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Abstract—We consider a network in which several ser- stations or access points (which we refer to as service)units
vice providers offer wireless access service to their respectiveand relay nodes, and serve each others’ customers. Such
subscribed customers through potentially multi-hop routes. If coalitions may lead to substantially higher throughpubtigh

providers cooperate, i.e., pool their resources, such as spaan statistical multiolexina and lower overall eneray consiti
and service units, and agree to serve each others’ customers, ISt ulupiexing Wi Vv ay s

their aggregate payoffs, and individual shares, can potentially Of the customers through multi-hop relaying. Both of these i

substantially increase through efficient utilization of resources turn lead to higher customer satisfaction, and higher gayof
and statistical multiplexing. The potential of such cooperation can for the providers. Cooperation may also be instrumental in
however be realized only if each provider intelligently determines reducing the costs incurred by the providers in acquiring

who it would cooperate with, when it would cooperate, and t d deploving infrastruct lik . it
how it would share its resources during such cooperation. Also, SPECTUM anad deploying infrastructure fike service unitas

when the providers share their aggregate payoffs, developing a Would again lead to higher net payoff for the providers. We
rational basis for such sharing is imperative for the stability now elucidate the above benefits using a sequence of examples
of the coalitions. We model such cooperation using the theory  \We first demonstrate how cooperation may substantially
of transferable payoif coalitional games. We first consider the anpance throughput and decrease energy consumption of cus-

scenario where the locations of providers’ service units and the T L lti f ilable ch |
set of channels they have access to have been decided a priori. Wéomers. ransmission qualities of available channelsoariy

show that the optimum cooperation strategy, which involves the fluctuate with time and space, owing to customer mobility and
allocations of the channels and service units to mobile customers, propagation conditions. Also, in secondary access nesyork
can be obtained as the solution of a convex optimization. We the providers may be secondary users who do not license
next show that the grand coalition is stable in this case, i.e., if channels but communicate when the license holders (primary

all providers cooperate, there is always an operating point that o
maximizes the providers' aggregate payoff, while offering each users) do not use the channels. Such access opportunityes ma

a share that removes any incentive to split from the coalition. Only arise sporadically. Since all customers of all provsde
Next, we consider scenarios where the providers decide where todo not need to be served simultaneously, and the channels of
open their service units and which channels to lease. We show different providers may not be unavailable or have poorigual
how the optimal cooperation strategy can be obtained by solving s simultaneously, spectrum pooling can enhance thmutgh
integer/convex optimizations, and that the previous results hold s f . . .
in some important special cases. Next we investigate the stability by _ml_tlgatl_ng SErvice ﬂuc_tL_’at'O”S resqltln_g_ _from ocgaﬂbn
of two other sharing rules, the nucleolus and the Shapley value. variations in channel qualities and availabilities, anstamta-
Finally we study the problem of optimal selection of service level neous traffic overloads. In multi-hop wireless networkgj.(e.
agreements (SLA)s by providers. mesh networks), cooperation increases the number of blaila
relays (mesh points). This in turn increases the number of
multi-hop routes to each customer, thereby decreasingthk t
power usage and the total throughput of the customers. Also,
We have witnessed a significant growth in commercighe customers may be induced to serve as relays, perhaps, in
wireless services in the past few years, and the trend ilylikgieu of service discounts. Then the enhancement in thrautghp
to continue in the foreseeable future. Satisfaction of this and energy consumption owing to cooperation magnifies as the
creasing demand is contingent upon efficient utilizatiothef coalitions have a larger set of customers, and thereforgarla
transmission resources, which are either under-utilized.( number of multi-hop routes.
spectrum - utilization of licensed spectrum is at times only We now demonstrate how cooperation may substantially
15% [1]), or costly (e.g. infrastructure). Cooperation amongeduce the costs incurred by the providers. A provider can ac
different wireless providers has the potential for sultstély  quire a channel by paying a fixed licensing cost or usage based
improving the utilization of the available resources, ahdwdd charges, or a combination of the two. The first case arises
therefore enhance the proliferation of wireless servidas. when the providers are primary users who license the channel
particular, different providers may form a coalition andopo from government agencies, and the other options arise when
their resources, such as spectrum and infrastructure ke bthey are secondary users who use the channels licensed by
i ) ) o the primaries. When the providers do not cooperate, they may
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I. INTRODUCTION
A. Motivation



and thereby reduce the individual costs. Next, deploying nérrespective of how they cooperate and the way they shane the
service units (e.g., access points) and subsequentlyangimj aggregate payoff, at least one provider in this subsetvesei
them, is one of the major costs in expanding the networkess net payoff than what it received in the grand coalition.
Cooperation may reduce the expansion costs by eliminatihigcoalitional game terminology, such a sharing schemesxis
the need for deploying additional service units, and alsmly when thecore of the game is nonempty. This result is
allow the providers to deliver desired coverage and thrpugh of interest in itself as many cooperative games have empty
guarantees while deploying fewer service units. For examptores, and the specific games we consider do not satisfy some
consider a provider whose customer base is concentragtandard sufficiency conditions for non-emptiness of the co

in a particular region. Traffic demand is therefore low bue.g., convexity of the game).

non-zero (owing to customer mobility) in other regions. The In the following sections, we extend the formulation and
provider must however deploy service units even in the regjioresults. We first consider the cases where in addition, the
of low traffic intensity so as to provide universal coveragproviders need to determine the locations of their service
(otherwise the customers would desert). If instead, theigeo units or the set of channels each service unit has access to
cooperates with another whose traffic demand is concedtra{€ection V). The optimal cooperation strategy can now be
in a different region, both may satisfy coverage requiremerobtained by solving an integer optimization where the dyali

by deploying service units only in the regions where thegap is nonzero unlike that in convex optimizations usedteefo
individual demands are concentrated, and thereby reduce \ie obtain the optimal decision rules and the payoff sharing
dividual operational expenses. mechanism in some important special cases of this general
problem. Subsequently, we extend the results in SectioIV t
networks with multi-hop transmissions (Section VI).

Several research challenges must, however, be addressesk the core of a coalitional game (including the games we
before large scale cooperation can be realized. First, costudy) need not be a singleton, it is not obvious which elémen
mercial service providers are selfish entities who seek {9 the core of the game should determine the shares of the
maximize their individual payoffs. Therefore, they will -€o providers. Thus, we discuss two other sharing mechanisms
operate with others only when cooperation increases th@jith the property that both existent uniquely, namely, the
individual incomes. Even so, a provider is likely to refus@ucleolus and the Shapley value (Section VII). We numer-
to join a coalition if it perceives that its share of the aggi® ically evaluate and compare the providers’ payoff increase
payoff is not commensurate to the amount it invested and th&ulting from cooperation under different sharing meésras
wealth it generated. The former depends on the transmissigiy different payoff functions as a function of the number
rates in the channels it has acquired and the locations agfdcustomers and service units (Section IX). Finally, we
the number of service units it has deployed, while the lattebnsider the problem of optimal selection of service level
depends on its customer base. So, developing a rationa bagjreements (SLAs) by the service providers. This problem is
for determining the individual shares of the aggregate ffayo of interest since a) providers are limited in resources amd ¢
imperative. Note that the aggregate payoff and the indalidunot accept all SLAs and b) accepting or rejecting an SLA could
shares depend on the providers’ cooperation strategiesifSp increase or decrease a providers payoff, which dependseon th
ically, each provider needs to decide which providers it Mouset of providers in the coalition as well as the actions they
cooperate with, which channels it is going to use, the locati take. We then propose, and subsequently qualitatively acenp

of its service units, and when it should serve the customers relative strengths and weaknesses of, two SLA selection
of another provider. The sharing mechanism and the optimafategies (Section VII).

cooperation strategies for each provider depend on eah oth
and must be obtained jointly. Il. RELATED WORK

We present a framework to determine the optimal decisionsinteractions between different entities in wireless nekso
of the providers using tools frorntransferable payoff coali- have primarily been investigated from the following exteem
tional game theoryThe framework also provides a rationaperspectives. In the first, each entity is assumed to sdkect i
basis for sharing the aggregate payoff. The first netwodctions so as to maximize its individual incentive without
setup we consider is an access network where providers poobrdinating with others, e.g., [2]-[8]. This scenario,ieth
their spectrum, service units and customers (Section I\§. Was been investigated using noncooperative game theory, in
assume that the locations of service units and the set g#neral suffers from inefficient utilization of resourc8k [The
channels they have access to, are determined a priori, ®ut dither perspective has been to assume that entities safflessl
providers decide how they would allocate the service umits achoose their actions so as to optimize a global utility fiorct
the channels of the coalition, to the customers. We thernirobtaven when such actions may deteriorate individual incesativ
optimal decision rules for the providers and a strategy fof some entities (e.g., [2], [6]). We investigate interan8
sharing the resulting aggregate payoff as solutions of @onvamong providers assuming that each provider would be gillin
optimization problems. This sharing strategy can be coetputto cooperate and coordinate its actions with others wheh suc
in polynomial time and ensures that it is optimal for altooperation enhances its individual incentives.
providers to cooperate. Specifically, if any subset of mexs We obtained optimal cooperation schemes using the frame-
split from the grand coalition (the coalition of all providg, work of cooperative game theory. This choice of tools alldwe

B. Research challenges and Contributions



us to combine the desirable features of the extreme appgeach. Communication Model

studied in the existing literature, that of allowing em®#i \\e assume that each service unit has access to a single
to choose their actions guided by selfish objectives, and §fsnnel or a frequency bahdWe assume that the achiev-
maximizing global utility functions. Surprisingly, Cooive aple rates of a customer-service unit pair do not depend on
game theory has seen only limited use in wireless cont&mmunications of other customers and service units. his i
so far. Nash bargaining solutions have been proposed fQjyivalent to different service units having access teedifit
power control and spectrum sharing among multiple US&Rannels. Thus, we use the same set of indices for the set
[10]. Coalitional games have been used recently for mogf service units and the channels they have access to. At a
eling cooperation among nodes in the physical layer [lldiven time, each service unit can serve at most one customer,
[12], collaborative sensing by secondary users in coghitigng each customer can be served by at most one service unit
radio networks [13], rate allocation in multiple accessreha(time sharing.

nels (MAC) [14], rate allocation among mobiles and admissio Fqr ease of exposition, we consider only downlink commu-
control in heterogeneous wireless access environmenis [Ijcations in our model (the results easily extend to the case
and studying cooperation between single antenna receivgiifere communications involve both uplinks and downlinks).
and transmitters in an interference channel [16]. Our @bl The instantaneous rates the customers receive depend on
formulation, solution techniques, and results signifibadif-  their current locations and the current quality of the clesin

fer from the above owing to the difference in contexts - 0Yccessed by the associated service units (which in case-of se
focus is on cooperative resource allocation and resul@y®®  ondary users also includes the current actions of the cheinne
sharing among providers at the network and MAC layers. Timary users), both of which can be random. We therefore
our knowledge, our work is the first to investigate cooperati 53osume that when customgris served by service untt, j
among wireless providers. receives at a rate;;, a random variable which is a function

Coalitional game theory has been used for studying c8f the location of customej and the state of channél (we
operation in other communication networks (see [17] for taerefore allow frequency selective fading). L@t be the
survey). For instance, Shapley value based profit sharisg ti@int state space of customgs location and channéf’s state.
been proposed and investigated for incentivizing coojmrat We assume thaf2;; | is finite, since (i) feasible service rates in
among peers [18] and among internet service providers [18]1y practical communication system belong to a finite set, an
Our formulations and solution techniques may be used fdf) we can partition the service region in such a way that the
establishing the non-emptiness of the core and computing $gfvice rates received by the customers inside a membee of th
allocation in the core in polynomial time for coalitionalrgas Partition do not depend on the locations of the customers. Le
among internet service providers (Section VI). Q = [Liemn Qjr- Anw € Q denotes a network realization.

keBar .
Let P(w) be the probability of the outcome.

B. Utility and Game Model

We now propose a coalitional game theory framework that
1. SYSTEM MODEL models the interactions of the providers who would cooperat
only when such cooperation enhances their individual grofit

(payoffs in the terminology of economics).

) . ) . Definition 1ll.1. A coalition S C N is a subset of providers
Consider a network with a set of provide¥s Each provider \yho cooperate. We refer t as the grand coalition.

i deploys a set of service unit$; in order to serve its set of N .

customersM;. Let B; N B; = ) and M; N M, = { for Definition 111.2. A coaI|t|onaI_ game with transferable. payoff
i # j. For aS C N, let Bs and Mg denote the set of < N,v > consists of a finite sef\V (set of providers)
service units and customers associated with providers.in @nd & characteristic function(-) that associates with every
Thus By and M,y are the sets of all service units and alnonempty subse of A/, a real numberv(S). For each
customers in the network, respectively. We assume, unléglition S, v(S) is the maximum aggregate payoff available
mentioned otherwise, that a) the locations of service unf@" divisionin any arbitrary wayamong the members &f.

and the channels they have access to are predetermined angd service unit can serve a customer only when either
b) the service units and the customers communicate throyghy are associated with the same provider, or the providers
smgle-hqp Imks'. We show how these'assumptlons can Besociated with them are in a coalition. Leety (w) € [0,1]
relaxed in Sections V and VI, respectively. Each customgg the fraction of time service unitserves customey, when

j negotiates a minimum rate guarantee with its provider; Wge realization of rates is. When the provider associated
refer to these negotiations asrvice level agreemen{SLAS).
We present the communication model and the coalitional gaméThis assumption causes no loss of generality. In the caseevseswice
among providers in Sections IlI-A and I1I-B and describe jinits have access to multiple channels with a radio avaifablevery channel,

. . each service unit channel combination can be considered e@simhin ;.
Section 1lI-C how the formulations capture the essence will see later how the case where service units have a lintitenber of

existing wireless technologies. radios can also be captured.



with customer; is in coalitionS and the network realization channel gain realization is, the downlink SINR toj is [20,

iS w, the rate received by is a random variable/;(w) = Chapter 5]
ZkeBs g (W)rjk(w). R (w) P
When customers associated with providereceive rates SINRj; (w) = J

vilw) = {y;(w),j € M;}, i gains a benefit (e.g., revenue 2ives\(ky hai (W) P + NoW
from the customers) d; (y;(w)), whereU;(-) is an increasing where N, is the power spectral density of the additive noise
concave function and equal toat the origif. Next, owing to and W is the spectrum bandwidth Thus, SINR(w) is
the tariffs imposed by spectrum regulators or by the licensgdependent of which customers are being served by other bas
holders of the channels who allow the providers to usgations. Further, the rate achievable between pairr ;. (w),
the channels, provider incurs a cost ofV;(z;(w)), where s a function of SINRy(w), hencer;;(w) is also independent
zi(w) = {zw),k € B} and zi(w) = > ;s @jk(w)  of transmissions to other customers.
is the total fraction of time channel (or, service unﬁ)is In a variant of the above service discip"npo([\/er shar-
used. Functiond/;(-) are increasing, convex and equal@o ing), a base station distributes its total power among the
at the origin. Then the profit (or payoff) of a coalitia® downlink transmissions in its cell. Orthogonal codes and
is the sum of theU;s for i € S minus the sum of thé/;s chip synchronous transmissions can ensure that the iatra-c
for i € S. We assume that the benefit and cost functionsterference for a customer is negligible. As in the eadizse,
Ui(.), Vi(.) are decided apriori (based on spectrum regulatiofhe inter-cell interference remains fixed. The quantify is
customer charging policies etc.), and do not investigae tthe fixed peak rate between customeand base statiotk,
optimal selections of these functions. and is achieved whek uses its entire power to transmit to
Providers in a coalitiors have to decide how to schedulej. The variables{a;;(w)} account for the fractional power
service units to customers, i.e., select the variablggw)s, allocatiorf. We formulate the characteristic functions consid-
for eachw € Q, based on the benefit and cost functiongring time-sharing, and point out the modifications reqlire
U(.), V(.) so as to maximize their total profit, subject to posfor incorporating power sharing.
sible service level agreements. LgtS) denote the maximum  Next, consider downlink communications in a multi-cell
aggregate profit available to a coalitioh In Sections, IV, V. OFDMA system [20, Chapter 6]. The system bandwidth is
and VI, we show how to obtain(S) by solving convex/integer divided into several, sag, channels (sub-carriers in OFDM
optimizations. terminology). In order to manage interference, fracticine
guency reuse is employed; i.e., the set of sub-carriers is
C. _How the formulations relate to existing wireless Commu%artitioned into reuse groups, with one such group of sub-
cation systems carriers being assigned to each base-station. Customers ar

We now illustrate via examples how our framework caRe€rmanent, as would be the case if the system is being used
be used to model specific communication systems. Considierprovide internet access service to apartments and offices
elastic data transfers in the downlink of a CDMA cellulaf he base-station allocates sub-carriers from its assigeese
system (e.g., used for internet access of cellular sulessiib group to customers in the periphery of its coverage area. It
[20, Chapter 5] with provider set/. Owing to simplicity of assigns any of the remaining channels to customers in the
physical layer implementations, a base station (servig8 urfémaining part of its coverage area (proximate to the base
always transmits at a pre-determined fixed power (which m&gation). With such reuse partitioning and spatial allimrat
be different for different cells). This happens even whemseb Of subcarriers we can assume that the interference is zero.
station’s downlink queue is empty (i.e., no mobiles asgedia Also assume that each base-station, in each staw@ssigns
with it require downlink transmission). Similar commurtion @ fixed transmit power to each of its carriers. With these
model has extensively been used in related contexts [2&psumptions the downlink rate that a ugegets over service
Customers in a cell are served t¢ime-sharingbasis, i.e., unit & (which denotes a base-station and sub-carrier pair)
a base station transmits to at most one customer at a gi@@pends only on the channel gain from the corresponding
time. Also, at any given time, a customer is associated wifigse-station to itself, and not on which user is served by
only one base-station and thus receives transmissionsdtonfach service unit. At any given time, a sub-channel can
mo-St one base station. The{njk(w)-} represent the f_raction The mobiles at cell boundaries experience poor SNR owing ¢h hi
of times Cusmmers are se_rve_d by different base stations, N?nterference from neighboring base statir())ns. ThusF,) in smnme'menta?tions,
let P, be the fixed transmission power of base sta#iofThe neighboring base stations are allocated different banasagain sometimes
channel gains between customer-base station pajrs, are all base stations are allocated the same band so as to tecifitaooth

: : : hand-overs and since CDMA technology can provide acceptadies even
random. When base statidntransmits to customef and the in presence of low SINRs. Note that our framework allows anyegal

band allocation across base stations (i.e., different @ath be assigned to

2For exampleU; (y;) may equaly; >_jem, Yj» wherew; is the cost per disjoint sets of base stations in an arbitrary manner). Alste that the SINR
unit throughput imposed by providéron its customers, or more generally, expression above, in particular, assumes that all baserstatise same band,;
Ui(yi(w)) may equal_, . 9i(y;), whereg;(.) is an increasing concave in general we sum over all co-channel base stations to olitaireggregate
revenue function chosen by providerCustomer satisfactions turn out to beinterference in the denominator.
concave functions of rates and as such revenue functionssaedly chosen as  “In the low SNR regime, the rates are proportional to the SNR, tans
concave (and increase sub-linearly in practice). Alsoeribat we allow the the peak rates are shared among the mobiles in the same propastithe
revenue functions to be different for different customerthef same provider. overall power.



be assigned to only one customer, but more than one sub-
channel can be assigned to a custonmeulfiple allocatior). :

The communication model presented in Section IlI-A cafgure  payoff T
all these attributes except the multiple allocation cadodit
We will point out the modifications required for allowing L E— ‘ :

for multiple allocation while formulating the characteits Prj.
functions in the next section.

IV. SPECTRUMPOOLING GAME

We start with deriving the characteristic functied-) for .
the resource pooling game. For a coalitish C A/, the Fig- 1: Examples of revenue functions. The customers pay

maximum aggregate payoff(S) is given by the following fixed costsp;s for being guaranteed minimum average rates

m; mo 0 6y rate

convex optimization problem. m;S, but do not pay additional costs for rates beyérsl

P(S) : max T s P(w) (Ui(yi(w)) — Vi(zi(w)))

subject to: , consisted of voice calls. Voice calls are not overly sevsiti
1) yj(w) = Zpeps @ik (@W)Tjp(w), j€Ms,weQ to transmission rates, and may proceed even when the rates
2) 2 (W) = Xjems ¥n(w), k€ Bs,wel are low. Thus, minimum rate requirements (SLAs) were re-
3) Lkess k(W) <1, jEMs,we dundant, and customers were charged based only on their
4 Yjems wirlw) <1, ke Bs,w e usage times gir-times, and not on the service rates they
5) Yuea PlWy;(w) 2my,  jeMs received. A typical pricing scheme would entail charging

6) ajr(w) 20, je&Ms,keBs,we _ the customers linearly per unit air-time: theli;(y;) = 0,
(_Zonstralnts (3)_ensure th_at for glle Mg, the fraction of y, 7)) = —i Y. 2k — Bi| M| for each provider, where
time customey is seryed is at most. .Constr'alnts (4) ensure B > 0 is the fixed fee provides imposes on each of its
that the fraction of time each service urit € Bs serves c,stomers for availing of its service and, > 0 is the
is at most1>. Constraints (5) provide the minimum servicgeyenue per unit air-time providércollects from its customers.
guarantees. Incidentally, constraints (3), (4) arise fi¥® oy framework can optimally allocate the customers to the
time-sharing modef, but for power-sharing or for multiple seryice-units under the above pricing scheme stfice), V()
allocation models, only constraints (4) suffice - all resultyre respectively concave and convex functions for each
presented below extend even in absence of constraint (3). |ncidentally, a customer must only be charged for the amount

Assumption IV.1. P({i}) is feasible for each € \ i.e., of airtime he needs and not for additional airtime the prewid
each provider can support the minimum rates of its customei8n provide. This can be incorporated in our framework by al-

even When |t does not Cooperate W|th other providers_ |0Wing the netWOfk Statev to aISO represent the aCtiVity states
) ) of the customers. Letls(w) be the set of customers df1s
Then RS) is feasible for eacls C V. that are active (i.e., involved in voice-calls)dn Constraint 2

Thus, the optimization problem(B) provides the maximum i, o5\ may be modified as(w) — 2jeAs(w) k(W) for
aggregate payoff of the providers in a coalitiShand also ga0n;'c 5 andw € Q. Thus, 24 (w) considers the airtimes
the optimal service unit-customer allocations that atthis of only the “on-call” customers. The modified optimization

maximum. Clearly,u(\) > v(S) for any S C N, i.e.,, the pg) continues to be a concave maximization with linear
grand coalition of all providers attains the maximum poms'bconstraints, and all subsequent results apply.

aggregate payoff among all coalitions. Data is fast emerging as the predominant component of

; Fmally,kwe e>t<am|nfhwhe:[[her the at;ove_ rfsour(_:e Ialgc?tlg\ﬂreless traffic. Many emerging applications, such as sirea
ramework captures the intricacies ol existing wireless-ir ing video, require certain minimum rate, and the quality

fic. Until a few years back, wireless traffic predomlnantl%f service is critically sensitive to the service rate. Thus

SThis condition can be modified to capture the scenario whemdcseunit MinNimum rate constraints are likely to be integral compo-
has access to multiple channels with only 1 radio, as folloite modified nents of service agreements in near future, and providers ar

Constraint (4) for a service unit, bounds the sumogf, (w) over customers ; N £ ; ; :
j € Mg, and channelg accessed by that service unit, by 1. It can be show|r|1kely to charge (I) fixed fees that are Increasing functions

that all the subsequent results extend to this scenario. of the minimum rates agreed upon, and (ii) additionally for
5The system can be represented by a complete bipartite graprevihe  service rates they can provide over and above the required

customers and the service units represent the nodes andeiste a link  minimum value. A customer may however be willing to pay
between every customer-service unit node pair. Under theghmaeing model,

any customer-service unit assignment corresponds to a matihthe above additionally for rates only up to a certain maximum rate
graph. Note that for eactw, {a;(w)} comprise a feasible allocation of value determined by his QoS requirements. The following
service units to customers if and only if there exists a cpoeading collection simple pricing strategy captures the above features. If the
of matchings L1, L2,... and a collection of non-negative real numbers

71,72, such that ()>",v; = 1, v > 0 and (ii) if the service unit -

customer allocation follows matching; for ~; fraction of time for each, "More involved revenue schemes such as those that chargemarsto
then service unik transmits to customeyf for o (w) fraction of time for additionally only beyond a certain amount of airtime usage dbhowever

all j, k. Constraints (3), (4) provide the necessary and sufficiendition for  constitute convex functions and can not therefore be iraratpd in our
feasibility of {c;(w)} for eachw [22]. framework.



average rate a customer of providereceives isr, and he This implies thatv(S) = > . swi > ) ;cs®i, and thus
has negotiated a minimum rate guaranteengfthen he pays contradicts the fact that € C. Therefore, every imputation in

a; max (min(r, 0) —m,0) + Bim, wheref is the maximum the core renders the grand coalition staflkis is a globally
rate the customer needs (Fig. 1 wijth = B;m;). Owing to desirable outcome, since the grand coalition maximizes the
the minimum rate constraints (5) in(&), each customer's aggregate payoff.

average rate is at least;. Thus,V;(z;) = 0, We now elucidatey(-) andC using a simple example.

Uily:) = i »_ max(y;,7;) + Bim; with 8; = 8/ + o Example IV.1. Let N' = {1,2}, B; = {i},i = 1,2, and
JEM; M; ={2i—1,2i},i = 1,2. Letr;, = P for j € M4, and

capture the above pricing strategy. Our framework can ifise = @ for j € Mo, for all k € By SupposeP < @ and
corporate the above pricing scheme singg-),V;(-) are "% = 0,Vj € MN' Let the benefit functions be the sum of the
respectively concave and convex functions for eadfinally, Customers’ service rates and costs be zero. Tign}) = P,
constraints (5) in RS) apply to the average service rates?({2}) = @, andv({1,2}) = 2Q (when the providers coop-
more stringent QoS demands may require constraints Bffte, the aggregate benefit is maximized when only provider
service rates in each, i.e., given certain desired minimum2'S customers are served and this maximum2ég). Then,
rates m;(w) for different w € Q, y;(w) > mj(w) for CleiXB%E Pa1+3y = 2Q, 11 2 P,xy > Q). For instance,
eachw € Q. The modified optimization &) continues to (2 —3 ) i an imputation in a core. Note that when2
be a concave maximization with linear constraints, and QPoperate, the benefit (revenue) earned from provide(2's,
subsequent results apply. Alternatively, “soft’ minimuate €SP.) customers i§ (2Q, resp.), and therefore less (more,
guarantees may be ensured in eachby choosing strict €SP-) than its payoff under the above_lmputauon.Nev]grmae
concave revenue functions. Specifically, higher the degfeethis imputation increases each provider's payoff 8y~ as
concavity of the revenue functions (that is lower the secoif@mpared to that in absence of cooperation.

derivatives), a provider incurs higher additional revemuany In several coalitional games the core is empty, i.e., the

w by enhancing the service rate of a customer who is receivi fhnd coalition can not be stabilized [23, Exampiié.3], and
a low rate at that as opposed to enhancing that of a CUStom@y ganera it is NP-hard to determine whether the core of a

who |sl'kre|ce|vmg a lhlgh r:ate at that Thus,f plrlowders are coalitional game is nonempty [24]. A sufficient conditior fo
more likely to equalize the service rates of all customers gly o6 1o be nonempty is the convexity of the coalitional

eachw, and in the process ensure certain minimum rates é%me i.e,v(S) +v(T) < v(SUT)+v(SNT) for all

each Cl_Jstomer "_"t evew. . ,TCN [23, pp. 260]. But, as the following example
A rational basis for splitting the maximum aggregate PaYOiiystrates, the game we are considering need not be convex.
is however imperative for motivating the providers to joliret

grand (or any other) coalition. We introduce a solution @pic Example IV.2. Let N = {1,2,3}, B; = {i},i = 1,2,3,

in coalitional games known as theore for providing such M, = {i},i = 1,2,3. Letriy, = R,k € By, 11 = P,j €

a rational basis. The idea behind the core in a cooperati{® 3} andr;, = Q,j € {2,3},k € {2,3} and P > Q. Let
game is analogous to that behind a Nash equilibrium ofra; = 0 for all j € M. Let the benefit functions of the
noncooperative game: an outcome is stable if no deviationpmviders be the sum of the service rates and costs be zero.
profitable. Thusv({1}) = R,v({1,2}) = v({1,3}) = R+ P, and
v({1,2,3}) = R+ P+ Q. LetS = {1,2} and T = {1,3}.
Thenv(S) +v(T) = 2R+ 2P andv(SUT) +v(SNT) =
2R+ P+ Q. Thusv(S) + v(T) > v(SUT) +v(SNT).
é—lence, this game is not convex.

Definition IV.1. For any real valued vectox = (z;,i € N)
and any coalitionS, we letz(S) = >, ¢ x;. Such a vector is
said to be an imputation if(N) = v(NV) andz; > v({i}) for
all i € M. The core of the coalitional game with transferabl
payoff (NN, v) is the set of all imputations for whichz(S) > Nevertheless, we next show that the gama/, v > always
v(S) for all S C V. In other words, has a nonempty core (note that convexity is not a necessary
_ N _ condition for nonemptiness of the core). We use a proof
€ ={xeR™:z(N) =v(N),2(S) 2 v(8),¥§ N} (1) technique similar to ones presented in [25]-[28]. The proof
Note that an imputation provides the payoff shares @ constructive in that it provides an imputationé@nas well.
providers iq a grand coaliti_on s_uch that no provider’s pﬁynf_ Let \, 3 € RMs*? 1y e RBsX? e RMs, andy €
below that it earns alone (i.e., in absgnce of.any coopm)atp]RMs xBsxQ et g;, (A, p) = Max, (,)>0 (IP(w)Ui(yi(w)) +
The core consists of a collect!qn of imputations thgt previds™ v (@) (A(w)  + piP(w))) and  hi,(v) =
stronger guarantees: noicoalltlon has any incentive td s A, wz0 (= P)Vi(ziw)) + S ves, 2 (W) ().
from the grand coalition if the providers share the aggeegat
grand coalition payoffu(N) as per an imputatiox in the
core. To see this, suppose a set of providers A split from 8The notations can be explained considetfiftg = 1, My = {4,5,6} and
the grand coalition and form a separate coalition to shagie thMz2 = {7,8,9}. A vectorz € R*1 X% will have components:y, 5 and
. . x¢ corresponding to customets5 and6 respectively. Similarly, a vectar €
aggregate payoff(S) as perw. A provideri € S, however,

- =1 | RM2X€ will have components:7, s and zg corresponding to customers
would agree to split from the grand coalition onlywf > z;. 7,8 and9 respectively.



Then we have the following as the dual of9: A. Computation Complexity and Distributed Computation

Note that RS), D(S) are convex optimizations with linear
D(S) : min} s (ZwEQ (9iw + hiw + >kes, (@) +  constraints, and the number of the variables and consgraint
_ _ N . are polynomial in|€2|,|Ms|,|Bs|. Therefore, the computa-
ZJGMLﬂ] (w)) Z]EM" m]p]) tion times for the‘ rr|1a|ximu|rr|1 a‘ggregate payoff and optimal
allocation for any given coalition, and an imputation in the
core grows polynomially with the above [29]. The computatio
Ms, k € Bs,w € Q . times can however be large sinf§|, typically, is large. This
) 5; (w)’v’“_(w)’pj 20, jeMske€Bs,we may not however pose a major challenge as the computations
Clearly, D(S) is feasible for eacts C V. Formulate DN)  are’ done off-line using large work-stations and at a slower
by appropriately defining vectors, 53, v, v, p, and letD be  ime-scale (only when the network state is updated or the
the set of optimal solutions of @/). Then,D # (). Let coalitions are assessed). Also, whenever customers do not
N N o . % " have minimum average rate constraints (see Constraints (5)
IT={x"eR™ 1ai = Z (g”’(/\ )+ i (V) we can solve both &), D(S) by solving separate convex

subject to:
) Aj(@)rjr(w) + ve(w) + Bj(w) + w(w) =0, j €

wes optimizations for eachw € € - the number of variables
D IRAGIESS ﬂ;(w)) and constraints for each such optimization depends only on
keB; JEM; M|, |Bs| °. This separability allowed us to solve the above
— Z m;p5 for some (\*,v*, 8*,7*, p*, ") € D} olptimiz_ations for reasonably large systems using MontéoCar
jem, simulations (Section 1X$°

Concave optimizations with linear constraints can be sblve
in distributed manner using the theory of subgradients, as
Theorem IV.1. Z # ( andZ C C. described in [30], [31] for example. For brevity we describe

Th . ion irZ stabili h d liti the distributed computations only fof{&) - the same approach
us, any imputation iri stabilizes the grand coalition applies for computation of an imputation in the core via

- it also ensures that the payoffs of the providers are Co@olvmg D(S). For simplicity, we consider the case that the
mensurate with the resource they invest and the wealth tr}g}/

stomers do not have minimum rate requirements, and there-
generate. To see this, note tiit +; are Lagrange multipliers fo

d with th 8 (4 | re owing to the separability described above focus on the
assomat(_—:‘_ with the constramts_( .) (4), respectl\_/ey dase optimization for only onev. The advantage of this distributed
of exposition, let there be no minimum rate requirements a

. ) . '3 mputation is that each providérneeds to know only its
let the benefit and cost fur}cﬂons be linear. ThED(A™, p*) = ponefit and cost function®;(-), Vi(-) (and not those of the
hiw(v*) = 0, and provider’s payoff z} equals the sum of the

. ) . others), the link rates;; only when either; is its customer
Lagrange multipliers corresponding to the constraints (8) ;. ig’its service unit. The need for limited access to global
for its customers and service units. Lagrange multipjigiw)

; i« hiah onl h . it information ensures confidentiality of operations.
(5} (w), resp.) is high only when service unit (customer ~'pasoqy on message exchanges with other providers, each
j, resp.) is fully utilized, i.e., serves customers (is sdrve

. . . . . . n)
. : : L provider iteratively updates (i) the downlink aIIocatloa§k
;Sdpgoasll tlre]istlr(gzyarmifermr”eiep?I%r;:rs:i?rg:r?éwiéiﬁﬁés from its serwce units to all customers, (ii) the rates of it
Lagrange multipliers and hen&‘és payoff is high wﬁen it customersy ) and (iii) the total time allocation for its service
invests more resource and/or generates more wealth. un|ts,z(" and the iterations provably converge to the optimum
Proof: SinceD # 0, T # 0. We show that for an (the superscrlph indicates the iteration index). At the end of
arbitrary x* € Z, x* € C. Note that sincdJ;(-)s andV;(-)s €ach iteration, each providércommunicates (i) the{a 9y }
are (increasing) concave and convex functions respeytived  iterates for all its service units (i.6,€ B;), and (ii) indicators
objective function of RS) is concave. Also, the constraints ofindicating the status of the satisfaction of the constsa{t,
P(S) are all linear. Therefore, (B) is maximizing a concave (3) for its customers (i.e;j € M;), to the providers whose

Here is the main result:

function over a convex set. Thus, strong duality holds. ~ Service units can serve its customers (i.e., those withtipesi
NOW consider an arbitrarx* e 7, Corresponding to one Tjk to its CUStomerS). These indicators are used by other
(N5, v%, B, 7%, p*, %) € D. Clearly z*(N) = Y, of is providers in the updates for the next iterations.
) 1

the opt|ma| value of V). Since OS) is the dual o? PS) for We describe the indicators and the update process next. Let

eachs C N, by Strf”g duality:™ ('A*/) U(N) Now we only 9This separability significantly speeds up the computatiathe compu-
need to show that*(S) = >, s 27 > v(S) for anyS C N.  tation times for the optimizations are super-linear in the nemdf variables
By strong duality,v(S) equals the optimum value of (§). and constraints.

Consider the sub-vectovs‘g, yjé’ 5;7 7"%, ng Wg Consisting of 10In each run of the Monte Carlo simulation, we generated a ritaiate

. w, using the distribution on the service unit-customer rasesl solved the
the components oA*,v*, 3%, 7", p*, " in S. Clearly these optimizations P(S) for the coalitionsS for the givenw. Subsequently, we

sub-vectors constitute a feasible solution dfSp andz*(S)  computed the average of the payoffs of the providers over gelaumber
is the value of the objective function of(B) for the above of runs, and observed that the averages converged quitéNas that using

. . . . ergodicity it can be analytically shown that as the numberufsrtend to
feasible solution. Therefore, the optimal value ofd) is a infinity, the averages converge to the optimum solution); Voéted the above

lower bound forz*(S), i.e., z*(S) > v(S). W empirical averages in Section IX.



® aglj be 1 if for customer; at the end of théth iteration Proof: The subgradient of/’(-) at Q can be written as
the L.H.S exceeds the R.H.S of constraint (1) if s(Q) = (K(rjka%) +a® - aé? —a{)), (2 Uilyi) —
R.H.S exceeds the L.H.S, afidotherwise. ) 5 O s
(i) oY) be defined similarly for constraint (2) (for serviceR @17 ), — (52 Vi(zi) + Kay),j € Mik € B i € S)
unit k). ConsiderQ such that;(Q) > 0 for somei. For suchQ, there
(iii) ag,fj) be 1 if for customer;j the L.H.S exceeds the R.H.Salways exists a component of the subgradie(®), that has
of constraint (3) and) otherwise. absolute value greater than or equalAo— A. Therefore0
(iv) o'} be defined similarly for constraint (4) (for servicedoes not belong to the set of subgradients. He@pean not
unit k). be an optimal solution oP(S). Thus, an optimal solutio®*
of P(S) satisfiesE;(Q*) = 0 for all 7. Recall thatZ;(Q*) = 0

We now describe the update for each provideusing con- for all 5. Hence,

stantsé(), K that would be described later. In tHet+ 1th

iteration, provideri Z (Ui(yf) _ %(ij)) _ Z (Ui(y;*) _ Vi(ZZ‘))
1) for each of its customerg, (additively) incrementh](.l) i€S i€S
by 60) (52-Ui(y:) — Kaf)), - W(@)-w@)+ K (EQ) - Q)
2) for each of its service units, decrements,z,(f) by ~. . ies
§® %Vi(zi) + Kag,z . and - w(Q") -w(Q) = 0.
3) for each customef (nof necessarily its customer thoughyThus, Q* also is an optimal solution of (). u
and its service unit such thatr;, > 0, increments Step (ii): In the second step we show that the update

aélk) by 6 K (Tjkaglj) 4 a;llz B aélj) B aiﬂl) (note that the Process converges to an optimal solutionP).

increments and decrements may be negative). Theorem IV.3. The sequence of updates;Q’) =
Now, we turn to the convergence analysis of the aforemef'”,y"),z"))},1 > 1, converges to an optimal solution of
tioned update process. Recall that the optimization proble P(S).
P(S) are assumed to be feasibleg@ are trivially feasible in Proof: Choose an arbitrary > 0. Let ¢/ = ¢/2. For any
the absence of minimum rate requirements). We make a few..  defineC, asC, = {Q : L(Q) > W* —¢'}. From [32,
additional assumptions in the following. Theorem 27.2] it follows that there exists an= e(e’) > 0
(i) There exists aA < oo such that %Ui(yi) < such that .
A, 2 Vi(z;) < A for all j, k,y;,2; andi. Ccc{Q:lQ-Q|| <e'}.
(i) The step sizes{s"} satisfy lim; o6’ = 0 and \yhere Q* is an optimal solution ofP(S). Consider! for
>, 8" = oo. For example, the sequen¢é’) = 1/1} \hich Q) ¢ C.. Therefore, W(QW) < W* — ¢. The

satisfies these assumptions. update equations at the providers can be compactly stated as
The following analysis is similar to [30, Theorem 1]QU*YD = [QW + s®s®W],, wheres® is the subgradient of

and [31, Theorem 5]. Let W(-) at Q. It follows from the definition of subgradients
1) Avj(a,yi) =Y = Ypeps YkTiks  J € M, that . -
2) Aop(a,z;) = 21, — ZjeAjs ok, ke B, (s9,QY - Q") < L(QW) - W < —e.
3) Azj(a) = Xpeps ajr — 1. J € Ms, Now, [|s?|| < T, where
4) Asp(@) =3 e ms @k — 1,k € Bs.
Also defineQ = (a,y, 2), T= \/(\Ms\ + |Bs|) (A + K)? + |[Ms||Bs|K2(3 + R)?;
E(Q) = Yjem, ([Auylysa)l + maX{OaA3J‘(a)}) T R is the maximum achievable rate for any customer-service
s, <|A2k(z,~, a)| + max{0, AM(Q)}), unit pair.
andW(Q) = e (Uily:) — Vi(z:) — KEZ-(Q)). 1QUFY — Q7|2 )
Let Q* = (a*,y*,z*) be an optimal solution of ). Now = [[Q® +3VsD], — Q|2
g();)sider themitzl(g/ving optimization problem. < HQ(l) +6Wg _ Q*Hz

- max - O Q%12 + 5O 1sD)12 + 250 (5D Q1) _ @
subject to:a, y,z > 0 ) = 11Q 9 1"+ HS? II7 426" (s", QY — Q)
Let Q* = (a*,§*,%*) be an optimal solution ant’* be the < [|Q") — Q*|> + T%6"" — 2¢5.

optimal values ofP(S). The proof consists of two steps.
Step (i): In the first step we prove that for sufficiently

large K, Q* is also an optimal solution of (B). This result

is fairly intuitive. See [30] for a discussion. 1QUFY — Q¥ < 1|QY — Q*||2 — es®.

Sinces® — 0, 6¢) < ¢/T? whenl is sufficiently large. For
all suchi,

Theorem IV.2. If K > A, thenQ* is also an optimal solution ~ Suppose there exists B. < oo such thatQ®") ¢ C. for
of P(S). all I > L.. Therefore, there existé. > L. such that the



above inequality holds for all > L.. Adding the inequalities receive a larger share of the aggregate payoff. The follgwin

corresponding td = L. to L. + m, we obtain example will further elucidate this.
- - Letm l Example IV.3. Let V' = {1,2,3}, | M| = 5, and | M| =
QL. +mi1 — QI* < 1Qr, — Q1> =€ > d¥, IMs3| = 2. Also, let|By| = 2, |[By] = 3, and |Bs| = 4.
I=L Supposer;, = P for all j € My and k € By. Let

R il A B m; = 0 for all j € Myr. Also, let the payoffs be equal to
g:f:iryop(l;g)s_thil|$ﬁi;+gﬁot p(gssHibl_é sir?(?#gsm - Of sum of the customers’ service rates. Thef{i}) = 2P for
L 1 Letmtl = i ¢ N, v({1,2}) = 5P, v({1,3}) = 6P, v({2,3}) = 4P,

el " . _ 1259
Q*|| > 0. Hence the supposition was incorrect. Hence thegend v({1,2,3}) = 9P. An example allocation in the core

exists a sequench . < Iz < ... such thatQ;, . € C. for )
all f = 1 2q Since 5(2[3 50, there exis?slz‘yst 50 < (3, %, 3P) fetches payoff gains 6§, £ and P to the three
min(e’/T’e/’T.Q.)' V1>l Cons’,ider the followin'g' cases. providers as compared to the case when they do not cooperate.

N Also, somewhat contrary to intuition, providér who has the

. = [ (l) ’ . . . ! .
(Z)Casg *1'l< ,liﬁﬁ for some; > i. HenceQ™ € C. and least number of service units, attains the highest paydiis T
1Q cn Q 2|\ fze—l< e s - is because the other providers, i.2,3 have fewer customers
ase 2:: 0 =lj+ 1 1orsomey >z Then than service units, and these excess service units areeadili

QW = QUi = [QUie) 4 §Ui)glia)], | only whenl joins the coalition along with its customers. Thus,

1 is adding the most value to the coalition by bringing in the
Thus demand that is sought out by others: note thé{2,3}) =
. . N . 2 +v({3}) butv({1,2,3}) > v({i}) +v({2}) +v({3}).
1Q0 — Q) 1[QU) 4 50050, — QU PUZD)+u({3)) bute({1,2,3}) > v({i}) +v({2h) +v({3)

Also, the providers’ shares of the aggregate payoff are isua

| largely determined by parameters other than their decision
<715l < ¢, variables. For instance, the number of customers here is not
a decision variable and yet it is critical in determining the
payoff shares.

< HQ(lj,e) =+ 5 gllye) _ Q(lj,e)
= )|t

From the above, and singéQ’< — Q*|| < ¢’ (Case 1), we

get

Y 1) A o 00 Remark IV.1. A provider can decide how to upgrade its

Q" — Q| 1QY <) — Q™| +|Q" — Q™ resources, based on the above observation. For instance, in

e +e =2 =e. Example V.3, if provide® can somehow expand its customer
base, e.g., by extensive advertising, its share increaales,

Case 3:: lj+1 <l <ljyrfor §omej~2 i. Also Ql,’ ¢ though the aggregate payoff remains the same.
CNVlj. <l <ljt1. Recallthat| QY +Y-Q*|? < ||Q¥)—

<
<

Q*|[2—es™), implying || Q¥ +1 —Q*|| < [|Q")—Q*||. Thus, V. SPECTRUMACQUISITION AND SERVICE UNIT

QW ,Q*H < ]|QUietD) *Q*H- Since||QW+1) — Q*H < LocATION GAMES

e (Case 2))|QY) — Q*|| < e. ~ In the previous section, we investigated cooperation,rassu
From Cases 1,2 and 3, it follows tHaQE”—Q*H <eVIl> ing that the locations of service units and the set of channel

l; .. Sincee is arbitrary,lim; ., ||Q®) — Q*|| = 0. m they have access to are decided a priori. We showed that the
Here is the main result. core is nonempty and an imputation in the core can be obtained

through solving a convex optimization problem. We now relax

these assumptions. In particular, we examine the cooparati

in a setup where providers can decide which channels to rent
Proof: Combining Theorems V.2 and IV.3, we obtainand where to open base stations. We generalize the model

that the sequence of updatg€)()},1 > 1, converges to an presented in Section IlI-A so as to incorporate these dwtisi

optimal solution,Q* = (a*,y*,z*), of P(S). SinceQ" = variables. Redefind; to be the set of candidate locations

(a®,y® z1), we havelim;_, ||[a® — o*|| = 0. m available to providei for opening base stations. Lgt be the

Now we discuss how this framework can provide usefuost of opening base statign Let b, = 1 if base statiork is

insights about the relation between a provider’s payoffeshaopen and) otherwise. Alsoj should determine which channels

the resources it contributes, and the wealth it generatbsse statiork € I5; will have access to. Defin€', to be the

Among the demands and assets in possession of a providet, of channels available at base stationCy,k € Bxr are

one could be more constrained than the others. For instanagsumed to be disjoint. Note that providemeeds to pay the

a provider might have a lot of customers, but few servicgpectrum regulator (a government agency or a license holder

units. Then, increasing the number of service units coulitbbo a fixed fee (membership charge), if it intends to use a

the payoff generated by the provider, while adding to thehannell in Cy, k& € B;; this fee is in addition to any usage

number of customers might not change it. Using the rule based charge the provider needs to pay for using the channel

thumb that more demand adds to the value of an asset, (e V() functions in the previous sections) which depends

intuitive observation then is that in a coalition, the po®si only on the amount of usage and Gsif the channel is not

that offers more of the demand or asset that is sought mosed. Letc; = 1 if base stationk is allowed to use channel

by the majority of the members of the coalition, is likely td € By (we say that the channel is open) abdtherwise.

Theorem IV.4. The sequence of aIIocations{,a%,j €
Ms,k € Bs},l > 1, converges to an optimum allocation.
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A channell € Cy, for somek € B;, can serve usey if a) proof techniques.
Base statiork is open, b) Channdlis open, and c) customer
j and base statiokh are associated with same provider or thé- Case 1
providers associated with them are in a coalition. We assumeConsider the special case where customers do not move and
m; = 0 for all j € My, that is, there are no service levethe quality of channels do not vary with time, i€ = 1.
agreements. Note thai,s andc;s are deterministic variablesWe also assume that each base-station is allowed to use only
and cannot depend an, in contrast toa;;s that are decided one channel, i.e|C;| = 1 for all k € By. Thus each base
to best suit each network realizatiane 2. station corresponds to only one service unit. In particubar

We assume that all utility and cost functions are linear, ai$ in Sections IV, is the set of service units availatde t
u;1(w) € R is the difference in the amount paid by customeprovider:. Moreover, for each service unite B5;, provider:
j for using channel and the usage-based charges incurred igeds to pay the cost of opening the base station as well as

channell in serving customey. the corresponding channel's membership cost. We redéfine
For a coalitionS C /, the payoffu(S) is then obtained by to represent this total fixed cost wherdgs= 1 if the service
solving the following optimization problem. unit k is open and0 otherwise. Then B(S) will reduce to
P(;,(S) : maxzjeMs P(w)ajl(w)uﬂ(w) — Zk B fk'bk _ the foI|0W|ng IP:
i)eecg €bs PC(S) . max Zjeé/\éls ijk-u‘jk — ZkGBs fk:bk
Zi:)e'cs gici subject to: °
subject to: | 1) Spem o <1, j€Ms
1) Dees aji(w) <1, jeEMs,weQ 2) Y icpme Ok < br, k€ Bs
2) Eje/\/lsaﬂ(w)gch lels,we 3) oajr >0, jeMs,keBs
3) o <by,l €Cx,k € Bs 4) b, € {0,1}, k€ Bs

4) ajiw) 20, jeMs,lecls,we We proceed to prove that the core of the coalitional game

5) ci,bp € {01}, 1€ Csk € Bs < N,v >, with characteristic function(-) given by P¢(S),

Constraints (1) ensure that the total fraction of time cu&o is nonempty. The proof consists of two steps.

j is being served, is upper bounded byA channell can Step (i): Consider the coalitional game N, 9 >, where

serve at most the whole fraction of time if it is open and caN’ is the same set of providers and the characteristic function

not serve otherwise, by constraints (2). Finally, conatea(3) o(-) is given by the LP, RiaxedS). PrelaxedS) is the linear

guarantee that only opened base stations can have opslaxation of R(S), where the constraints;, € {0,1} are

channels. now replaced byb, € [0,1]. We show that the core of the
The following example illustrates how cooperation magoalitional game< N, ¢ >, C, is nonempty.

change providers’ decisions regarding the opening of ablann  Using A\ € RMs, and v,v € R5s, we construct the

Example V.1. Consider a network with\" = {1,2}, B; = gllowzr(]g)l_.ljn?ige dualAqiL.l'é’.gec(S)

M; = {1} and B, = M; = {2,3}, where f; = 0, and s&%ej‘ée(:t o jeEMs N keBs Vk

Jo=fs = f.Letryy =12 =132 = Q, 121 = ron = ' .

r33 = P, andrj, = 0 otherwise. Suppose and; = 0 for all 1) Aj+vk 2w, jeMs,keBs

j € My, f < P,and@ < P. Let payoffs consist only of the 2) vy = < fr, k€Bs

sum of the customers’ service rates. No1}) = Q. Also Aj> Vi Mk 20, j € Ms, k € Bs

v({2}) = 2P—2f andv({1,2}) = max[2P— f,2P+Q—2f], Let Drelaea constitute the set of optimal solutions of
where the former payoffs are the result of opening just cenrPrelaed \). Define: Ze := {x* € RN : a7 = > . A +

3, while the latter ones are in the event of opening botR_jcps, & for some (A", v*, 3%, 7*) € Diclaxed!-

Intuitively, if provider2 cooperates withl, opening channel 4

2 may not be necessary. In fact@f < f < P, opening both Theorem V.1. Z; # 0, andZ. C C

channels is optimal when not in coalition, while openingtjus  Proof: The proof is identical to that of Theorem V.1
channel3 is optimal under cooperation. This is in agreement  Step (ii): Next, we prove that, for any coalitiof C N/,
with the intuition that deploying a service unit in the ardat P.(\) has zero integrality gap. In other wordseRed S) has

is covered by other service units might be redundant. Hokveven integral optimum solution. In the proof we use the fact,tha
if there is a relatively large traffic demand in the area, eif. if the set of constraints ofRaxed S) is written in matrix form,
ro1 = P (thenv({1,2}) = max[2P — f,3P — 2f]), opening the corresponding matrix is totally unimodular.

both channels is optimal even when the providers cooperatB.eﬁnition V1. A matrix A is totally unimodular if every

Note that the aggregate payoff of a coalition now is givesquare submatrix of A has determinant eitlerl or —1.
by an integer (rather thar_1 convex) optlmlzat.|on problem. A\Rle have the following sufficient conditions for the matrix A
a result, the strong duality does not hold in general. Thltlg be totally unimodular [33]
the approach taken in Section IV to show that the core '
is nonempty, is inadequate here. However, we obtain tiideorem V.2. Supposed can be partitioned into two disjoint
nonemptiness of the core in some special cases using differsets B and C, with the following properties:
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1) Every column ofd contains at most two non-zero entriespe solved using Karmarkar’s interior point algorithm [38] i
2) Every entry inA is 0, +1, or —1; O(C%VQL) time where the obtained solution and the optimal
3) If two non-zero entries in a column of have the same solution match in L most significant digit<.

sign, then the row of one is iB, and the other inC;
4) If two non-zero entries in a column of have opposite B. Case 2

signs, then the rows of both are i3 or both inC.

Then A is totally unimodular. Now, we relax the simplifying assumptions made in Sec-

tion V-A. We allow the customers’ locations and channels’

Now, consider the following linear program qualities to be random, i.e|?] > 1. We also let each
P: max ¢’z base-station access multiple channels, i@,] > 1 for all
subject to:Ax <b, x>0 k € Bx. However, we impose an upper bound on the
We have the following theorem [34]. scheduling random variables. More precisely we assume that
aji(w) € [0,a],j € Mp,l € Cyr,w € Q, for ana such that

Theorem V.3. If (1) A is totally unimodular, and2)b contains
only integers, then linear prograf has an optimal integral
solution. Remark V.2. The assumption does not cause any loss of
generality when for each there are several customers with
identical transmission rates from the service-units (iagtice
Theorem V.4. For any coalitionS C V, the integer program this case arises when the overall number of customers is
P.(S) has zero integrality gap. In other words(S) = o(S) large). In such cases, the maximum aggregate payoff may
forall S C V. be attained if the service times are equally split among the
customers that have identical transmission conditionsifthe
ervice units - thus, even the optimizations that do not sepo
his condition will choose smatk; (w)s.

alCy| < 1.

Using above, we get the following result.

Proof: Once we write B(S) in the form of P, it is
trivial to verify that A, thus obtained, satisfies the sufficienc
conditions of Theorem V.2. Hencd is totally unimodular.

Also, b contains only 0 and 1. Thus, from Theorem V.3($) Let v¢(S) be the aggregate payoff of coalitishin this case.

will have an integral optimum solution. B Thenuw(-) is given by an optimization problem ) derived
Here is the main result. by omitting constraints (1) and replacing constraints (#€hw
Theorem V.5. Z # 0, and Z C C the above stronger ones in;&S). In the following, we pro-

o . o ~ ceed to show that the core of the coalitional gamé/, v¢ >,
Proof: Theorem V.4 implies tha€ = C. Combining this ¢, is nonempty.

with Theorem V.1, the claim immediately follows. | We use the following result [36].

Remark V.1. It follows directly from this theorem that antpaorem V6. Consider the optimization problem:
imputation in the core can be obtained by solving the Iine%inf(z)

optimization Dejaxed V), Which can be done in polynomialsubject to:g(2) <0

time. This imputation again distributes the aggregate gran -

coalition payo_ff among providers in _accordance _with _thg compact set oR", andy € Y is the discrete part, where
Lagrange-multipliers of Riaxed '), which as explained in Y is a finite discrete set of{-element integer vectors. is

Section 1V, are commensurate W't.h the resource investme, Rf/er bounded and continuous and differentiable with respe
and wealth generated by the providers. Also, since both t € . whereas the constraints — (g g,) is continuous
’ - s+ Y9r

phnmal Pfe'gxe"(/\? G:jn% duﬁl Re'a"e.‘gN) are I|3_ear_bprogdrams, in the continuous subspacE for any giveny € Y. Then,
they can be solved yt € provigers in a Istri yte mannge optimal value of the objective function of the extended
and without revealing their confidential information such a . n |
the revenue and costs, (i.a.S) to each other, using the dual prOblemmaXAZO mm.ZGXXYf("f) + g (f’) equais
subgradient technique as described in Section IV. that of the primal problem, i.e., there in no duality gap fbet
extended dudf.

Computation complexity:Now, we discuss the com-
plexity of computing the optimal deployment and alloca- Now formulate the extended dual problem, as introduced
tion of service units for the grand coalition via solving thén [36]. Let 7 € R°s*® and € R%. Define
primal linear program Raxed\), and an element of the hf(T,¢) = max o, cfoa ( — febk — Yee, 9161 +
core via solving the dual program fyedN). The primal c1,br€{0,1}
linear program hasy/ = (M| + 1)|Bys| variables and
C = |M/\/| + (‘MN‘ + 3)‘BN| constraints. The dual linear Thus, L is the number of accuracy digits of the generated solution.

_ : Often, the computation time results are stated in units,af.g.,0(C3/2V2)
program D6|axe‘(N) hasV = |MN‘ + Q‘BNl variables and per accuracy digit in the algorithm output. Note that Karna&isk algorithm

C = |M/\/| + (|M/\/| + 3)|BN| constraints®. Thus each can generates am-solution, that is a solution that (i) attains an objectiaue
that is at most less than the maximum value and (i) satisfies the feasibility
1iNote that we have fewer dual variables as compared to primati@nts constraints within an error margin ef The error margire decreases with
as the dual variables corresponding to some primal non-wétgatonstraints  increase in the number of iterations.
can be omitted without any imprecision. BBA+ 2 max[A, 0]

wherez = (x,y), z € X is the continuous part, wher¥ is
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Yjems P(w)agi(w)uji(w) = Y iec, (W) (X e ms dt(w) —  as vyell as its power efficienéﬁl._Therefore, _cooperat_ion _in
we multi-hop networks has even higher potential than in single

o)t — e, (¢ - b))t thhoepS Qei;vsva);l;s. We now present a framework that captures all
']ghese%teryded duaD}ngS) will be as follows. As in Section lll, let\/ be the set of providers. Lé?; and

fé. ) trtnm Zkﬁ%s k(7:%) M; be the sets of providei's service units and customers,
subject toir, ¢ = . . respectively. As before, we consider uplink communication
FormulateD;(\) by defining vectorsr and ¢ appropriately. \ye assume that the locations of service units and the set of
Let D¢ constitute the set of optimal solutions @1:(N).  channels they have access to are determined a priori. The

_ * N o ok . . . .
Note thatDy # . Now let Z; = {x* € R™ : 2] = gepice rate of a custometis defined as the total rate at which

N (% o *o* . - o .
2kep, i (77, ¢7), for some(7”, %) € Dr}. j's packets are delivered to any service unit, via either glsin
Here is the main result. or multi-hop routes. Letn; be the minimum rate requirement
Theorem V.7. T; # 0, and Z; C C; of customerj. We assume that each service unit (likewise,

each customer) has access to a single channel (for transmis-
Proof: According to Theorem V.6, BS) has zero duality sion). In addition, we assume that no two service units in
gap. Note that since D# 0, it is clear thatZ; # (). Now letx* a vicinity have access to the same channel. We also assume
be an arbitrary vector iff; corresponding to vectors*, p*. that a pair of customers can communicate with each other (to
We show thatx* € C. relay packets) without interfering with the communicatiaf
a*(N) =, 2 is the optimal value of the optimization other custo_mer-customer or cusftomer—service unit pawme
D¢(N) and by strong duality equals;(\'). Now we only to appropriate channel allocation for example). Thergfore
need to show thatr*(S) > wv(S) for all Sc N. We the necessary and sufficient condition for the simultaneous
have z*(S) = Y.z, hé\[(r*7@*)_ It is easy to check that trans_,missio_ns to be succes_sful is_th_at the set_of_transmitte
h/,:/(go) > h{(r,p) for all 7 and ¢. Therefore we have receiver pairs form a matching. Slmllar transmission medel
2 (S) = Y rene hY (7%, ) > > heBe hS (7%, ¢*). On the have 'extenswely bgen assumed in related contexts [37], [38
other hand’ Sincejf(s) is equa' to the Opt|ma| value of We d|SCl:|SS how this assumptlon can be relaxed at the end of
S rene hs (T.0), it follows thatve(S) < 37, s, hil (7, ¢*).  this section. N o
Thus, z*(S) > v(S) and the claim follows. n A sufficient condition for a schedule to be feasible is that th
fraction of time each service unit or customer communicates
be belowd, whered is a constant ir{0, 1] and depends on the
network topology. For bipartite networks, for instanées 1,
which is also a necessary condition [22]. It has been shown

We have so far investigated cooperation in single hop ngf; i generald = 2 is a sufficient but not a necessary

WO”‘S- Next, we proceed to ;'gudy cooperatio.n among pr.ogid%’ondition [22]. We assume that the network operates in a
in multi-hop networks. Intuitively, cooperation in mufiep way that this condition always holds. This assumption can

net_vvorks has. all the advgntaggs of that in single hop ONER motivated by the fact that operating the network at full
which is sharing the service units and spectrum. In additio

@apacity raises the delay which is not desirable.
it has another benefit via what we calbwer sharing That . . . :
: . . ) Suppose now that a customjiecan transmit to a service unit
is, when the providers cooperate, they can redirect thegfilicr i

X : S or another customek at a rate equal to;;, a random variable
through pO§SIb|y be_tte_r multi-hop routes, W.h'Ch In tl.Jm Idoq which is a function of the location of customgind the state
reduce their transmission power consumption. In this secti

. : : of channelk. Let Q2 be the state space of the channels’ states
we generalize our model to incorporate multi-hop network

Sub " e th litional i thi d customers’ locations. We assuffig is finite. Letw be
ubsequently, we examine the coattional game In this MOGE 4 tcome in this state space dhflv) be its probability.
and show that its core is nonempty.

Consid work | hich ; ) A customer and a service unit, or two customers, can
onsider a network in which customers can Commumc.at'i‘cz)mmunicate only when both are associated with the same

W'th Service units via p_otentlally multi-hop routes, that | provider or the providers associated with them are in a
via other customers which act as relays. However, Whencaalition. Let random variablg’!, € [0,1] be the fraction of
customer relays others’ packets, it uses its time and enegy customer, transmits pa g2k ’

th buti . ity | d _ ckets of customgr, to service
without contributing to its own utility. In order to mothat i o customeik. Without loss of generality we can assume

(r:]ustomeri, r;]rowdelrs a?\lree tohdllscount their chargeg tr?n;e hat 5;'12k —0fork=jy ork = js. ﬂjjfks are determined by
tovr\1/ much t ey re ay.I gvert eless, ;rtchuitomer r(;ng tI Wemte aflocation scheme.
t(r:i ?Ve ar?ix'tr\?vuw( re ary'\':igd a:grrenemtedl idl stﬁrov;l er.u'gn We now discuss the mechanism which determines the
fViype 2“ € (\)/v T’I P Oth € Smrﬁsni e(t:i r? ) eta O(i?n Wpayoffs providers receive and the costs they incur by serv-
Sefvice units as wetl as the communication routes. 1 no .il’zg the customers. Let; be the maximum fraction of
set of providers agree to cooperate by pooling their servic
units and customers, not only can they benefit from sharing, _ _ _
h , . its. but thev also eniov a larger set oafyrel Note that for certain customers, _the increase in the' powegeuswy not
others Se':que units, . y Joy ) 9 be proportional to that in their service rates, but coopemaincreases the
nodes. This, in turn, can increase the capacity of the néfwopower efficiency of the network as a whole.

V1. COOPERATIONIN MULTI-HOP NETWORKS
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time customer;j spend as a relay. Consider a coalitioin the core, which can be obtained in polynomial time.
S. When the provider associated with customgris in Now assume that simultaneous scheduling of some sets of
S and the network realization is, j receives a service links without common nodes is infeasible due to the interfer
rate y;(w) = > i cms.keBs ﬁglk(w)rjlk(w). Besides,j re- ence constraints. This arises when for example same ctsgannel
lays the traffic for¢; fraction of time, wheret;(w) = have been allocated to units in a vicinity. Neverthelesss it
Y iems\ikeBs Bhiw) + B, (w) + B (w)). Suppose still possible to find a set of constan{g;, 0 € (0,1],j €
when a customerj receives a service ratg; and relays Mg,k € Bs}, such that for any scheduling to be feasible,
traffic a fraction of time equal tc;, it pays the associ- it suffices that every nodg (service unit or customer) in
ated provider, an amount df;(y;,t;), whereU;(y;,t;) is the network communicates for less thénfraction of time.
a concave function increasing iy and decreasing it;. If, as before, we assume that this condition always holds in
Let random variableg;,(w) represent the power usage othe network, replacing in constraints (5) and (6) in,RS)
customer; when it transmits to service unit or customier with the appropriaté;, 6, leads to the optimization problem
Then a customey in a coalitionS, has a total power usagethat givesv(S) for all coalitions. Analogous results extend
of 2 (W) = D, ems.kemsuss, Bix(@)pik(w). This in tun  similarly.
inflicts a cost equal td/;(z;) on coalitionS, whereV;(-) is Finally, similar formulations may be used to model coop-
an increasing convex function. eration among internet service providers (ISPs) in the same
The aggregate payoff available to providers in a coalitiatier. Specifically, peer ISPs may form coalitions where the
is the difference between their utilities and costs. Thaeef providers in the same coalition route traffic to the custamer
in order to maximize their aggregate payoff, providers in @e., end users or the ISPs in lower tiers) through eachrethe
coalition must decide the routes along which they communieuters (analogous to service units in our terminology) and
cate with each node, and schedule the service units to thdeks. The characteristic functiom(S) now represents the
routes based on the locations of customers, and payoff d@othl profit of the ISPs in a coalitio®, and can be obtained
cost functions, subject to minimum rate, maximum relayings the objective function of a concave maximization with
and allocation constraints. linear constraints, similar to,RS) - the differences in this
Let v(S) denote the maximum aggregate payoff achievab@gtimization are that (i) there is only one as the link
by a coalitionS. Then, v(S) is the optimal value of the qualities will not vary randomly in wireline networks (iipé¢
objective function of the following convex optimization: utility functions U;(.) depend only on the rates provided to
P (S) : max e ms Ip(w)(Uj(yj (W), tj(w)) — Vj(zj(w))) the customers (iii) cost functlori%(.) are zero as the routers
weN belong to the ISPs (iv) constrait on the fraction of time

subject to: _ each service
1) yj(Ww) = Yjrems B (W)rjk(w),  j € Ms,w € Q. e unit and relay is used must be replaced by link capacity
keBs i i constraints. The duality gap continues to be zero. Hencanit
2) tj(w) = Xjipems\i (ﬂm(w) + B75.(@) +  pe shown similar to the proof of Theorem IV.1 that the core

‘ keBs
;,;(w)), jEMs,we.

3) zj(W) = jiems B@pjrw), j € Ms,we .

is non-empty and an allocation in the core can be obtained in
polynomial time.

4) ZkeMSUBj%?f:(w;Tj2k(w) _ VIlI. OTHER SOLU;ION CONCEPTS NUCLEOLUSAND
g 2h
Diems Bij Wrjjs (), j1# j2 € Ms,w € Q. _ HAP.LEY VALUE N
5) tj(w) + Y pensums Buw) <0, j€Ms,we. In Section 11I-B we dgfmed the core of a coalltlonql game,
6) X e lek(w) <0, keBswe and observed thaF .sharmg mechanism pgsed on an imputation
7) ZZ;Z IP(tj)ijQ(w) >m;, jeMs. in t_he core stab|I|ze§ the grand coalition. This fact then
8) S o Pwtj(w) <7;, jeMs. motivated us to examine whether the cores (_)f the games we
9) iflk(w) >0, j1.js€ Mg, k€ BsUMs,weQ formulated are nonempty. The core of an arbitrary coal@ion
J2 -

_ game, however, consists of multiple imputations and we have
Constraints (4) ensure that the set3f;s satisfy the flow fea- so far, presented techniques for computing one of them. But,
sibility constraints, while constraints (5) and (6) gudeanthat it is not clear how to select an appropriate imputation among
they constitute a feasible allocation. Constraints (7) é)d all the available ones. One approach to this problem is to run
impose minimum rate and maximum relaying guaranteesn optimization over the set of imputations in the core with a
respectively. appropriate set of constraints, so as to satisfy some addlti

We argue that the core of the coalitional garme A ,v > selection criteria. Another approach is to use other wedlkm

is nonempty. Similar to the proof of Theorem IV.1, onaharing mechanisms (also known as solution concepts) in
can formulate the dual problem of the optimization (R) coalitional games that best suit the application. Each e$eh
(which is always feasible) and subsequently, define theZ sesolution concepts has properties that make it an integestin
appropriately. The same proof technique, then shows Zhatcandidate for a sharing mechanism. However, not all of them
belongs to the core. Hence, nonemptiness of the core fallowse guaranteed to stabilize the grand coalition, in the esens
Furthermore, solving the dual problem provides an impaitati that an imputation in the core does.
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We next proceed to investigate two well known solutiofunction wy () + wz(-). Then, the imputation that constitutes
concepts in coalitional games, nucleolus and Shapley yaltlee Shapley value for the third coalitional game equals the

and examine whether these belong to the core. sum of those for the first twaa@lditivity).
We next provide an example to demonstrate that the Shapley
A. Nucleolus value need not be id.

Definition VII.1. The excess of a coalitiaf under an imputa-
tion x is es(x) = v(S) — 2(S). Let E(x) = (es(x),S € 2V)
be the vector of excesses arranged in monotonically deicrgas
order. The nucleolus is the set of imputation$or which the
vector E(z) is lexicographically minimal.

Example VIL.1. Let N = {1,2,3}. Let B; = {i} and M;

be arbitrary nonempty disjoint sets for each providerLet

Tjo = 1,5 € Mo UM;,’I'jl =T;3 = 1,5 € Me andT'jk =

0 otherwise. Also, letn; = 0, Vj € M. Suppose utility

functions are the sum of the customers’ service rates arrd the
One can think ofes(x) as a measure of dissatisfaction ofs no cost.

S underx. For example, if the share allocated to coalition Clearly, v({i}) = 0 V ¢, v({1,2}) = v({2,3}) =

S by x is less than whatS can make on their own (i.e., v({1,2,3}) = 2,v({1,3}) = 0. Table | shows all possible

v(8)), thenes(x) is positive and its value reflectS's level orderingsU of the providers, and\;(U) for each provider:

of dissatisfaction. If insteadS receives what it can earn byand orderingU. From (2) and Table |, the Shapley value of

itself, es is negative, which suggests a relative satisfactiothe providers isx = (2,2, 2). Note thatz; + 25 = 4 <

Then the nucleolus is basically the set of imputations that{1,2}). Hencex ¢ C.

maximizes the levels of coalitions’ satisfactions in a nmaix- :

fair fashion. That is, it maximizes the minimum satisfantio Remark VII.1. Although unlike the nucleolus, the Shapley

Subject to that, it maximizes the next minimum satisfactioﬁiliuﬁerrl]eeii g?}tdbt?ag;&ﬁtcoﬁél'(tjsuife;ﬁl iﬁigféﬁ;ﬁs’ ;;Jtﬁ? as
and so forth. In Example V.1, the nucleolus(i81%, 29, q Y, 9

The nucleolus of any coalitional game with trarﬁsferablConcept in cooperation analysis among many researchers in
y 9 %iﬂ‘erent fields of study. Finally, note that finding a polymial

payoff.lts a smgleton [23, pp. 288]. Whenever the core ime algorithm to compute the nucleolus and Shapley value in
a coalitional game is nonempty, the nucleolus belongs 1o

the core. This is because, for any imputatierin the core, our settings, remains an open problem.

E(x) < 0 i.e., the maximum excess is negative. Hence for

any imputationx*, which leads to lexicographically minimal TABLE I: All possible orderings and marginal contributions
excess vector among all the imputations, the correspondiofigthe players.

maximum excess will be negative. Hendg(x*) < 0. Thus,

from (1), x* belongs to the core. U | AiU) | Az(U) | Az(U)

Thus, in those games where we proved that the core is igg 8 g 8
nonempty, the nucleolus belongs to the core, and hencenende 213 2 0 0
the grand coalition stable. 231 0 0 2

312 0 2 0
B. Shapley value s21 0 2 0
Definition VII.2. For any i, and S C A/ such thati ¢ S,
let A;(S) = v(S U {i}) — v(S). The Shapley value is the
imputationx for which VIIl. OPTIMUM SELECTION OF SERVICE LEVEL
AGREEMENTS
x; = 1 Z Ai(S; (), 2 In previous sections we assumed that the set of customers
Ueu subscribed to each provider is given a priori, and so is nidt pa

the decision variables. We now investigate cooperation i
e case where providers can in fact decide which customers
to accept as subscribers.

In Example IV.1,A; (@) = v({i}), A1 ({2}) = Q, Ax({1}) = We first illustrate the impact of provider cooperation on
2Q — P, and the Shapley value {§Q + P)/2, (3Q — P)/2). the customers and why the customers negotiate service level
The significance of the Shapley value is that it is the unigugreements. Cooperation enhances providers’ aggreggte pa
imputation that attains the following properties [23, pp2R offs which are increasing functions of service rates of the
(@) If ¢ and j are interchangeable, i.eA;(S) = A;(S) for customers. Thus, intuitively, the rates of most of the cus-
eachS such thati, j ¢ S, then the imputation allocates equatomers increase when the providers cooperate. Cooperation
shares to both and j (symmetry. (b) If A;(S) = v({i}) may however decrease the rates of some of the customers.
for eachS such thati ¢ S, then the imputation allocatesConsequently, it may induce unfairness to the customers and
revenuev({i}) to « (dummy player allocation (c) Consider may also reduce the customer base of individual operators.

two coalitional games with the set of playefé, and the In Example IV.1 when the providers do not cooperate, all
characteristic functionsu; (), w2(-), and a third coalitional customers may receive non-zero rates; yet, the customers of
game with the same set of players, and the characterigtiovider1 receive no service when the providers cooperate.

wherel/ is the set of all orderings of the set of players, anﬁlE
S;(U) is the set of players precedirigin ordering U.
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The unfairness is however mitigated when the provider&xample VIII.1. Consider Example IV.1. Assume that
benefit functions are strictly concave - a choice alloweproviders have agreed to cooperate and divide the payoffs
by our framework. For example, if the benefit function irmccording to the nucleolus. Recall that the nucleolus is
Example IV.1 is logarithmic (instead of linear), i.€;(y;) = (QJQF—P, 3Q2_P). Also, the customers of provider do not
ZjeMi log(1 + y;), then each customer of each provider iseceive any service. Now, suppose they demand minimum rate
served half of the time if the providers do not cooperatguarantees, operatoil does not agree to these demands,

When providers cooperate, together they solve the followiramd these users subsequently leave. Theh, = ¢. Thus,

optimization problem. vé{l{}) =0,v({2}) = Q,v({1,2} = 2Q, and the nucleolus is
max Y_5_, log(1+ a; P) + Y _glog(1 + a;Q) (£, 22); operator 1 gets less revenue than in the earlier case.
subject tO:Z?:1 a; <2, Thus, although the users of an operator do not generate any

where o; is the fraction of time customef is served. We revenue, their mere presence enhances the revenues earned b
have used the symmetry of service units to get a reduced &pe operator.
timization problem. We can further reduce it to the follogin ¢ 4 provider can not honor accepted SLAs by himself, he

problem. is penalized drastically, should he not cooperate with rsthe
max log(1 + a1P) +log(1 + a3Q) It affects provider’s standing in negotiations for dividitthe
subject to: payoffs. However, as the following example shows, accgptin
1) ag+az3<1 such SLAs may increase provider’'s share in the coalition.
2) ap =y _ s
3) oy = as Example VIIL.2. Let N = {1,2,3}. Let B; = {i} and

_ M; = {i}, for each provideri. Let r;; = P,j = 2,3,
Consequently, it can be seen that each customer of proviger — Pk = 2,3, and r;;, = 0, otherwise. Also, leD <
1is served[l — (1/P —1/Q)]/2 fraction of time while each ;;,, < p andm; = 0,j = 2, 3. Let the utility functions be the
customer of provide? is served1+(1/P—1/Q)]/2 fraction suym of the customers’ service rates. Since operatcan not
of time while (assuming /P —1/Q < 1 which for example provide ratem; to userl, v({1}) = —o0. v({2}) = v({3}) =
happens ifP > 1). Note that when both? >> 1 (since ({2 3}) =0 andv({1,2} = v({1,3}) = v({1,2,3}) = 2P.
Q@ > P, then@ >> 1 as well), then each customer of providett s straightforward to verify thatC = {(2P,0,0)}. Now,

1 (and of provider2 as well) is served approximate§0% if operator 1 refuses the SLA of usel, M; = ¢ and
of time. Thus, cooperation does not induce any unfairesg(1l) = 0. v({2}) = v({3}) = v({2,3} = 0 and

in this cas&. The benefit functions may be chosen during({1,2} = v({1,3}) = v({1,2,3}) = P. Again, we can see
negotiations between providers and the customers and M@tC = {(P,0,0)}. Thus, the revenue of operatbdecreases
also be controlled by regulatory bodies (e.g., FCC in USA)when it refuses the SLA of its user.

Our coalitional game framework also allows the customers . . )
to mitigate this unfairness (even in presence of linear fiene ACCepting an SLA does not necessarily lead to a higher
functions) by imposing minimum rate constraints through@r® Of payoff for a provider, even when it increases the

SLAs (Example IV.1 had no SLAs), e.g., all the customerddgregate _payoff of a coalition._ Conversely, it is possible
in Example IV.1 may ask for a minimum rat§. Then, that accepting an SLA by a provider decreases the aggregate

v({1}) = Po({2}) = Q,u({1,2}) = P + Q, and each payoff, b_ut increases that_ prqvider’s share. The following
customer receives the same rate irrespective of cooperatigX@mPple illustrates these situations.
But, then, the core has the unique imputation{ BfQ) which Example VIII.3. Again consider Example IV.1, with the
provides no payoff gain to any provider as compared to whefitference that each customer of providerequests an SLA
they do not cooperate. The question then is whether prOVidﬁIua| to g Moreover, customers inM; do not require
1 should accept the above SLA? More generally, shoulgrvice rates abovell’, and as a result will not pay for
providers accept any SLA? The following discussion suggegny extra servic®. We assume providers have agreed to
that the providers ought to accept SLAs, but selectively.  cooperate and divide the payoffs according to the nucleolus
Consider the network model in Section Ill. Now |8; be If provider 1 rejects both SLAs, customers v, leave and
the set of potential customers of providerEach customer we have:v({1}) = 0,v({2}) = Q, and v({1,2}) = 2Q.
J € M, negotiates an SLA (equivalently, minimum servic&€onsequently, providers’ shares will lje,,z,) = (% %)_
guarantee) with providei, denoted bym;. If provider i On the other hand, if provideil accepts one of the SLAs
does not accept the SLA, customewill subsequently leave and rejects the other, we have({1}) = %70({2}) =Q,
the network. The following example elucidates some counteind »({1,2}) = Ly %1 which lead to payoff§z;, zs) =
intuitive phenomena. (352 10C=F) Finally, if provider 1 accepts both SLAs, we
have:v({1}) = P,v({2}) = @, andv({1,2}) = P+ @, and
15Under logarithmic benefit functions, cooperation does ndtaene the therefore, (z1,z2) = (P,Q). Now suppose” and Q) satisfy

providers payoffs in this case either. This happens sincé eastomer has 3p o it i
the same rate from all the service units. However, when cus®have rate- 2 < Q < 2P (this is more restrictive that? < @ required

diversity, i.e., have potentially different rates from fdient service-units,
cooperation substantially enhances the payoffs of indafidoroviders for 18This can be captured in our framework by simply choosing apjately
logarithmic and several other strictly concave benefit fiomst (Section IX)  upper bounded utility functions
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in Example IV.1). Then it is optimal for providérto accept 6) s; € {0,1}, ajx(w) € [0,¢], j € Mg, k€ Bs,w € Q,
only one of the SLAs. where s; = 1 if customerj’s SLA is accepted and zero

Remark VIII.1. Although accepting both SLAs increase§therwise. Note that for any customgr the minimum rate
v({1}), it decreases providet’s share, for it decreases the CONstraint is nontrivial, iny it; =1 (5). Also, for customers
aggregate payoff. On the other hand, rejecting both SLAX4th s; = 0, the service ratey; = 0 by (1). These two
increases the aggregate payoff, but decreases provider conditions ensure that the customers whose SLAs are r_djecte
share, since it decreases{1}). Also, note that if provider do not receive any service. Thus, in any opt|mallsolut|on of
1 does not have any customer, even without any upper-boJfi§ @P0ove optimization problem, only customers with aceept
on the benefit functionsy({1}) = QU({@) — Q, and SL:AAS are served. Eor instance, in Example VIII@{1}) =
v({1,2}) = 2Q and the nucleolus i§2,¢), whereas in ©>0({2}) = Q, ando({1,2}) = 2Q. _ _
Example IV.1 (i.e., when the customers did not have SLAs andNotice that ifo() is used as the reference in payoff sharing,
provider 1 had 2 customers) providet’s payoff share as per instead ofv(:), a provider's share does not depend on the
the nucleolus wasQ;“—P (last paragraph of Section VII-A). set of SLAs _he ac_c_epted, but rather on the set of _SLAs
Thus, although when the providers cooperate, the custom@f£epted by his coalition. Therefore, providers’ only eamas

of provider1 do not receive any service, and therefore do nd® Mmaximize the aggregate payoff. Also note that in thissetu

generate any revenue, their mere presence enhances thif pd¥/ards maximizing the aggregate payoff, a provider maghav
of provider1 (from Q/2 above tOQJQrP)! to accept a set of SLAs, it can not honor by itself. That is, the

optimization problem in Section IV becomes infeasible for a
An interesting question now is: what is the optimum stratoalition S. However,S will not be penalized for that, since
egy for providers in accepting the SLAs? We propose two,, ,(S) is feasible for all coalitions, and therefoiéS) > 0
approaches to address this question. for all S C V. In Example VIII.3, for instance, suppose that
both customers of provide? request a minimum rate af.
. Note that this does not change the optimum selection of SLAs
As was shown in Example VIII.3, the preference of @y the grand coalition, since the grand coalition can in fact
provider in accepting SLAs is not necessarily in line withtth yajiver the minimum rate requested. However, by accepting
of the coalition as a whole. One way to deal with this scenarjp,, SLAs, provider can no longer honor the minimum rate

is to have providers select SLAs cooperatively. Clearlg thy 4 antees of his customers by himself and totally depends
optimal cooperation strategy then involves selecting ao$et g, provider1. This fact can drastically weaken provides

SLAs that maximize the aggregate payoff. In Example VIIl.3,50aining power in deciding individuals’ share, providbet
for instance, providers and2, respectively, se.lect no SLA andv(‘) is the reference function in payoff sharing. But since the
both SLAs (note that we can assume prov@Brcustomers function & remains unchanged (particularly({2}) = Q),
request SLAs equal to zero). However, as discussed beforepr‘ovider 2 is not penalized under this sharing policy and

the characteristic function(-) defined in_Section IV is usgd therefore continues to accept both SLAs as part of the optima
as the reference to compute each provider’s share, pro‘“d%trategy.

is likely to refuse this selection of SLAs. In fact, we obssv

in Example VII1.3 that for the Shapley value computed usingemark VIIL.2. It remains an open problem, whether the

function v(-), provider1 prefers to accept one SLA, insteaccoalitional game< A, o > has a nonempty core.

of no SLA. Therefore, it is imperative to design an appro-

priate payoff sharing mechanism, so as to make cooperat%n

practical. Another approach to the SLA selection problem is to
Let us redefine the characteristic function that is used lgt providers select their SLAs competitively. That is, tfirs

characterize coalitions’ values as follows. DefiiS) to be each provider selects his SLAs according to some optimal

the maximum payoff achievable by coalitighc A/, among strategy without coordinating with other providers. Thetey

all the possible choices of SLAs available &7. In other cooperatively allocate the service units and channels ¢o th

words, for a coalitionS C N, 9(S) is given by the following customers as already studied (e.qg., as given by the optioniza

A. Cooperative SLA Selection

Competitive SLA Selection

optimization problem. problem in Section 1V) and divide the payoffs according to an
Psza(S) : max > es P(w) (Ui(Yi(W)) — Vi(Zi(W))) appropriate sharing rule (e.g., the core). Itis eviderttitnhis
subject to: wen scenario, the SLAS ch'osen by gach prowder,' directly affect
_ his payoff. Thus in this scenario, each provider selects the
1) yj(w) = 85 2 peps Wik(Wrin(w), J € Ms,we SLAs so as to maximize his share, rather than the aggregate
2) (W) = Xjepms WikWw), k€ Bs,w e payoff. In Example VIII.3, for instance, providéraccepts one
3) ZkeBs ajp(w) <1, jeMs,wel SLA, although it does not maximize the aggregate payoff.
4) 2jems wrw) <1, k€ Bs,w e Let A(S) denote the set of joint actions of providers in
5) Lweo PWy;(w) = symy,  j e Ms coalition S. That is,.4(S) contains all the possible selections

of SLAs by providers inS. Now suppose providers form the
17In the original formulationy(S) was the payoff of coalitios, when the yp PP P

set of SLAs selected by was the corresponding subset of the set of SLAQrand coalition and decide to d|y|de the aggregate payOﬁ as
selected by the grand coalition. per an already agreed on sharing rule (e.g., the nucleolus).
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Fig. 2: The left, middle and right sub-plots respectivelpwhoroviders’ payoffs, payoff gains and percentage pagaffis as
functions of the number of customers: the three provideve Ba, 4k and 5k customers, respectively.

Then, for a joint actiorv € A(N), providers receive payoffs used as satisfaction functions of customers and therefore ¢
according to an imputatiox(«), wherex(-) is the payoff stitute good candidates for the revenues they pay (and hence
function defined by the sharing rule. We consider only joirfor the benefits the providers incur). The cost functions are
actionsa € A(N), for which the optimization problems zero when the providers acquire the resources (spectrisg; ba
solvingv({:}) are feasible for alf € N (this implies that the stations) apriori by paying fixed (licensing or deploymeags
optimization problems solving(S) are feasible for als c A/ and do not incur subsequent usage based Cosdso, we

and so allv(S) are well defined). Now.A(N),x(-)) defines assume that the customers do not have SLAs as is typically
a noncooperative game. A Nash equilibrium of this game c#ime case for elastic transfers from the Internet (e.g., file
be used by providers as their strategy for selection of SLAsansfers). We allow the service-unit-customer ratgsto be

In Example VIII.3, for instance, the following joint actias uniformly distributed over the sef0, 100, 200}Kbps, and to
trivially a Nash equilibrium of the game: providér selects be independent across service-unit-customer paiks The

one SLA and provideR selects both. However, determiningcharacteristic functions)(S) for different coalitionsS and
whether the gamd.A(N),x(-)) has a Nash equilibrium in the dual based imputation in the core can now be obtained

general remains an open problem. by solving the concave optimization#), D(S) (Section 1V)
_ once the number of provide®®, and the number of service-
C. Comparison units B; and customersM; of the different providers are

Cooperative selection of SLAs has the advantage of magiPecified. The nucleolus can subsequently be computed using
mizing the aggregate payoff, and so is Pareto-optimal. HoRefinition VIL.1. We denote the payoff of a provideér(i) in
ever, should the core of the game be empty, motivatifPsence of cooperation as (note thatz; = v({:}), (ii) in the
providers to form a coalition is definitely not a forte of tlaig- grand coalition as:f (as per the nucleolus) ar; (via solving
proach. On the other hand, the competitive SLA selection hif¢ dual problem) or: (as per the Shapley value). Owing
the advantage that the core of the gamé\’, v >, as shown 0 large state spaces we uSkonte Carlo simulationsn our
in Section IV, is always nonempty. Thus, for any possibigvaluations. _
selection of SLAs, we can find a sharing rule that stabilizesWe first consider3 providers, andM; = 3k M, =
the grand coalition and hence justifies the cooperation. THE M3 = 5k and Bi = By = B; = 1 wherek ranges
drawback is that the outcome then could be significantly suliom 1 to 20 (Figure 2). The plots show that cooperation leads

optimal which is not globally desirable. to substaptial_ payoff improvements for all provide_rs, ahd t
payoff-gains increase as number of customers increase. As
IX. QUANTITATIVE EVALUATIONS expected (from Definition VII.1)the nucleolus distributes the

In the context of the resource pooling game (Section | ,ayoff gains more equitably than the dual based profit-share

we evaluate the benefits of cooperation and compare diff%rt]ich allocates payoff gains in increasing order of the nemb
ent payoff sharing schemes such as the dual-based pa f customers (wealth generated), reserving the highesifpay

0 . ) /

. . %am for the provider with the highest number of customers.
shares (Secﬂon_ IV) and the nucleolus (Section V1) for ayean Nevertheless, the payoffs of each provider are similar unde
of benefit functions.

We first consider logarithmic revenue (benefit) functionksJOth payoff sharing rules, and also to those under the Shaple

Ui(yi) = > jem, log(1+y;) and zero cost functioni;(z;) = 18Recall that the fixed service-unit deployment and acquisité®s need to
0. Ui (yl) are Strlctly concave functlons and assumes pos|t|\9e considered epr|C|tIy onIy when the deployment and aﬂmﬂBOf service-

| h is th d in thi h units constitute optimization decision variables as in #source deployment
values except wheg; Is the zero vector and In this case t %ame in Section V, and not when these are decided apriori &®iresource

revenue ig). Note that logarithmic functions have been widelyooling game of Sections IV.
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value allocations (Figure 3) Furthermotke percentage gains — o cooperation
in payoffs due to cooperation are quite significant (in thege - -2 providers
of 30% — 40%) for each provider 8 providers

Henceforth, for simplicity, we focus o providers. Note
that the Shapley value is the same as the nucleolus in this
case (Section VIl - paragraph before Example VII.1). We
investigate the impact of varying only the (i) demands (namb
of customers) and (ii) assets (humber of service units) ef on
provider while keeping the other's demand and asset fixed.
First, let N = 2, By = By = 1, M; = 20 and vary M, the
number of customers of provider 2 (Figure 4). Next, we let 6505 200 350 200
N =2, My = M, = 20, B; = 5, and vary the number of SLA (m)
service unitsB; of provider2 (Figure 5). As the demand (or Fig, 7: Providers’ payoffs as a function of the guaranteed ra
assets) of the second provider is increased, the payoffeof § the premium customers
second provider increases under both the nucleolus and dual
based payoff sharing rules, but that of the first may either in

crease (Figure 4) or decrease (Figure 5), depending on @hetfine. When the providers cooperate, usually, most (or more)
its importance in the cooperation increases or decreases gflthe customers have high transmission rates from at |egst o
to the increase in the demands (or assets) of the secogghvice unit (rate-diversity) - thus equitable rates caw de
Mathematically,z¢ = v({1,2}) +v({1}) —v({2})/2, and as provided by allowing each service unit to time-share among
the demands (assets) of the second increa$¢s, 2}), v({2})  the customers (not necessarily those of the same provider)
increase butv({1}) does not change. Thus, the differencehat have good transmission quality from it. Thus, equity is
v({1,2}) — v({2}) may either increase, or decrease. Nevegttained through good match between customers and service
theless, the payoff of the first still remains significantlyose ynits and without compromising the overall customer rates a
that when it does not cooperate with the second. Also, in badfoviders’ revenues. Thus, cooperation substantiallyaeobs
cases the provider with the larger demand or asset Obtaﬁlﬁgregate, and therefore individual, payoffs. Coopendtions
higher payoffs under both sharing rules. out to be beneficial even for low when a large number of
We now investigate how the choice of the revenue functiarustomers have statistically better transmission gealiiom
affects providers’ payoff gains. In particular, we consideother provider's service units than those of the one they hav
the generalizeda—fair revenue function [39]:U;(y;) = subscribed to.
Z"eMi (yli)_l;“, where0 < a < 1. Note that for eachj Finally, we illustrate the benefits of cooperation and com-
4= " of the Pare the nucleolus, Shapley value and dual based payoff
shares in presence of SLAs. We consideproviders each
with 3 service units andl0 customers. Now;;; = 100
Kbps Q00Kbps, resp.) with probability.8 (0.2, resp.). Each
provider has3 premiumand?7 best effortcustomers: the former
Ip(_f;lve negotiated SLAs which guarantee a minimum average
rate m. We consider linear revenue functions:

o]
o
o

service providers' payoffs
~ ~
o al
o o

6§—in(§) = —a and thus intuitively the “concavity
revenue function increases with increasedin(the function
is linear at one extremex = 0). We plot the providers’
percentage payoff gains as a function @f for N = 2,
By = By = 1 and M; = 10 and My = 20 (Figure 6).
Payoff gains are very similar under the nucleolus and t
dual based sharing rules. More importantlge percentage

payoff gains for both providers increase significantly with 3 10
increase ina - thus, higher the concavity, the more beneficial Ui(yi) = Z (Bm + aly; —m)) + Z ay; @)
cooperation is.This can be explained as follows. For small i=1 J=4

a (i.e., nearly linear benefit functions), at any network estatvhere 5 > « captures the higher payoff per Kbps for the
w, the aggregate revenue is maximized by allocating easbrvice guarantees to the premium customers. We choose
service unit to one customer. Next, given that the number= 1 and 5 = 1.5. The revenuex 2}0:1 y; is denoted as

of customers {0 or 20) significantly exceeds the number‘usage based revenue” and the rést— «)3m is the fixed

of service units {) of each provider, usually (i.e., for mostfee associated with SLAs. Due to symmetry, providers receiv
w) each provider's service unit has excellent transmissi@gual payoffs under both dual and nucleolus based shares.
conditions to at least one customer. Thus, cooperation cas Figure 7 reveals, cooperation enhances each provider's
not enhance the aggregate customers’ rates, nor the prsvidesvenue: the increase is significant when the size of each
aggregate and hence individual payoffs. Adncreases, the coalition increases from 1 to 2, and somewhat less when
aggregate payoff is maximized by allowing the providerthe size increases to 3. For small, a provider does not

to time-share among, and provide more equitable rates t@ed to compromise on the efficient usage of resources (i.e.,
the customers at each. When not in coalition, in order it preferentially serves the customers with high transioiss

to roughly equalize the rates of all the customers, eachtes). Each provider’'s payoff increases linearly withn this
provider's service unit must therefore serve customer$ witegion due to the increase of the fixed fees associatedrwith
poor transmission quality-;; for considerable fractions of However, beyond a certain threshold, each provider needs to
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Fig. 3: The left and middle sub-plots respectively show feks’ payoffs and payoff gains (corresponding to the Siapl
value) as functions of the number of customers: the threeigeos have3k, 4k and 5k customers, respectively. The last plot
shows that) ;s x> v(S) for all S ¢ NV, thus implying that, for the chosen parameter values, trept8ly value lies in the
core.
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Fig. 4: Providers’ payoffs as functions offig. 5: Providers’ payoffs as functions ofig. 6: The percentage payoff gains of the
number of customers: the first providerumber of base stations: The first providgtoviders are plotted as functions of

has 20 customers while the number obwns5 service units while the number of

customers of the second/,, is varied. service units,B,, of the second is varied.

schedule a few lower rate links to the premium customee$ P({2,3}) with 8 premium customers. It turns out that the
(instead of the higher rate links to the best effort cust@nerdual and nucleolus payoff shares are in the core, and hence
to satisfy the SLAs. This lowers the aggregate service ratéise core is non-empty. In the left and middle subfigures of
and each provider's payoff decreases linearly with in@édas Figure 8, we show the providers’ payoffs as functions of the
m. Cooperation increases this threshold and also the aggregatmber of premium customers of the third provider. We have
rate of all the customers by allowing the scheduling of high@lotted the providers’ payoffs that correspond to the daakol
rate links more often. allocation, the nucleolus and the Shapley value (the middle
subfigure) in the grand coalition. We have also plotted the
Next, we consider an asymmetric scenario where eaglyyiders’ payoffs when they do not cooperate. In the right
provider has10 customers as before, but they respectivelyypfigure, we plot the maximum attainable payoffs of all the
have3,0, k premium customers} is varied froml to 7. Al ¢oalitions. The dual based allocation equally divides titalt
the premium customers demand a minimum guaranteed rgi&ge based payoffs among all providers, and allocates the
of 125Kbps. It turns out that a provider alone cannot guafixed fees of each provider's customers to the provider. Thus
antee125Kbps to more thar8 customers. Similarly, any two the payoffs of providers, 2 do not change with increase in
providers can support at mostpremium customers together.pyt that of provides increases linearly with increasein The
Thus, R{3}) is not feasible fork > 3, and assumption IV.1 nycleolus however transfers a part of the fixed fees provider
no longer holds. Fok > 3, we definev({3}) as the objective earns to other providers - intuitively such transfer is wated
function of R{3}) with 3 premium customers, fok > 5, as provider3 can not support all its premium customers by

v({1,3}) is the objective function of §1,3}) with 5 premium  jtself for & > 3. Thus, payoff shares of all providers change
customers, and fok > 8, v({2,3}) is the objective function
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Fig. 8: The left and middle sub-figures show providers’ p&yas functions of the number of the premium customers of
the third provider.z$, z3, 3, =%, x5, % and 2, x4, x5 are payoffs corresponding to the dual allocation, the raleteand
the Shapley value respectively;, x5, x5 are the providers’ payoffs if they do not cooperate. Thetrgb-figure shows the

maximum attainable payoffs of all the coalitions.

with increase ink, and evidently, the nucleolus based payoffunction. Otherwise, we proceed to the following Step 2.
gains are more equitable than the dual based ones. In alStep 2:If the average rates of the premium customers
the allocations, a provider with larger number of premiurare less than the minimum guaranteed ones, determine the
customers gets a larger payoff share, and each providetimimum fraction of time that must be shifted from the good
payoff increases substantially due to cooperation. channels of best-effort customers to the bad channels of the

Calculation of Characteristic FunctionsRecall that in Premium customers in order to meet their minimum rate
presence of SLAs (&) can not be solved by solving sepalequirements. For this fraction of time, reduce the sertice
rate convex optimizations (Section IV-A). Consequenthe t the best-effort customers frofii to 0 and enhance the service
computation times can be large siné#, typically, is large. to the premium customers fromto L. The aggregate payoff
Let us focus on a scenario where there are two clas$¥sall the providers corresponding to the resulting scheslul
of customers premium and best-effort ones. The premiugfves the characteristic function.
customers require a minimum guaranteed ratewhile the
best-effort customers are not guaranteed any minimum rate. X. CONCLUSION AND FUTURE WORK

We assume that (i) the channels are symmetric across all thgye studied cooperation among service providers in wireless
service units and customers, i.e., all service unit-custquairs petworks. If service providers cooperate, they can pogf the
see identical channel statistics, (ii) functiobig(-) are piece- (esources (e.g., service units and spectrum) and allocate t
wise linear and identical for all the service providers (€. the joint pool of customers in an optimal fashion. We for-
see Equation (3)) (iii) functiondi(-) = 0 for all i and myjated the problem as a transferable utility coalitiorehg.
(iv) there are more customers than service units. Undeethgge showed nonemptyness of cores in various scenarios (see
assumptions, we show that the characteristic functionstn Theorems IV.1, V.5, V.7 etc.) implying that cooperation @ n
be solved by solving separate optimization problems, one ignly globally optimal, but also makes each of the providers
eachw < (2. The following algorithm is for the case when eaclyetter off. Our proof technique is constructive and alsddgie
channel can be in two states: good (réfg or bad (ratel). ~an optimal resource allocation and corresponding profitesha
It can be suitably modified for the cases when each chanyg 4150 discussed two other profit sharing rules, nucleaids a
can be in more than two states. Shapley value. Cooperative game framework provides itsigh
Step 1:Generate a network state, using the distribution into a number of service providers’ decision problems,,e.g.
on the service unit-customer rates. For eachschedule as where should they place service unit (Section V) and which
many good channels as possible while giving preference dervice level agreements they should accept (Section VIII)
the premium customers. If there are unmatched service unitgn practice, coalition formation can incur overheads, ,6tg.
left, schedule as many bad channels as possible again giviiag lead to increased loads on the call processors andgbillin
preference to the premium customers. Subsequently, cempsifstems. Investigating the stability of the grand coalitimn-
the average rates of all the premium and best-effort customeidering the coalition formation overhead constitutes pano
over a large number of runs. problem. Moreover, the computation time for an allocation
If the average rates of premium customers (these will the core will be high since it depends polynomially on
be same for all premium customers) exceed the minimutme number of possible channel state and mobile location
guaranteed rates, then the aggregate payoff of all thegemvi realizations |(2|), which is large. Obtaining near-optimal so-
corresponding to the above schedules gives the chardicterikitions with low computation time remains open. Finally, we
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considered a system where the customer subscriptions &ydtwice application of the mean value theorem, for some
the provider's revenue function have already been detatninmA < k' < k < z,
Investigating cooperation among the providers when the cus

tomers dynamically decide their subscription based on the g(@) = g(mA)+g (mA)(x —mA)
revenue functions, and how providers can dynamically and +9" (&) (2 — mA)(k — mA)
optimally select the revenue functions so as to enhance thei > Cmi1 + dmyrz — (m+1)BA%
individual share of the overall profit remain open.
We show that a concave function, that has a boundd®us, the claim holds fot = m + 1. u

second derivative, can be approximated as the minimum of aNOW consider a maximization with the objective function
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