scarcity or high demands from secondaries,
or when the primaries collude.

2) Alternatively, the valuation of each secondary for 1 unit
of bandwidth may be v, and no secondary will buy
bandwidth at a price that exceeds his valuation.

We initially assume that the primaries know this upper limit
v, which is likely to be the case for the first interpretation.
For the second interpretation, the primaries need not know
the secondaries’ valuations, – we consider this generalization
in Section V-A.

Secondaries buy bandwidth from the primaries that offer
the lowest price. More precisely, in a given slot, let Z be the
number of primaries who offer unused bandwidth. Then the
bandwidth of the min(Z, k) primaries that offer the lowest
prices is bought (ties are resolved at random).

B. Game Formulation

We formulate the above price competition among primaries
as a game, which is any situation in which multiple individuals
called players interact with each other, such that each player’s
welfare depends on the actions of the others [1]. In our model,
the primaries are the players, and the action of primary i is
the price pi that he chooses 2. In Section III, we study the
interaction of the primaries in a single slot, which is referred
to as the one-shot game. In Section IV, we consider a setting
where the one-shot game is repeated an infinite number of
times, which is referred to as the repeated game.

The utility or payoff of a player in a game is a numerical
measure of his satisfaction level [1], which in our context
is the corresponding primary’s net revenue. In (the one-shot
version of) our game, the utility of primary i is 0 if he has

2If primary i has no unused bandwidth, it does not matter what price pi
he sets. Yet, for convenience, we speak of pi as being his action.
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no unused bandwidth. Let ui(p1, . . . , pn) denote his utility if
he has unused bandwidth 3 and primary j sets a price of pj ,
j = 1, . . . , n. Thus,

ui(p1, . . . , pn) =

{
pi − c if primary i sells his bandwidth
0 otherwise

(1)
Recall that the distribution function (d.f.) [24] of a random

variable (r.v.) X is the function:

G(x) = P (X ≤ x), x ∈ R

where R is the set of real numbers. Now, a strategy [1]
for primary i is a plan for choosing his price pi. We allow
each primary i to choose his price randomly from a set of
prices using an arbitrary d.f. ψi(.), which is referred to as
the strategy of primary i. A d.f. that concentrates its entire
mass on a single value allows a primary to deterministically
choose this value as his price– such a ψ(.) is referred to as
a pure strategy. The vector (ψ1(.), . . . , ψn(.)) of strategies
of the primaries is called a strategy profile [1]. Let ψ−i =
(ψ1(.), . . . , ψi−1(.), ψi+1(.), . . . , ψn(.)) denote the vector of
strategies of primaries other than i. Let E{ui(ψi(.), ψ−i)}
denote the expected utility of player i when he adopts strategy
ψi(.) and the other players adopt ψ−i.

A Nash equilibrium (NE) is a strategy profile such that
no player can improve his expected utility by unilaterally
deviating from his strategy [1]. Thus, (ψ∗

1(.), . . . , ψ
∗
n(.)) is

a NE if for each primary i:

E{ui(ψ∗
i (.), ψ

∗
−i)} ≥ E{ui(ψ̃i(.), ψ

∗
−i)}, ∀ ψ̃i(.). (2)

When players other than i play ψ∗
−i, ψ

∗
i (.) maximizes i’s

expected utility and is thus his best-response [1] to ψ−i.

C. Nash Equilibria

If k ≥ n, then the number of buyers is always greater than
or equal to the number of sellers. So a primary i will sell
his unused bandwidth even when he chooses the maximum
possible price v. So the strategy profile under which all
primaries deterministically choose the price v is the unique
NE. So henceforth, we assume that k ≤ n− 1.

Theorem 1: There is no pure strategy NE (i.e., one where
every primary selects his price deterministically) in the above
game.

In contrast, in the Bertrand game, which corresponds to
q = 1 in our model, the pure strategy profile under which each
primary deterministically selects c as his price is the unique
NE [1]. This strategy profile is not a NE in our context as this
provides 0 utility for each primary, whereas by quoting any
price above c (and below v) each primary can attain a positive
utility since he will sell his unused bandwidth at least when he
is the only primary that has unused bandwidth which happens
with positive probability (since q < 1). We have shown that no
other deterministic strategy profile is a NE either; the intuition
is that if a primary pi deterministically sets a price pi ∈ (c, v],
then other primaries can undercut it by a small amount by

3If instead, ui(p1, . . . , pn) were defined to be primary i’s net revenue,
unconditional on whether he has unused bandwidth or not, then the expected
utilities in the one-shot game analysis would all be scaled by q.

setting a price p−ϵ to ensure that their bandwidth is preferred
to primary i’s. The formal proof follows.

Proof: Recall that an action pi of player i is said to strictly
dominate [1] another action p′i if:

E{ui(pi, p−i)} > E{ui(p′i, p−i)}, ∀p−i

By (1), for every primary i, and any p−i, ui(c, p−i) = 0.
Also, E{ui(pi, p−i)} > 0 for all pi ∈ (c, v] because primary
i gets a positive payoff in the event that no other primary has
unused bandwidth, which happens with positive probability.
Thus, the strategy pi = c is strictly dominated by each pi ∈
(c, v], and hence no primary sets pi = c in any pure-strategy
Nash equilibrium.

Suppose (p1, . . . , pn) is a pure-strategy Nash equilibrium,
where c < pi ≤ v for i = 1, . . . , n. Let pmin =
min(p1, . . . , pn), Smin = {i : pi = pmin}, and nmin =
|Smin|. Note that Smin is the set of primaries who set the
lowest price pmin, and nmin is its cardinality. One of the
following two cases must hold:
Case (i): nmin ≤ k
Since k ≤ n−1, nmin ≤ n−1 and hence at least one primary
sets a price above pmin. Since pi ≤ v, i = 1, . . . , n, it follows
that pmin < v.

Let pj = min{pi : i /∈ Smin} be the second lowest price.
Now, note that ∀i ∈ Smin, ui(pmin, p−i) = pmin − c and
ui(p

′
i, p−i) = p′i − c ∀p′i ∈ (pmin, pj). This is because the

bandwidth of primary i always gets sold for any p′i < pj ,
since it is among the primaries with the nmin ≤ k lowest
prices. So ∀i ∈ Smin:

ui(pmin, p−i) < ui(p
′
i, p−i) ∀p′i ∈ (pmin, pj)

Hence, pi = pmin is not a best response to p−i, which contra-
dicts the assumption that (p1, . . . , pn) is a Nash equilibrium.

Case (ii): nmin > k
In this case, for i ∈ Smin:

E{ui(pmin, p−i)} = (pmin − c)P (E1)

where E1 is the event that primary i’s bandwidth is bought
by a secondary. Note that P (E1) < 1 because with a positive
probability, k or more primaries other than i, in Smin have
unused bandwidth. In this case, k randomly selected primaries,
out of the primaries in Smin who have unused bandwidth,
sell their bandwidth, and with a positive probability, primary
i is not among them. Also, note that primary i’s bandwidth
is always sold if it sets a price less than pmin and the vector
of prices of primaries other than i is p−i. Hence, for small
enough ϵ > 0:

E{ui(pmin − ϵ, p−i)} = (pmin − ϵ− c)

> (pmin − c)P (E1)

= E{ui(pmin, p−i)}

Thus, pi = pmin is not a best response, which contradicts the
assumption that (p1, . . . , pn) is a Nash equilibrium.

Next, we focus on a specific class of Nash equilibria, known
as symmetric Nash equilibria. A NE (ψ∗

1(.), . . . , ψ
∗
n(.)) is a

symmetric NE if all players play identical strategies under
it, i.e., ψ∗

1(.) = ψ∗
2(.) = . . . = ψ∗

n(.). In practice it is
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challenging to implement any other NE– the simple example
of two primaries and a NE of (ψ∗

1(.), ψ
∗
2(.)) elucidates the

inherent complications in the current context. If ψ∗
1(.) ̸= ψ∗

2(.),
then since players have the same action sets, utility functions
and probability of having unused bandwidth (such games are
referred to as symmetric games), (ψ∗

2(.), ψ
∗
1(.)) also constitutes

a NE. If player 1 knows that player 2 is playing ψ∗
2(.)

(respectively, ψ∗
1(.)), he would choose the best response ψ∗

1(.)
(respectively, ψ∗

2(.)), but he can not know player 2’s choice
between the two options without explicitly coordinating with
him, which is again ruled out due to the competition between
the two. Under symmetric NE, all players play the same strat-
egy, and thus this quandary is somewhat limited– symmetric
NE has indeed been advocated for symmetric games by several
game theorists [3]. The natural question now is whether there
exists at least one symmetric NE, and also whether there is
a unique symmetric NE (only uniqueness will eliminate the
above quandary). Note that some symmetric games are known
to have multiple symmetric NE. For example, consider the
simple “Meeting in New York game” [1] with two players,
where each player can either be at Grand Central or at Empire
State Building, and both receive unit utility if they meet and
zero utility otherwise. The strategies where each player is
at Grand Central, and where each player is at Empire State
Building, both constitute symmetric NE.

In our context, we now show that there exists a unique
symmetric NE and explicitly compute it. First, we derive some
necessary conditions for a strategy profile to be a symmetric
NE and then show that they are also sufficient. Suppose
in a symmetric NE, each primary i ∈ {1, . . . , n} sets his
price pi ∈ [c, v] according to some common distribution
ψ(x). Let ψ−i denote the vector (ψ(.), . . . , ψ(.)) of strategies
of primaries other than i. To simplify our exposition, we
introduce the notion of “pseudo-price” for each primary. The
pseudo-price of primary i, p′i, is the price he selects, pi, if he
has unused bandwidth and p′i = v + 1 otherwise 4. Let ϕ(x)
be the d.f. of p′i. For x ∈ [c, v], note that p′i ≤ x if and only if
primary i has unused bandwidth (which happens w.p. q) and
sets a price pi ≤ x (which happens w.p. ψ(x)). Thus,

ϕ(x) = qψ(x), x ∈ [c, v]. (3)

Consider primary 1 and let p′(k) denote the k’th smallest
pseudo-price among the pseudo-prices p′j , j = 2, . . . , n of
the rest of the primaries, (which primary 1 will know only
after choosing his price or equivalently pseudo-price). Since
the primaries choose their prices randomly and since their
bandwidth availabilities are random, p′(k) is a random variable;
let F (.) be its d.f.

Now, it turns out that in a symmetric NE, primaries do
not select any single price in [c, v] with positive probability.
The intuition is similar to that behind Theorem 1: if primaries
2, . . . , n set a price p with positive probability, then primary 1
can benefit by setting a price p− ϵ, for a small ϵ > 0, instead
of p. Thus, ψ(.), and thereby ϕ(.) and F (.), do not have a
positive probability mass at any point x ∈ [c, v]:

4The choice v + 1 is arbitrary. Any other value greater than v would also
work.

Lemma 1: ψ(x), ϕ(x) and F (x) are continuous on c ≤ x ≤
v.
The proof is deferred to the Appendix.

Now, recall that there are k secondaries who opt for the
lowest available prices. So by definition of p′(k), if primary 1
offers a price of x, he sells his bandwidth if and only if either
(i) p′(k) > x or (ii) p′(k) = x (in which case there is a tie)
and primary 1 is among the primaries selected randomly from
those who set the price x. But since F (x) is continuous by
Lemma 1, P (p′(k) = x) = 0. So primary 1 sells his bandwidth
w.p. P (p′(k) > x) = (1 − F (x)); the sale fetches a utility of
x− c. Hence, primary 1’s expected utility is:

E{u1(x, ψ−1)} = (x− c)(1− F (x)), x ∈ [c, v] (4)

Now, let B be the set of prices in [c, v] that are best
responses of primary 1 to the vector of strategies ψ−1 of
primaries 2, . . . , n and let umax be the maximum payoff. Thus:

E{u1(x, ψ−1)} = umax, ∀x ∈ B. (5)

Using the continuity of F (.) (see Lemma 1), it can be shown
that B must be a contiguous and closed set, with upper limit
v:

Lemma 2: B = [p̃, v] for some p̃ ∈ (c, v).
The proof is deferred to the Appendix.

By (4), (5) and Lemma 2:

umax = (x− c)(1− F (x)) ∀x ∈ [p̃, v] (6)
= (v − c)(1− F (v)). (7)

Now, F (v) is the probability that p′(k) ≤ v, which happens
when k or more primaries have unused bandwidth (among
those in {2, . . . , n}); so F (v) = w(q, n), where:

w(q, n) =
n−1∑
i=k

(
n− 1
i

)
qi(1− q)n−1−i. (8)

Hence, by (7), umax = (v − c) (1− w(q, n)) . Thus, by (6):

F (x) = 1− (v − c) (1− w(q, n))

x− c
, x ∈ [p̃, v]. (9)

Now, the set of best responses is B = [p̃, v] and in a NE, every
primary plays a best response w.p. 1. So w.p. 1, pi ≥ p̃ for
every primary i, and hence p′(k) ≥ p̃. Since F (x) = P (p′(k) ≤
x), it follows that F (p̃) = 0. So putting x = p̃ in (9), we get:

p̃ = v − w(q, n)(v − c). (10)

Thus,

F (x) =

{
0, x ≤ p̃
x−p̃
x−c , p̃ < x ≤ v.

(11)

The d.f. ψ(.) for the price of each primary must be such that
the above function F (.) is the d.f. of the kth smallest pseudo-
price of n−1 primaries. Since F (x) is the probability that k or
more pseudo-prices out of n−1 are ≤ x and each pseudo-price
is ≤ x w.p. ϕ(x), ϕ(x) must be the solution of:

n−1∑
i=k

(
n− 1
i

)
[ϕ(x)]i[1− ϕ(x)]n−1−i = F (x). (12)

In the Appendix, we prove that:
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Lemma 3: With F (x) given by (11), equation (12) has a
unique solution ϕ(x) ∈ [0, 1]. The function ϕ(x) is strictly
increasing and continuous on [p̃, v]. Also, ϕ(p̃) = 0 and
ϕ(v) = q.
Finally, by (3) and Lemma 3:

ψ(x) =


0, x ≤ p̃
1
qϕ(x), p̃ < x ≤ v

1, x ≥ v

(13)

Note that from the properties of the ϕ(.) function obtained in
Lemma 3, ψ(x) is a continuous d.f5.

Theorem 2: The strategy profile in which each primary i
chooses his price pi according to ψ(.), where ψ(.) is defined
by (13), (12) and (11) is the unique symmetric NE.

Proof: We have shown above that a necessary condition
for a strategy ψ(.) to be a symmetric NE strategy is that it
must satisfy (13), (12) and (11). Also, by Lemma 3, these
equations have a unique solution ψ(.). It remains to show that
the strategy profile in which each primary i plays the strategy
ψ(.) is indeed a NE. By (4) and (11), under this strategy
profile, each primary i’s expected payoff for a price x ∈ [p̃, v]
is given by:

E{ui(x, ψ−i)} = (x− c)

{
1−

(
x− p̃

x− c

)}
= p̃− c (14)

Also, primary i’s expected payoff for a price pi < p̃ is pi −
c < p̃ − c. So each pi ∈ [p̃, v] is a best response. Since ψ(.)
randomizes among the prices in [p̃, v], ψ(.) is a best response
for each primary i. Hence, the strategy profile in which each
primary i plays ψ(.) is an NE.

This random selection of prices as per ψ(.) can be inter-
preted as follows: each primary i sets a base price v and
randomly holds “sales” to attract secondaries by lowering the
price to some value pi ∈ [p̃, v]6.

Example: For n = 2 and k = 1, we have w(q, n) = q,
p̃ = v − q(v − c), and

ψ(x) =


0 x ≤ p̃
1
q

(
x−p̃
x−c

)
p̃ < x ≤ v

1 x ≥ v

(15)

Remark 1: Our results readily generalize to allow for a
random number of secondaries (K). Then the primaries apriori
know only the probability mass function (p.m.f.) for K,
Pr(K = k) = γk, but not the value of K. Unlike in (8),
we now define w(q, n) as:

w(q, n) =

n−1∑
k=1

γk

n−1∑
i=k

(
n− 1
i

)
qi(1− q)n−1−i (16)

Also, (12) is replaced by:
n−1∑
k=1

γk

n−1∑
i=k

(
n− 1
i

)
[ϕ(x)]i[1− ϕ(x)]n−1−i = F (x) (17)

5A function f(x) is a d.f. iff it is increasing, right continuous, and has
limits 0 and 1 as x tends to −∞ and ∞ respectively [24].

6This interpretation has been suggested in [10] for random selection of
prices in a different context.

Now, ψ(.) computed as before, but with the above modifica-
tions in w(., .), ϕ(.), again constitutes the unique symmetric
NE strategy of each primary.

D. Performance Evaluation under the Unique Symmetric NE

We define the efficiency, η, of a NE as η =
RNE
ROPT

, where
RNE is the expected sum of utilities of the n primaries at the
NE and ROPT is the maximum possible (optimal) expected
sum of utilities. Note that ROPT is attained only when all
primaries cooperate and each selects the maximum possible
price v so as to ensure that bandwidth is always sold at this
price. Clearly, η ≤ 1 quantifies the loss in the total revenue
incurred owing to lack of cooperation among primaries. Also,
owing to its uniqueness, the efficiency of the symmetric NE
we obtain quantifies fundamental limits on the performance of
symmetric NE.

Now, ROPT = E[min(Z, k)](v − c), where Z is the
number of primaries who have unused bandwidth (Z is a
Binomial(n, q) r.v. [14]). Also, as discussed in Section III-C,
at the unique symmetric NE, whenever a primary has unused
bandwidth, he attains an expected utility of (v−c)(1−F (v)) =
(v − c)(1−w(q, n)) irrespective of the price he offers. Thus,
since there are n primaries and each has unused bandwidth
w.p. q, RNE = nq(1− w(q, n))(v − c). Hence,

η =
nq(1− w(q, n))

E[min(Z, k)]
. (18)

Fig. 1 plots η of the symmetric NE versus k for three values
of q. It is interesting to note that η exhibits a sharp threshold
behavior: for k below (respectively, above) a threshold the
efficiency is close to 0 (respectively, 1). Also, this threshold is
around nq, the expected number of primaries who have free
bandwidth. Intuitively, this is because, when the supply nq
exceeds the demand k for bandwidth (i.e., k < nq), there is
intense price competition, driving down the equilibrium prices.
On the other hand as k increases, w(q, n) decreases and p̃
increases and becomes closer to v (see (8) and (10)). Hence,
the d.f. ψ(.) becomes increasingly concentrated at the highest
possible price v. Intuitively, this is because, when the demand
exceeds the supply, a primary expects to sell even at a high
price, and sets his price accordingly. The plots for the density
of the unique symmetric NE price distribution for different sets
of values of parameters n, k, q reveal the same phenomenon
as well (Fig. 2).

In fact, we can analytically establish this threshold behavior
for large n:

Lemma 4: Let q ∈ (0, 1) be fixed.
1) If k ≤ (n − 1)(q − ϵ) for some ϵ > 0, then η → 0 as

n→ ∞.
2) If k ≥ (n − 1)(q + ϵ) for some ϵ > 0, then η → 1 as

n→ ∞.

IV. PRICE COMPETITION UNDER REPEATED
INTERACTIONS

We now consider repeated interactions among primaries in
multiple slots. We first formulate the problem in Section IV-A
and then describe our results in Section IV-B.
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Fig. 1. Efficiency of the Nash equilibrium versus k for three values of q.
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k = 10.

A. Formulation

We consider a repeated game [1] formulation for the one-
shot game at a single location described in Section III,
where the one-shot game is repeated an infinite number of
times, at τ = 1, 2, 3, . . .. Each player perfectly recalls the
actions of every player in all preceding times. The payoff
of player i for the overall repeated game is defined to be
ui =

∑∞
τ=1 δ

τ−1ui,τ , where ui,τ is his payoff at time τ and
δ ∈ (0, 1) is the discount factor [1], which is used to discount
future payoffs (see [1], [15] for interpretations of the discount
factor). The discount factor is usually close to 1 [1].

A strategy of a player in a repeated game is a complete plan
for choosing the action in each slot as a function of the actions
of all players in all preceding slots [1]. As in a one-shot game
(see Section III-B), a Nash equilibrium (NE) in a repeated
game is a strategy profile in which no player can improve his
payoff by unilateral deviation from his strategy [1]. However,
NE constitutes a rather weak notion of equilibria in repeated
games [1] and hence we focus on NE with a special property,
known as the Subgame Perfect Nash Equilibria (SPNE) [1].
A subgame [1] of the repeated game is the part of the game
starting from some slot τ0 ≥ 1, i.e. the stage games in slots
τ = τ0, τ0 + 1, . . .. An SPNE is an NE of the repeated game
that is also an NE of every subgame [1].

B. Results

It is well-known that for any repeated game, the strategy
profile under which every player uses the one shot game NE
strategy in every time slot is a SPNE [1]. Thus, the symmetric
NE we presented for the one-shot game in Section III provides
a SPNE in the repeated game version. The efficiency (as
defined in the first paragraph of Section III-D) of this SPNE is
however low whenever the symmetric NE has low efficiency,
which happens for certain ranges of n, k, q (Lemma 4). Our
main contribution is to present an SPNE that is also efficient in
the sense that the sum of expected utilities of the n primaries
at equilibrium equals the maximum possible sum of utilities,
provided the discount factor δ is sufficiently high.

We consider Nash reversion type of strategy profiles [1]
in which each player plays a specified strategy (called the
pre-deviation strategy) at each time until one of the players
deviates from it, and all players play the one-shot game NE
strategy thereafter.

Strategy for primary i: Select a price of v at τ = 1, and
also for all other τ so long as all other primaries had chosen
v in all previous times. Otherwise, play the one-shot game
Nash equilibrium strategy ψ(.) in (13).

Theorem 3: The strategy profile where every primary uses
the above Nash reversion strategy is an SPNE if and only if
δ ≥ δt, where δt is a threshold given by:

δt =
w(q, n)− β(q, n)

w(q, n)− β(q, n) + qβ(q, n)

and

β(q, n) =

n−1∑
i=k

(
k

i+ 1

)(
n− 1
i

)
qi(1− q)n−1−i. (19)

Note that from (8) and (19), w(q, n) > β(q, n) > 0 and
hence 0 < δt < 1. Thus, for all values of n, k and q, there
exists a threshold such that for values of δ greater than it, the
above Nash reversion strategy is an SPNE.

The efficiency of the above SPNE is 1 because bandwidth
is always sold at the highest possible price v. Thus, an
efficient NE can be sustained in the repeated game, unlike
in the one-shot game (Lemma 4). This is possible because
of the threat mechanism inherent in the above SPNE: if a
primary tries to undercut the prices of other primaries, then he
will gain temporarily, but will suffer in the long run because
all primaries will switch to the one-shot game NE strategy
immediately afterwards.

We plot δt versus q in Fig. 3 for different values of n. The
plot reveals that δt is not close to 1 except when q is close to
0. Thus, since players usually have discount factors δ close to
1 [1], their discount factors would exceed δt except for very
small q, and hence the above strategy profile will constitute a
SPNE unless q is very small. The availability probability of
unused bandwidth is rarely close to 0, and even when it is,
we have an alternate SPNE strategy profile whose efficiency is
very close to 1: when q is very small, the lower limit p̃ in (10),
of the symmetric NE price distribution ψ(.) in the one shot
game in Section III is close to the upper limit v (refer to (13),
(12), (11)), and hence the SPNE that uses this distribution for
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each player at each time provides prices close to v as well at
each time, and thereby attains efficiency close to 1.
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Fig. 3. The threshold δt versus q for three values of n. The other parameters
are c = 0, v = 100 and k = 10.

V. GENERALIZATIONS

We now generalize our model to allow for random valua-
tions of the secondaries (Section V-A) and asymmetric q values
of the primaries (Section V-B).

A. Random Valuations

Recall that in Section III-A, we noted that the parameter v
may also be interpreted as the valuation of each buyer. Then
the primaries may only know the distribution, but not the exact
value of v. We now generalize the results in Section III, which
were for a deterministic v, to the case where v is distributed
according to some d.f. G(x) = P (v ≤ x). Assume that G(x)
is continuous. Also, let g(x) = (x− c)P (v ≥ x). Assume, in
addition, that: (i) g(x) has a unique maximizer vT > c, and (ii)
g(x) is strictly increasing for c ≤ x ≤ vT . Note that a large
class of d.f. G(x) satisfy the above technical conditions, e.g.,
the uniform distribution on some range [v, v], where c < v <
v. Note that by continuity of G(x), g(x) = (x− c)(1−G(x))
is continuous. For analytical tractability, we restrict ourselves
to the case k = 1; n can be arbitrary.

First, note that if there is only one primary, then he sells
his unused bandwidth whenever his price does not exceed the
secondary’s (random) valuation, which happens w.p. P (v ≥
p). Thus, his expected utility is (p−c)P (v ≥ p) = g(p) when
he quotes a price p ≥ c for his unused bandwidth. The optimal
price that maximizes this expected payoff is vT , the maximizer
of g(x).

Now, suppose there are n primaries and each primary i
chooses the price pi ∈ [c, vT ] according to a common d.f.
ψ(.). As in the constant valuation case in Section III-C, ϕ(.)
is the distribution of a pseudo-price, p′i, and F (x) is the
distribution of the minimum, p′(1), of (n − 1) pseudo-prices.
A primary’s pseudo-price, p′i, is greater than vT if he has no
unused bandwidth, which happens w.p. 1−q. Also, p′(1) > vT
if and only if all n− 1 pseudoprices are greater than vT . So:

1− F (vT ) = P (p′(1) > vT ) = (1− q)n−1

Hence:
F (vT ) = 1− (1− q)n−1 (20)

Now, if primary i sets a price pi = x, then he sells his band-
width if the minimum of the pseudo-prices of the primaries
other than i is greater than x (which happens w.p. 1− F (x))
and v ≥ x. So the expected utility of primary i if he sets a
price pi = x and all other primaries choose the price according
to the d.f. ψ(.) is:

E{ui(x, ψ−i)} = (x− c)(1− F (x))P (v ≥ x) (21)

In a NE, this should be a constant over the range [p̃, vT ] for
some c < p̃ < vT and must equal:

E{ui(p̃, ψ−i)} = (p̃− c)(1− F (p̃))P (v ≥ p̃)

= (p̃− c)P (v ≥ p̃) (22)

since F (p̃) = 0. By (21) and (22):

(x− c)(1− F (x))P (v ≥ x) = (p̃− c)P (v ≥ p̃), x ∈ [p̃, vT ]

Thus,

F (x) = 1− (p̃− c)P (v ≥ p̃)

(x− c)P (v ≥ x)
, x ∈ [p̃, vT ] (23)

Note that since g(x) = (x − c)P (v ≥ x) is increasing, 0 ≤
F (x) ≤ 1 and F (x) is increasing. Now, p̃ can be found from
(20) and (23) to be the solution of:

(p̃− c)P (v ≥ p̃)

(vT − c)P (v ≥ vT )
= (1− q)n−1 (24)

Now, ϕ(x) is the d.f. such that the minimum of (n− 1) i.i.d.
random variables, each with d.f. ϕ(.), has the d.f. F (.). So
similar to (12):

F (x) = 1− (1− ϕ(x))n−1 (25)

Equations (23) and (25) provide an expression for ϕ(.). Also,
similar to Theorem 2, we have:

Theorem 4: The strategy profile in which each primary
plays ψ(.), where

ψ(x) =


0, x ≤ p̃
1
qϕ(x), p̃ < x ≤ vT
1, x > vT

(26)

and ϕ(.) is defined by (23) and (25) is a symmetric NE.
The proof is similar to that of Theorem 2.

1) Uniformly Distributed Valuation: Now, we specialize
our results to the case in which v is uniformly distributed
in [v, v], where c < v < v, and explicitly compute F (x),
which then can be used to compute ϕ(x) and ψ(x). Since
v is uniformly distributed in [v, v], it can be checked that
vT = max{v, v+c

2 }. If v ≥ v+c
2 , then vT = v and the results

in the constant valuation case go through with v replaced by v.
This is because for every primary i, any price pi > v fetches
an expected utility which is lower than that for pi = v. Thus,
henceforth, we consider the case v < v+c

2 . Then, vT = v+c
2 .

Lemma 5: There exists a unique p̃1 in (c, vT ) such that:

(p̃1 − c)(v − p̃1) =
(1− q)n−1(v − c)2

4
. (27)

We consider the cases p̃1 ≥ v and p̃1 < v separately.
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2) Case I: p̃1 ≥ v: In this case, it can be checked that the
p̃ in (24) is equal to p̃1. Also, F (x) in (23) becomes:

F (x) =

{
0, x ≤ p̃1
1− (p̃1−c)(v−p̃1)

(x−c)(v−x) , p̃1 < x ≤ vT
(28)

3) Case II: p̃1 < v:
Lemma 6: There exists a unique p̃2 in (p̃1, v) such that:

4(p̃2 − c)(v − v)

(v − c)2
= (1− q)n−1. (29)

In this case, it can be checked that the p̃ in (24) is equal to
p̃2. Also, F (x) in (23) becomes:

F (x) =


0, x ≤ p̃2
x−p̃2

x−c , p̃2 < x ≤ v

1− (p̃2−c)(v−v)
(x−c)(v−x) , v < x ≤ vT

B. Asymmetric q

So far, we have assumed that each primary has unused
bandwidth with equal probability, q. Now, we consider that
this probability is qi for primary i, and allow for potentially
unequal qis. This generality leads to some differences in
the NE strategies, which we elucidate considering a simple
scenario, n = 2 and k = 1. Without loss of generality, let
q1 ≥ q2.

We now describe the equilibrium strategies ψ1(.) and ψ2(.)
of the two primaries for the one shot game. Define:

p̃i = v − qi(v − c), i = {1, 2}

Then p̃1 ≤ p̃2. Let ψ1(x) be as in (15) with p̃2 in place of p̃
and q1 in place of q. Also, let ψ2(x) be as in (15) with p̃2 in
place of p̃ and q2 in place of q.

Theorem 5: The strategy profile in which primary i selects
his price using the d.f. ψi(.), i = 1, 2 is a NE

Note that this NE is not in general symmetric because
ψ1(.) ̸= ψ2(.), which is but expected since q1, q2 need not
be equal. Also, it can be checked that ψ2(.) is continuous,
whereas ψ1(.) is not (unless q1 = q2), and primary 1 chooses
price v with a positive probability 1− q2

q1
. This is in contrast

to the NE for equal qis (Theorem 2), where each primary uses
a continuous d.f. and hence does not choose any single price
with positive probability.
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APPENDIX

A. Proofs of results in Section III

Proof of Lemma 1: Suppose ψ(x) is not continuous on
[c, v]. Then ψ(x), (and hence ϕ(x) and F (x)), has a positive
probability mass at a point x0 ∈ [c, v], i.e. P{pi = x0} > 0.
As shown in the proof of Theorem 1, the strategy pi = c is
strictly dominated for each primary i. Hence, primary i plays
pi = c with 0 probability; so ψ(.) does not have a positive
probability mass at c. Thus, x0 > c.

We will show that primary 1 gets a higher expected utility
by setting p1 slightly lower than x0, than by setting p1 = x0,
which will contradict the fact that x0 is a best response. Let
E2 denote the event that primary 1’s bandwidth is sold. If
p1 = x0 and p′(k) > x0, then by definition of p′(k), E2 occurs.
That is:

P (E2|p1 = x0, p
′
(k) > x0) = 1. (30)

If p1 = x0 and p′(k) = x0, then two or more primaries
including primary 1 have set the k’th lowest price x0. Since
ties are broken at random:

P (E2|p1 = x0, p
′
(k) = x0) < 1. (31)
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Now,

P{E2|p1 = x0}
= P (E2|p1 = x0, p

′
(k) > x0)P{p′(k) > x0}

+P{E2|p1 = x0, p
′
(k) = x0}P{p′(k) = x0}

= P{p′(k) > x0}+ P{E2|p1 = x0, p
′
(k) = x0}P{p′(k) = x0}

(by (30)) (32)

Similarly, for every ϵ > 0, if p1 = x0 − ϵ, then E2 occurs if
p′(k) ≥ x0. So:

P{E2|p1 = x0 − ϵ} ≥ P{p′(k) > x0}+ P{p′(k) = x0} (33)

By (32) and (33):

P{E2|p1 = x0 − ϵ} − P{E2|p1 = x0} ≥
P{p′(k) = x0}(1− P{E2|p1 = x0, p

′
(k) = x0}) = a (say) (34)

By (31), a > 0.
Now, primary 1’s expected utility if he sets p1 = x0 is:

E{u1(x0, ψ−1)} = (x0 − c)P{E2|p1 = x0} (35)

and if he sets x0 − ϵ for a small ϵ > 0 is:

E{u1(x0 − ϵ, ψ−1)} = (x0 − ϵ− c)P{E2|p1 = x0 − ϵ}
≥ (x0 − ϵ− c)(P{E2|p1 = x0}+ a)

by (34). Taking limits:

lim
ϵ→0+

E{u1(x0 − ϵ, ψ−1)} ≥ (x0 − c)(P{E2|p1 = x0}+ a)

> E{u1(x0, ψ−1)} (by (35))

Thus, for small enough ϵ, p1 = x0−ϵ yields a higher expected
payoff than p1 = x0. So p1 = x0 is not a best response, which
is a contradiction. Thus, ψ(.) cannot have a positive probability
mass at any point and is continuous.

Proof of Lemma 2: We showed in the proof of Theorem 1
that c /∈ B. Let zl, zr ∈ B, where c < zl < zr ≤ v. To
show that B is contiguous, we need to show that z ∈ B
∀z ∈ (zl, zr). Suppose not. Then there exists z0 ∈ (zl, zr)
such that z0 /∈ B. One of the following cases must hold:
Case (i): For every ϵ > 0, there exists a z ∈ (z0 − ϵ, z0 + ϵ)
such that z ∈ B. Then we can find a sequence z1, z2, z3, . . .
such that zi ∈ B, i = 1, 2, 3, . . . and limi→∞ zi = z0 [12]. By
(4):

E{u1(z0, ψ−1)} = (z0 − c)(1− F (z0))

= lim
i→∞

(zi − c)(1− F (zi))

(by continuity of F (.))
= lim

i→∞
umax (by (5))

= umax (36)

Thus, z0 ∈ B, which is a contradiction.
Case (ii): There exists an interval (z0 − ϵ, z0 + ϵ) such that
z /∈ B ∀z ∈ (z0 − ϵ, z0 + ϵ). Let:

z̃l = sup{z ≤ z0 − ϵ : z ∈ B}
z̃r = inf{z ≥ z0 + ϵ : z ∈ B}

Note that the supremum and infimum exist because zl, zr ∈ B
and hence the sets over which the supremum and infimum are

taken are non-empty. Now, similar to (36), it can be shown
using continuity of F (.) that z̃l, z̃r ∈ B. Putting x = z̃l and
x = z̃r in (5) and using (4), we get:

F (z̃l) = 1− umax

z̃l − c

F (z̃r) = 1− umax

z̃r − c

By the above two equations, since umax > 0 and z̃l < z̃r:

F (z̃l) < F (z̃r) (37)

But by definition of z̃l and z̃r, z /∈ B ∀z ∈ (z̃l, z̃r).
So for every primary i, P (pi ∈ (z̃l, z̃r)) = 0. Hence,
P (p′(k) ∈ (z̃l, z̃r)) = 0. That is, F (z̃r−) − F (z̃l) = 0,
where F (x−) = limy↑x F (y). By continuity of F (.), F (z̃r) =
F (z̃r−). So F (z̃l) = F (z̃r), which contradicts (37).

Thus, B is contiguous, and hence is an interval. Also, by
continuity of F (x), it can be shown similar to (36) that the
endpoints of B are best responses, i.e. B is closed. Let B =
[p̃, zr] for some c < p̃ < zr ≤ v.

Next, we show, using contradiction, that zr = v. Suppose
zr < v. Then z /∈ B ∀z ∈ (zr, v]. So P (pi ∈ (zr, v]) = 0 and
hence P (p′(k) ∈ (zr, v]) = 0. Thus:

F (zr) = F (v) (38)

By (4) and (38):

E{u1(zr, ψ−1)} = (zr − c)(1− F (v)). (39)

Also,

E{u1(v, ψ−1)} = (v − c)(1− F (v)) (40)
> E{u1(zr, ψ−1)} (by (39))

which contradicts the fact that zr ∈ B. So zr ̸< v and hence
zr = v, which completes the proof.

Proof of Lemma 3: Let

F(y) =

n−1∑
i=k

(
n− 1
i

)
yi(1− y)n−1−i, y ∈ [0, 1] (41)

F(y) is a continuous and strictly increasing function and
F(0) = 0, F(1) = 1 [9]. So F(.) is invertible. By (12) and
(41), F (x) = F(ϕ(x)); so ϕ(.) is unique and given by:

ϕ(x) = F−1(F (x)) (42)

Also, since F is a continuous one-to-one map from the
compact set [0, 1] onto [0, 1], F−1 is continuous (see Theorem
4.17 in [12]). Also, F (x) in (11) is continuous. So from (42),
ϕ(x) is a continuous function of x, since it is the composition
of continuous functions F−1 and F (see Theorem 4.7 in [12]).
Now, by (11), F (p̃) = 0 and F (v) = w(q, n). Also, by
(41), F(0) = 0 and by (8) and (41), F(q) = w(q, n).
So by (42), ϕ(p̃) = F−1(F (p̃)) = F−1(0) = 0 and
ϕ(v) = F−1(F (v)) = F−1(w(q, n)) = q. The result follows.

Proof of Lemma 4: Since Z, the number of primaries
who have unused bandwidth, is a Binomial(n, q) r.v., its mean
and variance are E(Z) = nq and var(Z) = nq(1 − q)
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respectively [14]. First, suppose k ≤ (n− 1)(q − ϵ) for some
ϵ > 0. Let:

Y =

{
k, if Z ≥ k
0, else

Then:

E{min(Z, k)}
≥ E(Y )

= kP (Z ≥ k)

= k(1− P (Z < k))

≥ k(1− P (Z ≤ (n− 1)(q − ϵ)))

(since k ≤ (n− 1)(q − ϵ))

≥ k(1− P (|Z − nq| ≥ (n− 1)ϵ))

≥ k

(
1− nq(1− q)

(n− 1)2ϵ2

)
(43)

(by Chebyshev’s inequality [14])

Now, let Z1 be a Binomial(n− 1, q) random variable. Note
that E(Z1) = (n − 1)q and var(Z1) = (n − 1)q(1 − q). By
(8):

1− w(q, n) = P (Z1 < k)

≤ P (Z1 ≤ (n− 1)(q − ϵ))

(since k ≤ (n− 1)(q − ϵ))

≤ P (|Z1 − (n− 1)q| ≥ (n− 1)ϵ)

≤ 2 exp

(
−2(n− 1)2ϵ2

n− 1

)
(by Hoeffding’s inequality [26])

= 2 exp
(
−2(n− 1)ϵ2

)
(44)

By (18), (43) and (44):

η ≤
2nq exp

(
−2(n− 1)ϵ2

)
k
(
1− nq(1−q)

(n−1)2ϵ2

) → 0 as n→ ∞

which proves the first part.
Now, suppose k ≥ (n − 1)(q + ϵ) for some ϵ > 0. Since

E{min(Z, k)} ≤ E(Z) = nq, by (18):

η ≥ nq(1− w(q, n))

nq
= 1− w(q, n)

= 1− P (Z1 ≥ k)

≥ 1− P (Z1 ≥ (n− 1)(q + ϵ))

(since k ≥ (n− 1)(q + ϵ))

≥ 1− P (|Z1 − (n− 1)q| ≥ (n− 1)ϵ)

≥ 1− (n− 1)q(1− q)

(n− 1)2ϵ2
(by Chebyshev’s inequality)

→ 1 as n→ ∞

which proves the second part.

B. Proofs of Results in Section IV

Proof of Theorem 3: Let uOS
i be the expected payoff

that primary i receives in the one-shot game symmetric NE, in
which each primary plays the strategy ψ(.) in (13). Let uPD

i

be his expected payoff in each stage game of the repeated
game when all primaries play the pre-deviation strategy in the
above Nash reversion strategy. Also, let usupi be the supremum
over the possible expected payoffs that primary i can get in
a single stage game by using any strategy, when all primaries
played the pre-deviation strategy in all slots until the previous
stage game, and primaries other than i play the pre-deviation
strategy in the current stage game.

It can be shown that a necessary and sufficient condition for
the above Nash reversion strategy to be a SPNE is (the proof
is similar to that of Lemma 12.AA.1 in [1]):

usupi +
qδ

1− δ
uOS
i ≤ uPD

i +
qδ

1− δ
uPD
i (45)

Note that the left-hand side is primary i’s maximum (dis-
counted) payoff starting from a given slot if he deviates from
the pre-deviation strategy, and the right-hand side is the payoff
if he does not deviate. The factor q appears in the second term
on either side to account for the fact that primary i would
have free bandwidth in each future slot with probability q. So
if condition (45) is met, primary i would not deviate from its
pre-deviation strategy.

Next, we compute uPD
i , uOS

i and usupi . Let E(n, q) be the
event that when primary 1 has bandwidth available, and sets
p1 = v, and each primary i = 2, . . . , n sets pi = v (provided
he has bandwidth available), then primary 1 is among the
primaries from whom bandwidth is bought by secondaries.
Let the random variable A be the number of primaries from
2, . . . , n who have bandwidth available. Note that A has a
Binomial(n− 1, q) distribution. So:

P (A = i) =

(
n− 1
i

)
qi(1− q)n−1−i (46)

By definition of A, A + 1 primaries have unused bandwidth,
and if A + 1 > k, then bandwidth is bought from k of them
selected uniformly at random. So:

P (E(n, q)|A = i) =

{
1, i < k(

k
i+1

)
, i ≥ k

(47)

Now,

P (E(n, q)) =
n−1∑
i=0

P (E(n, q)|A = i)P (A = i)

=
k−1∑
i=0

(
n− 1
i

)
qi(1− q)n−1−i

+

n−1∑
i=k

(
k

i+ 1

)(
n− 1
i

)
qi(1− q)n−1−i

(by (46) and (47))
= 1− w(q, n) + β(q, n) (by (8) and (19))(48)

Now, uOS
i = (v − c)(1 − w(q, n)) as derived in Sec-

tion III. Also, by definition of the event E(n, q), uPD
i =

(v − c)P (E(n, q)). Finally, since the strategy pi = v − ϵ
yields the payoff v − ϵ − c for every ϵ > 0, we have
usupi = supϵ>0{v − ϵ − c} = (v − c). Substituting these
expressions into (45), putting the value of P (E(n, q)) from



11

(48), and some algebraic simplification, yields that the above
Nash reversion strategy is an SPNE if and only if δ ≥ δt.

C. Proofs of Results in Section V

Proof of Lemma 5: Let

f2(x) = (x− c)(v − x)− (1− q)n−1(v − c)2

4

Note that f2(x) is a quadratic; so it has at most two distinct
roots. Hence, it is sufficient to show that f2(x) has exactly
one root in (c, vT ), the other root being in (vT , v). Now,

f2(c) = − (1− q)n−1(v − c)2

4
< 0

f2(vT ) = (vT − c)(v − vT )−
(1− q)n−1(v − c)2

4

=
(v − c)2

4

{
1− (1− q)n−1

}
> 0

So, since f2(x) is continuous, by the intermediate value
theorem [12], it has a root in (c, vT ). Also,

f2(v) = − (1− q)n−1(v − c)2

4
< 0

So again, by the intermediate value theorem, f2(x) has a root
in (vT , v), and the result follows.

Proof of Lemma 6: Let

f3(x) =
4(x− c)(v − v)

(1− q)n−1(v − c)2

Then:

f3(p̃1) =
4(p̃1 − c)(v − v)

(1− q)n−1(v − c)2

=
v − v

v − p̃1
(by(27))

< 1 (since p̃1 < v < v)

and

f3(v) =
4(v − c)(v − v)

(1− q)n−1(v − c)2

=
(v − c)(v − v)

(p̃1 − c)(v − p̃1)
(by(27))

So f3(v) > 1 iff:

(v − c)(v − v) > (p̃1 − c)(v − p̃1)

⇔ (v − p̃1)(v + c− v − p̃1) > 0

which is true because v − p̃1 > 0 and v + c > 2v > v + p̃1.
Thus, f3(p̃1) < 1 and f3(v) > 1. Since f3(x) is continuous,
by the intermediate value theorem [12], there exists p̃2, where
p̃1 < p̃2 < v, such that f3(p̃2) = 1, i.e. (29) is satisfied.

Also, since f3(.) is of the form f3(x) = a(x − c), where
a > 0, f3 is one-to-one and hence p̃2 is unique.

Proof of Theorem 5: Let p1, p̃2 ≤ p1 ≤ v, be fixed. If
p1 < p2, then primary 1’s bandwidth is sold, and if p1 > p2,
then primary 1’s bandwidth is sold iff primary 2 has no unused

bandwidth, which happens w.p. 1− q2. So primary 1’s utility
is given by:

u1(p1, p2) =

{
p1 − c if p1 < p2
(p1 − c)(1− q2) if p1 > p2

(49)

Suppose primary 2 uses the mixed strategy ψ2(.). Note that
for fixed p1, since ψ2(.) is continuous, the event p2 = p1 has
zero probability. Hence,

Ep2 [u1(p1, p2)]

= (p1 − c)P (p2 > p1) + (p1 − c)(1− q2)P (p2 < p1)

= (p1 − c)[1− ψ2(p1)] + (p1 − c)(1− q2)ψ2(p1)

= (p1 − c)(1− q2ψ2(p1))

= (p1 − c)

(
1− q2

1

q2

(
p1 − p̃2
p1 − c

))
= p̃2 − c (50)

Thus, primary 1’s expected payoff is constant, equal to p̃2−c,
for p̃2 ≤ p1 ≤ v. For p1 < p̃2, primary 1’s payoff is at most
p1 − c < p̃2 − c. So p1 is a best response to ψ2(.) for each
p1 ∈ [p̃2, v]. Since ψ1(.) randomizes over p1 ∈ [p̃2, v], ψ1(.)
is a best response to ψ2(.).

Now, let p2, p̃2 ≤ p2 < v, be fixed. Similar to (49):

u2(p1, p2) =

{
p2 − c if p2 < p1
(p2 − c)(1− q1) if p2 > p1

Suppose primary 1 uses the mixed strategy ψ1(.). Since ψ1(p1)
is continuous on p̃2 ≤ p1 < v, P (p1 = p2) = 0 for p̃2 ≤ p2 <
v. So for p̃2 ≤ p2 < v, similar to the derivation of (50):

Ep1(u2(p1, p2)) = (p2 − c)P (p1 > p2)

+(p2 − c)(1− q1)P (p1 < p2)

= p̃2 − c (51)

For p2 < p̃2:

u2(p1, p2) ≤ p2 − c < p̃2 − c (52)

Now, let p2 = v. If p1 = v, then primary 2’s payoff is (v−c) if
primary 1 has no unused bandwidth or if primary 1 has unused
bandwidth and the secondary (randomly) selects primary 2 to
buy bandwidth from, and 0 otherwise. Thus, if p1 = v, then
the probability that primary 2’s payoff is (v−c) is 1−q1+ q1

2 =
1− q1

2 . Thus,

u2(p1, v) =

{
(v − c)(1− q1) if p1 < v
(v − c)

(
1− q1

2

)
if p1 = v

Now, P (p1 < v) = ψ1(v−) = 1
q1

(
v−p̃2

v−c

)
and P (p1 = v) =

1− q2
q1
> 0. Hence:

Ep1(u2(p1, v)) = (v − c)(1− q1)P (p1 < v)

+(v − c)
(
1− q1

2

)
P (p1 = v)

= (v − c)(1− q1)
1

q1

(
v − p̃2
q1(v − c)

)
+(v − c)

(
1− q1

2

)(
1− q2

q1

)
≤ 1− q1

q1
(v − p̃2) + (v − c)

(
1− q2

q1

)
= p̃2 − c (using p̃2 = v − q2(v − c))(53)
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By (51), (52) and (53), each p2, p̃2 ≤ p2 < v, is a best
response. Since ψ2(.) randomizes over p2 ∈ [p̃2, v), ψ2(.)
is a best response to ψ1(.). Thus, (ψ1(.), ψ2(.)) is a Nash
equilibrium.


