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Abstract

We consider a wireless system with multiple channels when each channel has several transmission
states. A user learns about the instantaneous state of an available channel by transmitting a control
packet in it. In presence of multiple channels, this process of probing every channel to find the best one
consumes significant energy and time. So a user needs to select a channel based only on partial informa-
tion about instantaneous states of available channels. Furthermore, a user not only needs to optimize its
selection based on the information it has, but also needs to determine what and how much information it
needs to acquire about the instantaneous states of the available channels. We investigate desired tradeoffs
between information acquisition and exploitation in context of wireless networks. We seek to maximize
a utility function which depends on both the cost and value of information, and obtain computationally
simple joint information acquisition and exploitation strategies that attain constant factor approximations
of the optimal solution.

1 Introduction

Future wireless networks will provide each terminal access to a large number of channels. A channel can
for example be a frequency in a frequency division multiple access (FDMA) network, or a code in a code
division multiple access (CDMA) network, or an antenna or a polarization state (vertical or horizontal) of
an antenna in a device with multiple antennas (MIMO). Several existing wireless technologies, e.g., IEEE
802.11a [1], IEEE802.11b [13], IEEE802.11h [2] propose to use multiple frequencies. For example, IEEE
802.11a protocol has 8 channels for indoor use and 4 channels for outdoor use in the 5GHz band, while
the IEEE 802.11b protocol has 3 channels in the 2.4 GHz band. The potential deregulation of the wireless
spectrum is likely to enable the use of a significantly larger number of frequencies. Due to significant
advances in device technology, laptops with multiple antennas (antenna arrays) incorporated in the front lid,
and devices with smart antennas have already been developed, and the number of such antennas are likely
to significantly increase in near future.

The increase in the number of channels is expected to significantly enhance network capacity and enable
several new bandwidth-intensive applications as multiple transmissions can now proceed simultaneously in
a vicinity using different channels. Furthermore, the availability of multiple channels substantially enhances
the probability (at any given time) of existence of at least one channel with acceptable transmission quality,
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since the transmission quality of the individual channels stochastically vary with time and location of the
users. These benefits can however be realized only if the users can select the channels efficiently.

Most of the existing channel selection strategies assume complete knowledge of instantaneous transmis-
sion qualities of all channels. We refer to this approach as ”complete information based optimal control”.
Note that a user can only learn the instantaneous state of a channel by transmitting a control packet in it and
subsequently the receiver informs the sender about the quality of the channel in a response packet (e.g., the
RTS and CTS packet exchange in IEEE 802.11). The exchange of control packets in this probing process
consumes additional energy, and prevents other neighboring users from simultaneously utilizing the channel.
Probing a channel is therefore associated with a cost. When the number of available channels is large, the
cost incurred in learning the instantaneous transmission qualities of all channels may become prohibitive.
Owing to this cost, some recent papers have investigated selection strategies that assume no knowledge of
instantaneous transmission qualities of any channel [25]. This approach, which we refer to as ”minimal
information based optimal control”, may however attain significantly lower transmission rates owing to sub-
optimal selection of channels. We seek to design a framework that attains any desired tradeoff between the
above extremes using only simple control mechanisms. Specifically, we develop a framework for partial
information based stochastic control which, in accordance with the cost and the benefits of probing different
channels, determines both (a) the amount of information a user must obtain about the instantaneous trans-
mission qualities of the channels at its disposal and also (b) how to select the channels based on the acquired
information.

We consider a single sender with access to n channels. The instantaneous transmission qualities of the
channels can have K possible values and stochastically vary with time. The statistics of these temporal
variations may be different for different channels. Every time the sender probes a channel it learns about
the signal to noise ratio and thereby the probability of success in the channel, but also incurs a certain
cost which may again be different for different channels. Before each transmission, the sender needs to
determine how many and which channels it will probe and also the sequence in which these channels will be
probed (probing policy). Note that depending on the available hardware (e.g., availability, or lack thereof, of
multiple network interface cards, or compatible transmission circuits to appropriately distribute the power
across the antennas), a sender may, or may not, be able to simultaneously transmit in multiple channels.
In this paper, we consider the scenario where a sender can transmit in only one channel in a time slot and
transmits at most one packet in each slot. Based on the outcomes of the probes, a sender decides whether
to transmit or defer transmission until transmission qualities improve (transmission policy). If the sender
decides to transmit, it must select one of the available channels (channel selection policy), which need not
be those that it has probed.

The sender seeks to maximize a utility function which depends on the probability of success of each
transmission and the probing cost incurred before each transmission. Clearly, a meaningful utility function
should (a) increase with increase in the former and (b) decrease with increase in the latter. As a starting point,
we consider linear functions that satisfy the above criteria. Specifically, we seek to design a jointly optimal
probing and channel selection policy that maximizes a system utility which is the difference between the
probability of successful transmission and a suitably scaled expected probing cost before each transmission.
Loosely, this utility function represents the gain or the profit of the sender if the sender receives credit
from the receiver for each packet it delivers successfully and needs to additionally compensate the wireless
provider for each probe packet it transmits1.

Different choices of the scaling factor of the probing cost in the utility function lead to different interme-
diate points between the extremes of complete information based optimal control and minimal information
based optimal control – a small scaling factor corresponds to complete information (or probing everything),

1The sender may have to share with the provider part of the credit it receives from the receiver for each successfully delivered
packet. Then the credit we are considering here is the credit remaining after the sharing process.
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while a large scaling factor corresponds to minimal information (or absence of probing).
We first enumerate the challenges in designing the jointly optimal strategy. The optimal policy needs to

probe adaptively, i.e., the result of a probe determines the channels to be probed subsequently. For example,
consider channels with 3 possible states (0, 1, 2), each of which is associated with a different transmission
quality. Clearly, the probing terminates if a probed channel is in the highest state. Now, let a probed channel
be in the intermediate state (state 1). Then the subsequent probes should be limited to channels that have
high probabilities of being in the highest state. However, if all channels that have been probed in a slot are
in the lowest state, then the channels that have high probabilities of being in the intermediate state may also
be subsequently probed. Also, the channel selection decision depends on the outcomes of the probes and
the expectation and uncertainty of the transmission quality of the channels that have not been probed. The
optimal policy is therefore a decision tree over n variables (Figure 1) – naive computations will require both
exponential time and exponential storage space. Next, the policies may depend on the higher order statistics
of the channels. This is because the optimum policy may not probe a channel if its quality has a low variance
as probing it does not provide significant information but incurs additional cost.

Contributions: Our main contribution is to obtain succinct polynomial time computable joint probing,
selection and transmission policies that provably attain utility values which are within constant factors of the
optimal utilities. When a sender always has packets to transmit (saturated sender assumption), this constant
factor is 4/5 (Section 4); otherwise the constant factor is 2/3 (Section 5). The policies can be readily
implemented in resource constrained devices as their execution times and storage spaces grow only linearly
with increase in input size. Our results are somewhat surprising given that optimal solutions for most partial
information based control problems turn out to be computationally intractable, and standard approximation
techniques either do not provide guaranteed approximation ratios or require exponential computation times
[5]. Our proofs therefore rely on exploitation of specific system characteristics and employ techniques
that are not standard in context of stochastic control. Finally, the area of partial information based control
problems, and in particular the joint optimization of the reward obtained from informed selections and the
cost incurred in acquiring the required information, remains largely unexplored in wireless networks. Thus,
both our results and proofs will enhance the state of knowledge in an emerging area which has hitherto
received only limited attention.

Our assumptions are general in that we assume arbitrary probing costs and distributions of the transmis-
sion qualities of the channels and also arbitrary number of channels and transmission states for the channels
(Section 3). The only restrictive assumption we make is that we assume that the states of channels are tem-
porally and spatially uncorrelated (earlier results in this area also rely on the same assumption [18, 23]).
Given the large number of possible courses of actions, obtaining policies with provable performance guar-
antees is non-trivial even under this assumption, and is probably a pre-requisite for exploring more general
scenarios involving temporally correlated channels and networks with multiple terminals. Our current poli-
cies directly lead to heuristics in these cases, and our empirical investigations indicate that these heuristics
attain near-optimal performance. We hope that our work will provide the framework for obtaining provable
performance guarantees in these complex scenarios.

2 Related Literature

We first discuss the relation of our problem with some classical problems like the stopping time and multi-
armed bandit problems. The most well-researched version of the stopping time problem is a stochastic
control problem that optimally selects between two possible actions at any given time: to continue or to
stop [8]. Recently, the results for this problem have been used to solve partial information based control
problems for statistically identical channels with equal probing costs [18, 23]. Since we consider channels
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that may have different statistics and/or different probing costs, the optimal action needs to be selected from
multiple options at any given time - the options being (a) whether to continue probing (b) which channel to
probe next if the decision is to probe and (c) which channel to transmit if the decision is to stop probing.
Thus, the results from the above version of stopping time problem do not apply in our context. The optimal
stopping time problem has also been considered in a more general setting where the number of available
actions may be more than two; our problem is in fact a special case of this general version (Chapter IV, [5]).
In this general case, the process terminates in certain states, which constitute the termination set, and selects
the optimal action in other states. But, so far, only certain broad characterizations of the termination set are
known in this general case, and the optimal actions when the decision is not to stop are also not known in
close form [5]. Thus, these general results do not lead to the optimal policies we are seeking to characterize.

The stochastic multi-armed bandit problem considers a bandit with n arms [12]. The system can try one
arm in each slot, and when it tries an arm, it receives a random reward which depends on the state of the arm.
The state of an arm changes only when the system tries it. The reward of a system in T slots is the sum of
the rewards in each slot. The goal is to maximize the expected reward in T slots. Our problem differs from
the above in that (a) the state of a channel can change even when it is not probed or used for transmission
and (b) a node can learn the states of multiple channels in an epoch while incurring additional probing costs
for learning the state of each additional channel. The adversarial multi-armed bandit problem removes one
of the above differences in that it allows the state of an arm to change even when the system does not try
it [3]. But, it seeks to optimize the selection under the assumption that the sender uses the same arm in all
slots. Note that we allow a sender to probe and transmit in different channels in different slots. In another
version of the adversarial multi-armed bandit problem, the goal is to select the arms so as to minimize the
“regret” or the difference in expected reward with the best policy in a collection of a certain number (say
N ) of given policies. As expected, the regret in T slots increases with increase in both N and T (the regret
for the best known policy is O(

√
nT ln(N))). In our context, the total number of possible probing and

channel selection policies that can be used in T slots is large, e.g., the number of deterministic policies is
(n!)T . Thus the results available in this context do not apply in our problem, and we use different solution
approach and obtain different performance guarantees.

Optimizing the order of evaluation of random variables so as to minimize the cost of evaluation (“pipelined
filters”) has been investigated in several different contexts like diagnostic tests in fault detection and medical
diagnosis, optimizing conjunctive query and joint ordering in data-stream systems, web services [4, 6, 9, 11,
17, 19, 20, 21, 22]. However our work is different from all the above in that, we (a) consider multi-state
channel models whereas pipeline filters consider two state models and (b) allow a node to transmit in a chan-
nel even if the channel has not been probed. Note that usually two state models can not capture the statistical
variations of wireless channels [14]. As we demonstrate later, both the above generalizations significantly
alter the decision issues and the optimal solutions (Section 3).

Finally, opportunistic selection of channels with complete knowledge of channel states has been com-
prehensively investigated over the last decade (e.g., [24]). But, in general, the area of partial information
based control problems, and in particular the joint optimization of the reward obtained from informed se-
lections and the cost incurred in acquiring the required information, remains largely unexplored in wireless
networks. The first results in this area have been obtained in [18, 23], but as mentioned above, they consider
only statistically identical channels with equal probing costs. Recent statistical investigations indicate that
different channels available to a sender may have different statistics [14]. We now describe our initial results
in the area. We have recently proved that when every channel has two states the joint optimization problem
can be solved in polynomial time even when different channels have different statistics and probing costs
[16]. In [15], we proved that for channels with multiple states the optimization can be approximated within
a factor of 1/2 using polynomial time algorithms. In the current paper, we significantly enhance the results
obtained in [15]. Specifically, we prove that the joint optimization problem can be approximated within a
factor of 4/5 for channels which have different statistical distributions, different probing costs and multiple
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states. We also obtain analytical guarantees under significant generalizations of the framework. Specifi-
cally, we relax the assumptions that (a) the sender always has a packet to transmit and (b) the channel states
are temporally independent. The results in this paper will therefore enhance the state of knowledge in an
emerging area which has hitherto received only limited attention.

3 System Model and Problem Definition

A sender U has access to n channels which are denoted as channels 1, 2, . . . , n, each of which has K possible
states, 0, . . . ,K − 1. We assume that time is slotted. In any slot channel j is in state i with probability pij

independent of its state in other time slots and the states of other channels in any slot. Without loss of
generality, we assume that pK−1j < 1 for each j, as otherwise the optimum policy is simply to transmit in
j without probing any channel. In every slot, U transmits at most one data packet in a selected channel. If
the channel selected for transmission is in state i, the transmission is successful with probability ri. Without
loss of generality we assume 0 ≤ r0 < r1 < · · · < rK−1. For simplicity, we also assume that r0 = 0; all
analytical results can however be generalized to the scenario where r0 > 0. Whenever U probes a channel
j, it pays a cost of cj ≥ 0. Probing different channels may incur different costs as the probing process for
different channels may interfere with the channel access of different number of users (based on geometry
and allocation of channels). We now formally define the policies and the performance metrics.

Definition 3.1 A probing policy is a rule that, given the set of channels the sender has already probed in
a slot (which would be empty at the beginning of the slot) and the states of the channels probed in the slot,
determines (a) whether the sender should probe any more channels and (b) if the sender probes additional
channels which channel it should probe next. The sender knows the state of a channel in a slot if and only if
it probes the channel in the slot.

Definition 3.2 A selection policy is a rule that selects a channel for the transmission of a data packet in
a slot on the basis of the states of the probed channels, after the completion of the probing process in the
slot. The selection policy can select a channel even if it has not been probed in the slot, and in that case, the
channel is referred to as a backup channel.

Definition 3.3 The probing cost is the sum of the costs of all channels probed in the slot. The probing
cost is clearly a random variable that depends on the probing policy and the outcomes of the probes (as the
sender may probe subsequent channels depending on the outcomes of the previous probes). The expected
probing cost is the expectation of this random variable and depends on both the probing policy and the
channel statistics.

Definition 3.4 In any slot, the transmission reward is 1 if there is a successful transmission and 0 other-
wise. Therefore, the expected transmission reward is ri in a slot t if U transmits in a channel in state i during
t. We overload the terminology and denote the ”reward” of transmitting in state i by ri. The expected trans-
mission reward of a policy is therefore

∑
i qiri where qi is the probability that the selection policy decides

to use a channel which in state i; qi depends on the channel statistics as well as the policy.

Definition 3.5 The expected utility of the sender, denoted simply as gain, is the difference between the
expected transmission reward, and the probing cost scaled by a factor κ. The gain depends on the probing
and selection policies, the channel statistics and the scaling parameter κ – choosing the scaling parameter
κ to be 0 makes the policy acquire complete information, while setting it to ∞ makes the policy acquire
no information. Since κ can be included in the probing costs themselves, we drop this parameter in the
remaining discussion without loss of generality.
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Figure 1: Figure (a) shows the decision tree for OPT in Example 2.1. A channel is probed at each probe
node, and the letter inside it indicates which channel is probed at the node. The numbers next to the branches
indicate the outcome of the probe. The number r/s next to a branch indicates that both states r and s of the
previously probed channel lead to the same action. For example, the sender first probes channel i. If i is in
state 2, it transmits in i. If i is in state 1 and 0, it probes k and j respectively. The first and second figure in
Figure (b) respectively illustrates RESERVEBKUP(k) and RESERVEBKUP(0) for the scenario described in
Example 2.1. Note that consistent with the definition RESERVEBKUP(0) never uses a backup channel. Also,
RESERVEBKUP(k) attains the maximum gain in ∪`∈{0,i,j,k}P(`), but this maximum gain is lower than that
of OPT. Figure (c) illustrates the transformation of OPT2 to OPT1 in lemma 4.1.

In Section 4, we assume that U ’s queue is never empty (saturated sender assumption); we relax this
assumption in Section 5. The two versions of the problem are defined as follows:

Saturated Sender Problem: Under the saturated sender assumption, at least one policy that maximizes
the utility transmits a packet in every slot. We therefore assume that U transmits exactly one data packet in
every slot. The problem formulation for the saturated sender case follows.

Problem 1 Given {cj}, {ri} and {pij}, find a probing and selection policy so as to maximize the expected
gain. Let OPT denote the optimal policy and GOPT its gain.

Unsaturated Sender Problem: We now relax the assumption that a sender always has packets to trans-
mit. A sender generates packets as per an arrival process which constitutes a positive recurrent, aperiodic,
irreducible Markov chain. Under the steady state distribution of the Markov chain, the expected number of
arrivals in any slot is λ, where λ ∈ [0, 1). Packets are stored in an infinite buffer. If in a slot the sender has a
packet in its queue, the slot is referred to as a busy slot. The sender transmits only in busy slots, but may not
transmit in every busy slot; it may improve its gain by deferring transmission until at least one channel has
good quality. The transmission policy is a rule that determines which slots a sender transmits. The decisions
may depend on the outcomes of the probes, the queue lengths, channel and arrival statistics. The sender
must however ensure that it transmits at least at the rate at which it generates packets, otherwise its delay
becomes unbounded. In addition to gain, system stability is therefore of interest.

Definition 3.6 The system is stable if the sender’s expected queue length is finite. A policy that attains finite
expected queue length is a stable policy.

Problem 2 Given {ci}, {ri} and {pij} find a probing, selection and transmission policy that stabilizes the
system and maximizes the gain among all stable policies. Let UNSAT denote the optimal policy and GUnSat

its gain.
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Policies and Decision Trees: Every joint probing and selection policy can be represented by a unique
decision tree (Figure 1); we therefore use policies and decision trees interchangeably.

3.1 Challenges

Let us first consider the saturated sender case. The optimal probing policy does not probe any further
in a slot if a probed channel is in state K − 1. Since channels are temporally independent, the optimal
probing and selection strategies in a slot need not depend on the decisions and the observations in other slots.
Also, the optimal probing and selection strategies remain the same in all slots, though the specific choices
made by each policy may be different in different slots depending on the outcome of the probes. Using
these observations, the optimal policy can be computed using a bottom-up dynamic program. However, the
computation time for the optimal is Ω(K2n) time as the dynamic program has K2n states, and the storage
space is Ω(nK).

Minor perturbations in the parameter values and policy constraints substantially alter the structure of the
optimal policy. This suggests that significant reduction in computation time and storage space may not be
possible for the optimal policy. For example, when K = 2 (i.e., each channel is either “on” or “off”) then
the optimal policy probes channels in increasing order of cj/p2j (i.e., the ratio between their costs and their
probabilities of being in the “on” state) [16]. For K > 2, the natural generalizations of this policy are to
probe channels in increasing order of the ratio between their (a) costs and the probabilities of being in the
highest state (i.e., cj/pK−1j) or (b) costs and the expected rewards (i.e., cj/

∑K
K=1 pkjrj). We next present

one example where both these probing sequences are sub-optimal.

Example 3.1 (Saturated Sender Case.) Let U have access to 3 channels i, j, k each of which has 3 states.
Let r2 = 1, r1 = 0.1. The probabilities associated with different states of i, j, k are (0.49, 0.02, 0.49),
(0.5, 0.01, 0.49), (0.5, 0.5− δ, δ) respectively. Also, ci = 0.05885δ, cj = 0.06δ, ck = 0.05δ. Let δ < 0.15.
Note that i has the least, j intermediate and k maximum expected rewards. Also, ck/p2k < cj/p2j < ci/p2i.
Thus, intuitively, if i and j are both probed, then j should be probed before i. But, OPT probes i before
probing j (Figure 1(a))!

Note that if the transmission policy is constrained to transmit only in a probed channel (i.e., a backup
channel is not allowed), then the optimal probing policy in fact probes channels in sequence of cj/pK−1j

for arbitrary K [15]. But, the previous example demonstrates that the availability of a backup channel
renders this probing sequence suboptimal.

The situation is significantly more complicated in the unsaturated sender case – because in addition to a
backup, the sender now has a choice of not transmitting at all, that is, if she believes that she has been
unlucky in the current time slot and wishes to try to send the packet in subsequent slots. We note that no
previous results – even exponential time algorithms, were known for this problem.

4 The Saturated Sender Problem

We first establish a key technical property for the optimal policy which states that whenever it transmits in
a channel that has not been probed, it transmits in a fixed channel whose selection does not depend on the
outcome of the probes (Subsection 4.1). We refer to this result as the Structure Theorem (Theorem 4.2).
Using the Structure Theorem, we design a computationally simple probing and selection policy that attains
at least 4/5 of the maximum gain irrespective of n, K, {pij}, cj (Subsection 4.2).
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4.1 Structure Theorem for the optimal policy

We first introduce the following notion which will be useful in stating and proving the Structure Theorem.

Definition 1 A ≤ i tree is a decision tree which takes the same decisions irrespective of the states of the
probed channels provided the states are less than or equal to i. The decisions corresponding to the states
which are less than or equal to i therefore constitute a path in such a tree which we refer to as a ≤ i path.

For example, both decision trees in Figure 1(b) are ≤ 1 trees, and the left-most paths are the ≤ 1 paths.
We prove the Structure Theorem 4.2 using the following lemma.

Lemma 4.1 Suppose OPT probes a channel j at a node m in its decision tree and if j is in state i it takes a
backup downstream. Then there exists another optimum policy OPT1 which has the same decision tree as
OPT except possibly for the tree rooted at m. In OPT1, the tree rooted at m,

1. is a ≤ i tree

2. takes a backup, say `, at the end of its ≤ i path and

3. takes ` as a backup wherever it takes a backup.

Proof: We prove the lemma using induction on the states. The lemma holds by vacuity for all channels j,
node m if i = K − 1. This is because OPT never takes a backup after observing a channel in state K − 1.

Suppose the lemma holds for all channels j, nodes m in the decision tree of OPT, states i+1, . . . ,K−1.
We prove the lemma for all channels j, nodes m and state i. Now, let OPT probe a channel j at a node m in
its decision tree and take a backup somewhere downstream if j is in state i. Let m1 be the first node after j
is probed at m and observed to be in state i. Clearly, the decision tree rooted at m1 is a ≤ i tree, and takes
at least one backup somewhere downstream.

We will first show that there is one optimum policy OPT2 which is similar to OPT except possibly for
the tree rooted at m1. The tree rooted at m1 in OPT2 is still a ≤ i tree but

p1 takes a backup, say `, at the end of its ≤ i path and

p2 takes ` as a backup wherever it takes a backup.

Suppose the tree T rooted at m1 in OPT does not satisfy the above conditions. Then there is a path origi-
nating from its ≤ i path which ends in a backup. Let m2 be the highest node (i.e., node closest to m1) from
where such a path originates on the≤ i path of T . Clearly this path corresponds to a channel being observed
in a state higher than i, say q, at m2. From the induction hypothesis, there exists one optimum OPT2 which
is similar to OPT except possibly for the decision tree rooted at m2. In OPT2 this decision tree

• is a ≤ q tree

• takes a backup, say `, at the end of its ≤ q path and

• takes q as a backup wherever it takes a backup.

Note that OPT2 satisfies conditions p1 and p2 for the tree rooted at m1 (refer Figure 1(c)).
Let α be the probability that OPT2 never visits m, G′ be the expected gain of OPT2 if it never visits

m, Gh be the expected gain of OPT2 given that j is observed in state h at node m. Thus, the expected gain
of OPT2 is αG′ + (1 − α)

∑
h phjGh. Let Th be the decision tree in OPT2, and hence in OPT, after j is

observed to be in a state h < i after being probed at m. Consider a new policy which is similar to OPT2
except that it replaces the decision tree rooted at m1 with Tf for some f < i. The expected gain of this new
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policy is at least αG′ + (1− α)
∑

h,h 6=i phjGh + (1− α)pijGf . Since the expected gain of this policy can
not exceed that of the optimum, Gf ≤ Gi.

Now, consider another policy OPT1 which is similar to OPT2 except that it replaces the decision trees
T0, . . . , Ti−1 (i.e., those rooted at nodes immediately downstream of m and corresponding to j being in
states lower than i), with the decision tree rooted at m1 (i.e., the one corresponding to j being in state i)
(refer Figure 1(c)). Since the decision tree rooted at m1 is a ≤ i tree and the ≤ i path ends in a backup,
the gain of OPT1 is αG′ + (1 − α)

(
Gi
∑

h≤i phj +
∑

h>i phjGh

)
. Thus, since Gf ≤ Gi, for f < i,

the expected gain of OPT1 is at least as high as that for OPT2. Thus, OPT1 is also optimum. Note that
OPT1 is similar to OPT except possibly for the decision tree rooted at m, which is a ≤ i tree and satisfies
conditions p1 and p2. The result follows. �

We now state and prove the Structure Theorem.

Theorem 4.2 (Structure Theorem) There exists an optimum policy that uses a unique backup channel.
The backup channel is used at the end of one ≤ i path.

Proof: Consider an optimum policy that does not use a backup channel at all. Consider the path in its
decision tree which corresponds to all probed channels being in state 0. Modify the policy so as to use the
last channel probed in this path as a backup. Note that the gain does not decrease. Thus, the modified policy
is also optimum. Thus, there always exists an optimum policy that uses a backup channel at the end of some
path in its decision tree. Let one such optimum policy OPT3 use backup channels at the end of at least two
distinct paths P1 and P2 in the decision tree. Let P1 and P2 intersect at node m in the decision tree. Then,
OPT3 probes a channel j at m and uses P1 and P2 for two different states of j. Let k be the higher of the
two states. Then, by lemma 4.1, there exists another optimum policy OPT4 which differs from OPT3 only
in the decision tree rooted at m which is a ≤ k tree in OPT4. Clearly, OPT4 has strictly fewer number of
paths ending in backups. The Theorem follows from recursive usage of this argument. �

Let Θ(`) be the class of policies that never use any channel other than ` as a backup. It follows from
the Structure Theorem that OPT is in Θ(`) for some `. Thus, if the optimum in Θ(`) can be computed
in polynomial time for each ` then the overall optimum can also be computed in polynomial time. The
difficulty in computing the optimum in any given Θ(`) is in determining the optimum probing sequence and
also in deciding whether to probe ` or use it as a backup. Both these decisions may depend on the outcomes
of the probes. In the next subsection, we prove that there exists ` such that the policy that is optimum in
a subset of Θ(`), P(`), attains 4/5 of the overall maximum gain, GOPT. We also show that for each ` the
optimum in P(`) can be computed using a simple polynomial time algorithm, RESERVEBKUP(`). Thus 4/5
of GOPT can be attained in polynomial time as well.

4.2 A 4/5 approximation algorithm

Definition 4.1 Let P(`) denote the class of policies, each of which (a) never probes ` and (b) never uses
any channel other than ` as a backup. The policy that maximizes the gain among all policies in P(`) is
denoted as OPT(`). Let GALG be the maximum gain attained by some policy in ∪n

l=0P(`).
Since the channels are numbered 1, . . . , n, by definition, P(0) corresponds to the class of policies that

never use backup channels.

The following lemma indicates why the above class of policies are of interest.

Lemma 4.3 Let ` be the unique backup associated with OPT. Let OPT also probe ` with probability 1−α.
Consider a policy B that is similar to OPT except that it never probes `; instead wherever OPT probes `,
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B follows the same course of actions as OPT does after discovering ` in state 0. Then B attains a gain of
at least GOPT − (1− α)(

∑K−1
i=0 pi`ri − c`).

Proof: Let OPT probe ` at nodes numbered 1, . . . , J in its decision tree. Let β1, . . . , βJ be the respective
probabilities that OPT traverse these nodes and G1, . . . , GJ be the respective gains of OPT given that it
traverses these nodes. Note that the decision tree of B is the same as that for OPT except for the trees
rooted at m1, . . . ,mJ . B reaches these nodes with the same probabilities as OPT. Let G′

1, . . . , G
′
J be the

gains of B given that it traverses these nodes. Then the difference between the overall gains of OPT and B
is
∑J

k=1 βk(Gk−G′
k). We will show that for each k, Gk−G′

k ≤
∑K−1

i=0 pi`ri− c`. The result follows since∑J
k=1 βi = 1− α.
Consider m such that 1 ≤ m ≤ J. Let q be the highest state of a probed channel before OPT (and hence

B) reaches node m in their decision trees. Let Ti be the decision tree in OPT after ` is observed to be in a
state i after being probed at m. Let Ci be the expected probing cost in Ti, Ai be the set of paths from the
root to the leaves of Ti, γP be the probability that OPT traverses along path P given that it traverses Ti, and
νP be the highest state of a channel probed in path P. Note that downstream of m, OPT transmits only in
probed channels. Thus,

Gk =
K−1∑
i=0

pi`

∑
P∈Ai

γP max(rq, ri, νP )

− Ci

− c`

=
K−1∑
i=0

pi`

max(rq, ri)− Ci +
∑
P∈Ai

νP >max(rq ,ri)

γP (νP −max(rq, ri))

− c`

= rq

q∑
i=0

pi` +
K−1∑

i=q+1

pi`ri − c` +
∑

i

pi`τi,

where τi =
∑
P∈Ai

νP >max(rq ,ri)

γP (νP −max(rq, ri))− Ci.

Now, consider another modification of OPT that uses Ti in place of T0 in the decision tree of OPT. The
gain of this policy given that it traverses node m is rq

∑q
i=0 pi` +

∑K−1
i=q+1 pi`ri − c` +

∑K−1
i=1 pi`τi + p0`θi

where θi =
∑

P∈Ai
νP >rq

γP (νP − rq) − Ci. This gain must be upper bounded by Gk from the optimality of

OPT. Thus, τ0 ≥ θi. Note that θi ≥ τi. Thus, τ0 ≥ τi for each i. Thus,

Gk ≤ rq

q∑
i=0

pi` +
K−1∑

i=q+1

pi`ri − c` + τ0. (1)

Now consider B.

G′
k =

∑
P∈A0

γP max (rq, νP )− C0

= rq + τ0 (2)

From (1) and (2), Gk −G′
k ≤

∑K−1
i=0 pi`ri − c`. �

We now propose a policy RESERVEBKUP(l) that attains the maximum gain in P(l) for l = 0, . . . , n.
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Definition 4.2 For i = 1, . . . , n,, let r̃i[u] =
Pv=K−1

v=u pvirviPv=K−1
v=u pvi

and p̃i[u] =
∑v=K−1

v=u pvi. Let r̃0[0] = −1 and

r−1 = −1. Let w` = minu{u : ru > r̃`[0]}2.

Definition 4.3 Let Hu,` = φ for all u ≥ K. For each `, starting from u = K − 1, down to u = w`, recur-

sively, define Hu,` =
{

i|i 6∈
⋃

v:v>u Hv,`, and r̃i[u]− ci
p̃i[u] > max(r̃`[0], ru−1)

}
\{`}. Assume ci/p̃i[u] =

+∞ when p̃i[u] = 0.

RESERVEBKUP(`)

1. Consider each Hu,` in decreasing order of u starting from u = K − 1 down to u = w`.

2. (Probing Process:) Within each Hu,` probe in non-increasing order of r̃j [u] − cj

p̃j [u] , and stop if any
channel is found to be in state u or above.

3. (Selection Process:) Consider the channel, say j, which is in the highest state, say y, among all probed
channels. If no channel is probed, j = −1. If ry ≥ r̃`[0], transmit in y, else transmit in `.

Refer to Figure 1(b) for examples elucidating RESERVEBKUP(`). We now explain the design of RESERVEBKUP(`).
First, observe that RESERVEBKUP(`) ∈ P(`). This is because by definition ` 6∈ Hu,` for any u. Thus,

RESERVEBKUP(`) never probes ` (refer to the probing process). Also, note that RESERVEBKUP(`) does
not use any channel other than ` as backup (refer to the selection process).

Next, the channel selection for RESERVEBKUP(`) is clearly optimal among policies in P(`). Note that
r̃`[0] is the probability of success when the sender transmits in the backup `. Thus, if the highest state
of a probed channel is u when the optimum policy in P(`), OPT(`), terminates its probing process, then
OPT(`) transmits in the probed channel if ru ≥ r̃`[0] and transmits in ` otherwise. This is exactly what
RESERVEBKUP(`) does as well.

We now explain the intuition behind the design of the probing process for RESERVEBKUP(`). First
let ` = 0. Once a sender observes that a probed channel is in state u it can not increase its gain any
further by discovering another probed channel in state u or in a lower state. Thus, subsequently, it probes
only the channels j for which the additional reward (r̃j [u + 1]p̃j [u + 1] − rup̃j [u + 1]) exceeds the cost
cj , i.e., it probes the channels in Hv,`, v > u. The incremental gain for probing a channel j then is
r̃j [u + 1]p̃j [u + 1] − rup̃j [u + 1] − cj .The probing sequence in each Hu,` follows an increasing order of
the ratio between this incremental gain and the probability that the channel is in a state that is higher than
the highest observed state u (p̃j [u + 1]). We now comment on the major differences between the probing
processes of RESERVEBKUP(`) for ` > 0 and ` = 0. Note that r̃`[0] is the gain if the sender transmits in `
without probing any channel j. If, the sender observes a channel to be in state u for which ru ≤ r̃`[0], the
observation does not increase the gain as compared to r̃`[0]. Hence, the sender considers the incremental
gain as r̃j [u + 1]p̃j [u + 1] −max(ru, r̃`[0])p̃j [u + 1] instead of r̃j [u + 1]p̃j [u + 1] − rup̃j [u + 1], and, as
before, probes only channels for which the incremental gain exceeds the probing cost.

Theorem 4.4 RESERVEBKUP(`) attains the maximum gain among all policies in P (`).

The proof of the above theorem is given in Subsection 4.3. The gain of RESERVEBKUP(`) can be com-
puted in O(nK) time for each `. Thus, the RESERVEBKUP(`) with the maximum gain can be determined in
O(n2K) time. Once computed, RESERVEBKUP(`) can be executed and stored in O(n) time and memory
respectively for any `. We can now prove the main theorem of this subsection.

2Note that w` is well-defined for each ` as (a) r̃`[0] ≥ r0 = 0 and (b) r̃`[0] < rK−1 which follows since pK−1` < 1 for each `.
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Theorem 4.5 The maximum gain of of our algorithm GALG is at least 4/5GOPT.

Proof: By the structure Theorem (Theorem 4.2), there exists an optimum policy OPT that uses a unique
backup, say `. Let α denote the probability with which OPT uses ` as a backup. Construct a new policy A
that is similar to OPT except that it probes ` whenever OPT uses ` as a backup. Clearly, A attains a gain of
at least GOPT − αc`. Also, since A ∈ P(0), its gain is at most GALG. Thus,

GALG ≥ GOPT − αc`. (3)

Next, consider policy B as described in lemma 4.3. From lemma 4.3, B attains a gain of at least GOPT −
(1− α)(

∑K−1
i=0 pilri − c`). Again, since B ∈ P(`),

GALG ≥ GOPT − (1− α)(
K−1∑
i=0

pilri − c`). (4)

From multiplying Equations (3) and (4) with (1 − α) and α respectively, and adding the results, we
have GALG ≥ GOPT − α(1 − α)

∑K−1
i=0 pilri. Now, the policy that uses ` as a backup without prob-

ing any channel attains a gain of
∑K−1

i=0 pilri. Since this policy is in P(`),
∑K−1

i=0 pilri ≤ GALG. Thus,
GALG ≥ GOPT/(1+α(1−α)). The result follows since the maximum value of the denominator is 1.25. �

Finally, in practice, the gain of RESERVEBKUP(`) substantially exceeds the lower bound in Theo-
rem 4.5. In fact, RESERVEBKUP(`) attained the optimal gain for some ` in all but one case we considered.
For instance, in Example 3.1 (Figure 1(a),(b)), RESERVEBKUP(`) turns out to be suboptimal for all `. The
suboptimality arises due to the fact that RESERVEBKUP(`) does not probe ` irrespective of the outcomes of
the probes, whereas OPT uses ` as backup in some paths of the decision tree and probes ` in other paths
(Figure 1(a)). Owing to this difference, the probing sequence of OPT differs from that of RESERVEBKUP(`)
even in the paths where both use ` as backup (e.g., OPT and RESERVEBKUP(k) in Figure 1(a) and (b) re-
spectively). Nevertheless, even in this example, for ` = k, the gain of RESERVEBKUP(`) is only 0.1% less
than that of OPT.

4.3 Proof for Theorem 4.4

First observe that the optimal in the class of policies P(`) need not be unique. We consider OPT(`) to
be one optimal policy in P(`) that satisfies the following property. Suppose channel j is the last channel
probed in a path in the decision tree of OPT(`); let m be the node at which j is probed. Then, OPT(`) would
attain a lesser gain if it were not to probe j at m. Clearly, such optimal policies exist, and can be obtained
by progressively modifying the decision tree of any optimal policy (that is by progressively removing the
lowest node at which a channel is probed and which can be removed without reducing the gain of the tree).

We first observe the following about OPT(`). Let the highest state of a probed channel be u when
OPT(`) terminates its probing process. Then OPT(`) transmits in the probed channel if ru ≥ r̃`[0] and
transmits in ` otherwise. Thus, the channel selection for RESERVEBKUP(`) is optimal in P(`). We now
state and prove three lemmas which will establish that the probing process for RESERVEBKUP(`) is optimal
in P(`), and thereby prove Theorem 4.4.

Lemma 4.6 1. If all channels in
⋃

v>max(u,w`−1) Hv,` have already been probed, and the best state seen
so far is u, then OPT (`) does not probe any further.

2. OPT (`) can not terminate the probing process when there an is un-probed channel in
⋃

v>max(u,w`−1) Hv,`,
and the best state seen so far is u.
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Proof: The first part of the lemma clearly holds for u = K − 1 since the optimal policy does not probe
any further after observing a channel in state K − 1. Let the first part not hold for some u < K − 1. Thus,
although all channels in

⋃
v>max(u,w`−1) Hv,` have already been probed, OPT(`) probes further channels.

Let j be the last channel probed by OPT(`) in one such path. Let j be probed at node m of the decision tree.
Let all channels probed before probing j at m be in state q or lower where q ≥ u. Note that after probing j
OPT(`) transmits in (a) backup ` if the maximum of q and j’s state is w` − 1 or lower and (b) the channel
that was in state q otherwise. Now, consider another policy C ∈ P(`) which is similar to OPT(`) except
that it does not probe j at node m, and instead transmits in (a) backup ` if q < w` and (b) the probed channel
that is in state q otherwise. Let ∆ be the difference between the gains of OPT(`) and C. We will arrive at a
contradiction by showing that ∆ ≤ 0. Hence, the first part of the lemma holds.

∆

=
K−1∑
k=0

pkj max(rk, rq, r̃`[0])− cj −max(rq, r̃`[0])

=
K−1∑

k=max(q,w`−1)+1

pkj (max(rk, rq, r̃`[0])−max(r̃`[0], rq))

−cj

=
K−1∑

k=max(q,w`−1)+1

pkj (rk −max(r̃`[0], rq))− cj .

First, let q ≥ w` − 1. Thus, since q ≥ u, q + 1 > max(u, w` − 1). Thus, j 6∈ ∪v≥q+1Hv,`. Thus, ∆ < 0.
Now, let q < w` − 1. Then, rq ≤ rw`−1 ≤ r̃`[0]. Thus, ∆ =

∑K−1
k=w`

pkj (rk −max(r̃`[0], rw`−1)) − cj .
Also, u ≤ q < w` − 1. Then, since j 6∈

⋃
v>max(u,w`−1) Hv,`, j 6∈

⋃
v≥w`

Hv,`. Thus, ∆ < 0.
The second part of the lemma holds by vacuity when u = K − 1 since HK,` = φ. Let u < K − 1.

Suppose OPT (`) terminates the probing process even when there an is un-probed channel in Hv,` for some
v > max(u, w` − 1), and the best state seen so far is u. Then, OPT(`) transmits in (a) ` if u < w` and (b) a
probed channel that is in state u otherwise. Consider another policy D ∈ P(`) which is similar to OPT(`)
except that it probes an additional channel j ∈ Hv,`, and transmits in (a) ` if the maximum of u and j’s state
is w` − 1 or lower and (b) the probed channel that has the highest state otherwise. Let ∆1 be the difference
between the gains of OPT(`) and D. We will show that ∆1 < 0 which is a contradiction. Hence, the second
part of the lemma holds.

∆1 = max(ru, r̃`[0])−
K−1∑
k=0

pkj max(rk, ru, r̃`[0]) + cj

= cj −
K−1∑

k=max(u,w`−1)+1

pkj (rk −max(r̃`[0], ru))

= cj −
v−1∑

k=max(u,w`−1)+1

pkj (rk −max(r̃`[0], ru))

−
K−1∑
k=v

pkj (rk −max(r̃`[0], ru))

≤ cj −
K−1∑
k=v

pkj (rk −max(r̃`[0], rv−1)) .
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The last inequality follows since rk ≥ max(r̃`[0], ru) for k > max(u, w` − 1) and rv−1 ≥ ru since
v ≥ max(u, w` − 1) + 1. The result follows since j ∈ Hv,`. �

Lemma 4.7 Let w` ≤ u < K. OPT(`) probes all channels in Hu,` before probing any channel that is not
in ∪v≥uHv,`. Also, OPT(`) probes all channels of Hu,` unless one of the probed channels is in state u or a
higher state, and probes these channels in non-increasing order of r̃j [u]− cj

p̃j [u] .

Proof: Suppose the lemma does not hold. Then there exists a node in the decision tree of OPT(`), which
OPT(`) visits with positive probability3, such that the decisions at it violate the lemma. Let m be such a
node which is also the farthest from the root node among those that violate this lemma. Then there exists
a state q ≥ w` such that there exists a channel in Hq,` that has not been probed by OPT(`) before it visits
m and the best state seen so far is q − 1 or worse. Let u be the highest state that satisfies both the above
criteria and let j be the channel with the largest r̃j [u]− cj

p̃j [u] value among the unprobed channels of Hu,`. At
node m, OPT(`) does not probe j contradicting the lemma. From the second part of lemma 4.6, the probing
process of OPT(`) can not terminate at m. Thus, OPT(`) probes some channel i 6= j at node m. Note that
i 6∈ ∪v>uHv,`.

Since OPT(`) have already probed all channels in ∪v>uHu,`, if channel i is in state u or a higher state,
OPT(`) does not probe any further (first part of lemma 4.6), and transmits in i (since i has the highest state,
say s, among the probed channels and rs ≥ ru ≥ rw`

> r̃`[0]). If i is in a state u − 1 or a lower state,
since Hu,` has un-probed channels, the probing process can not terminate (second part of lemma 4.6). Now,
OPT(`) probes j next (otherwise m will not be the node farthest from the root to violate the lemma). Using
similar arguments, it follows that after probing j, OPT(`) transmits in j if j is in state u or a higher state.

The situation resembles the decision tree in Figure (2a). The trees T1 . . . Tu2 correspond to observing
the ordered pair (i = u′, j = u′′) where 0 ≤ u′, u′′ ≤ u − 1. The square boxes denote that OPT(`) do not
probe anything else.
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Figure 2: The decision trees of the Optimal policy for u = 3

Let OPT(`) not traverse node m with probability α1, traverse node m and stop after probing i or j with
probability α2, traverse node m and continue after probing j with probability α3. By assumption, α2 > 0.
Let the conditional expected gains given these scenarios be G1, G2, G3 respectively. Then, the expected

3If the lemma is violated at a node which OPT(`) visits with 0 probability, we can, without reducing the gain of OPT(`), alter
the decisions at the node so as to satisfy the lemma. Hence, without any loss of generality, we assume that the decisions of OPT(`)
satisfy the lemma at all such nodes.
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gain of OPT(`) is GOPT(`) =
∑3

i=1 αiGi. Let the total probing cost en-route to node m be C1. Then,
G2 = 1−α1

α2
(p̃i[u]r̃i[u]− ci + (1− p̃i[u])[p̃j [u]r̃j [u]− cj ]− C1) .

Now consider an alternate policy A that is similar to OPT(`) except for the tree rooted at node m.
Figure (2) shows the tree rooted at node m in policy A. Note that A probes j at node m and subsequently
probes i unless j is in state u or a higher state. The tree T ′ corresponding to the ordered pair (i = u′, j = u′′)
is assigned appropriately, on the branch corresponding to observing j in u′′ and subsequently observing i in
u′. The contributions to the gain from the trees T1, . . . Tu2 remain the same because in both the scenarios
the probability of probing these trees are the same. Thus, the expected gain of this new policy is GC =
α1G1 + α2G

′
2 + α3G3, where G′

2 = 1−α1
α2

(p̃j [u]r̃j [u]− cj + (1− p̃j [u])[p̃i[u]r̃i[u]− ci]− C1).
Now if i ∈ Hu,` then we have r̃j [u]− cj

p̃j [u] > r̃i[u]− ci
p̃j [u] which is the condition that arises from violating

the non-increasing order. If i 6∈ Hu,`, then since i 6∈ ∪v>uHv,` and u ≥ w`, r̃i[u]− ci
p̃i[u] ≤ max(ru−1, r̃`[0]).

But r̃j [u] − cj

p̃j [u] > max(ru−1, r̃`[0]) since j ∈ Hu,` and u ≥ w`. Therefore, in both cases we have

r̃j [u]− cj

p̃j [u] > r̃i[u]− ci
p̃i[u] . But this implies that

GC −GOPT(`)

1− α1

= p̃j [u]r̃j [u]− cj + (1− p̃j [u]) {p̃i[u]r̃i[u]− ci}
−p̃i[u]r̃i[u] + ci − (1− p̃i[u]) {p̃j [u]r̃j [u]− cj}

= p̃i[u]p̃j [u]
(

r̃j [u]− cj

p̃j [u]
− r̃i[u] +

ci

p̃i[u]

)
> 0.

Thus, since α1 < 1, GC > GOPT(`). Thus, we arrive at a contradiction. The result follows. �

Lemma 4.8 OPT(`) probes only channels in ∪K−1
v=w`

Hv,`.

Proof: From the first part of lemma 4.6, OPT(`) terminates its probing process after probing all channels in
∪K−1

v=w`
Hv,`. From lemma 4.7, OPT(`) must probe all channels in ∪K−1

v=w`
Hw`,` before probing a channel that

is not in ∪K−1
v=w`

Hv,`. The result follows. �

The optimality of the probing process for RESERVEBKUP(`) in P(`) follows from lemmas 4.7 and 4.8.
Thus, Theorem 4.4 follows.

5 The Unsaturated Sender Problem

In Subsection 5.1, we first present a stable policy UNSAT(ε) that attains a gain which is within a factor of
1 − ε of the optimum gain. The computation time of UNSAT(ε) is however exponential in n for all ε. We
next present another stable policy UNSATAPPROX(ε) that approximates the optimal within a factor of 2/3
for small ε; the computation time for UNSATAPPROX(ε) is polynomial in the input size. In Subsection 5.3,
we prove the performance guarantee of UNSATAPPROX(ε).

5.1 Approximately Optimal Unsaturated Policies

We now characterize UNSAT(ε) that is stable and attains a gain which is within a factor of 1 − ε of the
optimum gain.

Since the number of channels and the number of transmission states of the channels are both finite,
number of possible probing, selection and transmission decisions are also finite in any given slot. The

15



decision trees representing these decisions constitute a finite set Π. For example, the decision trees in
Figure 1(a),(b) are examples of decision trees in Π. In addition, if the decision trees in Figure 1(b) are
modified so as not to transmit at the end of the left-most paths, the modifications will also constitute decision
trees in Π. Note that Π also includes the decision tree that neither probes nor transmits in any channel.

Definition 5.1 Let Cσ denote the expected probing cost in decision tree σ ∈ Π, and Mσ be the set of leaf
nodes where the decision is to transmit. Let p̂mσ denote the probability that the leaf node m is reached in σ,
and if m ∈ Mσ, r̂mσ is the probability of success for the transmission at m. Let Sσ =

∑
m∈Mσ

p̂mσ and
Gσ =

∑
m∈Mσ

r̂mσp̂mσ − Cσ for a σ ∈ Π. Let δ(ε) = min (ε, (1− λ)/2) .

Let {β∗(ε)} be the probability distribution obtained as a solution of the following linear program, de-
noted as LPUNSAT(ε).

Maximize
∑
σ∈Π

βσGσ

∑
σ∈Π βσSσ = λ + δ(ε) (stability constraint)∑

σ∈Π βσ = 1
βσ ≥ 0 ∀ σ ∈ Π

Policy UNSAT(ε)

In each slot, select a σ ∈ Π in accordance with the probability distribution {β∗(ε)}.
If the slot is busy, probe channels, decide whether to transmit, and select a channel as per σ.

Let Q∗(ε) denote the optimal value of the objective function of LPUNSAT(ε).

Theorem 5.1 For any ε > 0 and λ ∈ [0, 1), UNSAT(ελ) is stable and attains a gain of at least GUnSat
1+ε .

Furthermore, GUnSat ≤ Q∗(ε).

Proof: In any busy slot, UNSATAPPROX(ελ) transmits a packet with probability β∗(ελ). Note that β∗(ελ)
is chosen so that this probability equals λ+δ(ελ) which exceeds λ. Since UNSATAPPROX(ελ) constitutes a
Markov chain, stability follows from standard results and analytical techniques (Theorem 2.2.3 in [10], [7]).

Next consider the expected gain of the policy LPUNSAT(ελ). Since the system is stable and LPUNSAT(ελ)
transmits a packet with probability λ + δ(ελ) in each busy slot and δ(ελ) ≤ ελ, using Little’s law, at least

1
1+ε of slots are busy. The gain of LPUNSAT(ελ) in each busy slot is Q∗(ελ). Thus, LPUNSAT(ελ) attains
a gain of at least Q∗(ελ)/(1 + ε).

We will finally show that GUnSat ≤ Q∗(ελ), completing the proof. We will assume the optimal policy
UNSAT is ergodic. Let the steady state rate at which it chooses policy σ for execution be denoted βσ. Since
the policy is stable, we must have:

∑
σ∈Π βσSσ = λ. The expected gain of this policy is simply

∑
σ∈Π βσGσ.

The steady state rates therefore form a feasible solution to LPUNSAT(0). Therefore, GUnSat ≤ Q∗(0). It is
easy to see that Q∗(0) ≤ Q∗(ελ). This completes the proof of the theorem. �

The above theorem in retrospect: It would be useful to summarize the intuition behind the above result.
If in a busy slot the sender takes actions as per the decision tree σ, it transmits with probability Sσ in the slot
and it attains a gain of Gσ in the slot. Since the sender selects σ with a probability β∗(ε)σ in any slot, the
stability constraint in LPUNSAT(ε) therefore ensures that UNSAT(ε) offers a service rate of λ + δ(ε) where
δ(ε) > 0. Thus, the sender’s queue is stable. Subject to this constraint, UNSAT(ε) chooses {β∗(ε)} so as to
maximize its gain; this maximum turns out to be within a 1− ε factor of the maximum gain.
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Note that |Π| ≥ Kn. Thus, LPUNSAT(ε) has an exponential number of variables, and the computa-
tion time for UNSAT(ε) is exponential in n for any ε. We next present a computationally simple policy,
UNSATAPPROX(ε) that (a) attains approximately 2/3 the gain of the optimal policy for small ε, (b) stabi-
lizes the system for all positive ε and (c) can be computed in O(n2Kτ) time, where τ is polynomial in the
input size.

5.2 A Polynomial Time Approximation Algorithm

We first describe the following collection of threshold type policies RESERVEBKUP(`, x) which will be
used to construct UNSATAPPROX(ε). We first generalize the definition for Hu,` as follows.

Definition 5.2 Let Hu,`,x = φ for all u ≥ K. For each `, starting from u = K − 1, down to u = w`,

recursively, define Hu,`,x =
{

i|i 6∈
⋃

v:v>u Hv,`,x, and r̃i[u]− ci
p̃i[u] > max(r̃`[0], ru−1, x)

}
\{`}. Assume

ci/p̃i[u] = +∞ when p̃i[u] = 0.

RESERVEBKUP(`, x)

1. Let w`,x = minu{u : u ≥ 0, ru > max(r̃`[0], x)}. If ru ≤ max(r̃`[0], x) for all u, w`,x = K.

2. Consider each Hu,`,x in decreasing order of u starting from u = K down to u = w`,x.

3. (Probing Process:) Within each Hu,`,x probe in non-increasing order of r̃j [u] − cj

p̃j [u] , and stop if any
channel is found to be in state u or above.

4. (Selection (and decision to transmit):) Let channel j have the highest state, say y, among all probed
channels. If no channel have been probed y = −1. If max(ry, r̃`[0]) < x, do not transmit. If
max(ry, r̃`[0]) ≥ x, transmit in j if ry ≥ r̃`[0] and transmit in ` otherwise.

Note that RESERVEBKUP(`, x) is similar to RESERVEBKUP(`) except that RESERVEBKUP(`, x) selects
a transmission threshold, x, apriori, and transmits only if a probed channel is in state j or a higher state
such that rj ≥ x or if the probability of success of the backup channel ` is not lower than x. Therefore,
RESERVEBKUP(`, x), probes only those channels for which the expected rewards conditioned on being in
states k and above, where rk > x, exceed the probing cost.

Let σx denote the decision tree for RESERVEBKUP(`, x) for that ` for which it attains the maximum
gain among all ` ∈ {0, . . . , n}. UNSATAPPROX(ε) computes two transmission thresholds x+(ε), x−(ε) and
a probability β̂(ε). Subsequently, in each slot it selects σx+(ε) and σx−(ε) with probabilities β̂(ε) and 1−β̂(ε)
respectively, and acts in accordance with the selected decision tree. The parameters x+(ε), x−(ε), β̂(ε) are
selected so as to ensure that UNSATAPPROX(ε) is stable and attains at least 2(1−ε)

3(1+ε) times the gain of the
optimal policy. Formal description of UNSATAPPROX(ε) follows.

UNSATAPPROX(ε)
Determine x+(ε), x−(ε), β̂(ε) using SEARCH(ε) (to be described later). Compute σx+(ε) and σx−(ε) using pro-
cedures RESERVEBKUP(`, x) for ` ∈ {0, . . . , n} and x ∈ {x+(ε), x−(ε)}.
In every slot the sender selects σx+(ε) and σx−(ε) with probabilities β̂(ε) and 1− β̂(ε) respectively.
If the sender’s queue is non-empty, it decides its actions in accordance with the selected σ.

We now describe how the parameters x+(ε), x−(ε) and β̂(ε) are selected. Let `∗ = arg max` r̃`[0]. In
each busy slot in which the sender acts in accordance with the decision tree σ ∈ Π, it transmits a packet with
probability Sσ. Now, Sσx = 1 for x = 0 and Sσx = 0 for x = 2rK−1. Furthermore, Sσx does not increase
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with increase of x. Thus, there exists x+(ε), x−(ε) ∈ [0, 2rK−1] such that 0 ≤ x+(ε)−x−(ε) ≤ (2/3)εr̃`∗ [0]
and Sσx+(ε)

≤ λ+ δ(ε) ≤ Sσx−(ε)
. UNSATAPPROX(ε) determines such a pair, and also the probability β̂(ε),

using a binary search strategy which we describe next.

SEARCH(ε)

Let x+(ε) = 2rK−1, x
−(ε) = 0.

Let temp = (x+(ε) + x−(ε))/2 (Step 1).
If
(
Stemp = λ + δ(ε)

)
, x+(ε) = x−(ε) = temp, β̂(ε) = 1, and terminate the search.

If
(
Stemp < λ + δ(ε)

)
, x+(ε) = temp. If

(
Stemp > λ + δ(ε)

)
, x−(ε) = temp.

If x+(ε)− x−(ε) ≤ 2εr̃`∗ [0]/3, β̂(ε) =
Sσ

x−(ε)
−λ−δ(ε)

Sσ
x−(ε)

−Sσ
x+(ε)

, and terminate the search. Otherwise, return to Step 1.

We first prove the stability of UNSATAPPROX(ε), and subsequently focus on the performance guarantee.

Proposition 5.1 For any ε > 0, λ ∈ [0, 1), UNSATAPPROX(ε) is stable.

Proof: In any busy slot, UNSATAPPROX(ε) transmits a packet with probability β̂Sσx+(ε)
+ (1− β̂)Sσx−(ε)

.

Note that β̂ is chosen so that this probability equals λ + δ(ε) which exceeds λ. Since UNSATAPPROX(ε)
constitutes a Markov chain, stability follows from standard results and analytical techniques (Theorem 2.2.3
in [10], [7]). �

Theorem 5.2 For any ε > 0, and λ ∈ [0, 1), UNSATAPPROX(ελ) (already shown to be stable) attains a
gain which is at least 2(1−ε)GUnSat

3(1+ε) .

We prove Theorem 5.2 in the next subsection. We now determine the computation time for UNSATAPPROX(ε).
Note that the number of iterations in SEARCH(ε) is at most log(3rK−1/εr̃`∗ [0]). In each iteration, SEARCH(ε)
determines σx+(ε) and σx−(ε). This requires computations of the gains of RESERVEBKUP(`, x) for ` ∈
{0, . . . , n} and x ∈ {x+(ε), x−(ε)}, which require O(n2K) time. Subsequently, Sσx can be computed in
O(n) time for x ∈ {x+(ε), x−(ε)}. Thus, the overall computation time is O

(
n2K log(3rK−1/ελr̃`∗ [0])

)
which is polynomial in the input size. Finally, UNSATAPPROX(ελ) can be stored using O(n) space and
executed in O(n) time.

5.3 Proof for Theorem 5.2

The proof for Theorem 5.2 depends on lemmas 5.3 to 5.6; we state and prove these first. The key is to
compute a lower bound of the optimal strategy, and we revisit the linear program LPUNSAT(ε). We now
consider the linear program LPRELAXATION(ε) which is the Lagrangian relaxation of LPUNSAT(ε). The
quantities βσ,Gσ, δ(ε) are the same as in Definition 5.1.

Maximize
∑

σ

βσGσ − L

(∑
σ

βσSσ − λ− δ(ε)

)
∑

σ∈Π βσ = 1
βσ ≥ 0 ∀ σ ∈ Π

The parameter L is the Lagrange multiplier. Note that for any L the solution of LPRELAXATION(ε) is
a single decision tree, σ∗L that maximizes Gσ − LSσ among all σ ∈ Π.
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Lemma 5.3 Let there exist a L, 0 < c ≤ 1, and σ̂L ∈ Π such that

Gσ̂L − LSσ̂L ≥ c
(
Gσ∗L

− LSσ∗L

)
, (5)

and Sσ̂L = λ + δ(ε). (6)

Then Gσ̂L ≥ cQ∗(ε).

In view of lemma 5.3, if the sender decides its actions in accordance with σ̂L ∈ Π in every busy slot,
it attains a gain of at least cQ∗(ε) in every such slot. Thus, if a large fraction of slots are busy, its overall
gain will be very close to cQ∗(ε). Since the maximum gain is upper bounded by Q∗(ε) (Theorem 5.1), the
sender’s gain is at least c times that of the optimum. We now prove the lemma.
Proof:

Consider an optimum solution {β∗(ε)} for LPUNSAT(ε).

Q∗(ε) =
∑
σ∈Π

β∗(ε)σGσ

=
∑
σ∈Π

β∗(ε)σGσ − L(
∑
σ∈Π

β∗(ε)σSσ − λ− δ(ε))

(from the stability constraint of LPUNSAT(ε)).

=
∑
σ∈Π

β∗(ε)σ (Gσ − LSσ) + L(λ + δ(ε))

≤ Gσ∗L
− LSσ∗L

+ L(λ + δ(ε))

≤ 1
c

(Gσ̂L − LSσ̂L) + L(λ + δ(ε)) (from (5)) (7)

≤ Gσ̂L/c− L (Sσ̂L − λ− δ(ε)) (since c ∈ (0, 1])
= Gσ̂L/c (from (6)).

�

Given any c ∈ (0, 1], λ ∈ [0, 1), and ε > 0 it is not clear (a) whether there exists a L and σ̂L ∈ Π
that satisfy conditions (5) and (6) of Lemma 5.3 and (b) how to find such L, σ̂L ∈ Π. We now state and
prove a similar lemma, lemma 5.4, which requires a different set of conditions for the desired σ̂L ∈ Π.
These conditions are always satisfied by some σ ∈ Π (for c = 2/3) and these σ s can be easily computed.
Lemmas 5.3, 5.4 will therefore lead to the 2/3 approximation guarantee in Theorem 5.2.

Lemma 5.4 Let λ ∈ [0, 1), ε > 0. Let there exist L+,L−, 0 < c ≤ 1, and σ̂L+ , σ̂L− ∈ Π such that
∀ L ∈ {L+,L−},

Gσ̂L − LSσ̂L ≥ c
(
Gσ∗L

− LSσ∗L

)
. (8)

Also, Sσ̂L+ < λ + δ(ε) < Sσ̂L−
. (9)

Finally, L− ≥ 0, 0 < L+ − L− ≤ cεQ∗(ε)/(λ + δ(ε)). (10)

Consider {β} such that βσ = α for σ = σ̂L+ , βσ = 1−α for σ = σ̂L+ , and βσ = 0 for σ ∈ Π\{σ̂L+ , σ̂L−}.

1. If α =
Sσ̂L−

−λ−δ(ε)

Sσ̂L−
−Sσ̂L+

, {β} constitutes a feasible solution for LPUNSAT(ε).

2.
∑

σ∈{σ̂L+ ,σ̂L−}
βσGσ ≥ c(1− ε)Q∗(ε).
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Now, if in every slot, the sender selects either σ̂L+ or σ̂L− (the former with probability βσ̂L+ ), and acts
in accordance with the selected σ if it has a packet to transmit, it attains a gain of at least c(1 − ε)Q∗(ε).
Thus, the maximum gain can be approximated within a factor close to c. The proof follows.
Proof: Using (9), it can be easily verified that {β} satisfies all the constraints in LPUNSAT(ε). The second
part of the lemma follows if we show that Q∗(ε) ≤ 1

c(1−ε)

(
βσ̂L−

Sσ̂L−
+ βσ̂L+Sσ̂L+

)
.

Similar to the deduction of (7) and using (8) and the facts that c ∈ (0, 1] and L+ > L− ≥ 0, we can
show that

Q∗(ε) ≤
Gσ̂L+ − L+(Sσ̂L+ − λ− δ(ε))

c
, (11)

Q∗(ε) ≤
Gσ̂L−

− L−(Sσ̂L−
− λ− δ(ε))

c
. (12)

Note that βσ̂L+ + βσ̂L−
= 1. Thus, multiplying (11) with βσ̂L+ and (12) with βσ̂L−

and adding the products
we get

Q∗(ε) ≤ 1
c

(
βσ̂L+Gσ̂L+ − βσ̂L+L+(Sσ̂L+ − λ− δ(ε))

)
+

1
c

(
βσ̂L−

Gσ̂L−
− βσ̂L−

L−(Sσ̂L−
− λ− δ(ε))

)
=

1
c

(
βσ̂L+Gσ̂L+ + βσ̂L−

Gσ̂L−

)
+

1
c
βσ̂L+ (L+ − L−)(λ + δ(ε)− Sσ̂L+ )

−1
c
L−(βσ̂L+Sσ̂L+ + βσ̂L−

Sσ̂L−
− λ− δ(ε))

=
1
c

(
βσ̂L+Gσ̂L+ + βσ̂L−

Gσ̂L−

)
+

1
c
βσ̂L+ (L+ − L−)(λ + δ(ε)− Sσ̂L+ )

(from the stability constraint for {β})

≤ 1
c

(
βσ̂L+Gσ̂L+ + βσ̂L−

Gσ̂L−

)
+

1
c
(L+ − L−)(λ + δ(ε))

Now, the result follows from (10). �

Recall that σx is the decision tree for RESERVEBKUP(`, x) that attains the maximum gain among all
` ∈ {0, . . . , n}. We now prove that for any λ ∈ [0, 1), ε > 0, c = 2/3, and for any x, σx satisfies the
conditions in (5), (8) in lemmas 5.3 and 5.4 respectively. This explains why UNSATAPPROX(ε) in each slot
selects σx for some x. Before we prove the gain we achieve; we would need to prove a structure theorem
similar to the Structure Theorem 4.2.

Theorem 5.5 (Generalized Structure Theorem) Consider a fictitious system where the sender is satu-
rated and receives a reward of rj − x whenever it transmits in a channel which is in state j. There exists an
optimum policy in the fictitious system that uses a unique backup channel whenever it transmits in a backup
channel. The backup channel is used at the end of one ≤ i path.

Proof: Observe that Lemma 4.1 holds in this fictitious system. The proof is the same as that in the original
system.
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Let an optimum policy OPT3 use backup channels at the end of at least two distinct paths P1 and P2 in
the decision tree. Let P1 and P2 intersect at node m in the decision tree. Then, OPT3 probes a channel j at
m and uses P1 and P2 for two different states of j. Let k be the higher of the two states. Then, by lemma 4.1,
there exists another optimum policy OPT4 which differs from OPT3 only in the decision tree rooted at m
which is a ≤ k tree in OPT4. Clearly, OPT4 has strictly fewer number of paths ending in backups. The
Theorem follows from recursive usage of this argument. �

Lemma 5.6 For any λ ∈ [0, 1), ε > 0, and for any real x, Gσx − xSσx ≥ 2/3
(
Gσ∗x − xSσ∗x

)
.

Proof: Consider again the fictitious system where the sender is saturated and receives a reward of rj − x
whenever it transmits in a channel which is in state j. Thus, transmission in a backup channel ` in this system
fetches a gain of r̃`[0]−x. The set of decision trees in this system is Π, irrespective of x. Note that the gain of
any σ ∈ Π in this system is Gσ−xSσ and depends on x. Since by definition σ∗x maximizes Gσ−xSσ among
all σ ∈ Π, σ∗x attains the maximum gain in this system. Let F = Gσx − xSσx and BEST = Gσ∗x − xSσ∗x .

In this fictitious system, for each x, multiple σ may maximize the gain. The generalized structure
theorem (Theorem 5.5) shows that for each x at least one σ∗x uses a unique backup channel whenever a
backup channel is used for transmission. We therefore consider a σ∗x that uses a unique backup, say `. Let
σ∗x use ` as backup with probability α. Let R =

∑
i:ri≥x pi`(ri − x) and T =

∑
i:ri<x pi`(x− ri).

Let P ′(j) be the set of all decision trees in Π that use no channel other than j as a backup. Note
that policies in P ′(0) never transmit in any backup channel. Using similar arguments as in the proof of
Theorem 4.4, it can be shown that in this fictitious system RESERVEBKUP(j, x) attains the maximum gain
among all policies in P ′(j). Thus, F is the maximum gain attained in this fictitious system by any policy in
∪n

j=0P ′(j).
Now, construct a policy σ1 that is similar to σ∗x except that whenever σ∗x transmits in `, σ1 does not

transmit. Thus σ1 attains a gain of at least BEST - α(R − T ). Also, σ1 ∈ P ′(0). Thus, its gain is upper
bounded by F. Thus F ≥ BEST − α(R − T ). Now, consider the policy that transmits in ` every slot
without probing. This policy is in P ′(j) and attains a gain of R− T. Thus, F ≥ R− T . It follows that

(1 + α)F ≥ BEST. (13)

Next, construct another policy σ2 that is similar to σ∗x except that σ2 never probes `; instead wherever
σ∗x probes `, σ2 follows the same course of actions as σ∗x does after discovering ` in state 0. The gain of σ2

is at least BEST − (1−α)(R− c`), because if ` was in state i such that ri < x, σ∗x will never transmit in j.
Also, σ2 ∈ P ′(`). Therefore F ≥ BEST − (1− α)(R − c`). Now consider another policy σ3 that probes
` and subsequently transmits only if ` is in a state i such that ri ≥ x; σ3 neither probes nor transmits in any
other channel. Clearly, σ3 attains a gain of R − c`. Also, σ3 ∈ P ′(0). Thus, F ≥ R − c`. Combining the
last two equations,

(2− α)F ≥ BEST. (14)

Adding (13) and (14), we get F ≥ 2/3BEST .
�

Proof: (Of Theorem 5.2.) Let ε1 = λε. We have argued that for all λ ∈ [0, 1) and ε1 > 0, UNSATAPPROX(ε1)
terminates in a finite number of iterations (last paragraph of Section 5.1).

Clearly, UNSATAPPROX(ε1) transmits a packet with probability β̂(ε1)Sσx+(ε1)
+(1− β̂(ε1))Sσx−(ε1)

in

each busy slot, and by the choice of β̂(ε1) this probability equals λ+ δ(ε1). Since the system is stable, using
Little’s law, λ

λ+ε1
of slots are busy. The gain of UNSATAPPROX(ε1) in each busy slot is A = β̂(ε1)Gσx+(ε1)

+
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(1− β̂(ε1))Gσx−(ε1)
. Thus, GUnSatApprox(ε1) = A

1+ε . Since Q∗(ε1) ≥ GUnSat (Theorem 5.1), the result follows
if we can show that A ≥ 2(1− ε)Q∗(ε1)/3.

Let x+(ε1) = x−(ε1) = x. Then A = Gσx and Sσx = λ + δ(ε1). From lemma 5.6, (5) and (6) of
lemma 5.3 hold with L = x, σ̂L = σx, c = 2/3 for all λ ∈ [0, 1) and ε > 0. Thus, from lemma 5.3,
A ≥ 2Q∗(ε1)/3.

Let x+(ε1) 6= x−(ε1). Then x+(ε1) > x−(ε1) and Sx+(ε1) < λ+δ(ε1) < Sx−(ε1), and x+(ε)−x−(ε) ≤
2ε1r̃`∗ [0]/3. Note that (λ + δ(ε1))r̃`∗ [0] ≤ Q∗(ε1) because there exists a σ ∈ Π which transmits in `∗ with-
out probing any channel, and Sσ = 1 and Gσ = (λ + δ(ε1))r̃`∗ [0]. Thus, x+(ε) − x−(ε) ≤ 2/3 ε1Q∗(ε1)

λ+δ(ε1) .
From lemma 5.6, (8) to (10) of lemma 5.4 hold with L+ = x+(ε1), L− = x−(ε1), σ̂L+ = σx+(ε1),
σ̂L− = σx−(ε1), c = 2/3 for all λ ∈ [0, 1) and ε > 0. Thus, from lemma 5.4, A ≥ (2/3)(1 − ε1)Q∗(ε1) ≥
(2/3)(1− ε)Q∗(ε1). The last inequality follows since λ ∈ [0, 1). �
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