
1

Spectrum Pricing Games with Spatial Reuse in
Cognitive Radio Networks

Gaurav S. Kasbekar and Saswati Sarkar

Abstract—In Cognitive Radio Networks (CRN), there are
multiple primary and secondary users in a region, and primaries
can lease out their unused bandwidth to secondaries in exchange
for a fee. This gives rise to price competition among the primaries,
wherein each primary tries to attract secondaries by setting
a lower price for its bandwidth than the other primaries.
Radio spectrum has the distinctive feature that transmissions
at neighboring locations on the same channel interfere with
each other, whereas the same channel can be used at far-off
locations without mutual interference. So in the above price
competition scenario in a CRN, each primary must jointly select
a set of mutually non-interfering locations within the region
(which corresponds to an independent set in the conflict graph
representing the region) at which to offer bandwidth and the
price at each location. In this paper, we analyze this price
competition scenario as a game and seek a Nash Equilibrium
(NE). We identify a class of conflict graphs, which we refer to
as mean valid graphs, such that the conflict graphs of a large
number of topologies that commonly arise in practice are mean
valid. We explicitly compute a symmetric NE in mean valid
graphs and show that it is unique.

Index Terms—Cognitive Radio Networks, Price Competition,
Game Theory, Nash Equilibrium, Spatial Reuse, Mean Valid
Graphs

I. INTRODUCTION

Cognitive Radio Networks (CRN) [1] are emerging as a
promising solution for the efficient use of spectrum. In these
networks, there are two types of spectrum users: (i) primary
users who lease certain portions (channels or bands) of the
spectrum directly from the regulator, and (ii) secondary users
who can use a channel when it is not used by the primary. We
consider a CRN with multiple primary and secondary users
in a region. Time is slotted, and in every slot, each primary
has unused bandwidth with some probability, which it would
like to lease to the secondaries. Now, secondaries would like to
lease bandwidth from the primaries that offer it at a low price,
which results in price competition among the primaries. Price
competition is naturally modeled using game theory [2], and
has been extensively studied in economics using, for example,
the classical Bertrand game [5] and its variants.

However, a CRN has several distinguishing features, which
makes the price competition very different from oligopolies
encountered in economics. First, in every slot, each primary
may or may not have unused bandwidth available. So a
primary who has unused bandwidth is uncertain about the
number of primaries from whom it will face competition.
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Setting a low price will result in unnecessarily low revenues in
the event that very few other primaries have unused bandwidth,
because even with a higher price the primary’s bandwidth
would have been bought, and vice versa. Second, spectrum is
a commodity that allows spatial reuse: the same band can be
simultaneously used at far-off locations without interference;
on the other hand, simultaneous transmissions at neighboring
locations on the same band interfere with each other. Thus,
spatial reuse provides an opportunity to primaries to increase
their profit by selling the same band to secondaries at different
locations, which they can utilize subject to satisfying the
interference constraints. So when multiple primaries own
bandwidth in a large region, each needs to decide on a set of
non-interfering locations within the region, which corresponds
to an independent set in the conflict graph representing the
region, at which to offer bandwidth. This is another source
of strategic interaction among the primaries– each primary
would like to select a maximum-sized independent set to
offer bandwith at; but if a lot of primaries offer bandwidth
at the same locations, there is intense competition at those
locations. So a primary would have benefited by instead
offering bandwidth at a smaller independent set and charging
high prices at those locations.

Some progress has been made in addressing the issue of
bandwidth uncertainty, both in the CRN setting [19], [20] and
in the context of price competition among multiple firms in the
Economics literature [8]. The issue of spatial reuse, however,
arises specifically in the context of spectrum trading and has
not been investigated either in prior work on price competition
in CRNs [11], [12], [13], [14], [15], [16] or otherwise. See
Section II for a survey of related work.

In this paper, we analyze price competition in CRNs jointly
considering both bandwidth uncertainty and spatial reuse, and
specifically focusing on the latter. We formulate the problem
as a game in which each primary needs to select (i) a set
of locations at which to offer bandwidth and (ii) the price
of bandwidth at each location. We seek to obtain a Nash
Equilibrium (NE) in this game. The challenge in doing so
is that, since prices can take values from a continuous set,
the strategy sets of primaries are uncountably infinite. So it is
not apriori clear whether a NE exists, and there is no standard
algorithm for finding a NE, unlike when each player’s strategy
set is finite [2].

We focus on symmetric NE, in which every player uses the
same strategy, since our game turns out to be a symmetric
game. Our first contribution is to prove a separation theorem
(Section III-D), which states that in a symmetric NE, the
price distributions used by the primaries at different nodes
are uniquely determined once the independent set selection
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distributions are obtained. We therefore focus on comput-
ing the latter, which in turn provides the joint independent
set and price selection strategies, by virtue of our prior
results [19], [20] that characterize price competition in the
absence of spatial reuse.

We focus on a class of conflict graphs that we refer to as
mean valid graphs. These are graphs whose node set can be
partitioned into d disjoint maximal independent sets I1, . . . , Id,
for some integer d ≥ 2, and which satisfy another technical
condition to be introduced later (in Section IV). As we show
in Section VI-A, it turns out that the conflict graphs of a large
number of topologies that arise in practice are mean valid. In
particular, several lattice arrangements of nodes in two and
three dimensions are mean valid, e.g., a grid graph in two
dimensions, such as that in part (b) of Fig. 3 or Fig. 13, which
may be the conflict graph of shops in a shopping complex, the
conflict graph of a cellular network with hexagonal cells (see
Figs. 7 and 8), a grid graph in three dimensions, which may
represent offices in a corporate building (see Fig. 6) etc.

We show that a mean valid graph has a unique symmetric
NE; in this NE, each primary offers bandwidth only at some
or all of the independent sets in I1, . . . , Id with positive
probability and with 0 probability at every other independent
set. These probabilities (and thereby the NE strategies) can
be explicitly computed by solving a system of equations that
we provide. The fact that primaries offer bandwidth with a
positive probability at only a small number of independent
sets is a surprising result, because in most graphs, including
the examples in the previous paragraph, the number of in-
dependent sets is exponential in the number of nodes. Our
characterization of the symmetric NE also reveals that when
the probability q that a primary has unused bandwidth is
small, primaries only offer bandwidth at the larger independent
sets out of I1, . . . , Id and as q increases, primaries also start
offering bandwidth at the smaller ones. This is because, for
given prices, a larger independent set yields a larger revenue.
However, as q increases, the price competition at the large
independent sets becomes intense and drives down the prices
and revenues at those independent sets. So primaries also offer
bandwidth at the smaller independent sets.

The paper is organized as follows. We review related work
in Section II and describe our model in Section III-A. In
Section III-C, we provide a summary of the results on price
competition at a single location that were developed in our
prior work [19], [20]. We introduce mean valid graphs in
Section IV and provide several examples. In Section V, we
prove the theorem, discussed above, on characterization of the
unique symmetric NE in mean valid graphs. In Section VI, we
show that the conflict graphs of several topologies of practical
interest as well as some other common types of graphs are
mean valid. In Section VII-A, we show that the mean validity
condition is a necessary condition for the existence of a
symmetric NE of the above form when d = 2, and also find
the symmetric NE and prove its uniqueness in a specific non
mean valid graph.

II. RELATED WORK

Pricing related issues have been extensively studied
in the context of wired networks and the Internet;
see [10] for an overview. Price competition among spec-
trum providers in wireless networks has been studied
in [11], [12], [13], [14], [15], [16]. Specifically, Niyato et. al.
analyze price competition among multiple primaries in CRNs
[15], [16]. However, neither uncertain bandwidth availability,
nor spatial reuse is modeled in any of the above papers. Also,
most of these papers do not explicitly find a NE (excep-
tions are [12], [15]). Our model incorporates both uncertain
bandwidth availability and spatial reuse, which makes the
problem challenging; despite this, we are able to explicitly
compute a NE. Zhou et. al. [17] have designed double auction
based spectrum trades in which an auctioneer chooses an
allocation taking into account spatial reuse and bids. However,
in the price competition model we consider, each primary
independently sells bandwidth, and hence a central entity such
as an auctioneer is not required.

In the economics literature, the Bertand game has been
traditionally used to study price competition in oligopolies [5]–
in this game, each seller quotes a price for a good, and
the buyers buy from the seller that quotes the lowest price.
Several variants of the Bertrand game have also been studied,
e.g., [6], [7], [8], [18]. Chawla et al. [18] consider price
competition in networks where each seller owns a capacity-
constrained link, and decides the price for using it; the con-
sumers choose paths they would use in the networks based on
the prices declared and pay the sellers accordingly. Note that
in our model, the sellers need to decide the locations at which
to offer bandwidth as well as the price at each location. In
addition, the link capacities are deterministic in [18], whereas
the availability of bandwidth is random in our model. However,
none of the above papers [6], [7], [8], [18] consider the
spectrum-specific issue of spatial reuse, which introduces a
new dimension, that each player not only needs to determine
the price of the commodity it owns (as in [6], [7], [8], [18]),
but also select an independent set to compete in. The joint
decision problem significantly complicates the analysis.

III. MODEL, PROBLEM DEFINITION AND BACKGROUND

A. Model

Suppose there are n ≥ 2 primaries, each of whom owns a
channel throughout a large region. Time is divided into slots
of equal duration. In every slot, each primary independently
either uses its channel throughout the region to satisfy its own
subscriber demand, or does not use it anywhere in the region.
A typical scenario where this happens is when primaries
broadcast the same signal over the entire region, e.g., if they
are television broadcasters. Let q ∈ (0, 1) be the probability
that a primary does not use its channel in a slot (to satisfy
its subscriber demand). For tractability, we assume that the
probability q is the same for all primaries; we discuss the effect
of relaxing this assumption in Section IX. Now, the region
contains smaller parts, which we refer to as locations. For
example, the large region may be a state, and the locations may
be towns within it. We first assume that there are k secondaries
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at each location, and in Section VII-B outline how the results
can be generalized to allow for random and potentially unequal
number of secondaries at different locations.

A primary who has unused bandwidth in a slot can lease
it out to secondaries at a subset of the locations, provided
this subset satisfies the spatial reuse constraints, which we
describe next. The overall region can be represented by an
undirected graph [4] G = (V,E), where V is the set of nodes
and E is the set of edges, called the conflict graph, in which
each node represents a location, and there is an edge between
two nodes iff transmissions at the corresponding locations
interfere with each other. Recall that an independent set [4]
(I.S.) in a graph is a set of nodes such that there is no edge
between any pair of nodes in the set. Now, a primary who
is not using its channel must offer it at a set of mutually
non-interfering locations, or equivalently, at an I.S. of nodes;
otherwise secondaries1 will not be able to successfully transmit
simultaneously using the bandwidth they purchase, owing to
mutual interference.

A primary i who offers bandwidth at an I.S. I , must also
determine for each node v ∈ I , the access fee, pi,v , to be
charged to a secondary if the latter leases the bandwidth at
node v. A primary incurs a cost of c ≥ 0 per slot per node
for leasing out bandwidth. This cost may arise, for example,
if the secondary uses the primary’s infrastructure to access the
Internet.

We assume that pi,v ≤ ν for each primary i and each node
v, for some constant ν > c. This upper bound ν may arise as
follows:

1) The spectrum regulator may impose this upper bound
to ensure that primaries do not excessively overprice
bandwidth even when competition is limited owing to
bandwidth scarcity or high demands from secondaries,
or when the primaries collude.

2) Alternatively, the valuation of each secondary for 1 unit
of bandwidth may be ν, and no secondary will buy
bandwidth at a price that exceeds its valuation.

We assume that the primaries know this upper limit ν.
Secondaries buy bandwidth from the primaries that offer

the lowest price. More precisely, in a given slot, let Z be
the number of primaries who offer unused bandwidth at a
node. Then, since there are k secondaries at each node, the
bandwidth of the min(Z, k) primaries that offer the lowest
prices is bought (ties are resolved at random) at the node. The
utility of a primary i who offers bandwidth at an I.S. I and
sets a price of pi,v at node v ∈ I is given by

∑
(pi,v − c),

where the summation is over the nodes v ∈ I at which primary
i’s bandwidth is bought. (The utility is 0 if bandwidth is not
bought at any node).

Thus, each primary must jointly select an I.S. at which
to offer bandwidth, and the prices to set at the nodes in it.
Both the I.S. and price selection may be random. Thus, a
strategy, say ψi, of a primary i provides a probability mass
function (p.m.f.) for selection among the I.S. and the price

1Note that secondaries are usually customers or local providers, and
purchase bandwidth for communication (and not television broadcasts). Thus,
two secondaries can not use the same band simultaneously at interfering
locations.

distribution it uses at each node (both selections contingent
on having unused bandwidth). Note that we allow a primary
to use different (and arbitrary) price distributions for different
nodes (and therefore allow, but do not require, the selection of
different prices at different nodes), and arbitrary p.m.f. (i.e.,
discrete distributions) for selection among the different I.S.

The case k ≥ n is trivial: in this case, the strategy of offering
bandwidth at a maximum-sized I.S. and setting the maximum
price ν at every node in the I.S. maximizes the utility of each
primary i regardless of the strategies of the other primaries.
This is because, since k ≥ n, the number of buyers at every
node is always greater than or equal to the number of sellers.
So henceforth, we assume that k ≤ n− 1.

B. Symmetric Nash Equilibrium

The vector (ψ1, . . . , ψn) of strategies of the pri-
maries is called a strategy profile [5]. Let ψ−i =
(ψ1, . . . , ψi−1, ψi+1, . . . , ψn) denote the vector of strategies
of primaries other than i. Let E{ui(ψi, ψ−i)} denote the
expected utility of primary i when it adopts strategy ψi and
the other primaries adopt ψ−i.

Definition 1 (Nash Equilibrium (NE), Symmetric NE):
A Nash equilibrium (NE) is a strategy profile such that
no player can improve its expected utility by unilaterally
deviating from its strategy [5]. Thus, (ψ∗

1 , . . . , ψ
∗
n) is a NE if

for each primary i:

E{ui(ψ∗
i , ψ

∗
−i)} ≥ E{ui(ψ̃i, ψ

∗
−i)}, ∀ ψ̃i (1)

A NE (ψ∗
1 , . . . , ψ

∗
n) is a symmetric NE if all players play

identical strategies under it, i.e., ψ∗
1 = ψ∗

2 = . . . = ψ∗
n.

Equation (1) says that when players other than i play ψ∗
−i,

ψ∗
i maximizes i’s expected utility; ψ∗

i is said to be its best
response [5] to ψ∗

−i.
Now, note that in the game defined in Section III-A, all the

n players (primaries) have identical strategy sets and utility
functions. Such a game is said to be a symmetric game. In a
symmetric game, in practice, it is challenging to implement a
NE that is not symmetric– the simple example of two primaries
and a NE of (ψ∗

1 , ψ
∗
2) elucidates the inherent complications

in the current context. If ψ∗
1 ̸= ψ∗

2 , then since the game
is symmetric, (ψ∗

2 , ψ
∗
1) also constitutes a NE. If player 1

knows that player 2 is playing ψ∗
2 (ψ∗

1 respectively), it would
choose the best response ψ∗

1 (ψ∗
2 respectively), but it can

not know player 2’s choice between the two options without
explicitly coordinating with him, which is again ruled out due
to the competition between the two. Under symmetric NE,
all players play the same strategy, and thus this quandary is
somewhat limited– symmetric NE has indeed been advocated
for symmetric games by several game theorists [9]. The natural
question now is whether there exists at least one symmetric
NE, and also whether there is a unique symmetric NE (only
uniqueness will eliminate the above quandary). Note that some
symmetric games are known to have multiple symmetric NE,
e.g. the “Meeting in New York game” (see [5], p. 221).

We show the existence of a symmetric NE, by explicitly
computing one, and prove that it is the unique symmetric NE
in our context.
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C. Single Location

In this subsection, we briefly summarize the main results for
price competition among multiple primaries and secondaries at
a single location, which were dealt with in detail in [19], [20].

Since there is only one location, there are no spatial reuse
constraints, and the strategy of a primary i is a distribution
function (d.f.) ψi(.), which it uses to select the price.

Let

w(q, n) =

n−1∑
i=k

(
n− 1
i

)
qi(1− q)n−1−i. (2)

Since each primary independently has unused bandwidth with
probability (w.p.) q, w(q, n) is the probability that k or more
out of n− 1 primaries have unused bandwidth. We will later
use the following fact [19]:

Lemma 1: w(q, n) is a strictly increasing function of q for
fixed n.
Now, let:

p̃ = ν − w(q, n)(ν − c). (3)

In [19], we showed that in the price competition game at a
single location, there is a unique symmetric NE in which each
primary randomizes over the prices in the range [p̃, v] using
a continuous distribution function (d.f.) ψ(.) (see Theorem 2
in [19]). Also, ψ(.) is strictly increasing on [p̃, v]; in particular,
every price in [p̃, v] is a best response for each primary [19].
An explicit expression for ψ(.) has been computed in [19].
Finally, under this symmetric NE, each primary receives an
expected payoff of [19]:

p̃− c = (ν − c)(1− w(q, n)) (4)

D. A Separation Result

Recall that a strategy of a primary consists of a p.m.f.
over I.S. and price distributions at individual nodes. We
now provide a separation framework from which the price
distributions at individual nodes in a symmetric NE follow
once the I.S. selection p.m.f.s are determined.

Let I be the set of all I.S. in G. For convenience, we
assume that the empty I.S. I∅ ∈ I and we allow a primary to
offer bandwith at I∅, i.e. to not offer bandwidth at any node,
with some probability. Consider a symmetric strategy profile
under which each primary offers bandwidth at I.S. I ∈ I w.p.
β(I), where: ∑

I∈I

β(I) = 1. (5)

The probability, say αv , with which each primary offers
bandwidth at a node v ∈ V equals the sum of the probabilities
associated with all the I.S. that contain the node, i.e.

αv =
∑

I∈I :v∈I

β(I) (6)

Now, considering that each primary has unused bandwidth
w.p. q, it offers it at node v w.p. qαv . The price selection
problem at each node v is now equivalent to that for the
single location case, the difference being that each primary
offers unused bandwidth w.p. qαv , instead of q, at node v.
Thus:

Lemma 2: Suppose under a symmetric NE each primary
selects node v w.p. αv if it has unused bandwidth. Then under
that NE the price distribution of each primary at node v is the
d.f. ψ(.) in Section III-C, with qαv in place of q.
Thus, a symmetric NE strategy is completely specified once
the I.S. selection p.m.f. {β(I) : I ∈ I } (which will in turn
provide the αvs via (6)) is obtained.

E. Node and I.S. Probabilities

Consider a symmetric NE where each primary uses the
strategy ψ, under which it offers bandwidth at I.S. I ∈ I
with some probability β(I). The probability, αv , with which
each primary offers bandwidth at a node v ∈ V is determined
by the I.S. distribution {β(I) : I ∈ I } via (6).

Now, for simplicity, we normalize ν − c = 1. With w(q, n)
as in (2), let:

W (α) = (1− w(qα, n))(ν − c) = (1− w(qα, n)). (7)

By Lemma 2, and similar to (4) in the single location case,
in a symmetric NE if primaries offer bandwidth at a node
with probability α (and play the single-node NE strategy
with qα in place of q at that node), then W (α) is the
maximum expected payoff that each primary i can get at that
node. It gets this payoff W (α) if it sets any price in the
range [ν − w(qα, n)(ν − c), ν] at that node. Under the above
symmetric NE with strategy profile (ψ, . . . , ψ), each primary
offers bandwidth at node v ∈ V w.p. αv . So the expected
payoff of each primary i is given by:

E{ui(ψ,ψ−i)} =
∑
v∈V

αvW (αv). (8)

Now, in general, different I.S. distributions {β(I) : I ∈ I }
can result in the same node distribution 2 {αv : v ∈ V }.
However, by (8), the expected payoff of each primary in a
symmetric NE is completely determined by the node distri-
bution, i.e. it is the same under different I.S. distributions
that correspond to the same node distribution. So if primary
i knows the node distribution chosen by the other primaries,
then it has sufficient information to choose its best response; it
does not need to know their I.S. distribution in addition. Thus,
the game aspect of the price competition, i.e. the strategic
interaction between the primaries, is completely determined
by the node distribution.

We now introduce a definition:
Definition 2 (Valid Distribution): An assignment {αv : v ∈

V } of probabilities to the nodes is said to be a valid distribu-
tion if there exists a probability distribution {β(I) : I ∈ I }
such that for each v ∈ V , αv =

∑
I∈I :v∈I β(I).

Note that, given a valid distribution {αv : v ∈ V }, a
corresponding I.S. distribution can be computed by solving
the system of linear equations (6).

Thus, we can equivalently define the strategy of a primary
in a symmetric NE as a node distribution {αv : v ∈ V }.
So henceforth, we interchangeably speak of the strategy of a
primary as either an I.S. distribution {β(I) : I ∈ I } (note

2Although we refer to {αv : v ∈ V } as a distribution, note that
∑

v∈V αv

need not equal 1 in general.
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that the price distribution follows by Lemma 2) or a node
distribution {αv : v ∈ V }. Also, we say that the symmetric
NE is unique if the node distribution {αv : v ∈ V } is unique.

IV. MEAN VALID GRAPHS

We now introduce a class of graphs, which we refer to
as mean valid graphs. The motivation behind studying these
graphs is that the conflict graphs of several topologies that
commonly arise in practice are mean valid graphs. Also, as we
show in the next section, these graphs have a unique symmetric
NE, which can be explicitly computed and has a simple form.

A. Definition

Definition 3 (Mean Valid Graph): We refer to a graph G =
(V,E) as mean valid if it satisfies the following two condi-
tions:

1) Its vertex set can be partitioned into d disjoint maximal 3

I.S. for some integer d ≥ 2: V = I1∪I2∪. . .∪Id, where
Ij , j ∈ {1, . . . , d}, is a maximal I.S. and Ij ∩ Im = ∅,
j ̸= m.
Let |Ij | =Mj ,

M1 ≥M2 ≥ . . . ≥Md, (9)

and Ij = {aj,l : l = 1, . . . ,Mj}.
2) For every valid distribution 4 in which a primary of-

fers bandwidth at node aj,l w.p. αj,l, j = 1, . . . , d,
l = 1, . . . ,Mj ,

d∑
j=1

αj ≤ 1, (10)

where

αj =

∑Mj

l=1 αj,l

Mj
, j ∈ {1, . . . , d}. (11)

We now explain the two conditions in Definition 3. Recall
that a graph G = (V,E) is said to be d-partite if V can
be partitioned into d disjoint I.S. I1, . . . , Id [4]. For example,
when d = 2, G is a bipartite graph. The first condition in
Definition 3 says that G is a d-partite graph and has the
additional property that each of I1, . . . , Id is a maximal I.S.

Now we explain Condition 2 in Definition 3. Let {αj,l :
j = 1, . . . , d; l = 1, . . . ,Mj} be an arbitrary valid distribution.
Consider the distribution α′

j,l = αj , with αj as in (11), i.e.
for each j and l = 1, . . . ,Mj , α′

j,l is set equal to the mean of
αj,m,m = 1, . . . ,Mj . If (10) is true, then this distribution
of means is a valid distribution because it corresponds to
the I.S. distribution {β(Ij) = αj , j = 1, . . . , d, β(I∅) =

1 −
∑d

j=1 αj ;β(I) = 0, I ̸= I1, . . . , Id, I∅}. Thus, Condition
2 in Definition 3 says that in G, the distribution of means
corresponding to every valid distribution is valid. As we will
see in Section V, this condition is the crux behind the fact
that in the symmetric NE in a mean valid graph, each primary
offers bandwidth with equal probabilities at all the nodes in
Ij for every j = 1, . . . , d.

3Recall that an I.S. I is said to be maximal if I ∪ {v} is not an I.S. for
all v ∈ V [4].

4Note that we write αj,l in place of αaj,l to simplify the notation.

B. Examples

Technical as Definition 3 may seem, it turns out that several
conflict graphs that commonly arise in practice are mean valid.
For example, consider the following graphs:

1) Let Gm denote a graph that is a linear arrangement of
m ≥ 2 nodes as shown in part (a) of Fig. 3, with an edge
between each pair of adjacent nodes. As an example,
this would be the conflict graph for locations along a
highway or a row of roadside shops.

2) We consider two types of m ×m grid graphs, denoted
by Gm,m (see part (b) of Fig. 3) and Hm,m (see
Fig. 13). In both these graphs, m2 nodes (locations) are
arranged in a square grid. In Gm,m, there is an edge
only between each pair of adjacent nodes in the same
row or column. In Hm,m, in addition to these edges,
there are also edges between nodes that are neighbors
along a diagonal as shown in Fig. 13. For example,
Gm,m or Hm,m may represent a shopping complex, with
the nodes corresponding to the locations of shops with
WiFi Access Points (AP) for Internet access. Depending
on the proximity of the shops to each other and the
transmission ranges of the APs, the conflict graph could
be Gm,m or Hm,m. Hm,m is also the conflict graph of a
cellular network with square cells as shown in Fig. 14.

3) Let Tm,m,m be a three-dimensional grid graph (see
Fig. 6), which may, for example, be the conflict graph
for offices in a corporate building or rooms in a hotel.

4) The conflict graph (Fig. 8) of a cellular network with
hexagonal cells (Fig. 7).

5) Consider a clique 5 of size e, where e ≥ 1 is any integer.
This is the conflict graph for any set of e locations that
are close to each other.

All of the above are mean valid graphs:
Theorem 1: The following graphs are mean valid, with d,

the number of disjoint maximal I.S., indicated in each case:
1) a clique of size e ≥ 1 (d = e),
2) a line graph Gm (d = 2),
3) a two-dimensional grid graph Gm,m (d = 2),
4) a two-dimensional grid graph Hm,m (d = 4),
5) a three-dimensional grid graph Tm,m,m (d = 8).
6) a cellular network with hexagonal cells, under Assump-

tion 1 in Section VI-A (d = 3).
We defer the proof of Theorem 1 to Section VI-A. Also,

as we show in Section VI-B, some other common classes of
graphs, such as a star and a κ-regular bipartite graph, are mean
valid as well.

A graph obtained by considering the union of disjoint mean
valid graphs, all of which correspond to the same integer d,
and then adding some edges to get a connected graph, is a
mean valid graph under some technical conditions 6, e.g., the
cellular networks in a group of neighboring towns or the WiFi
networks in the departments of a university campus. Fig. 1
illustrates the latter example.

5Recall that a clique or a complete graph of size e is a graph with e nodes
and an edge between every pair of nodes [4].

6These technical conditions are stated in Lemmas 10 and 11 in Sec-
tion VI-A.
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Fig. 1. The rectangles represent departments in a university campus and
the circles are the ranges of WiFi access points. The circles (nodes) in each
rectangle constitute a grid graph Hm,m, which is mean valid with d = 4 (see
part 4 of Theorem 1). The overall graph is also mean valid with d = 4. With
Ij , j ∈ {1, 2, 3, 4}, being disjoint maximal I.S. as in Definition 3, the number
in each circle indicates the I.S. to which the corresponding node belongs, i.e.
nodes corresponding to the circles numbered j ∈ {1, 2, 3, 4} belong to I.S.
Ij .

C. A Necessary and Sufficient Condition

We state a property of mean valid graphs for later use.
Lemma 3: Let G = (V,E) be a graph that satisfies Condi-

tion 1 in Definition 3. Suppose I ∈ I contains mj(I) nodes
from Ij , j = 1, . . . , d. G is mean valid if and only if:

d∑
j=1

mj(I)

Mj
≤ 1 ∀I ∈ I (12)

V. SYMMETRIC NE IN MEAN VALID GRAPHS

In this section, we show that a mean valid graph has a
unique symmetric NE; in this NE, in the notation of Def-
inition 3, primaries offer bandwidth at all the nodes in Ij ,
j ∈ {1, . . . , d}, with the same probability tj , i.e. αj,l = tj
∀l = 1, . . . ,Mj , where {tj : j = 1, . . . , d} is the unique
solution of a set of equations that we provide.

First, we will argue, by contradiction, that for each j,
αj,l = αj ∀l = 1, . . . ,Mj , where αj is given by (11). In
the symmetric NE (ψ, . . . , ψ), by (7) and the discussion just
after it, primary 1 gets an expected payoff of W (αj,l) at node
aj,l; also, by (8), its total expected payoff is:

E{u1(ψ,ψ−1)} =
d∑

j=1

Mj∑
l=1

αj,lW (αj,l) (13)

Suppose αj,l, l = 1, . . . ,Mj are not all equal for some j. By
(7) and Lemma 1, W (α) is a strictly decreasing function of α;
so primary 1 offers bandwidth with a high probability αj,l at
nodes aj,l at which it gets a low payoff W (αj,l). This seems
to suggest that primary 1 could get a higher overall payoff by
unilaterally switching to an alternative strategy, say ψ0, under
which it decreases (respectively, increases) the node probabili-
ties at nodes that yield a low (respectively, high) payoff, if such
a strategy ψ0 were to exist. This would contradict the fact that

the distribution {αj,l : j = 1, . . . , d; l = 1, . . . ,Mj} is primary
1’s best response and thereby imply that αj,l, l = 1, . . . ,Mj

must be equal for every j = 1, . . . , d.
The existence of such a strategy ψ0 is guaranteed by

Condition 2 in Definition 3– that (10) holds for every valid
distribution. Let ψ0 be a strategy under which primary 1 offers
bandwidth at each node in Ij , j ∈ {1, . . . , d} w.p. αj . Note
that

∑d
j=1 αj ≤ 1 by (10); so ψ0 is a valid distribution

since it corresponds to the I.S. distribution β(Ij) = αj ,
j ∈ {1, . . . , d}, β(I∅) = 1 −

∑d
j=1 αj , β(I) = 0, I ̸=

I1, . . . , Id, I∅. By (8), the total expected payoff of primary
1 if it plays strategy ψ0 is:

E{u1(ψ0, ψ−1)} =
d∑

j=1

Mj∑
l=1

αjW (αj,l) (14)

By (13) and (14):

E{u1(ψ,ψ−1)} − E{u1(ψ0, ψ−1)}

=
d∑

j=1

Mj∑
l=1

αj,lW (αj,l)− αj

Mj∑
l=1

W (αj,l)

(15)

Now, we have the following algebraic fact, proved in the
Appendix.

Lemma 4: Let N ≥ 2 be an integer, α1, . . . , αN be real
numbers and α =

∑N
i=1 αi

N . Let f(x) be any strictly decreasing
function of x. Then:

(
N∑
i=1

αif(αi)) ≤ α(
N∑
i=1

f(αi)) (16)

with equality iff α1 = . . . = αN = α.
Intuitively, since f(.) is strictly decreasing, in the LHS of
(16), the terms in which f(αi) is large are multiplied by small
factors αi and vice-versa; on the other hand, all terms f(αi)
on the RHS are multiplied by the same factor α. So the LHS
is smaller.

Now, as mentioned above, f(α) = W (α) = 1 − w(qα, n)
is a strictly decreasing function of α. So by Lemma 4, the
expression in (15) is ≤ 0, with equality holding iff αj,1 =
. . . = αj,Mj = αj for each j ∈ {1, . . . , d}. But since ψ
is a best response, E{u1(ψ,ψ−1)} ≥ E{u1(ψ0, ψ−1)}. So
the expression in (15) must equal 0 and hence αj,1 = . . . =
αj,Mj = αj for each j ∈ {1, . . . , d}.

Now, suppose
∑d

j=1 αj < 1. Then primary 1 can unilat-
erally offer bandwidth at each node in Id with probability
1−
∑d−1

j=1 αj > αd instead of αd and increase its payoff. This
contradicts the fact that the distribution is a NE. So we must
have

∑d
j=1 αj = 1. Thus, we have shown the following:

Lemma 5: In a mean valid graph, under every symmetric
NE, each primary offers bandwidth at each node in Ij w.p.
tj , j ∈ {1, . . . , d}, for some tj ≥ 0, j = 1, . . . , d, where∑d

j=1 tj = 1.
A typical way in which the node probability distribution αj,l =
tj ∀l = 1, . . . ,Mj , arises is via the I.S. distribution β(Ij) =
tj , j = 1, . . . , d;β(I) = 0 ∀I ̸= I1, . . . , Id.

The following result provides necessary conditions for a
distribution {tj : j = 1, . . . , d} as in Lemma 5 to constitute a
symmetric NE.
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Lemma 6: If a distribution {tj : j = 1, . . . , d} as in
Lemma 5 constitutes a symmetric NE, then I1, . . . , Id′ are
best responses and Id′+1, . . . , Id are not, for some integer
d′ ∈ {1, . . . , d}. Also, each I ∈ I containing a node from Ij
for some j > d′ is not a best response. Hence:

tj = 0, j > d′. (17)

Intuitively, a primary prefers to offer bandwidth at a large
I.S. because it gets some revenue at every node in the I.S.
it selects and its total payoff is the sum of the revenues at
the nodes of the I.S. Also, recall that by (9), I1, . . . , Id are
in decreasing order of size. So a primary will (i) try to offer
bandwidth only at the largest I.S. I1, (ii) offer bandwidth at
the next largest I.S. I2 as well with some probability only if
the competition at I1 increases beyond a threshold, (iii) offer
bandwidth at I3 as well with some probability only if the
competition at I1 and I2 increases beyond a certain threshold
and so on. Hence, the set of best responses out of I1, . . . , Id
is of the form I1, I2, . . . , Id′ for some 1 ≤ d′ ≤ d.

Now, if primary i offers bandwidth at I.S. I ′ ∈ I , its overall
expected payoff, denoted by U1(I

′), is the sum of the expected
payoffs at the nodes in I ′, which, by (7) and the discussion
just after it, is given by:

U1(I
′) =

∑
v∈I′

W (αv) =
∑
v∈I′

(1− w(qαv, n)). (18)

Now, consider a symmetric NE with {tj : j = 1, . . . , d} as in
Lemma 5. By (18) and the fact that |Ij | =Mj , the payoff of
primary 1 if it offers bandwidth at Ij is:

U1(Ij) =MjW (tj) (19)

By Lemma 6, I1, . . . , Id′ are best responses and Id′+1 is
not. So:

U1(I1) = . . . = U1(Id′) > U1(Id′+1)

Substituting (19) into the above and using (17) and the fact
that W (0) = 1− w(0, n) = 1, we get:

M1W (t1) = . . . =Md′W (td′) > Md′+1 (20)

Thus, we have shown the following:
Lemma 7: A distribution {tj : j = 1, . . . , d} as in Lemma 5

that constitutes a symmetric NE must satisfy (17) and (20) for
some integer d′ ∈ {1, . . . , d}.

Lemma 7 provides necessary conditions for a distribution
{tj : j = 1, . . . , d} to constitute a symmetric NE. The
following lemma shows that these conditions are sufficient as
well.

Lemma 8: Let 1 ≤ d′ ≤ d and t1, . . . , td be a probability
distribution such that (17) and (20) hold. Then the symmetric
strategy profile in which every primary offers bandwidth at
each node in Ij w.p. tj , j ∈ {1, . . . , d}, is a NE.

The proof of Lemma 8 (see the Appendix) is based on the
fact that the graph, being mean valid, satisfies Condition 2 in
Definition 3.

The following technical lemma shows the existence and
uniqueness of a distribution (t1, . . . , td) satisfying (17) and
(20) for every value of q.

Lemma 9: For every q ∈ (0, 1), there exists a unique integer
d′ = d′(q) and a unique probability distribution (t1, . . . , td)
such that (17) and (20) hold. Also, d′(q) is an increasing
function of q and, for every value of q, t1 ≥ t2 . . . ≥ td.

Note that the fact that d′(q) is an increasing function of
q is consistent with the intuition that for small values of q,
primaries tend to offer bandwidth at only the larger I.S. out of
I1, . . . , Id, and as q, and thereby the competition from other
primaries increases, they also choose the smaller ones. Also,
the fact that t1 ≥ t2 . . . ≥ td for all q is consistent with the
intuition that primaries offer bandwidth at the larger I.S. with
a larger probability.

Finally, putting together the above discussion, we get the
main result of this section:

Theorem 2: In a mean valid graph, for every q ∈ (0, 1),
there is a unique symmetric NE; in this NE, each primary
offers bandwidth at every node in Ij , j ∈ {1, . . . , d}, w.p. tj ,
i.e. αj,l = tj , l = 1, . . . ,Mj , where (t1, . . . , td) is the unique
distribution satisfying (17) and (20).

Proof: By Lemma 5, under every symmetric NE, each
primary must offer bandwidth at all the nodes in Ij ,
j ∈ {1, . . . , d}, w.p. tj for some probability distribution
(t1, . . . , td). Also, by Lemma 7, (17) and (20) hold for this
distribution. By Lemma 9, for a fixed value of q ∈ (0, 1),
there exists a unique distribution (t1, . . . , td) satisfying (17)
and (20). Finally, by Lemma 8, the strategy profile where each
primary uses this distribution is a NE. The result follows.

Thus, every mean valid graph has a unique symmetric NE,
which can be explicitly computed by solving the system of
equations (17) and (20).

Example: Suppose there are n = 2 primaries and k = 1
secondary. Consider a grid graph Hm,m, which was introduced
in Section IV-B, with m = 7 (see Fig. 13). By part 4 of
Theorem 1, this is a mean valid graph and, in the notation of
Definition 3, d = 4, the I.S. I1, I2, I3 and I4 are as described
in Section VI-A, and M1 = 16, M2 = M3 = 12, M4 = 9.
The symmetric NE is of the form described in Theorem 2 with
d′(q), t1, t2, t3 and t4 for different q ∈ (0, 1) as follows:

1) For 0 < q < 1
4 , d′ = 1, t1 = 1, t2 = t3 = t4 = 0.

2) For 1
4 ≤ q < 15

16 , d′ = 3, t1 = 1
11

(
3 + 2

q

)
, t2 = t3 =

1
11

(
4− 1

q

)
t4 = 0.

3) For 15
16 ≤ q < 1, d′ = 4, t1 = 1

49

(
9 + 13

q

)
, t2 = t3 =

1
49

(
1
q + 12

)
t4 = 1

49

(
16− 15

q

)
.

Note that, consistent with Theorem 2, d′(q) is an increasing
function of q and t1 ≥ t2 ≥ t3 ≥ t4 for each value of q.
In fact, for all q, t2 = t3, which is because I2 and I3 are of
the same size. Fig. 2 plots t1, t2 and t4 versus q. For small q,
primaries offer bandwidth at the largest I.S. I1 with probability
1; but as q increases, the competition at I1 increases, inducing
the primaries to shift probability mass from I1 to the other
I.S. So t1 decreases in q. However, note that for all values of
q, t1 ≥ t2 ≥ t4 and t4 is very small (less than 0.02).

Remark 1: The unique symmetric NE need not be pure
even with respect to the node selections, as the above example
shows. However, this mixed choice is not really an artifact of
mixed price choice. For instance, consider a scenario where
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Fig. 2. The figure shows the symmetric NE probabilities t1, t2 and t4 for
the example after Theorem 2.

all primaries must choose the same fixed price p0 (perhaps
the prices have been standardized because of government
regulation). Suppose there are two nodes v1 and v2 connected
by an edge, two primaries (n = 2) and one secondary at each
node (k = 1). Then it is easy to show that the strategy profile
under which each primary offers bandwidth at v1 and v2 w.p.
1/2 each constitutes the unique symmetric NE.

The intuition behind randomization across different I.S. in a
symmetric NE is that primaries would like to offer bandwidth
at an I.S. at which other primaries do not offer bandwidth with
a high probability, whereas in a symmetric NE that is pure with
respect to the node selection, all primaries offer bandwidth at
the same I.S.

VI. SOME SPECIFIC MEAN VALID GRAPHS

Theorem 2 provides the form of the symmetric NE in mean
valid graphs. So in this section, we identify some classes of
mean valid graphs.

A. Topologies that Commonly Arise in Practice

We now prove Theorem 1.
The proof of part 1 of Theorem 1 is straightforward: let

{v1, . . . , ve} be the nodes of the clique. Ij = {vj}, j =
1, . . . , e are disjoint maximal I.S. whose union is V . Also,
these are the only I.S. in the graph; so (12) holds and the
clique is mean valid by Lemma 3.

Next, we prove some lemmas that we use to prove the other
parts of Theorem 1.

Lemma 10: Let G = (V,E) be a mean valid graph, where
V = I1 ∪ . . . ∪ Id and I1, . . . , Id are disjoint maximal I.S.
Let E′ ⊇ E be any set such that no edge in E′ is between
two nodes in the same I.S. Ij , j ∈ {1, . . . , d}. Then the graph
G′ = (V,E′) is mean valid.

Thus, if a graph G is mean valid, then the graph G′ obtained
by adding edges in any fashion to G, while ensuring that Ij ,
j = 1, . . . , d continue to be I.S. in G′, is a mean valid graph
as well.

Lemma 11: Suppose for each i = 1, . . . , N , Gi = (V i, Ei)
is a mean valid graph, where V i = Ii1 ∪ . . . ∪ Iid, Ii1, . . . , I

i
d

are disjoint maximal I.S., and |Iij | = M i
j , j = 1, . . . , d. Let

Mi = (M i
1, . . . ,M

i
d). If

Mi = ciM
0, i = 1, . . . , N (21)

for some vector M0 = (M0
1 , . . . ,M

0
d ) and positive scalars

c1, . . . , cN , then G = (∪N
i=1V

i,∪N
i=1E

i) is mean valid.
Lemma 11 says that if Gi, i = 1, . . . , N are mean valid

graphs, then their union G is a mean valid graph as well pro-
vided each of Gi, i = 1, . . . , N contains (i) the same number,
d, of disjoint maximal I.S., and (ii) the same proportion of
nodes in the d I.S. Ii1, . . . , I

i
d. Since the union graph G is

a disconnected graph with N components, Lemma 11 is not
useful by itself to prove that a graph is mean valid. But it can
be effectively used in conjunction with Lemma 10 to combine
a set of N mean valid graphs into a new connected mean
valid graph by (i) first considering their union, which is a
disconnected graph, (ii) and then adding some edges to it to
make it connected.

A useful special case is when each of these N graphs Gi is a
clique of size d (which is mean valid by Part 1 of Theorem 1)
with vertex set V i = {vi1, . . . , vid}. Note that these graphs
satisfy the hypothesis of Lemma 11 with Iij = {vij}, M i

j = 1,
∀i, j, M0 = (1, . . . , 1) and ci = 1 ∀i. This special case can
be used to prove the mean validity of several of the graphs
mentioned in Theorem 1, as we explain below.

For an integer m ≥ 1, let me (respectively, mo) denote the
greatest even (respectively, odd) integer less than or equal to
m.

We now prove part 2 of Theorem 1. Consider a linear
graph Gm with node set {v1, v2, . . . , vm} as shown in part
(a) of Fig. 3. First, let m be even– say m = 2N . For
i = 1, . . . , N , let Gi be the clique of size 2 with the node set
V i = {v2i−1, v2i} and the edge between the two nodes. In the
notation of Lemma 11, let Ii1 = {v2i−1} and Ii2 = {v2i}. By
Lemma 11, G = G1∪G2∪. . .∪GN is a mean valid graph with
d = 2 and the disjoint maximal I.S. I1 = {v1, v3, v5, . . . vmo}
and I2 = {v2, v4, v6, . . . , vme}. We can obtain Gm by adding
the edges (v2, v3), (v4, v5), . . . , (v2N−2, v2N−1) to G as
illustrated in part (a) of Fig. 4. Note that no edge is between
two nodes in the same I.S. Ij , j ∈ {1, 2}; so the hypothesis of
Lemma 10 is satisfied. Hence, Gm is mean valid by Lemma 10.
The proof of the fact that Gm is also mean valid for m odd is
deferred to the Appendix.

Now, we prove part 3 of Theorem 1. Consider Gm,m, where
m may be odd or even. Let vij be the node in the i’th row
and j’th column i, j ∈ {1, . . . ,m}(see part (b) of Fig. 3). We
start with a line graph Gm2 , which is mean valid by part 2
of Theorem 1, and add some edges to obtain Gm,m as shown
in Fig. 5. Specifically, let Gm2 be the line graph with the set
of nodes {v1,1, v1,2, . . . , v1,m, v2,m, v2,m−1, . . . , v2,1, v3,1,
v3,2, . . . , v3,m, v4,m, v4,m−1, . . . } and an edge between each
pair of consecutive nodes in this order. Gm2 is mean valid
with d = 2, and the disjoint maximal I.S. I1 = {v11, v13,
. . . , v1,mo , v22, v24, . . . , v2,me , v31, v33, . . . , v3,mo , . . . } and
I2 = {v12, v14, . . . , v1,me , v21, v23, . . . , v2,mo , v32, v34, . . . ,
v3,me , . . . }. Gm,m can be obtained from Gm2 by adding the
remaining edges shown dotted in Fig. 5. Note that no edge is
between the same I.S. Ij , j = 1, 2. So Gm,m is mean valid by
Lemma 10.

Next, we prove part 4 of Theorem 1. Consider Hm,m (see
Fig. 13). As in Gm,m, let vij be the node in the i’th row and
j’th column. Let d = 4, I1 = {v11, v13, v15, . . . , v1,mo , v31,
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Fig. 3. Part (a) shows a linear graph, Gm, with m = 8 and part (b) shows a
grid graph, Gm,m, with m = 5. In both graphs, the darkened and un-darkened
nodes constitute I1 and I2 respectively.

v33, v35, . . . , v3,mo , . . . }, I2 = {v12, v14, v16, . . . , v1,me ,
v32, v34, v36, . . . , v3,me , . . . }, I3 = {v21, v23, v25, . . . , v2,mo ,
v41, v43, v45, . . . , v4,mo , . . .} and I4 = {v22, v24, v26, . . . ,
v2,me , v42, v44, v46, . . . , v4,me , . . . } (see part (b) of Fig. 4).
Note that I1, I2, I3 and I4 are disjoint maximal I.S. For i, j ∈
{1, . . . ,m− 1}, let Ci,j be the clique consisting of the nodes
{vi,j , vi,j+1, vi+1,j , vi+1,j+1} and the edges among them (see
Fig. 15). First, let m be even. The proof that Hm,m is mean
valid is similar to the above proof of mean validity of Gm with
m even: we can obtain Hm,m by considering the union of
the cliques Ci,j , i, j ∈ {1, 3, 5, . . . ,m− 1}, which is a mean
valid graph by Lemma 11, and then adding the remaining
edges as illustrated in part (b) of Fig. 4. Note that no edge is
between two nodes in the same I.S. Ij , j ∈ {1, 2, 3, 4}; so the
hypothesis of Lemma 10 is satisfied. Hence, Hm,m is mean
valid by Lemma 10. The proof of the fact that Hm,m is also
mean valid for m odd is deferred to the Appendix.

The proof of part 5 of Theorem 1 is similar to that of
part 4: we outline the differences. For i, j, l ∈ {1, . . . ,m},
let vijl be the node in the i’th row, j’th column and l’th
level (in the direction normal to the plane of the paper). The
node set of Tm,m,m can be partitioned into 8 disjoint maximal
I.S. I1, . . . , I8 similar to I1, . . . , I4 for Hm,m (see Fig. 6).
Also, cliques Cijl, i, j, l ∈ {1, . . . ,m − 1} of size 8 each
can be defined similar to the cliques Cij for Hm,m. For m
even, we can obtain Tm,m,m by considering the union of the
cliques Cijl, i, j, l ∈ {1, 3, 5, . . . ,m − 1} and then adding
the remaining edges. The fact that Tm,m,m is mean valid
then follows from Lemmas 11 and 10. The proof of the fact
that Tm,m,m is also mean valid for m odd is outlined in the
Appendix.

We now prove part 6 of Theorem 1. Consider a cellular
network as shown in Fig. 7, whose conflict graph is shown in
Fig. 8. The nodes in the graph can be partitioned into three
disjoint maximal I.S. I1, I2 and I3 as shown in Fig. 8. We
consider this conflict graph with the following assumption,

Fig. 4. Part (a) (respectively, part (b)) shows the construction of G6

(respectively, H4,4) from 3 (respectively, 4) cliques of size 2 (respectively,
4) each. The solid edges constitute the cliques G1, G2, G3 (respectively,
C1,1, C1,3, C3,1 and C3,3) and the dotted edges are those that are added
later. The numbers next to the nodes shows the I.S. they are in, i.e., a node
labeled j is in I.S. Ij , where j ∈ {1, 2} (respectively, j ∈ {1, 2, 3, 4}). Note
that no edge is between two nodes in the same I.S. Ij ; so the hypothesis of
Lemma 10 is satisfied.

Fig. 5. The figure shows the construction of the grid graph Gm,m from the
line graph Gm2 for m = 4. The solid edges constitute Gm2 and the dotted
edges are later added to obtain Gm,m. The un-darkened and darkened nodes
constitute I1 and I2 respectively in both Gm2 and Gm,m. Note that no edge
is between a node in I1 and a node in I2, so the hypothesis of Lemma 10 is
satisfied.

which eliminates problems arising due to boundary effects.
Assumption 1: There are an even number, say r, of rows of

nodes, each containing 3η nodes, for some integer η ≥ 1.
Under this assumption, as illustrated in Fig. 8, the graph can
be obtained by considering the union of rη disjoint cliques
of size 3 each, which is a mean valid graph by Lemma 11,
and then adding some edges. Note that no edge is between
two nodes in the same I.S. Ij , j ∈ {1, 2, 3} (see Fig. 8); so
the hypothesis of Lemma 10 is satisfied. Hence, the graph is
mean valid by Lemma 10.

Note that the above proof goes through if the graph can be
partitioned into cliques of size 3 even if Assumption 1 is not
satisfied. If the graph cannot be partitioned into cliques of size
3, then the analysis is more complicated because of boundary
effects. We omit this analysis for brevity.

B. Some Other Classes of Mean Valid Graphs

In this subsection, we show that some other common classes
of graphs are mean valid. We focus on connected bipartite
graphs [4], which are of the form G = (V,E) where V =
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Fig. 6. Part (a) shows a three-dimensional grid graph Tm,m,m for m = 5.
It consists of periodic repetitions of the graph shown in part (b). Also, in part
(b), the node labels show the I.S. I1, . . . , I8 they are in, i.e. a node with the
label j is part of the I.S. Ij , j ∈ {1, . . . , 8}.

Fig. 7. The figure shows a tiling of a plane with hexagons, e.g. cells in a
cellular network. Transmissions at neighboring cells interfere with each other.

Fig. 8. The figure shows the conflict graph of a hexagonal tiling of a plane.
Both the solid and dotted edges are part of the graph. The nodes labelled j,
j ∈ {1, 2, 3}, are in I.S. Ij . There are four rows of nodes. The figure also
shows the construction of the graph from cliques of size 3 each, shown by the
solid edges. The dotted edges are added later. Note that no edge is between
two nodes in the same I.S., so the hypothesis of Lemma 10 is satisfied.

A∪B and every edge is between a node in A and a node in B.
Without loss of generality, suppose |A| ≤ |B|. In the notation
of Definition 3, d = 2, I1 = B and I2 = A. Also, a necessary
condition for a node distribution {αi, i ∈ A; γj , j ∈ B}, under
which bandwidth is offered at node i ∈ A (respectively, j ∈ B)
w.p. αi (respectively, γj), to be valid is that

αi + γj ≤ 1 ∀(i, j) ∈ E. (22)

This is because, if αi+γj > 1 for some (i, j) ∈ E, then with a
positive probability bandwidth would be offered at both nodes
i and j, which are neighbors.

Recall that a κ-regular graph is one in which the degree of
every node is κ [4].

Proposition 1: A κ-regular bipartite graph is mean valid.
Proof: Let |A| = N and |B| = M . First, we show that

N = M . Since κ edges are incident upon each node in A,

|E| = |A|κ = Nκ. Similarly, |E| =Mκ. So N =M .
Now, let {αi, i ∈ A; γj , j ∈ B} be a valid distribution.

Adding (22) over all (i, j) ∈ E, we get:∑
(i,j)∈E

(αi + γj) ≤ |E| = Nκ (23)

But since exactly κ edges are incident on each node:∑
(i,j)∈E

(αi + γj) = κ(
∑
i∈A

αi +
∑
j∈B

γj) (24)

By (23) and (24),∑
i∈A αi

N
+

∑
j∈B γj

N
≤ 1

So Condition 2 in Definition 3 is satisfied and the graph is
mean valid.

Recall that a star is a graph with a node a1 called the center,
nodes b1, . . . , bM called the leaves, and edges (a1, bj), j =
1, . . . ,M [4]. Note that this is a bipartite graph with edges
only between the sets A = {a1} and B = {b1, . . . , bM}.

Proposition 2: A star is mean valid.
Proof: Let {α1, γ1, . . . , γM} be a valid distribution. By

(22),
α1 + γj ≤ 1, j = 1, . . . ,M

Adding these M inequalities and dividing by M gives α1 +
γ1+...+γM

M ≤ 1.
Now, note that every tree is a bipartite graph [4]. Given a

tree, suppose the root constitutes layer 1, the children of the
root constitute layer 2 and the children of all the nodes in layer
i constitute layer i + 1, i = 2, 3, . . .. Not every tree is mean
valid; a counterexample is presented in Section VII-A (see
Fig. 10). The following result provides a sufficient condition
for a tree to be mean valid.

Proposition 3: A tree in which every node in an odd layer
has exactly κ children is mean valid.

Proof: Let a tree T in which every node in an odd layer
has κ children be given. Let Nj be the total number of nodes
in the j’th layer of T and N =

∑
j odd Nj .

Let Ai = {ai}, Bi = {bi,1, . . . , bi,κ} and Gi be a star with
center ai and κ leaves– the nodes in Bi. Note that each Gi is
mean valid by Proposition 2. Also, Gi, i = 1, . . . , N , satisfy
the hypothesis of Lemma 11 with d = 2, Ii1 = Bi, Ii2 = Ai,
M i

1 = κ, M i
2 = 1 ∀i, M0 = (κ, 1) and ci = 1 ∀i. So by

Lemma 11, G = G1 ∪G2 ∪ . . . ∪GN is mean valid.
Now, we will obtain T by adding some edges to G as

illustrated in Fig. 9. Let the center, a1, of G1 be the root of T .
Note that its children are b1,1, . . . , b1,κ, the leaves of G1. For
j ∈ {1, . . . , κ}, suppose b1,j has lj children. Join b1,j by an
edge to each of the centers of lj stars out of G2, . . . , GN , using
a different set of stars for each j. Thus, we have obtained the
nodes in the first 4 layers of the tree and the edges connecting
them. Suppose a node b in layer 4 has l′ children. Join it to
the centers of l′ stars out of G1, . . . , GN , which have not been
used so far. Proceed in this manner to get the tree T . Note
that there is no edge between two nodes in the same partition
of the tree, which is a bipartite graph (see Fig. 9); so the
hypothesis of Lemma 10 is satisfied. Hence, T is mean valid
by Lemma 10.
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Fig. 9. Part (a) shows a tree in which each node in an odd layer has exactly
3 children. Part (b) shows the construction of the tree. We start with stars
with 3 leaves each, whose edges are shown in bold and then add some edges,
shown dotted. Note that none of the dotted edges is between two nodes in
the same partition of the bipartite graph, so the condition in Lemma 10 is
satisfied.

VII. SOME ADDITIONAL TOPICS

A. Non Mean Valid Bipartite Graphs

We have shown in Theorem 2, that a mean valid graph
has a unique symmetric NE that has a simple form– under
this NE, for every q ∈ (0, 1), each primary offers bandwidth
with the same probability tj at all the nodes in each I.S. Ij ,
j ∈ {1, . . . , d}. Thus, mean validity is a sufficient condition
for an arbitrary graph to have a symmetric NE of the form
in Theorem 2 for all values of q. The following result shows
that for connected bipartite graphs, mean validity is also a
necessary condition.

Theorem 3: Let G be a connected bipartite graph that is not
mean valid. If w(q, n) > 1−M2

M1
, then β(I1) = t1, β(I2) = t2,

β(I) = 0 ∀I ∈ I , I ̸= I1, I2, is not a symmetric NE for any
value of t1 and t2.

Now, we provide an example of a non mean valid bipartite
graph and find the symmetric NE and prove its uniqueness.
The symmetric NE is not of the form in Theorem 2 for any
value of q ∈ (0, 1).

Let the set of nodes be A ∪ B, where A = {a1, a2, a3}
and B = {b1, b2, b3}, and let there be an edge between a1
(respectively, b1) and every edge in B (respectively, A) (see
Fig. 10). The only maximal I.S. are Iab = {a2, a3, b2, b3},

Fig. 10. A non mean valid graph.

Ia = A and Ib = B. The I.S. Iab contains 2 nodes from each
of A and B, i.e., m1(Iab) = m2(Iab) = 2 in the notation of
Lemma 3. Also, m1(Iab)

3 +m2(Iab)
3 > 1; so (12) is not satisfied.

Hence, this is not a mean valid graph by Lemma 3.
In every symmetric NE, β(Ia) = ta, β(Ib) = tb and

β(Iab) = 1− ta − tb for some 0 ≤ ta, tb ≤ 1.

Lemma 12: If w(q, n) > 1
2 , then f1(x) = 2W (1 − x) −

W (x) has a unique root t1 ∈ [0, 1]. Also, 0 < t1 <
1
2 .

The following theorem provides the symmetric NE in the
above graph for each value of q ∈ (0, 1).

Theorem 4: 1) If w(q, n) ≤ 1
2 , then the symmetric

strategy profile corresponding to ta = tb = 0 is the
unique symmetric NE.

2) If w(q, n) > 1
2 , then the symmetric strategy profile in

which ta = tb = t1, the root of f1(.), is the unique
symmetric NE.

Note that Iab, which contains 4 nodes, is the largest I.S. So
for all values of q, primaries offer bandwidth with positive
probability at the I.S. Iab in the symmetric NE. Since Iab
contains nodes from both A and B, the node probabilities at
different nodes in A (and B) are different. Thus, the symmetric
NE is not of the form in Theorem 2 for any value of q.

Again, since Iab is the largest I.S., Theorem 4 shows,
consistent with intuition, that for small values of q, primaries
offer bandwith only at Iab with positive probability; when
q, and thereby the competition at Iab, increases beyond a
threshold, they also offer bandwidth at A and B with positive
probability.

B. Some Remarks

For simplicity, we have assumed that there are k secondaries
at each node, where k is a constant. However, all our results
readily generalize to the case in which the number of secon-
daries at node v ∈ V is Kv , where {Kv : v ∈ V } are i.i.d.
random variables such that the primaries apriori know only the
probability mass function (p.m.f.) for Kv , Pr(Kv = k) = γk,
but not the values of {Kv : v ∈ V }. Let:

w(q, n) =
n−1∑
k=1

γk

n−1∑
i=k

(
n− 1
i

)
qi(1− q)n−1−i (25)

All our results go through if w(q, n) in the above equation is
used in place of (2).

Now, in presence of spatial reuse, we would in general have
NE that are not symmetric. For example, suppose there are two
nodes v1 and v2 connected by an edge, two primaries (n = 2)
and one secondary at each node (k = 1). Then the strategy
profiles in which primary 1 offers bandwidth at node v1 and
primary 2 at node v2 w.p. 1, or vice versa, and both primaries
set a price of ν w.p. 1, are NE, apart from the symmetric NE
in Theorem 2. This is in contrast with the game at a single
location, in which the symmetric NE is the unique NE [20].

VIII. NUMERICAL STUDIES

In this section, we describe numerical computations that
are directed towards assessing the impact of price competition
among the primaries on the aggregate revenue of the primaries
and the affordability of spectrum for the secondaries. Towards
that end, we compare the symmetric NE resulting from price
competition with a scheme, denoted by OPT, under which all
the primaries cooperate so as to maximize the sum of their
revenues.

We consider the specific case of a grid graph Hm,m, which
was introduced in Section IV-B (see Fig. 13). By part 4 of
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Theorem 1, this is a mean valid graph and, in the notation
of Definition 3, d = 4 and the I.S. I1, I2, I3 and I4 are as
described in Section VI-A. We use the parameter values n =
10, k = 3, ν = 1, c = 0 and m = 7.

In Hm,m, the symmetric NE is of the form in Theorem 2
and under OPT, the I.S. I1, . . . , I4 are selected in order of size
and all the primaries always select the highest price ν.

Fig. 11 reveals, as expected, that price competition sig-
nificantly reduces the aggregate revenue of the primaries
relative to OPT. Also, overall, the ratio between the aggregate
revenues under the symmetric NE and under OPT decreases
as q increases since the competition increases. Fig. 12 shows
that under price competition, the expected price per unit of
bandwidth is lower at the nodes in the larger I.S. This is
because primaries prefer larger I.S. and hence the competition
is more intense there, driving down the prices.
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Fig. 11. The figure plots the aggregate revenues of the primaries, RNE and
ROPT , under the symmetric NE and OPT respectively, and the efficiency of
the symmetric NE, η = RNE

ROPT
(in %), versus q.
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Fig. 12. The figure shows the mean price of bandwidth, given that it is
offered, at a (fixed) node in each of I1, I2 and I4 vs q under the symmetric
NE.

IX. DISCUSSION AND FUTURE WORK

For analytical tractability, we have considered the symmetric
case where each primary has unused bandwidth with the same
probability q. Even for price competition at a single location,
analysis of the asymmetric case, where the probabilities of
bandwidth availability of different primaries are not equal, has
been done only in some special cases, e.g., when there is only
one secondary [20]. An important problem for future research
is the analysis of the asymmetric case in the spatial reuse
setting.

APPENDIX

Let W (α) be as in (7). We will use the following result
throughout.

Lemma 13: (i) For 0 ≤ α ≤ 1, 0 ≤ W (α) < 1, (ii)
W (0) = 1, and (iii) W (α) is strictly decreasing in α.
Lemma 13 follows from (7), the fact that w(0, n) = 0 and
Lemma 1.

A. Proofs of results in Section IV

Proof of Lemma 3: Suppose G is mean valid. Fix an
I ∈ I . Let

1I(aj,l) =

{
1, if aj,l ∈ I
0, else

Consider a distribution {αj,l : j = 1, . . . , d; l = 1, . . . ,Mj}
in which bandwidth is offered at node aj,l ∈ Ij w.p. αj,l =
1I(aj,l). This is a valid distribution because it corresponds to
the distribution {β(I) = 1, β(I ′) = 0∀I ′ ∈ I , I ′ ̸= I}. Also,

Mj∑
l=1

αj,l =

Mj∑
l=1

1I(aj,l) = mj(I), j = 1, . . . , d (26)

Let αj be given by (11). Since the graph is mean valid, (10)
holds. Substituting

∑Mj

l=1 αj,l = mj(I) from (26) into (10),
we get (12).

To prove the converse, suppose (12) holds. Let {αj,l : j =
1, . . . , d; l = 1, . . . ,Mj} be a valid distribution. By definition,
there exists a distribution {β(I) : I ∈ I } such that:

αj,l =
∑

I∈I :aj,l∈I

β(I) (27)

which can be written as:

αj,l =
∑
I∈I

β(I)1I(aj,l) (28)

Now,

d∑
j=1

(∑Mj

l=1 αj,l

Mj

)

=
d∑

j=1

1

Mj


Mj∑
l=1

∑
I∈I

β(I)1I(aj,l)

 (by (28))

=
∑
I∈I

β(I)


d∑

j=1

∑Mj

l=1 1I(aj,l)

Mj


=

∑
I∈I

β(I)


d∑

j=1

mj(I)

Mj

 (since
Mj∑
l=1

1I(aj,l) = mj(I))

≤ 1 (by (12))

So (10) holds and hence G is mean valid.
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B. Proofs of results in Section V

The following lemma is used in the proof of Lemma 4.
Lemma 14: Let N ≥ 2 be an integer and

α1, . . . , αN , f1, . . . , fN be real numbers. Then:

N(
N∑
i=1

αifi)− (
N∑
i=1

αi)(
N∑
i=1

fi) =
∑

1≤i<j≤N

(αj −αi)(fj − fi)

(29)
Proof: We prove the result by induction. For N = 2:

LHS = 2(α1f1 + α2f2)− (α1 + α2)(f1 + f2)

= (α2 − α1)(f2 − f1)

= RHS

Suppose the result is true for N . For N + 1:

LHS = (N + 1)(
N∑
i=1

αifi + αN+1fN+1)−

(

N∑
i=1

αi + αN+1)(

N∑
i=1

fi + fN+1)

=

{
N(

N∑
i=1

αifi)− (
N∑
i=1

αi)(
N∑
i=1

fi)

}

+NαN+1fN+1 +
N∑
i=1

αifi + αN+1fN+1

−αN+1(
N∑
i=1

fi)− (
N∑
i=1

αi)fN+1 − αN+1fN+1

=
∑

1≤i<j≤N

(αj − αi)(fj − fi)

+

N∑
i=1

(αN+1fN+1 + αifi − αN+1fi − αifN+1)

(by induction hypothesis and collecting terms)
= RHS

The result follows by induction.
Proof of Lemma 4: By symmetry, we can assume WLOG

that α1 ≤ α2 . . . ≤ αN . Since f(.) is strictly decreasing,
f(α1) ≥ f(α2) ≥ . . . ≥ f(αN ). Now:

(
N∑
i=1

αif(αi))− α(
N∑
i=1

f(αi))

=
1

N

(
N(

N∑
i=1

αif(αi))− (

N∑
i=1

αi)(

N∑
i=1

f(αi))

)
=

1

N

∑
1≤i<j≤N

(αj − αi)(f(αj)− f(αi)) (by (29))(30)

For i < j, αi ≤ αj and f(αi) ≥ f(αj). So each term in (30)
is ≤ 0. Hence, the expression in (30) is 0 iff each term is 0,
which happens iff α1 = . . . = αN = α.

Proof of Lemma 6: Let

U∗ = max{U1(Ij) : j ∈ {1, . . . , d}}
= max{MjW (tj) : j ∈ {1, . . . , d}} (by (19))

and B = {j ∈ {1, . . . , d} : MjW (tj) = U∗}. Note that B is
the set of indices of the I.S. out of I1, . . . , Id that yield the
highest payoff and U∗ is the value of that payoff.

By definition of B:

W (tj) =
U∗

Mj
, ∀j ∈ B (31)

W (tj) <
U∗

Mj
, ∀j /∈ B. (32)

Let I be any I.S. containing mj(I) nodes from Ij , j =
1, . . . , d. By (18):

U1(I) =
d∑

j=1

mj(I)W (tj)

≤
d∑

j=1

mj(I)

(
U∗

Mj

)
(by (31) and (32)) (33)

≤ U∗ (by (12))

So maxI∈I U1(I) ≤ U∗, and since U1(Ij) = U∗, j ∈ B, each
Ij , j ∈ B, is a best response. Now, for I as defined above,
suppose mj(I) ≥ 1 for some j /∈ B. Then the inequality in
(33) is strict. So U1(I) < U∗ and I is not a best response.
Thus, each I ∈ I containing a node from Ij for some j /∈ B
is not a best response. In particular, ∀j /∈ B, Ij is not a best
response and, since primaries offer bandwidth at Ij w.p. tj in
the above NE, tj = 0 for all j /∈ B.

It now suffices to show that B = {1, . . . , d′} for some
1 ≤ d′ ≤ d. Suppose not. Then there exist j, l ∈ {1, . . . , d}
such that j < l, j /∈ B and l ∈ B. Since j /∈ B, tj = 0 by the
previous paragraph. Now, by (18):

U1(Ij) = MjW (tj)

= Mj (by part (ii) of Lemma 13)
≥ Ml (by (9), since j < l)

≥ MlW (tl) (by part (i) of Lemma 13)
= U∗

So Ij is a best response, which is a contradiction since j /∈ B.

Proof of Lemma 8: Suppose primaries 2, . . . , n use the
strategy ψ, under which bandwidth is offered at the nodes in
Ij w.p. tj , j = 1, . . . , d. By (17) and part (ii) of Lemma 13,
W (tj) = 1, j > d′. So by (18), the payoff of primary 1 if
it plays I.S. Ij , j ∈ {1, . . . , d′} (resp., j ∈ {d′ + 1, . . . , d})
is U1(Ij) = MjW (tj) (resp., U1(Ij) = Mj). Hence, by (20)
and (9), for some U∗,

U∗ = U1(I1) = . . . = U1(Id′) > U1(Id′+1) ≥ . . . ≥ U1(Id).

The maximum payoff that primary 1 can get at a node v ∈ Ij ,
j ∈ {1, . . . , d′} equals

W (tj) =
U1(Ij)

Mj
=
U∗

Mj
. (34)

Now, for j > d′, Mj = U1(Ij) < U∗. So the maximum payoff
that primary 1 can get at a node v ∈ Ij , j > d′ is

1 <
U∗

Mj
. (35)
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Now, let I be an I.S. containing mj(I) nodes from Ij , j =
1, . . . , d. By (34) and (35):

U1(I) ≤ U∗

 d∑
j=1

mj(I)

Mj

 (36)

≤ U∗ (by (12))

Since U1(I1) = . . . = U1(Id′) = U∗, I1, . . . , Id′ are
best responses. Under the strategy ψ, primary 1 can only
play I1, . . . , Id′ with positive probability; hence, ψ is a best
response.

Proof of Lemma 9: Existence: For convenience, let
Md+1 = 0. Fix q ∈ (0, 1). For x ∈ [M1W (1),M1] and
j ∈ {1, . . . , d}, if Mj ≥ x, then we show that the equation:

MjW (tj) = x (37)

has a unique solution tj(x) ∈ [0, 1]. Let h(tj) = MjW (tj).
By part (ii) of Lemma 13, h(0) =Mj ≥ x. Also,

h(1) = MjW (1)

≤ M1W (1) (by (9))
≤ x

Also, by (2) and (7), h(tj) is a continuous function of tj .
So by the intermediate value theorem [3], h(tj) = x has a
solution in [0, 1]. By part (iii) of Lemma 13, h(tj) is a strictly
decreasing function of tj ; so this solution, say tj(x), is unique.
For x = Mj , tj = 0 satisfies (37) by part (ii) of Lemma 13.
So tj(Mj) = 0.

Since h(tj) is strictly decreasing on 0 ≤ tj ≤ 1, it is
invertible. Also, since the inverse of a continuous function is
continuous (see Theorem 4.17 in [3]), h−1(x) is continuous.
But x = h(tj(x)). So tj(x) = h−1(x). Thus, tj(x) is
continuous in x for x ≤ Mj . For x > Mj , define tj(x) = 0.
As shown above, tj(Mj) = 0. So tj(x) is continuous on
[M1W (1),M1]. Let,

T (x) =

d∑
j=1

tj(x) (38)

As shown above, h(tj) is strictly decreasing on 0 ≤ tj ≤ 1
for j = 1, . . . , d. So tj(x) = h−1(x) is strictly decreasing for
x ≤Mj . Also, by definition, tj(x) = 0 on Mj < x ≤M1. So
by (38), T (x) is strictly decreasing on [M1W (1),M1] (note
that t1(x) is strictly decreasing on x ≤M1). Also, tj(M1) =
0, j = 1, . . . , d. So

T (M1) = 0. (39)

Now, for j = 1 and x = M1W (1), t1 = 1 satisfies (37). So
t1(M1W (1)) = 1 and hence, by (38):

T (M1W (1)) ≥ 1. (40)

Now, since each tj(x), j = 1, . . . , d, is continuous on
[M1W (1),M1], so is T (x) by (38). Hence, by (39), (40) and
the intermediate value theorem, the equation T (x) = 1 has a
solution x∗ ∈ [M1W (1),M1], which is unique because T (x)
is strictly decreasing. Let d′(q) = max{j : Mj ≥ x∗}. By
definition of tj(x), for j = 1, . . . , d′(q), MjW (tj(x

∗)) = x∗

and for j > d′(q), Mj < x∗ and hence tj(x
∗) = 0.

Thus, (t1(x
∗), . . . , td(x

∗)) satisfy (17) and (20). Also, by
(38),

∑d
j=1 tj(x

∗) = T (x∗) = 1; so (t1(x
∗), . . . , td(x

∗)) is a
probability distribution. The result follows.

Uniqueness: Fix q. We now show the uniqueness of d′(q)
and the distribution (t1, . . . , td) satisfying (17) and (20).
Assume, to reach a contradiction, that there exist e, f ∈
{1, . . . , d} and probability distributions t = (t1, . . . , td) and
s = (s1, . . . , sd) such that tj = 0 (respectively, sj = 0) for
j > e (respectively, j > f ) and for some y and z:

y =M1W (t1) = . . . =MeW (te) > Me+1 (41)

z =M1W (s1) = . . . =MfW (sf ) > Mf+1 (42)

First, suppose e = f . If y = z, then by (41) and
(42), MjW (tj) = MjW (sj), j = 1, . . . , e. By part (iii)
of Lemma 13, W (.) is a one-to-one function; so tj = sj ,
j = 1, . . . , e. Also, tj = sj = 0, j > e. So t = s.

Now, suppose z > y. Then MjW (sj) > MjW (tj), j =
1, . . . , e. So W (sj) > W (tj), and by part (iii) of Lemma 13,
sj < tj , j = 1, . . . , e. So 1 =

∑e
j=1 sj <

∑e
j=1 tj = 1, which

is a contradiction. Thus, z > y is not possible. By symmetry,
z < y is also not possible.

Now, suppose e < f . Then by (41) and (42), z =
Me+1W (se+1) ≤Me+1 < y. So for j ∈ {1, . . . , e}:

MjW (sj) = z < y =MjW (tj)

which implies sj > tj . So
∑e

j=1 sj >
∑e

j=1 tj = 1, which is
a contradiction. So e < f is not possible. By symmetry, e > f
is also not possible. The result follows.

Monotonicity Now, we show that d′(q) is an increasing
function of q. Suppose not. Then there exist q and q′ such
that q < q′, d′(q) = e, d′(q′) = f and e > f . Hence, by (20)
and (7), there exist probability distributions (t1, . . . , td) and
(s1, . . . , sd) such that for some y and z:

y =M1(1− w(qt1, n)) = . . . =Me(1− w(qte, n)) > Me+1

(43)
z =M1(1−w(q′s1, n)) = . . . =Mf (1−w(q′sf , n)) > Mf+1

(44)
So

y =Mf+1(1− w(qtf+1, n)) ≤Mf+1 < z.

Hence, for j = 1, . . . , f , Mj(1 − w(qtj , n)) < Mj(1 −
w(q′sj , n)). So w(q′sj , n) < w(qtj , n). By Lemma 1, w(x, n)
is strictly increasing in x. So q′sj < qtj . Since q < q′, tj > sj .
Thus,

∑f
j=1 tj >

∑f
j=1 sj = 1, which contradicts the fact that

(t1, . . . , td) is a probability distribution. The result follows.
Finally, we show that t1 ≥ t2 . . . ≥ td. For 1 ≤ i < j ≤

d′(q), MiW (ti) = MjW (tj) by (20). But Mi ≥ Mj by (9);
so W (ti) ≤ W (tj) and hence, by part (iii) of Lemma 13,
ti ≥ tj . For l > d′(q), tl = 0 by (17). The result follows.

C. Proofs of results in Section VI

Proof of Lemma 10: Since no edge in E′ is between two
nodes in the same I.S. Ij , it follows that in G′, I1, . . . , Id are
disjoint maximal I.S. whose union is V . Using the notation
in Definition 3, let {αj,l : j = 1, . . . , d; l = 1, . . . ,Mj} be a
valid distribution in G′. We will show that (10) holds. Then
it will follow from Definition 3 that G′ is mean valid.
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Let IG′ (respectively, IG) be the set of I.S. in G′ (respec-
tively, G). Since E ⊂ E′, each I.S. in G′ is an I.S. in G as
well, i.e. IG′ ⊂ IG.

Now, since the distribution {αj,l} is valid in G′, by def-
inition, there exists a distribution {β′(I) : I ∈ IG′} such
that

αv =
∑

I∈IG′ :v∈I

β′(I) ∀v ∈ V. (45)

Define a distribution on IG as follows:

β(I) =

{
β′(I) if I ∈ IG′

0 if I ∈ IG \ IG′
(46)

By (45) and (46):

αv =
∑

I∈IG:v∈I

β(I) ∀v ∈ V. (47)

So by definition, {αi,j} is a valid distribution in G as well.
Since G is mean valid, (10) holds, which completes the proof.

Proof of Lemma 11: First, note that {(I1j ∪. . .∪INj ) : j =
1, . . . , d} are disjoint maximal I.S. in G; so the first condition
in Definition 3 is satisfied.

Let {αi
j,l : j = 1, . . . , d; l = 1, . . . ,M i

j} be a valid
distribution in Gi. Since Gi is mean valid:

d∑
j=1

∑Mi
j

l=1 α
i
j,l

M i
j

 ≤ 1, i = 1, . . . , N (48)

Now, it is given that:

M i
j = ciM

0
j , i = 1, . . . , N ; j = 1, . . . , d (49)

Adding (49) over i = 1, . . . , N :

M0
j (c1 + . . .+ cN ) =M1

j + . . .+MN
j , j = 1, . . . , d (50)

Multiplying (48) by ci, using (49) and adding over i =
1, . . . , N , we get:

N∑
i=1

d∑
j=1

∑Mi
j

l=1 α
i
j,l

M0
j

 ≤ c1 + . . .+ cN

Dividing both sides by c1 + . . .+ cN and using (50):

d∑
j=1

 ∑N
i=1

∑Mi
j

l=1 α
i
j,l

M1
j + . . .+MN

j

 ≤ 1

So G satisfies the second condition in Definition 3 as well and
hence is mean valid.

Proof of part 2 of Theorem 1: In Section VI-A, we
showed that Gm is mean valid for even m. Now, let m be
odd, say m = 2N − 1 for some integer N ≥ 2. Consider a
valid distribution {αi : i = 1, . . . , 2N − 1}, where αi is the
probability with which bandwidth is offered at node vi. With
I1 and I2 as defined in Section VI-A, note that |I1| = N and
|I2| = N − 1. Let

α1 =
α1 + α3 + . . .+ α2N−1

N

and
α2 =

α2 + α4 + . . .+ α2N−2

N − 1

To show that Condition 2 in Definition 3 is satisfied, we need
to show that α1 + α2 ≤ 1, i.e.

(N − 1)(α1 + α3 + . . .+ α2N−1)

+ N(α2 + α4 + . . .+ α2N−2) ≤ N(N − 1) (51)

Since G2N−1 is a bipartite graph and the distribution {αi} is
valid, the necessary condition in (22) holds and in this case
becomes:

αi + αi+1 ≤ 1, i = 1, 2, . . . , 2N − 2 (52)

Now,

LHS of (51)
= {(N − 1)(α1 + α2) + (α2 + α3)}

+{(N − 2)(α3 + α4) + 2(α4 + α5)}
+{(N − 3)(α5 + α6) + 3(α6 + α7)}
+ . . .

+{2(α2N−5 + α2N−4) + (N − 2)(α2N−4 + α2N−3)}
+{(α2N−3 + α2N−2) + (N − 1)(α2N−2 + α2N−1)}

≤ {(N − 1) + 1}+ {(N − 2) + 2}+ . . .

+{2 + (N − 2)}+ {1 + (N − 1)} (by (52))
= N(N − 1)

which proves (51) and the result follows.
Proof of part 4 of Theorem 1: In Section VI-A, we

showed that Hm,m is mean valid for even m. Now, let m be
odd. With I1, I2, I3 and I4 as defined in Section VI-A, it is
easy to check that |I1| =

(
m+1
2

)2
, |I2| = m2−1

4 , |I3| = m2−1
4

and |I4| =
(
m−1
2

)2.
Consider a valid distribution {αz : z ∈ V }, where αz is the

probability with which bandwidth is offered at node z. We
now show that the graph is mean valid by showing that (10)
holds, which in this case becomes:

(m− 1)2(
∑
z∈I1

αz) + (m2 − 1)(
∑
z∈I2

αz) + (m2 − 1)(
∑
z∈I3

αz)

+(m+ 1)2(
∑
z∈I4

αz) ≤
(m2 − 1)2

4
. (53)

Consider cliques Ci,j , i, j ∈ {0, . . . ,m}. For i, j ∈
{1, . . . ,m − 1}, Ci,j is as defined in Section VI-A. For i
or j (or both) equal to 0 or m, let Ci,j be “dummy cliques”,
defined for convenience (see Fig. 15). For i, j ∈ {0, . . . ,m}:∑

z∈Cij

αz ≤ 1, (54)

because, if not, then bandwidth would be offered simultane-
ously at two or more of the nodes in Cij (which are neighbors)
with a positive probability. For i ∈ {0, . . . ,m}, let:

ei =

{
m− i, i odd
i, i even (55)

For i, j ∈ {0, . . . ,m}, let

fij = eiej . (56)
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Note that by definition of the cliques {Ci,j}, node vij
belongs to each of the cliques Ci−1,j−1, Ci−1,j , Ci,j−1 and
Ci,j as shown in Fig. 16. So multiplying (54) by fij and
adding over i, j ∈ {0, 1, . . . ,m} gives:∑

z∈V

gzαz ≤ g0 (57)

where,

gvij = fi−1,j−1 + fi−1,j + fi,j−1 + fij (58)

and

g0 =

m∑
i=0

m∑
j=0

fi,j =

m∑
i=0

m∑
j=0

eiej =

(
m∑
i=0

ei

)2

=

 m∑
i=0,i odd

(m− i) +

m∑
i=0,i even

i

2

=
(m2 − 1)2

4
(59)

We will show below that

gz =

 (m− 1)2, z ∈ I1
(m2 − 1), z ∈ I2 or z ∈ I3
(m+ 1)2, z ∈ I4

(60)

Note that (53) follows from (57), (59) and (60), which shows
that Hm,m is mean valid.

Now we show (60). By definition of the I.S. I1, I2, I3 and I4
(see Section VI-A), for vij ∈ I1, i and j are odd, for vij ∈ I2,
i is odd and j is even, for vij ∈ I3, i is even and j is odd and
for vij ∈ I4, i and j are even. So for vij ∈ I1, by (55), (56)
and (58):

gvij = (i− 1)(j − 1) + (i− 1)(m− j) + (m− i)(j − 1)

+(m− i)(m− j)

= (m− 1)2

Similarly, for vij ∈ I2:

gvij = (i− 1)(m− j + 1) + (i− 1)j + (m− i)(m− j + 1)

+(m− i)j

= m2 − 1

For vij ∈ I3, gvij = m2 − 1 by symmetry with the case
vij ∈ I2. For vij ∈ I4:

gvij = (m− i+ 1)(m− j + 1) + (m− i+ 1)j

+i(m− j + 1) + ij

= (m+ 1)2

Thus, we have shown (60), which completes the proof.
Proof of part 5 of Theorem 1: In Section VI-A, we

considered the case m even. The proof of the fact that Tm,m,m

is mean valid for m odd is similar to that for Hm,m with m
odd; we outline the differences. We define the cliques Cijl,
i, j, l ∈ {0, 1, . . . ,m}, similar to Cij for the case Hm,m.
Consider a valid distribution {αz : z ∈ V }. Then similar
to (54), we get: ∑

z∈Cijl

αz ≤ 1 (61)

Fig. 13. The figure shows a grid graph Hm,m with m = 7.

Fig. 14. The figure shows a tiling of a plane with squares, e.g. cells in a
cellular network. Transmissions at neighboring cells interfere with each other.
The corresponding conflict graph is H6,6.

Fig. 15. The figure shows the cliques in H5,5. The cliques with dotted
outlines are the dummy cliques.

Fig. 16. The node vij and the cliques Ci−1,j−1, Ci−1,j , Ci,j−1 and Ci,j .

Let ei be as in (55) and fijl = eiejel, i, j, l ∈
{0, . . . ,m}. Multiplying (61) by fijl and adding over i, j, l ∈
{0, 1, . . . ,m}, we get (57) for some numbers {gz : z ∈ V } and
g0. Now, node vijl is at the center of the cliques Ci−1,j−1,l−1,
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Ci−1,j−1,l, Ci−1,j,l−1, Ci−1,j,l, Ci,j−1,l−1, Ci,j−1,l, Ci,j,l−1,
and Ci,j,l. Using this fact, gvijl

for vijl in each of I1, . . . , I8
can be computed similar to the derivation of (60). Also, g0
can be calculated similar to (59). Substituting these values of
{gz : z ∈ V } and g0 into (57), we get (10) for Tm,m,m and
thereby the mean validity follows from Definition 3.

D. Proofs of results in Section VII-A
Proof of Theorem 3: Suppose β(I1) = t1, β(I2) = t2,

where t1 + t2 = 1 is a symmetric NE. By (18):

U1(Ij) =MjW (tj), j = 1, 2. (62)

First, suppose t1 = 0, t2 = 1. Since β(I2) = t2 > 0,
I2 is a best response. By (62) and part (ii) of Lemma 13,
U1(I1) = M1. Again, by (62), and since W (1) < 1 by part
(i) of Lemma 13:

U1(I2) =M2W (1) < M2 ≤M1 = U1(I1)

which contradicts the fact that I2 is a best response. So t1 =
0, t2 = 1 is not a symmetric NE.

Now, suppose t1 = 1, t2 = 0. Then I1 is a best response.
Similar to the previous paragraph, U1(I1) = M1W (1) and
U1(I2) =M2. So by (7):

U1(I1)− U1(I2) =M1

(
1− M2

M1
− w(q, n)

)
< 0

since w(q, n) > 1− M2

M1
. This contradicts the fact that I1 is a

best response. Thus, t1 = 1, t2 = 0 is not a symmetric NE.
Suppose 0 < t1, t2 < 1. Let I ∈ I be such that:

m1(I)

M1
+
m2(I)

M2
> 1, (63)

which exists by Lemma 3 since G is not mean valid. Since
β(I1), β(I2) > 0, I1 and I2 are best responses. So U1(I1) =
U1(I2) = U∗, where U∗ is the maximum payoff of any I.S.
By (62):

W (tj) =
U∗

Mj
, j = 1, 2 (64)

Now, by (18):

U1(I) = m1(I)W (t1) +m2(I)W (t2)

= U∗
(
m1(I)

M1
+
m2(I)

M2

)
(by (64))

> U∗ (by (63))

which contradicts the fact that U∗ is the maximum payoff of
any I.S.

Proof of Lemma 12: By (2) and (7), W (.) is a continuous
function. So f1(x) is continuous on [0, 1]. Also, w′(x, n) >
0 ∀x ∈ (0, 1) [19]. So by (7), W ′(α) < 0 ∀α ∈ (0, 1). Hence,
for x ∈ (0, 1):

f ′1(x) = −2W ′(1− x)−W ′(x) > 0.

So f1(x) is strictly increasing on [0, 1] [3].
Also, by (7), f1(0) = 2W (1)−W (0) = 1− 2w(q, n) < 0

since w(q, n) > 1
2 , and f1

(
1
2

)
=W

(
1
2

)
= 1−w

(
q
2 , n
)
> 0.

So by the intermediate value theorem [3], f1(x) has a root
t1 ∈

(
0, 12

)
. Also, t1 is the unique root in [0, 1] since f1(x) is

strictly increasing.

1) Proof of Theorem 4: Consider a symmetric strategy
profile under which each primary offers bandwidth at Ia
(respectively, Ib) w.p. ta (respectively, tb) and at Iab w.p.
1 − ta − tb. By (6), the corresponding node probabilities are
αa1 = ta, αa2 = αa3 = 1− tb, αb1 = tb, αb2 = αb3 = 1− ta.
So by (18), the total expected payoffs of primary 1 if it offers
bandwidth at each of the three I.S. are:

U1(Iab) = 2W (1− tb) + 2W (1− ta) (65)

U1(Ia) = 2W (1− tb) +W (ta) (66)

U1(Ib) =W (tb) + 2W (1− ta) (67)

Intuitively, since Iab is the largest I.S., we expect that in
a symmetric NE, primaries would not offer bandwidth at one
or both of Ia and Ib without offering it at Iab. The following
result confirms this.

Lemma 15: Let q ∈ (0, 1) be arbitrary. None of the follow-
ing can hold in a symmetric NE: (i) ta = 1, (ii) tb = 1 (iii)
0 < ta, tb < 1 and ta + tb = 1.

Proof: First, suppose ta = 1 in a symmetric NE. Since
ta > 0, Ia is a best response. Also, tb = 0. So by (65), (66),
(7) and the fact that w(0, n) = 0:

U1(Iab)− U1(Ia) = 1 + w(q, n) > 0

So U1(Iab) > U1(Ia), which contradicts the fact that Ia is
a best response. Thus, ta = 1 is not possible. By symmetry,
tb = 1 is also not possible.

Now, suppose 0 < ta, tb < 1 and ta+tb = 1. Since ta, tb >
0, Ia and Ib are best responses. So U1(Ia) = U1(Ib). By (66),
(67), (7) and the fact that ta + tb = 1, we get w(qta, n) =
w(qtb, n). So by Lemma 1, ta = tb =

1
2 . Hence, by (65), (66)

and (7):

U1(Iab)− U1(Ia) =
(
1− w

(q
2
, n
))

> 0

which contradicts the fact that Ia is a best response.
Now we are ready to prove Theorem 4.
Case 1: w(q, n) ≤ 1

2 . Let ta and tb be arbitrary. By (65),
(66) and (7):

U1(Iab)− U1(Ia)

= 1− 2w(q(1− ta), n) + w(qta, n)

≥ 1− 2w(q, n) (by Lemma 1) (68)

≥ 0

(
since w(q, n) ≤ 1

2

)
Note that if ta > 0, then the inequality in (68) is strict.
So U1(Iab) > U1(Ia), which is a contradiction because
ta > 0 implies that Ia is a best response. Hence, ta = 0. By
symmetry, tb = 0. If ta = tb = 0, then U1(Iab) ≥ U1(Ia)
and U1(Iab) ≥ U1(Ib); so Iab is a best response, which
is consistent with the fact that it is played w.p. 1. Thus,
ta = tb = 0 is the unique symmetric NE.

Case 2: w(q, n) > 1
2 . By Lemma 15, ta + tb < 1 for every

symmetric NE and hence Iab is a best response. Now, suppose
ta = 0. By (65), (66), (7) and the fact that w(0, n) = 0, we
get U1(Iab)− U1(Ia) = 1− 2w(q, n) < 0 since w(q, n) > 1

2 .
So U1(Ia) > U1(Iab), which contradicts the fact that Iab is a
best response. Hence, ta > 0. By symmetry, tb > 0.
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Thus, all three of Ia, Ib and Iab are best responses. So
U1(Iab) = U1(Ia) = U1(Ib). Substituting (65), (66) and (67),
these are satisfied iff ta = tb = t1, the root of f1(x) = 0. This
completes the proof.
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