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Abstract—We consider a network in which several ser-
vice providers offer wireless access service to their respective
subscribed customers through potentially multi-hop routes. If
providers cooperate, i.e., pool their resources, such as spectrum
and service units, and agree to serve each others’ customers,
their aggregate payoffs, and individual shares, can potentially
substantially increase through efficient utilization of resources
and statistical multiplexing. The potential of such cooperation can
however be realized only if each provider intelligently determines
who it would cooperate with, when it would cooperate, and
how it would share its resources during such cooperation. Also,
when the providers share their aggregate payoffs, developing a
rational basis for such sharing is imperative for the stability
of the coalitions. We model such cooperation using the theory
of transferable payoff coalitional games. We first consider the
scenario where the locations of providers’ service units and the
set of channels they have access to have been decided a priori. We
show that the optimum cooperation strategy, which involves the
allocations of the channels and service units to mobile customers,
can be obtained as the solution of a convex optimization. We
next show that the grand coalition is stable in this case, i.e., if
all providers cooperate, there is always an operating point that
maximizes the providers’ aggregate payoff, while offering each
a share that removes any incentive to split from the coalition.
Next, we consider scenarios where the providers decide where to
open their service units and which channels to lease. We show
how the optimal cooperation strategy can be obtained by solving
integer/convex optimizations, and that the previous results hold
in some important special cases. Next we investigate the stability
of two other sharing rules, the nucleolus and the Shapley value.
Finally we study the problem of optimal selection of service level
agreements (SLA)s by providers.

I. I NTRODUCTION

A. Motivation

We have witnessed a significant growth in commercial
wireless services in the past few years, and the trend is likely
to continue in the foreseeable future. Satisfaction of thisin-
creasing demand is contingent upon efficient utilization ofthe
transmission resources, which are either under-utilized (e.g.,
spectrum - utilization of licensed spectrum is at times only
15% [1]), or costly (e.g. infrastructure). Cooperation among
different wireless providers has the potential for substantially
improving the utilization of the available resources, and should
therefore enhance the proliferation of wireless services.In
particular, different providers may form a coalition and pool
their resources, such as spectrum and infrastructure like base
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stations or access points (which we refer to as service units)
and relay nodes, and serve each others’ customers. Such
coalitions may lead to substantially higher throughput through
statistical multiplexing and lower overall energy consumptions
of the customers through multi-hop relaying. Both of these in
turn lead to higher customer satisfaction, and higher payoff
for the providers. Cooperation may also be instrumental in
reducing the costs incurred by the providers in acquiring
spectrum and deploying infrastructure like service units.This
would again lead to higher net payoff for the providers. We
now elucidate the above benefits using a sequence of examples.

We first demonstrate how cooperation may substantially
enhance throughput and decrease energy consumption of cus-
tomers. Transmission qualities of available channels randomly
fluctuate with time and space, owing to customer mobility and
propagation conditions. Also, in secondary access networks,
the providers may be secondary users who do not license
channels but communicate when the license holders (primary
users) do not use the channels. Such access opportunities may
only arise sporadically. Since all customers of all providers
do not need to be served simultaneously, and the channels of
different providers may not be unavailable or have poor quali-
ties simultaneously, spectrum pooling can enhance throughput
by mitigating service fluctuations resulting from occasional
variations in channel qualities and availabilities, and instanta-
neous traffic overloads. In multi-hop wireless networks (e.g.,
mesh networks), cooperation increases the number of available
relays (mesh points). This in turn increases the number of
multi-hop routes to each customer, thereby decreasing the total
power usage and the total throughput of the customers. Also,
the customers may be induced to serve as relays, perhaps, in
lieu of service discounts. Then the enhancement in throughput
and energy consumption owing to cooperation magnifies as the
coalitions have a larger set of customers, and therefore a larger
number of multi-hop routes.

We now demonstrate how cooperation may substantially
reduce the costs incurred by the providers. A provider can ac-
quire a channel by paying a fixed licensing cost or usage based
charges, or a combination of the two. The first case arises
when the providers are primary users who license the channels
from government agencies, and the other options arise when
they are secondary users who use the channels licensed by
the primaries. When the providers do not cooperate, they may
need to operate as secondary users and opt primarily for usage
based charges, as the volume of their individual traffic may not
justify other options. Since cooperation allows the providers
to pool the customers, the resulting higher aggregate traffic
may allow them to license channels, share the licensing fees
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and thereby reduce the individual costs. Next, deploying new
service units (e.g., access points) and subsequently maintaining
them, is one of the major costs in expanding the networks.
Cooperation may reduce the expansion costs by eliminating
the need for deploying additional service units, and also
allow the providers to deliver desired coverage and throughput
guarantees while deploying fewer service units. For example,
consider a provider whose customer base is concentrated
in a particular region. Traffic demand is therefore low but
non-zero (owing to customer mobility) in other regions. The
provider must however deploy service units even in the regions
of low traffic intensity so as to provide universal coverage
(otherwise the customers would desert). If instead, the provider
cooperates with another whose traffic demand is concentrated
in a different region, both may satisfy coverage requirements
by deploying service units only in the regions where their
individual demands are concentrated, and thereby reduce in-
dividual operational expenses.

B. Research challenges and Contributions

Several research challenges must, however, be addressed
before large scale cooperation can be realized. First, com-
mercial service providers are selfish entities who seek to
maximize their individual payoffs. Therefore, they will co-
operate with others only when cooperation increases their
individual incomes. Even so, a provider is likely to refuse
to join a coalition if it perceives that its share of the aggregate
payoff is not commensurate to the amount it invested and the
wealth it generated. The former depends on the transmission
rates in the channels it has acquired and the locations and
the number of service units it has deployed, while the latter
depends on its customer base. So, developing a rational basis
for determining the individual shares of the aggregate payoff is
imperative. Note that the aggregate payoff and the individual
shares depend on the providers’ cooperation strategies. Specif-
ically, each provider needs to decide which providers it would
cooperate with, which channels it is going to use, the locations
of its service units, and when it should serve the customers
of another provider. The sharing mechanism and the optimal
cooperation strategies for each provider depend on each other
and must be obtained jointly.

We present a framework to determine the optimal decisions
of the providers using tools fromtransferable payoff coali-
tional game theory. The framework also provides a rational
basis for sharing the aggregate payoff. The first network
setup we consider is an access network where providers pool
their spectrum, service units and customers (Section IV). We
assume that the locations of service units and the set of
channels they have access to, are determined a priori, but the
providers decide how they would allocate the service units and
the channels of the coalition, to the customers. We then obtain
optimal decision rules for the providers and a strategy for
sharing the resulting aggregate payoff as solutions of convex
optimization problems. This sharing strategy can be computed
in polynomial time and ensures that it is optimal for all
providers to cooperate. Specifically, if any subset of providers
split from the grand coalition (the coalition of all providers),

irrespective of how they cooperate and the way they share their
aggregate payoff, at least one provider in this subset receives
less net payoff than what it received in the grand coalition.
In coalitional game terminology, such a sharing scheme exists
only when thecore of the game is nonempty. This result is
of interest in itself as many cooperative games have empty
cores, and the specific games we consider do not satisfy some
standard sufficiency conditions for non-emptiness of the core
(e.g., convexity of the game).

In the following sections, we extend the formulation and
results. We first consider the cases where in addition, the
providers need to determine the locations of their service
units or the set of channels each service unit has access to
(Section V). The optimal cooperation strategy can now be
obtained by solving an integer optimization where the duality
gap is nonzero unlike that in convex optimizations used before.
We obtain the optimal decision rules and the payoff sharing
mechanism in some important special cases of this general
problem. Subsequently, we extend the results in Section IV to
networks with multi-hop transmissions (Section VI).

As the core of a coalitional game (including the games we
study) need not be a singleton, it is not obvious which element
in the core of the game should determine the shares of the
providers. Thus, we discuss two other sharing mechanisms
with the property that both existent uniquely, namely, the
nucleolus and the Shapley value (Section VII). We numer-
ically evaluate and compare the providers’ payoff increases
resulting from cooperation under different sharing mechanisms
and different payoff functions as a function of the number
of customers and service units (Section IX). Finally, we
consider the problem of optimal selection of service level
agreements (SLAs) by the service providers. This problem is
of interest since a) providers are limited in resources and can
not accept all SLAs and b) accepting or rejecting an SLA could
increase or decrease a providers payoff, which depends on the
set of providers in the coalition as well as the actions they
take. We then propose, and subsequently qualitatively compare
the relative strengths and weaknesses of, two SLA selection
strategies (Section VIII).

II. RELATED WORK

Interactions between different entities in wireless networks
have primarily been investigated from the following extreme
perspectives. In the first, each entity is assumed to select its
actions so as to maximize its individual incentive without
coordinating with others, e.g., [2]–[8]. This scenario, which
has been investigated using noncooperative game theory, in
general suffers from inefficient utilization of resources [9]. The
other perspective has been to assume that entities selflessly
choose their actions so as to optimize a global utility function
even when such actions may deteriorate individual incentives
of some entities (e.g., [2], [6]). We investigate interactions
among providers assuming that each provider would be willing
to cooperate and coordinate its actions with others when such
cooperation enhances its individual incentives.

We obtained optimal cooperation schemes using the frame-
work of cooperative game theory. This choice of tools allowed
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us to combine the desirable features of the extreme approaches
studied in the existing literature, that of allowing entities
to choose their actions guided by selfish objectives, and of
maximizing global utility functions. Surprisingly, cooperative
game theory has seen only limited use in wireless context
so far. Nash bargaining solutions have been proposed for
power control and spectrum sharing among multiple users
[10]. Coalitional games have been used recently for mod-
eling cooperation among nodes in the physical layer [11],
[12], collaborative sensing by secondary users in cognitive
radio networks [13], rate allocation in multiple access chan-
nels (MAC) [14], rate allocation among mobiles and admission
control in heterogeneous wireless access environments [15],
and studying cooperation between single antenna receivers
and transmitters in an interference channel [16]. Our problem
formulation, solution techniques, and results significantly dif-
fer from the above owing to the difference in contexts - our
focus is on cooperative resource allocation and resulting payoff
sharing among providers at the network and MAC layers. To
our knowledge, our work is the first to investigate cooperation
among wireless providers.

Coalitional game theory has been used for studying co-
operation in other communication networks (see [17] for a
survey). For instance, Shapley value based profit sharing has
been proposed and investigated for incentivizing cooperation
among peers [18] and among internet service providers [19].
Our formulations and solution techniques may be used for
establishing the non-emptiness of the core and computing an
allocation in the core in polynomial time for coalitional games
among internet service providers (Section VI).

III. SYSTEM MODEL

Consider a network with a set of providersN . Each provider
i deploys a set of service unitsBi in order to serve its set of
customersMi. Let Bi ∩ Bj = ∅ and Mi ∩ Mj = ∅ for
i 6= j. For a S ⊆ N , let BS and MS denote the set of
service units and customers associated with providers inS.
Thus BN and MN are the sets of all service units and all
customers in the network, respectively. We assume, unless
mentioned otherwise, that a) the locations of service units
and the channels they have access to are predetermined and
b) the service units and the customers communicate through
single-hop links. We show how these assumptions can be
relaxed in Sections V and VI, respectively. Each customer
j negotiates a minimum rate guarantee with its provider; we
refer to these negotiations asservice level agreements(SLAs).
We present the communication model and the coalitional game
among providers in Sections III-A and III-B and describe in
Section III-C how the formulations capture the essence of
existing wireless technologies.

A. Communication Model

We assume that each service unit has access to a single
channel or a frequency band1. We assume that the achiev-
able rates of a customer-service unit pair do not depend on
communications of other customers and service units. This is
equivalent to different service units having access to different
channels. Thus, we use the same set of indices for the set
of service units and the channels they have access to. At a
given time, each service unit can serve at most one customer,
and each customer can be served by at most one service unit
(time sharing).

For ease of exposition, we consider only downlink commu-
nications in our model (the results easily extend to the case
where communications involve both uplinks and downlinks).
The instantaneous rates the customers receive depend on
their current locations and the current quality of the channels
accessed by the associated service units (which in case of sec-
ondary users also includes the current actions of the channels’
primary users), both of which can be random. We therefore
assume that when customerj is served by service unitk, j
receives at a raterjk, a random variable which is a function
of the location of customerj and the state of channelk (we
therefore allow frequency selective fading). LetΩjk be the
joint state space of customerj’s location and channelk’s state.
We assume that|Ωjk| is finite, since (i) feasible service rates in
any practical communication system belong to a finite set, and
(ii) we can partition the service region in such a way that the
service rates received by the customers inside a member of the
partition do not depend on the locations of the customers. Let
Ω =

∏

j∈MN

k∈BN

Ωjk. An ω ∈ Ω denotes a network realization.

Let P(ω) be the probability of the outcomeω.

B. Utility and Game Model

We now propose a coalitional game theory framework that
models the interactions of the providers who would cooperate
only when such cooperation enhances their individual profits
(payoffs in the terminology of economics).

Definition III.1. A coalition S ⊆ N is a subset of providers
who cooperate. We refer toN as the grand coalition.

Definition III.2. A coalitional game with transferable payoff
< N , v > consists of a finite setN (set of providers)
and a characteristic functionv(·) that associates with every
nonempty subsetS of N , a real numberv(S). For each
coalition S, v(S) is the maximum aggregate payoff available
for division in any arbitrary wayamong the members ofS.

A service unit can serve a customer only when either
both are associated with the same provider, or the providers
associated with them are in a coalition. Letαjk(ω) ∈ [0, 1]
be the fraction of time service unitk serves customerj, when
the realization of rates isω. When the provider associated

1This assumption causes no loss of generality. In the case where service
units have access to multiple channels with a radio availablefor every channel,
each service unit channel combination can be considered as one unit in Bi.
We will see later how the case where service units have a limited number of
radios can also be captured.
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with customerj is in coalitionS and the network realization
is ω, the rate received byj is a random variableyj(ω) =
∑

k∈BS
αjk(ω)rjk(ω).

When customers associated with provideri receive rates
yi(ω) = {yj(ω), j ∈ Mi}, i gains a benefit (e.g., revenue
from the customers) ofUi(yi(ω)), whereUi(·) is an increasing
concave function and equal to0 at the origin2. Next, owing to
the tariffs imposed by spectrum regulators or by the license
holders of the channels who allow the providers to use
the channels, provideri incurs a cost ofVi(zi(ω)), where
zi(ω) = {zk(ω), k ∈ Bi} and zk(ω) =

∑

j∈MS
αjk(ω)

is the total fraction of time channel (or, service unit)k is
used. FunctionsVi(·) are increasing, convex and equal to0
at the origin. Then the profit (or payoff) of a coalitionS
is the sum of theUis for i ∈ S minus the sum of theVis
for i ∈ S. We assume that the benefit and cost functions
Ui(.), Vi(.) are decided apriori (based on spectrum regulation,
customer charging policies etc.), and do not investigate the
optimal selections of these functions.

Providers in a coalitionS have to decide how to schedule
service units to customers, i.e., select the variablesαjk(ω)s,
for each ω ∈ Ω, based on the benefit and cost functions
U(.), V (.) so as to maximize their total profit, subject to pos-
sible service level agreements. Letv(S) denote the maximum
aggregate profit available to a coalitionS. In Sections, IV, V
and VI, we show how to obtainv(S) by solving convex/integer
optimizations.

C. How the formulations relate to existing wireless communi-
cation systems

We now illustrate via examples how our framework can
be used to model specific communication systems. Consider
elastic data transfers in the downlink of a CDMA cellular
system (e.g., used for internet access of cellular subscribers)
[20, Chapter 5] with provider setN . Owing to simplicity of
physical layer implementations, a base station (service unit)
always transmits at a pre-determined fixed power (which may
be different for different cells). This happens even when a base
station’s downlink queue is empty (i.e., no mobiles associated
with it require downlink transmission). Similar communication
model has extensively been used in related contexts [21].
Customers in a cell are served ontime-sharingbasis, i.e.,
a base station transmits to at most one customer at a given
time. Also, at any given time, a customer is associated with
only one base-station and thus receives transmissions fromat
most one base station. Then,{αjk(ω)} represent the fraction
of times customers are served by different base stations. Now,
let Pk be the fixed transmission power of base stationk. The
channel gains between customer-base station pairs,hjks, are
random. When base stationk transmits to customerj and the

2For example,Ui(yi) may equalνi
∑

j∈Mi
yj , whereνi is the cost per

unit throughput imposed by provideri on its customers, or more generally,
Ui(yi(ω)) may equal

∑
j∈Mi

gi(yj), wheregi(.) is an increasing concave
revenue function chosen by provideri. Customer satisfactions turn out to be
concave functions of rates and as such revenue functions areusually chosen as
concave (and increase sub-linearly in practice). Also, note that we allow the
revenue functions to be different for different customers ofthe same provider.

channel gain realization isω, the downlink SINR toj is [20,
Chapter 5]

SINRjk(ω) =
hjk(ω)Pk

∑

i′∈BN \{k} hji′(ω)Pi′ +N0W
,

whereN0 is the power spectral density of the additive noise
and W is the spectrum bandwidth3. Thus, SINRjk(ω) is
independent of which customers are being served by other base
stations. Further, the rate achievable between pairj-k, rjk(ω),
is a function of SINRjk(ω), hencerjk(ω) is also independent
of transmissions to other customers.

In a variant of the above service discipline (power shar-
ing), a base station distributes its total power among the
downlink transmissions in its cell. Orthogonal codes and
chip synchronous transmissions can ensure that the intra-cell
interference for a customer is negligible. As in the earliercase,
the inter-cell interference remains fixed. The quantityrjk is
the fixed peak rate between customerj and base stationk,
and is achieved whenk uses its entire power to transmit to
j. The variables{αjk(ω)} account for the fractional power
allocation4. We formulate the characteristic functions consid-
ering time-sharing, and point out the modifications required
for incorporating power sharing.

Next, consider downlink communications in a multi-cell
OFDMA system [20, Chapter 6]. The system bandwidth is
divided into several, sayC, channels (sub-carriers in OFDM
terminology). In order to manage interference, fractionalfre-
quency reuse is employed; i.e., the set of sub-carriers is
partitioned into reuse groups, with one such group of sub-
carriers being assigned to each base-station. Customers are
permanent, as would be the case if the system is being used
to provide internet access service to apartments and offices.
The base-station allocates sub-carriers from its assignedreuse
group to customers in the periphery of its coverage area. It
assigns any of the remaining channels to customers in the
remaining part of its coverage area (proximate to the base
station). With such reuse partitioning and spatial allocation
of subcarriers we can assume that the interference is zero.
Also assume that each base-station, in each stateω, assigns
a fixed transmit power to each of its carriers. With these
assumptions the downlink rate that a userj gets over service
unit k (which denotes a base-station and sub-carrier pair)
depends only on the channel gain from the corresponding
base-station to itself, and not on which user is served by
each service unit. At any given time, a sub-channel can

3The mobiles at cell boundaries experience poor SNR owing to high
interference from neighboring base stations. Thus, in some implementations,
neighboring base stations are allocated different bands; but again sometimes
all base stations are allocated the same band so as to facilitate smooth
hand-overs and since CDMA technology can provide acceptable rates even
in presence of low SINRs. Note that our framework allows any general
band allocation across base stations (i.e., different bands can be assigned to
disjoint sets of base stations in an arbitrary manner). Also note that the SINR
expression above, in particular, assumes that all base stations use same band;
in general we sum over all co-channel base stations to obtainthe aggregate
interference in the denominator.

4In the low SNR regime, the rates are proportional to the SNR, and thus
the peak rates are shared among the mobiles in the same proportion as the
overall power.
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be assigned to only one customer, but more than one sub-
channel can be assigned to a customer (multiple allocation).
The communication model presented in Section III-A captures
all these attributes except the multiple allocation condition.
We will point out the modifications required for allowing
for multiple allocation while formulating the characteristic
functions in the next section.

IV. SPECTRUMPOOLING GAME

We start with deriving the characteristic functionv(·) for
the resource pooling game. For a coalitionS ⊆ N , the
maximum aggregate payoffv(S) is given by the following
convex optimization problem.
P(S) : max

∑

i∈S
ω∈Ω

P(ω)
(

Ui(yi(ω))− Vi(zi(ω))
)

subject to:
1) yj(ω) =

∑

k∈BS
αjk(ω)rjk(ω), j ∈ MS , ω ∈ Ω

2) zk(ω) =
∑

j∈MS
αjk(ω), k ∈ BS , ω ∈ Ω

3)
∑

k∈BS
αjk(ω) ≤ 1, j ∈ MS , ω ∈ Ω

4)
∑

j∈MS
αjk(ω) ≤ 1, k ∈ BS , ω ∈ Ω

5)
∑

ω∈Ω P(ω)yj(ω) ≥ mj , j ∈ MS

6) αjk(ω) ≥ 0, j ∈ MS , k ∈ BS , ω ∈ Ω

Constraints (3) ensure that for allj ∈ MS , the fraction of
time customerj is served is at most1. Constraints (4) ensure
that the fraction of time each service unitk ∈ BS serves
is at most15. Constraints (5) provide the minimum service
guarantees. Incidentally, constraints (3), (4) arise fromthe
time-sharing model6, but for power-sharing or for multiple
allocation models, only constraints (4) suffice - all results
presented below extend even in absence of constraint (3).

Assumption IV.1. P({i}) is feasible for eachi ∈ N , i.e.,
each provider can support the minimum rates of its customers
even when it does not cooperate with other providers.

Then P(S) is feasible for eachS ⊆ N .
Thus, the optimization problem P(S) provides the maximum

aggregate payoff of the providers in a coalitionS and also
the optimal service unit-customer allocations that attainthis
maximum. Clearly,v(N ) ≥ v(S) for any S ⊆ N , i.e., the
grand coalition of all providers attains the maximum possible
aggregate payoff among all coalitions.

Finally, we examine whether the above resource allocation
framework captures the intricacies of existing wireless traf-
fic. Until a few years back, wireless traffic predominantly

5This condition can be modified to capture the scenario when a service unit
has access to multiple channels with only 1 radio, as follows.The modified
Constraint (4) for a service unit, bounds the sum ofαjk(ω) over customers
j ∈ MS , and channelsk accessed by that service unit, by 1. It can be shown
that all the subsequent results extend to this scenario.

6The system can be represented by a complete bipartite graph where the
customers and the service units represent the nodes and thereexists a link
between every customer-service unit node pair. Under the time-sharing model,
any customer-service unit assignment corresponds to a matching in the above
graph. Note that for eachω, {αjk(ω)} comprise a feasible allocation of
service units to customers if and only if there exists a corresponding collection
of matchingsL1, L2, . . . and a collection of non-negative real numbers
γ1, γ2, .. such that (i)

∑
i γi = 1, γi ≥ 0 and (ii) if the service unit -

customer allocation follows matchingLi for γi fraction of time for eachi,
then service unitk transmits to customerj for αjk(ω) fraction of time for
all j, k. Constraints (3), (4) provide the necessary and sufficient condition for
feasibility of {αjk(ω)} for eachω [22].

ratem1 m2 θ2

p2

p1

θ1

payoff

Fig. 1: Examples of revenue functions. The customers pay
fixed costspjs for being guaranteed minimum average rates
mjs, but do not pay additional costs for rates beyondθjs.

consisted of voice calls. Voice calls are not overly sensitive
to transmission rates, and may proceed even when the rates
are low. Thus, minimum rate requirements (SLAs) were re-
dundant, and customers were charged based only on their
usage times (air-times), and not on the service rates they
received. A typical pricing scheme would entail charging
the customers linearly per unit air-time: then,Ui(yi) = 0,
Vi(zi) = −αi

∑

k∈Bi
zk − βi|Mi| for each provideri, where

βi > 0 is the fixed fee provideri imposes on each of its
customers for availing of its service andαi > 0 is the
revenue per unit air-time provideri collects from its customers.
Our framework can optimally allocate the customers to the
service-units under the above pricing scheme sinceUi(·), Vi(·)
are respectively concave and convex functions for eachi.
Incidentally7, a customer must only be charged for the amount
of airtime he needs and not for additional airtime the provider
can provide. This can be incorporated in our framework by al-
lowing the network stateω to also represent the activity states
of the customers. LetAS(ω) be the set of customers ofMS

that are active (i.e., involved in voice-calls) inω. Constraint 2
in P(S) may be modified aszk(ω) =

∑

j∈AS(ω) αjk(ω) for
eachk ∈ BS andω ∈ Ω. Thus,zk(ω) considers the airtimes
of only the “on-call” customers. The modified optimization
P(S) continues to be a concave maximization with linear
constraints, and all subsequent results apply.

Data is fast emerging as the predominant component of
wireless traffic. Many emerging applications, such as stream-
ing video, require certain minimum rate, and the quality
of service is critically sensitive to the service rate. Thus,
minimum rate constraints are likely to be integral compo-
nents of service agreements in near future, and providers are
likely to charge (i) fixed fees that are increasing functions
of the minimum rates agreed upon, and (ii) additionally for
service rates they can provide over and above the required
minimum value. A customer may however be willing to pay
additionally for rates only up to a certain maximum rate
value determined by his QoS requirements. The following
simple pricing strategy captures the above features. If the

7More involved revenue schemes such as those that charge customers
additionally only beyond a certain amount of airtime usage do not however
constitute convex functions and can not therefore be incorporated in our
framework.
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average rate a customer of provideri receives isr, and he
has negotiated a minimum rate guarantee ofm, then he pays
αi max (min(r, θ)−m, 0) + β′

im, whereθ is the maximum
rate the customer needs (Fig. 1 withpj = β′

jmj). Owing to
the minimum rate constraints (5) in P(S), each customer’s
average rate is at leastmj . Thus,Vi(zi) = 0,

Ui(yi) = αi

∑

j∈Mi

max(yj , γj) + βimj with βi = β′
i + αi

capture the above pricing strategy. Our framework can in-
corporate the above pricing scheme sinceUi(·), Vi(·) are
respectively concave and convex functions for eachi. Finally,
constraints (5) in P(S) apply to the average service rates;
more stringent QoS demands may require constraints on
service rates in eachω, i.e., given certain desired minimum
rates mj(ω) for different ω ∈ Ω, yj(ω) ≥ mj(ω) for
eachω ∈ Ω. The modified optimization P(S) continues to
be a concave maximization with linear constraints, and all
subsequent results apply. Alternatively, “soft” minimum rate
guarantees may be ensured in eachω by choosing strict
concave revenue functions. Specifically, higher the degreeof
concavity of the revenue functions (that is lower the second
derivatives), a provider incurs higher additional revenuein any
ω by enhancing the service rate of a customer who is receiving
a low rate at thatω as opposed to enhancing that of a customer
who is receiving a high rate at thatω. Thus, providers are
more likely to equalize the service rates of all customers at
eachω, and in the process ensure certain minimum rates to
each customer at everyω.

A rational basis for splitting the maximum aggregate payoff
is however imperative for motivating the providers to join the
grand (or any other) coalition. We introduce a solution concept
in coalitional games known as thecore for providing such
a rational basis. The idea behind the core in a cooperative
game is analogous to that behind a Nash equilibrium of a
noncooperative game: an outcome is stable if no deviation is
profitable.

Definition IV.1. For any real valued vectorx = (xi, i ∈ N )
and any coalitionS, we letx(S) =

∑

i∈S xi. Such a vector is
said to be an imputation ifx(N ) = v(N ) andxi ≥ v({i}) for
all i ∈ N . The core of the coalitional game with transferable
payoff〈N, v〉 is the set of all imputationsx for whichx(S) ≥
v(S) for all S ⊂ N . In other words,

C = {x ∈ R
N : x(N ) = v(N ), x(S) ≥ v(S), ∀S ⊂ N} (1)

Note that an imputation provides the payoff shares of
providers in a grand coalition such that no provider’s payoff is
below that it earns alone (i.e., in absence of any cooperation).
The core consists of a collection of imputations that provide
stronger guarantees: no coalition has any incentive to split
from the grand coalition if the providers share the aggregate
grand coalition payoffv(N ) as per an imputationx in the
core. To see this, suppose a set of providersS ⊂ N split from
the grand coalition and form a separate coalition to share their
aggregate payoffv(S) as perw. A provider i ∈ S, however,
would agree to split from the grand coalition only ifwi > xi.

This implies thatv(S) =
∑

i∈S wi >
∑

i∈S xi, and thus
contradicts the fact thatx ∈ C. Therefore, every imputation in
the core renders the grand coalition stable.This is a globally
desirable outcome, since the grand coalition maximizes the
aggregate payoff.

We now elucidatev(·) andC using a simple example.

Example IV.1. Let N = {1, 2}, Bi = {i}, i = 1, 2, and
Mi = {2i − 1, 2i}, i = 1, 2. Let rjk = P for j ∈ M1, and
rjk = Q for j ∈ M2, for all k ∈ BN . SupposeP < Q and
mj = 0, ∀j ∈ MN . Let the benefit functions be the sum of the
customers’ service rates and costs be zero. Thenv({1}) = P ,
v({2}) = Q, and v({1, 2}) = 2Q (when the providers coop-
erate, the aggregate benefit is maximized when only provider
2’s customers are served and this maximum is2Q). Then,
C = {x ∈ R

2 : x1+x2 = 2Q, x1 ≥ P, x2 ≥ Q}. For instance,
(Q+P

2 , 3Q−P
2 ) is an imputation in a core. Note that when1, 2

cooperate, the benefit (revenue) earned from provider1’s (2’s,
resp.) customers is0 (2Q, resp.), and therefore less (more,
resp.) than its payoff under the above imputation. Nevertheless,
this imputation increases each provider’s payoff byQ−P

2 as
compared to that in absence of cooperation.

In several coalitional games the core is empty, i.e., the
grand coalition can not be stabilized [23, Example260.3], and
in general it is NP-hard to determine whether the core of a
coalitional game is nonempty [24]. A sufficient condition for
the core to be nonempty is the convexity of the coalitional
game, i.e.,v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all
S, T ⊆ N [23, pp. 260]. But, as the following example
illustrates, the game we are considering need not be convex.

Example IV.2. Let N = {1, 2, 3}, Bi = {i}, i = 1, 2, 3,
Mi = {i}, i = 1, 2, 3. Let r1k = R, k ∈ BN , rj1 = P, j ∈
{2, 3} and rjk = Q, j ∈ {2, 3}, k ∈ {2, 3} and P > Q. Let
mj = 0 for all j ∈ MN . Let the benefit functions of the
providers be the sum of the service rates and costs be zero.
Thus v({1}) = R, v({1, 2}) = v({1, 3}) = R + P , and
v({1, 2, 3}) = R + P + Q. Let S = {1, 2} and T = {1, 3}.
Thenv(S) + v(T ) = 2R + 2P and v(S ∪ T ) + v(S ∩ T ) =
2R + P + Q. Thusv(S) + v(T ) > v(S ∪ T ) + v(S ∩ T ).
Hence, this game is not convex.

Nevertheless, we next show that the game< N , v > always
has a nonempty core (note that convexity is not a necessary
condition for nonemptiness of the core). We use a proof
technique similar to ones presented in [25]–[28]. The proof
is constructive in that it provides an imputation inC as well.

Let8 λ, β ∈ R
MS×Ω, ν, γ ∈ R

BS×Ω, ρ ∈ R
MS , andϕ ∈

R
MS×BS×Ω. Let giω(λ, ρ) = maxyj(ω)≥0

(

P(ω)Ui(yi(ω)) +
∑

j∈Mi
yj(ω)(λj(ω) + ρjP(ω))

)

and hiω(ν) =

maxzk(ω)≥0

(

− P(ω)Vi(zi(ω)) +
∑

k∈Bi
zk(ω)νk(ω)

)

.

8The notations can be explained considering|Ω| = 1, M1 = {4, 5, 6} and
M2 = {7, 8, 9}. A vector x ∈ R

M1×Ω will have componentsx4, x5 and
x6 corresponding to customers4, 5 and6 respectively. Similarly, a vectorx ∈
R
M2×Ω will have componentsx7, x8 and x9 corresponding to customers

7, 8 and9 respectively.
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Then we have the following as the dual of P(S):

D(S) : min
∑

i∈S

(

∑

ω∈Ω

(

giω + hiω +
∑

k∈Bi
γk(ω) +

∑

j∈Mi
βj(ω)

)

−
∑

j∈Mi
mjρj

)

subject to:
I) λj(ω)rjk(ω) + νk(ω) + βj(ω) + γk(ω) ≥ 0, j ∈

MS , k ∈ BS , ω ∈ Ω
II) βj(ω), γk(ω), ρj ≥ 0, j ∈ MSk ∈ BS , ω ∈ Ω

Clearly, D(S) is feasible for eachS ⊆ N . Formulate D(N )
by appropriately defining vectorsλ, β, γ, ν, ρ, ϕ and letD be
the set of optimal solutions of D(N ). Then,D 6= ∅. Let

I ={x∗ ∈ R
N : x∗

i =
∑

ω∈Ω

(

giω(λ
∗, ρ∗) + hiω(ν

∗)

+
∑

k∈Bi

γ∗
k(ω) +

∑

j∈Mi

β∗
j (ω)

)

−
∑

j∈Mi

mjρ
∗
j for some (λ∗, ν∗, β∗, γ∗, ρ∗, ϕ∗) ∈ D}

Here is the main result:

Theorem IV.1. I 6= ∅ and I ⊆ C.

Thus, any imputation inI stabilizes the grand coalition
- it also ensures that the payoffs of the providers are com-
mensurate with the resource they invest and the wealth they
generate. To see this, note thatβ∗

j , γ
∗
k are Lagrange multipliers

associated with the constraints (3), (4), respectively. For ease
of exposition, let there be no minimum rate requirements and
let the benefit and cost functions be linear. Then,giω(λ

∗, ρ∗) =
hiω(ν

∗) = 0, and provideri’s payoff x∗
i equals the sum of the

Lagrange multipliers corresponding to the constraints (3), (4)
for its customers and service units. Lagrange multiplierγ∗

k(ω)
(β∗

j (ω), resp.) is high only when service unitk (customer
j, resp.) is fully utilized, i.e., serves customers (is served,
resp.) all the time, and provide high transmission rates,rjk(ω)
and cost less (pay more, resp.) per unit bandwidth. Thus,i’s
Lagrange multipliers and hencei’s payoff is high when it
invests more resource and/or generates more wealth.

Proof: Since D 6= ∅, I 6= ∅. We show that for an
arbitrary x∗ ∈ I, x∗ ∈ C. Note that sinceUi(·)s andVi(·)s
are (increasing) concave and convex functions respectively, the
objective function of P(S) is concave. Also, the constraints of
P(S) are all linear. Therefore, P(S) is maximizing a concave
function over a convex set. Thus, strong duality holds.

Now, consider an arbitraryx∗ ∈ I, corresponding to one
(λ∗, ν∗, β∗, γ∗, ρ∗, ϕ∗) ∈ D. Clearly x∗(N ) =

∑

i∈N x∗
i is

the optimal value of D(N ). Since D(S) is the dual of P(S) for
eachS ⊆ N , by strong dualityx∗(N ) = v(N ). Now we only
need to show thatx∗(S) =

∑

i∈S x∗
i ≥ v(S) for anyS ⊂ N .

By strong duality,v(S) equals the optimum value of D(S).
Consider the sub-vectorsλ∗

S , ν
∗
S , β

∗
S , γ

∗
S , ρ

∗
S , ϕ

∗
S consisting of

the components ofλ∗, ν∗, β∗, γ∗, ρ∗, ϕ∗ in S. Clearly these
sub-vectors constitute a feasible solution of D(S) andx∗(S)
is the value of the objective function of D(S) for the above
feasible solution. Therefore, the optimal value of D(S) is a
lower bound forx∗(S), i.e., x∗(S) ≥ v(S).

A. Computation Complexity and Distributed Computation

Note that P(S), D(S) are convex optimizations with linear
constraints, and the number of the variables and constraints
are polynomial in|Ω|, |MS |, |BS |. Therefore, the computa-
tion times for the maximum aggregate payoff and optimal
allocation for any given coalition, and an imputation in the
core grows polynomially with the above [29]. The computation
times can however be large since|Ω|, typically, is large. This
may not however pose a major challenge as the computations
are done off-line using large work-stations and at a slower
time-scale (only when the network state is updated or the
coalitions are assessed). Also, whenever customers do not
have minimum average rate constraints (see Constraints (5)),
we can solve both P(S), D(S) by solving separate convex
optimizations for eachω ∈ Ω - the number of variables
and constraints for each such optimization depends only on
|MS |, |BS | 9. This separability allowed us to solve the above
optimizations for reasonably large systems using Monte Carlo
simulations (Section IX).10

Concave optimizations with linear constraints can be solved
in distributed manner using the theory of subgradients, as
described in [30], [31] for example. For brevity we describe
the distributed computations only for P(S) - the same approach
applies for computation of an imputation in the core via
solving D(S). For simplicity, we consider the case that the
customers do not have minimum rate requirements, and there-
fore owing to the separability described above focus on the
optimization for only oneω. The advantage of this distributed
computation is that each provideri needs to know only its
benefit and cost functionsUi(·), Vi(·) (and not those of the
others), the link ratesrjk only when eitherj is its customer
or k is its service unit. The need for limited access to global
information ensures confidentiality of operations.

Based on message exchanges with other providers, each
provider iteratively updates (i) the downlink allocationsα(n)

jk

from its service-units to all customers, (ii) the rates of its
customersy(n)j and (iii) the total time allocation for its service

unitsz(n)k and the iterations provably converge to the optimum
(the superscriptn indicates the iteration index). At the end of
each iteration, each provideri communicates (i) the{α(n)

jk }
iterates for all its service units (i.e.,k ∈ Bi), and (ii) indicators
indicating the status of the satisfaction of the constraints (1),
(3) for its customers (i.e.,j ∈ Mi), to the providers whose
service units can serve its customers (i.e., those with positive
rjk to its customers). These indicators are used by other
providers in the updates for the next iterations.

We describe the indicators and the update process next. Let

9This separability significantly speeds up the computations as the compu-
tation times for the optimizations are super-linear in the number of variables
and constraints.

10In each run of the Monte Carlo simulation, we generated a network state
ω, using the distribution on the service unit-customer rates,and solved the
optimizationsP (S) for the coalitionsS for the givenω. Subsequently, we
computed the average of the payoffs of the providers over a large number
of runs, and observed that the averages converged quite fast(Note that using
ergodicity it can be analytically shown that as the number of runs tend to
infinity, the averages converge to the optimum solution); we plotted the above
empirical averages in Section IX.
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(i) a
(l)
1j be 1 if for customerj at the end of thelth iteration

the L.H.S exceeds the R.H.S of constraint (1),−1 if
R.H.S exceeds the L.H.S, and0 otherwise.

(ii) a
(l)
2k be defined similarly for constraint (2) (for service

unit k).
(iii) a

(l)
3j be 1 if for customerj the L.H.S exceeds the R.H.S

of constraint (3) and0 otherwise.
(iv) a

(l)
4k be defined similarly for constraint (4) (for service

unit k).

We now describe the update for each provideri, using con-
stantsδ(l),K that would be described later. In thel + 1th
iteration, provideri

1) for each of its customersj, (additively) incrementsy(l)j

by δ(l)
(

∂
∂yj

Ui(yi)−Ka
(l)
1j

)

,

2) for each of its service unitsk, decrementsz(l)k by

δ(l)
(

∂
∂zk

Vi(zi) +Ka
(l)
2k

)

, and
3) for each customerj (not necessarily its customer though)

and its service unitk such thatrjk > 0 , increments

α
(l)
jk by δ(l)K

(

rjka
(l)
1j + a

(l)
2k − a

(l)
3j − a

(l)
4k

)

(note that the
increments and decrements may be negative).

Now, we turn to the convergence analysis of the aforemen-
tioned update process. Recall that the optimization problems
P(S) are assumed to be feasible (P(S) are trivially feasible in
the absence of minimum rate requirements). We make a few
additional assumptions in the following.

(i) There exists a∆ < ∞ such that ∂
∂yj

Ui(yi) ≤

∆, ∂
∂zk

Vi(zi) ≤ ∆ for all j, k,yi, zi and i.
(ii) The step sizes{δ(l)} satisfy liml→∞ δ(l) = 0 and

∑

l δ
(l) = ∞. For example, the sequence{δ(l) = 1/l}

satisfies these assumptions.

The following analysis is similar to [30, Theorem 1]
and [31, Theorem 5]. Let

1) A1j(α,yi) = yj −
∑

k∈BS
αjkrjk, j ∈ Mi,

2) A2k(α, zi) = zk −
∑

j∈MS
αjk, k ∈ Bi,

3) A3j(α) =
∑

k∈BS
αjk − 1, j ∈ MS ,

4) A4k(α) =
∑

j∈MS
αjk − 1, k ∈ BS .

Also defineQ = (α,y, z),

Ei(Q) =
∑

j∈Mi

(

|A1j(yi, α)| + max{0, A3j(α)}
)

+
∑

k∈Bi

(

|A2k(zi, α)|+max{0, A4k(α)}
)

,

andW (Q) =
∑

i∈S

(

Ui(yi)− Vi(zi)−KEi(Q)
)

.

Let Q∗ ≡ (α∗,y∗, z∗) be an optimal solution of P(S). Now
consider the following optimization problem.
P̃(S) : max W (Q)
subject to:α,y, z ≥ 0
Let Q̃∗ ≡ (α̃∗, ỹ∗, z̃∗) be an optimal solution and̃W ∗ be the
optimal values of̃P(S). The proof consists of two steps.

Step (i): In the first step we prove that for sufficiently
largeK, Q̃∗ is also an optimal solution of P(S). This result
is fairly intuitive. See [30] for a discussion.

Theorem IV.2. If K > ∆, thenQ̃∗ is also an optimal solution
of P(S).

Proof: The subgradient ofW (·) at Q can be written as

s(Q) =
(

K
(

rjka
(l)
1j + a

(l)
2k − a

(l)
3j − a

(l)
4k

)

,
(

∂
∂yj

Ui(yi) −

Ka
(l)
1j

)

,−
(

∂
∂zk

Vi(zi) +Ka
(l)
2k

)

, j ∈ Mi, k ∈ Bi, i ∈ S
)

ConsiderQ such thatEi(Q) > 0 for somei. For suchQ, there
always exists a component of the subgradient,s(Q), that has
absolute value greater than or equal toK − ∆. Therefore0
does not belong to the set of subgradients. Hence,Q can not
be an optimal solution of̃P(S). Thus, an optimal solutioñQ∗

of P̃(S) satisfiesEi(Q̃
∗) = 0 for all i. Recall thatEi(Q

∗) = 0
for all i. Hence,

∑

i∈S

(

Ui(ỹ
∗
i )− Vi(z̃

∗
i )
)

−
∑

i∈S

(

Ui(y
∗
i )− Vi(z

∗
i )
)

= W (Q̃∗)−W (Q∗) +K
∑

i∈S

(

Ei(Q̃
∗)− Ei(Q

∗)
)

= W (Q̃∗)−W (Q∗) ≥ 0.

Thus,Q̃∗ also is an optimal solution of P(S).
Step (ii): In the second step we show that the update

process converges to an optimal solution ofP̃(S).

Theorem IV.3. The sequence of updates,{Q(l) ≡
(α(l),y(l)), z(l))}, l ≥ 1, converges to an optimal solution of
P̃(S).

Proof: Choose an arbitrarye > 0. Let e′ = e/2. For any
ǫ′ > 0 defineCǫ′ asCǫ′ = {Q : L(Q) ≥ W̃ ∗−ǫ′}. From [32,
Theorem 27.2] it follows that there exists anǫ = ǫ(e′) > 0
such that

Cǫ ⊂ {Q : ||Q− Q̃∗|| ≤ e′}.

Where Q̃∗ is an optimal solution of̃P(S). Consider l for
which Q(l) 6∈ Cǫ. Therefore,W (Q(l)) < W̃ ∗ − ǫ. The
update equations at the providers can be compactly stated as
Q(l+1) = [Q(l) + δ(l)s(l)]+, wheres(l) is the subgradient of
W (·) at Q(l). It follows from the definition of subgradients
that

(s(l),Q(l) − Q̃∗) ≤ L(Q(l))− W̃ ∗ < −ǫ.

Now, ||s(l)|| ≤ T, where

T =
√

(

|MS |+ |BS |
)

(∆ +K)2 + |MS ||BS |K2(3 +R)2;

R is the maximum achievable rate for any customer-service
unit pair.

||Q(l+1) − Q̃∗||2

= ||[Q(l) + δ(l)s(l)]+ − Q̃∗||2

≤ ||Q(l) + δ(l)s(l) − Q̃∗||2

= ||Q(l) − Q̃∗||2 + δ(l)
2
||s(l)||2 + 2δ(l)(s(l),Q(l) − Q̃∗)

< ||Q(l) − Q̃∗||2 + T 2δ(l)
2
− 2ǫδ(l).

Sinceδ(l) → 0, δ(l) ≤ ǫ/T 2 when l is sufficiently large. For
all suchl,

||Q(l+1) − Q̃∗||2 < ||Q(l) − Q̃∗||2 − ǫδ(l).

Suppose there exists aL′
ǫ < ∞ such thatQ(l) 6∈ Cǫ for

all l ≥ L′
ǫ. Therefore, there existsLǫ ≥ L′

ǫ such that the
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above inequality holds for alll ≥ Lǫ. Adding the inequalities
corresponding tol = Lǫ to Lǫ +m, we obtain

||QLǫ+m+1 − Q̃∗||2 < ||QLǫ
− Q̃∗||2 − ǫ

Lǫ+m
∑

l=Lǫ

δ(l),

which implies that||QLǫ+m+1 − Q̃∗|| → −∞ as m → ∞
since

∑∞
1 δ(l) = ∞. This is not possible since||QLǫ+m+1 −

Q̃∗|| ≥ 0. Hence the supposition was incorrect. Hence there
exists a sequencel1,ǫ < l2,ǫ < . . . such thatQli,ǫ ∈ Cǫ for
all i = 1, 2, . . .. Since δ(l) → 0, there existsi s.t. δ(l) ≤
min(e′/T, ǫ/T 2), ∀ l ≥ li,ǫ. Consider the following cases.

Case 1: l = lj,ǫ for somej ≥ i. HenceQ(l) ∈ Cǫ and
||Q(l) − Q̃∗|| ≤ e′ < e.

Case 2: : l = lj,ǫ + 1 for somej ≥ i. Then

Q(l) = Q(lj,ǫ+1) = [Q(lj,ǫ) + δ(lj,ǫ)s(lj,ǫ)]+.

Thus

||Q(l) −Q(lj,ǫ)|| = ||[Q(lj,ǫ) + δ(lj,ǫ)s(lj,ǫ)]+ −Q(lj,ǫ)||

≤ ||Q(lj,ǫ) + δ(lj,ǫ)s(lj,ǫ) −Q(lj,ǫ)||

= δ(lj,ǫ)||s(lj,ǫ)|| ≤ Tδ(lj,ǫ) ≤ e′.

From the above, and since||Qlj,ǫ − Q̃∗|| ≤ e′ (Case 1), we
get

||Q(l) − Q̃∗|| ≤ ||Q(lj,ǫ) − Q̃∗||+ ||Q(l) −Q(lj,ǫ)||

≤ e′ + e′ = 2e′ = e.

Case 3: : lj,ǫ+1 < l < lj+1,ǫ for somej ≥ i. AlsoQl′ 6∈
Cǫ∀ lj,ǫ < l′ < lj+1,ǫ. Recall that||Q(l′+1)−Q̃∗||2 < ||Q(l′)−
Q̃∗||2−ǫδ(l

′), implying ||Q(l′+1)−Q̃∗|| < ||Q(l′)−Q̃∗||. Thus,
||Q(l)− Q̃∗|| < ||Q(lj,ǫ+1)− Q̃∗||. Since||Q(lj,ǫ+1)− Q̃∗|| ≤
e (Case 2),||Q(l) − Q̃∗|| < e.

From Cases 1,2 and 3, it follows that||Q(l)−Q̃∗|| ≤ e∀ l ≥
li,ǫ. Sincee is arbitrary,liml→∞ ||Q(l) − Q̃∗|| = 0.

Here is the main result.

Theorem IV.4. The sequence of allocations,{α(l)
jk , j ∈

MS , k ∈ BS}, l ≥ 1, converges to an optimum allocation.

Proof: Combining Theorems IV.2 and IV.3, we obtain
that the sequence of updates,{Q(l)}, l ≥ 1, converges to an
optimal solution,Q∗ ≡ (α∗,y∗, z∗), of P(S). SinceQ(l) ≡
(α(l),y(l), z(l)), we haveliml→∞ ||α(l) − α∗|| = 0.

Now we discuss how this framework can provide useful
insights about the relation between a provider’s payoff share,
the resources it contributes, and the wealth it generates.
Among the demands and assets in possession of a provider,
one could be more constrained than the others. For instance,
a provider might have a lot of customers, but few service
units. Then, increasing the number of service units could boost
the payoff generated by the provider, while adding to the
number of customers might not change it. Using the rule of
thumb that more demand adds to the value of an asset, an
intuitive observation then is that in a coalition, the provider
that offers more of the demand or asset that is sought most
by the majority of the members of the coalition, is likely to

receive a larger share of the aggregate payoff. The following
example will further elucidate this.

Example IV.3. Let N = {1, 2, 3}, |M1| = 5, and |M2| =
|M3| = 2. Also, let |B1| = 2, |B2| = 3, and |B3| = 4.
Supposerjk = P for all j ∈ MN and k ∈ BN . Let
mj = 0 for all j ∈ MN . Also, let the payoffs be equal to
sum of the customers’ service rates. Then,v({i}) = 2P for
i ∈ N , v({1, 2}) = 5P , v({1, 3}) = 6P , v({2, 3}) = 4P ,
and v({1, 2, 3}) = 9P . An example allocation in the core
( 7P2 , 5P

2 , 3P ) fetches payoff gains of3P2 , P
2 andP to the three

providers as compared to the case when they do not cooperate.
Also, somewhat contrary to intuition, provider1, who has the
least number of service units, attains the highest payoff. This
is because the other providers, i.e.,2, 3 have fewer customers
than service units, and these excess service units are utilized
only when1 joins the coalition along with its customers. Thus,
1 is adding the most value to the coalition by bringing in the
demand that is sought out by others: note thatv({2, 3}) =
v({2})+ v({3}) but v({1, 2, 3}) > v({i})+ v({2})+ v({3}).
Also, the providers’ shares of the aggregate payoff are usually
largely determined by parameters other than their decision
variables. For instance, the number of customers here is not
a decision variable and yet it is critical in determining the
payoff shares.

Remark IV.1. A provider can decide how to upgrade its
resources, based on the above observation. For instance, in
Example IV.3, if provider2 can somehow expand its customer
base, e.g., by extensive advertising, its share increases,al-
though the aggregate payoff remains the same.

V. SPECTRUMACQUISITION AND SERVICE UNIT

LOCATION GAMES

In the previous section, we investigated cooperation, assum-
ing that the locations of service units and the set of channels
they have access to are decided a priori. We showed that the
core is nonempty and an imputation in the core can be obtained
through solving a convex optimization problem. We now relax
these assumptions. In particular, we examine the cooperation
in a setup where providers can decide which channels to rent
and where to open base stations. We generalize the model
presented in Section III-A so as to incorporate these decision
variables. RedefineBi to be the set of candidate locations
available to provideri for opening base stations. Letfk be the
cost of opening base stationk. Let bk = 1 if base stationk is
open and0 otherwise. Also,i should determine which channels
base stationk ∈ Bi will have access to. DefineCk to be the
set of channels available at base stationk; Ck, k ∈ BN are
assumed to be disjoint. Note that provideri needs to pay the
spectrum regulator (a government agency or a license holder)
a fixed fee (membership charge),gl, if it intends to use a
channell in Ck, k ∈ Bi; this fee is in addition to any usage
based charge the provider needs to pay for using the channel
(the V (·) functions in the previous sections) which depends
only on the amount of usage and is0 if the channel is not
used. Letcl = 1 if base stationk is allowed to use channel
l ∈ Bk (we say that the channel is open) and0 otherwise.



10

A channell ∈ Ck, for somek ∈ Bi, can serve userj if a)
Base stationk is open, b) Channell is open, and c) customer
j and base stationk are associated with same provider or the
providers associated with them are in a coalition. We assume
mj = 0 for all j ∈ MN , that is, there are no service level
agreements. Note that,bks andcls are deterministic variables
and cannot depend onω, in contrast toαjls that are decided
to best suit each network realizationω ∈ Ω.

We assume that all utility and cost functions are linear, and
ujl(ω) ∈ R is the difference in the amount paid by customer
j for using channell and the usage-based charges incurred by
channell in serving customerj.

For a coalitionS ⊆ N , the payoffv(S) is then obtained by
solving the following optimization problem.
PG(S) : max

∑

j∈MS

l∈CS

ω∈Ω

P(ω)αjl(ω)ujl(ω) −
∑

k∈BS
fkbk −

∑

l∈CS
glcl

subject to:

1)
∑

l∈CS
αjl(ω) ≤ 1, j ∈ MS , ω ∈ Ω

2)
∑

j∈MS
αjl(ω) ≤ cl, l ∈ CS , ω ∈ Ω

3) cl ≤ bk, l ∈ Ck, k ∈ BS

4) αjl(ω) ≥ 0, j ∈ MS , l ∈ CS , ω ∈ Ω
5) cl, bk ∈ {0, 1}, l ∈ CS , k ∈ BS

Constraints (1) ensure that the total fraction of time customer
j is being served, is upper bounded by1. A channell can
serve at most the whole fraction of time if it is open and can
not serve otherwise, by constraints (2). Finally, constraints (3)
guarantee that only opened base stations can have open
channels.

The following example illustrates how cooperation may
change providers’ decisions regarding the opening of channels.

Example V.1. Consider a network withN = {1, 2}, B1 =
M1 = {1} and B2 = M1 = {2, 3}, where f1 = 0, and
f2 = f3 = f . Let r11 = r12 = r32 = Q, r21 = r22 =
r33 = P , andrjk = 0 otherwise. Suppose andmj = 0 for all
j ∈ MN , f < P , andQ < P . Let payoffs consist only of the
sum of the customers’ service rates. Nowv({1}) = Q. Also
v({2}) = 2P−2f andv({1, 2}) = max[2P−f, 2P+Q−2f ],
where the former payoffs are the result of opening just channel
3, while the latter ones are in the event of opening both.
Intuitively, if provider 2 cooperates with1, opening channel
2 may not be necessary. In fact ifQ < f < P , opening both
channels is optimal when not in coalition, while opening just
channel3 is optimal under cooperation. This is in agreement
with the intuition that deploying a service unit in the area that
is covered by other service units might be redundant. However,
if there is a relatively large traffic demand in the area, e.g., if
r21 = P (then v({1, 2}) = max[2P − f, 3P − 2f ]), opening
both channels is optimal even when the providers cooperate.

Note that the aggregate payoff of a coalition now is given
by an integer (rather than convex) optimization problem. As
a result, the strong duality does not hold in general. Thus
the approach taken in Section IV to show that the core
is nonempty, is inadequate here. However, we obtain the
nonemptiness of the core in some special cases using different

proof techniques.

A. Case 1

Consider the special case where customers do not move and
the quality of channels do not vary with time, i.e.|Ω| = 1.
We also assume that each base-station is allowed to use only
one channel, i.e.,|Ck| = 1 for all k ∈ BN . Thus each base
station corresponds to only one service unit. In particular, Bi,
as in Sections III,IV, is the set of service units available to
provider i. Moreover, for each service unitk ∈ Bi, provideri
needs to pay the cost of opening the base station as well as
the corresponding channel’s membership cost. We redefinebk
to represent this total fixed cost whereasbk = 1 if the service
unit k is open and0 otherwise. Then PG(S) will reduce to
the following IP:
Pc(S) : max

∑

j∈MS

k∈BS

αjkujk −
∑

k∈BS
fkbk

subject to:

1)
∑

k∈BS
αjk ≤ 1, j ∈ MS

2)
∑

j∈MS
αjk ≤ bk, k ∈ BS

3) αjk ≥ 0, j ∈ MS , k ∈ BS

4) bk ∈ {0, 1}, k ∈ BS

We proceed to prove that the core of the coalitional game
< N , v >, with characteristic functionv(·) given byPc(S),
is nonempty. The proof consists of two steps.

Step (i): Consider the coalitional game< N , v̂ >, where
N is the same set of providers and the characteristic function
v̂(·) is given by the LP, Prelaxed(S). Prelaxed(S) is the linear
relaxation of Pc(S), where the constraintsbk ∈ {0, 1} are
now replaced bybk ∈ [0, 1]. We show that the core of the
coalitional game< N , v̂ >, Ĉ, is nonempty.

Using λ ∈ R
MS , and ν, γ ∈ R

BS , we construct the
following LP as the dual of Prelaxed(S)
Drelaxed(S) : min

∑

j∈MS
λj +

∑

k∈BS
γk

subject to:

1) λj + νk ≥ ujk, j ∈ MS , k ∈ BS

2) νk − γk ≤ fk, k ∈ BS

3) λj , νk, γk ≥ 0, j ∈ MS , k ∈ BS

Let Drelaxed constitute the set of optimal solutions of
Drelaxed(N ). Define: Ic := {x∗ ∈ R

N : x∗
i =

∑

j∈Mi
λj +

∑

k∈Bi
γk for some (λ∗, ν∗, β∗, γ∗) ∈ Drelaxed}.

Theorem V.1. Ic 6= ∅, andIc ⊆ Ĉ

Proof: The proof is identical to that of Theorem IV.1.
Step (ii): Next, we prove that, for any coalitionS ⊆ N ,

Pc(N ) has zero integrality gap. In other words, Prelaxed(S) has
an integral optimum solution. In the proof we use the fact that,
if the set of constraints of Prelaxed(S) is written in matrix form,
the corresponding matrix is totally unimodular.

Definition V.1. A matrix A is totally unimodular if every
square submatrix of A has determinant either0, 1 or −1.

We have the following sufficient conditions for the matrix A
to be totally unimodular [33].

Theorem V.2. SupposeA can be partitioned into two disjoint
setsB andC, with the following properties:
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1) Every column ofA contains at most two non-zero entries;
2) Every entry inA is 0, +1, or −1;
3) If two non-zero entries in a column ofA have the same

sign, then the row of one is inB, and the other inC;
4) If two non-zero entries in a column ofA have opposite

signs, then the rows of both are inB or both inC.
ThenA is totally unimodular.

Now, consider the following linear program
P: max cTx
subject to:Ax ≤ b, x ≥ 0
We have the following theorem [34].

Theorem V.3. If (1)A is totally unimodular, and(2)b contains
only integers, then linear programP has an optimal integral
solution.

Using above, we get the following result.

Theorem V.4. For any coalitionS ⊆ N , the integer program
Pc(S) has zero integrality gap. In other words,v(S) = v̂(S)
for all S ⊆ N .

Proof: Once we write Pc(S) in the form of P, it is
trivial to verify thatA, thus obtained, satisfies the sufficiency
conditions of Theorem V.2. HenceA is totally unimodular.
Also, b contains only 0 and 1. Thus, from Theorem V.3, Pc(S)
will have an integral optimum solution.

Here is the main result.

Theorem V.5. Ic 6= ∅, andIc ⊆ C

Proof: Theorem V.4 implies thatC = Ĉ. Combining this
with Theorem V.1, the claim immediately follows.

Remark V.1. It follows directly from this theorem that an
imputation in the core can be obtained by solving the linear
optimization Drelaxed(N ), which can be done in polynomial
time. This imputation again distributes the aggregate grand-
coalition payoff among providers in accordance with the
Lagrange-multipliers of Prelaxed(N ), which as explained in
Section IV, are commensurate with the resource investments
and wealth generated by the providers. Also, since both the
primal Prelaxed(N ) and dual Prelaxed(N ) are linear programs,
they can be solved by the providers in a distributed manner
and without revealing their confidential information such as
the revenue and costs, (i.e.,ujks) to each other, using the
subgradient technique as described in Section IV.

Computation complexity:Now, we discuss the com-
plexity of computing the optimal deployment and alloca-
tion of service units for the grand coalition via solving the
primal linear program Prelaxed(N ), and an element of the
core via solving the dual program Drelaxed(N ). The primal
linear program hasV = (|MN | + 1)|BN | variables and
C = |MN | + (|MN | + 3)|BN | constraints. The dual linear
program Drelaxed(N ) hasV = |MN | + 2|BN | variables and
C = |MN | + (|MN | + 3)|BN | constraints11. Thus each can

11Note that we have fewer dual variables as compared to primal constraints
as the dual variables corresponding to some primal non-negativity constraints
can be omitted without any imprecision.

be solved using Karmarkar’s interior point algorithm [35] in
O(C

3

2V 2L) time where the obtained solution and the optimal
solution match in L most significant digits12.

B. Case 2

Now, we relax the simplifying assumptions made in Sec-
tion V-A. We allow the customers’ locations and channels’
qualities to be random, i.e.,|Ω| > 1. We also let each
base-station access multiple channels, i.e.,|Ck| ≥ 1 for all
k ∈ BN . However, we impose an upper bound on the
scheduling random variables. More precisely we assume that
αjl(ω) ∈ [0, α], j ∈ MN , l ∈ CN , ω ∈ Ω, for anα such that
α|CN | ≤ 1.

Remark V.2. The assumption does not cause any loss of
generality when for eachω there are several customers with
identical transmission rates from the service-units (in practice
this case arises when the overall number of customers is
large). In such cases, the maximum aggregate payoff may
be attained if the service times are equally split among the
customers that have identical transmission conditions from the
service units - thus, even the optimizations that do not impose
this condition will choose smallαjk(ω)s.

Let vf(S) be the aggregate payoff of coalitionS in this case.
Thenvf(·) is given by an optimization problem Pf(S) derived
by omitting constraints (1) and replacing constraints (4) with
the above stronger ones in PG(S). In the following, we pro-
ceed to show that the core of the coalitional game< N , vf >,
Cf , is nonempty.

We use the following result [36].

Theorem V.6. Consider the optimization problem:
min f(z)
subject to : g(z) ≤ 0

wherez = (x, y), x ∈ X is the continuous part, whereX is
a compact set ofRn, and y ∈ Y is the discrete part, where
Y is a finite discrete set ofK-element integer vectors.f is
lower bounded and continuous and differentiable with respect
to x, whereas the constraintsg = (g1, . . . , gr) is continuous
in the continuous subspaceX for any giveny ∈ Y . Then,
the optimal value of the objective function of the extended
dual problemmaxλ≥0

(

minz∈X×Y f(z) + λg+(z)
)

equals
that of the primal problem, i.e., there in no duality gap for the
extended dual13.

Now formulate the extended dual problem, as introduced
in [36]. Let τ ∈ R

CS×Ω andϕ ∈ R
CS . Define

hS
k (τ, ϕ) = max αjl∈[0,α]

cl,bk∈{0,1}

(

− fkbk −
∑

l∈Cl
glcl +

12Thus, L is the number of accuracy digits of the generated solution.
Often, the computation time results are stated in units ofL, e.g.,O(C3/2V 2)
per accuracy digit in the algorithm output. Note that Karmarkar’s algorithm
generates anǫ-solution, that is a solution that (i) attains an objective value
that is at mostǫ less than the maximum value and (ii) satisfies the feasibility
constraints within an error margin ofǫ. The error marginǫ decreases with
increase in the number of iterations.

13A+ , max[A, 0]
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∑

j∈MS

l∈Ck

ω∈Ω

P(ω)αjl(ω)ujl(ω)−
∑

l∈Ck

ω∈Ω
τl(ω)(

∑

j∈MS
αjl(ω)−

cl)
+ −

∑

l∈Ck
(cl − bk)

+
)

The extended dualDf(S) will be as follows.
Df(S) : min

∑

k∈BS
hS
k (τ, ϕ)

subject to:τ, ϕ ≥ 0

FormulateDf(N ) by defining vectorsτ andϕ appropriately.
Let Df constitute the set of optimal solutions ofDf(N ).
Note that Df 6= ∅. Now let If = {x∗ ∈ R

N : x∗
i =

∑

k∈Bi
hN
k (τ∗, ϕ∗), for some(τ∗, ϕ∗) ∈ Df}.

Here is the main result.

Theorem V.7. If 6= ∅, andIf ⊆ Cf .

Proof: According to Theorem V.6, Df(S) has zero duality
gap. Note that since Df 6= ∅, it is clear thatIf 6= ∅. Now letx∗

be an arbitrary vector inIf corresponding to vectorsτ∗, ϕ∗.
We show thatx∗ ∈ Cf .
x∗(N ) =

∑

i∈N x∗
i is the optimal value of the optimization

Df(N ) and by strong duality equalsvf(N ). Now we only
need to show thatx∗(S) ≥ vf(S) for all S ⊂ N . We
have x∗(S) =

∑

k∈BS
hN
k (τ∗, ϕ∗). It is easy to check that

hN
k (ϕ) ≥ hS

k (τ, ϕ) for all τ and ϕ. Therefore we have
x∗(S) =

∑

k∈BS
hN
k (τ∗, ϕ∗) ≥

∑

k∈BS
hS
k (τ

∗, ϕ∗). On the
other hand, sincevf(S) is equal to the optimal value of
∑

k∈BS
hS
k (τ, ϕ), it follows that vf(S) ≤

∑

k∈BS
hS
k (τ

∗, ϕ∗).
Thus,x∗(S) ≥ vf(S) and the claim follows.

VI. COOPERATIONIN MULTI -HOP NETWORKS

We have so far investigated cooperation in single hop net-
works. Next, we proceed to study cooperation among providers
in multi-hop networks. Intuitively, cooperation in multi-hop
networks has all the advantages of that in single hop ones,
which is sharing the service units and spectrum. In addition,
it has another benefit via what we callpower sharing. That
is, when the providers cooperate, they can redirect their traffic
through possibly better multi-hop routes, which in turn could
reduce their transmission power consumption. In this section,
we generalize our model to incorporate multi-hop networks.
Subsequently, we examine the coalitional game in this model
and show that its core is nonempty.

Consider a network in which customers can communicate
with service units via potentially multi-hop routes, that is,
via other customers which act as relays. However, when a
customer relays others’ packets, it uses its time and energy
without contributing to its own utility. In order to motivate
customers, providers agree to discount their charges basedon
how much they relay. Nevertheless, a customer might want
to have amaximum relaying agreementwith its provider. In
this type of networks, providers must decide the allocationof
service units as well as the communication routes. If now a
set of providers agree to cooperate by pooling their service
units and customers, not only can they benefit from sharing
others’ service units, but they also enjoy a larger set of relay
nodes. This, in turn, can increase the capacity of the network,

as well as its power efficiency14. Therefore, cooperation in
multi-hop networks has even higher potential than in single
hop networks. We now present a framework that captures all
these issues.

As in Section III, letN be the set of providers. LetBi and
Mi be the sets of provideri’s service units and customers,
respectively. As before, we consider uplink communications.
We assume that the locations of service units and the set of
channels they have access to are determined a priori. The
service rate of a customerj is defined as the total rate at which
j’s packets are delivered to any service unit, via either a single
or multi-hop routes. Letmj be the minimum rate requirement
of customerj. We assume that each service unit (likewise,
each customer) has access to a single channel (for transmis-
sion). In addition, we assume that no two service units in
a vicinity have access to the same channel. We also assume
that a pair of customers can communicate with each other (to
relay packets) without interfering with the communications of
other customer-customer or customer-service unit pairs (owing
to appropriate channel allocation for example). Therefore,
the necessary and sufficient condition for the simultaneous
transmissions to be successful is that the set of transmitter-
receiver pairs form a matching. Similar transmission models
have extensively been assumed in related contexts [37], [38].
We discuss how this assumption can be relaxed at the end of
this section.

A sufficient condition for a schedule to be feasible is that the
fraction of time each service unit or customer communicates
be belowθ, whereθ is a constant in(0, 1] and depends on the
network topology. For bipartite networks, for instance,θ = 1,
which is also a necessary condition [22]. It has been shown
that in general,θ = 2

3 is a sufficient but not a necessary
condition [22]. We assume that the network operates in a
way that this condition always holds. This assumption can
be motivated by the fact that operating the network at full
capacity raises the delay which is not desirable.

Suppose now that a customerj can transmit to a service unit
or another customerk at a rate equal torjk, a random variable
which is a function of the location of customerj and the state
of channelk. Let Ω be the state space of the channels’ states
and customers’ locations. We assume|Ω| is finite. Let ω be
an outcome in this state space andP(ω) be its probability.

A customer and a service unit, or two customers, can
communicate only when both are associated with the same
provider or the providers associated with them are in a
coalition. Let random variableβj1

j2k
∈ [0, 1] be the fraction of

time, customerj2 transmits packets of customerj1, to service
unit or customerk. Without loss of generality we can assume
that βj2

j1k
= 0 for k = j1 or k = j2. βj2

j1k
s are determined by

the allocation scheme.
We now discuss the mechanism which determines the

payoffs providers receive and the costs they incur by serv-
ing the customers. Letτj be the maximum fraction of

14Note that for certain customers, the increase in the power usage may not
be proportional to that in their service rates, but cooperation increases the
power efficiency of the network as a whole.
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time customerj spend as a relay. Consider a coalition
S. When the provider associated with customerj is in
S and the network realization isω, j receives a service
rate yj(ω) =

∑

j1∈MS ,k∈BS
βj
j1k

(ω)rj1k(ω). Besides,j re-
lays the traffic for tj fraction of time, wheretj(ω) =
∑

j1,j2∈MS\j,k∈BS
(βj1

j2j
(ω) + βj1

jj2
(ω) + βj1

jk(ω)). Suppose
when a customerj receives a service rateyj and relays
traffic a fraction of time equal totj , it pays the associ-
ated provider, an amount ofUj(yj , tj), whereUj(yj , tj) is
a concave function increasing inyj and decreasing intj .
Let random variablespjk(ω) represent the power usage of
customerj when it transmits to service unit or customerk.
Then a customerj in a coalitionS, has a total power usage
of zj(ω) =

∑

j1∈MS ,k∈MS∪BS , β
j1
jk(ω)pjk(ω). This in turn

inflicts a cost equal toVj(zj) on coalitionS, whereVj(·) is
an increasing convex function.

The aggregate payoff available to providers in a coalition
is the difference between their utilities and costs. Therefore,
in order to maximize their aggregate payoff, providers in a
coalition must decide the routes along which they communi-
cate with each node, and schedule the service units to those
routes based on the locations of customers, and payoff and
cost functions, subject to minimum rate, maximum relaying,
and allocation constraints.

Let v(S) denote the maximum aggregate payoff achievable
by a coalition S. Then, v(S) is the optimal value of the
objective function of the following convex optimization:
Pm(S) : max

∑

j∈MS

ω∈Ω
P(ω)

(

Uj(yj(ω), tj(ω))− Vj(zj(ω))
)

subject to:

1) yj(ω) =
∑

j1∈MS

k∈BS

βj
j1k

(ω)rj1k(ω), j ∈ MS , ω ∈ Ω.

2) tj(ω) =
∑

j1,j2∈MS\j
k∈BS

(

βj1
j2j

(ω) + βj1
jj2

(ω) +

βj1
jk(ω)

)

, j ∈ MS , ω ∈ Ω.

3) zj(ω) =
∑

j1∈MS

k∈BS∪MS

βj1
jk(ω)pjk(ω), j ∈ MS , ω ∈ Ω.

4)
∑

k∈MS∪BS
βj1
j2k

(ω)rj2k(ω) =
∑

j∈MS
βj1
jj2

(ω)rjj2(ω), j1 6= j2 ∈ MS , ω ∈ Ω.
5) tj(ω) +

∑

k∈BS∪MS
βj
jk(ω) ≤ θ, j ∈ MS , ω ∈ Ω.

6)
∑

j1,j2∈MS
βj1
j2k

(ω) ≤ θ, k ∈ BS , ω ∈ Ω
7)

∑

ω∈Ω P(ω)yj(ω) ≥ mj , j ∈ MS .
8)

∑

ω∈Ω P(ω)tj(ω) ≤ τj , j ∈ MS .
9) βj1

j2k
(ω) ≥ 0, j1, j2 ∈ MS , k ∈ BS ∪MS , ω ∈ Ω

Constraints (4) ensure that the set ofβj1
j2l

s satisfy the flow fea-
sibility constraints, while constraints (5) and (6) guarantee that
they constitute a feasible allocation. Constraints (7) and(8)
impose minimum rate and maximum relaying guarantees,
respectively.

We argue that the core of the coalitional game< N , v >
is nonempty. Similar to the proof of Theorem IV.1, one
can formulate the dual problem of the optimization Pm(N )
(which is always feasible) and subsequently, define the setI
appropriately. The same proof technique, then shows thatI
belongs to the core. Hence, nonemptiness of the core follows.
Furthermore, solving the dual problem provides an imputation

in the core, which can be obtained in polynomial time.
Now assume that simultaneous scheduling of some sets of

links without common nodes is infeasible due to the interfer-
ence constraints. This arises when for example same channels
have been allocated to units in a vicinity. Nevertheless, itis
still possible to find a set of constants{θj , θk ∈ (0, 1], j ∈
MS , k ∈ BS}, such that for any scheduling to be feasible,
it suffices that every nodej (service unit or customer) in
the network communicates for less thanθj fraction of time.
If, as before, we assume that this condition always holds in
the network, replacingθ in constraints (5) and (6) in Pm(S)
with the appropriateθj , θk, leads to the optimization problem
that givesv(S) for all coalitions. Analogous results extend
similarly.

Finally, similar formulations may be used to model coop-
eration among internet service providers (ISPs) in the same
tier. Specifically, peer ISPs may form coalitions where the
providers in the same coalition route traffic to the customers
(i.e., end users or the ISPs in lower tiers) through each others
routers (analogous to service units in our terminology) and
links. The characteristic functionv(S) now represents the
total profit of the ISPs in a coalitionS, and can be obtained
as the objective function of a concave maximization with
linear constraints, similar to Pm(S) - the differences in this
optimization are that (i) there is only oneω as the link
qualities will not vary randomly in wireline networks (ii) the
utility functions Ui(.) depend only on the rates provided to
the customers (iii) cost functionsVj(.) are zero as the routers
belong to the ISPs (iv) constraint6 on the fraction of time
each service

e unit and relay is used must be replaced by link capacity
constraints. The duality gap continues to be zero. Hence, itcan
be shown similar to the proof of Theorem IV.1 that the core
is non-empty and an allocation in the core can be obtained in
polynomial time.

VII. OTHER SOLUTION CONCEPTS: NUCLEOLUS AND

SHAPLEY VALUE

In Section III-B we defined the core of a coalitional game,
and observed that sharing mechanism based on an imputation
in the core stabilizes the grand coalition. This fact then
motivated us to examine whether the cores of the games we
formulated are nonempty. The core of an arbitrary coalitional
game, however, consists of multiple imputations and we have
so far, presented techniques for computing one of them. But,
it is not clear how to select an appropriate imputation among
all the available ones. One approach to this problem is to run
an optimization over the set of imputations in the core with an
appropriate set of constraints, so as to satisfy some additional
selection criteria. Another approach is to use other well known
sharing mechanisms (also known as solution concepts) in
coalitional games that best suit the application. Each of these
solution concepts has properties that make it an interesting
candidate for a sharing mechanism. However, not all of them
are guaranteed to stabilize the grand coalition, in the sense
that an imputation in the core does.
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We next proceed to investigate two well known solution
concepts in coalitional games, nucleolus and Shapley value,
and examine whether these belong to the core.

A. Nucleolus

Definition VII.1. The excess of a coalitionS under an imputa-
tion x is eS(x) = v(S)−x(S). LetE(x) = (eS(x),S ∈ 2N )
be the vector of excesses arranged in monotonically decreasing
order. The nucleolus is the set of imputationsx for which the
vectorE(x) is lexicographically minimal.

One can think ofeS(x) as a measure of dissatisfaction of
S underx. For example, if the share allocated to coalition
S by x is less than whatS can make on their own (i.e.,
v(S)), then eS(x) is positive and its value reflectsS ’s level
of dissatisfaction. If instead,S receives what it can earn by
itself, eS is negative, which suggests a relative satisfaction.
Then the nucleolus is basically the set of imputations that
maximizes the levels of coalitions’ satisfactions in a max-min
fair fashion. That is, it maximizes the minimum satisfaction.
Subject to that, it maximizes the next minimum satisfaction,
and so forth. In Example IV.1, the nucleolus is(Q+P

2 , 3Q−P
2 ).

The nucleolus of any coalitional game with transferable
payoff is a singleton [23, pp. 288]. Whenever the core of
a coalitional game is nonempty, the nucleolus belongs to
the core. This is because, for any imputationx in the core,
E(x) ≤ 0 i.e., the maximum excess is negative. Hence for
any imputationx∗, which leads to lexicographically minimal
excess vector among all the imputations, the corresponding
maximum excess will be negative. Hence,E(x∗) ≤ 0. Thus,
from (1), x∗ belongs to the core.

Thus, in those games where we proved that the core is
nonempty, the nucleolus belongs to the core, and hence renders
the grand coalition stable.

B. Shapley value

Definition VII.2. For any i, and S ⊂ N such thati /∈ S,
let ∆i(S) = v(S ∪ {i}) − v(S). The Shapley value is the
imputationx for which

xi =
1

n!

∑

U∈U

∆i(Si(U)), (2)

whereU is the set of all orderings of the set of players, and
Si(U) is the set of players precedingi in orderingU .

In Example IV.1,∆i(∅) = v({i}),∆1({2}) = Q,∆2({1}) =
2Q−P , and the Shapley value is

(

(Q+P )/2, (3Q−P )/2
)

.
The significance of the Shapley value is that it is the unique

imputation that attains the following properties [23, pp. 292].
(a) If i and j are interchangeable, i.e.,∆i(S) = ∆j(S) for
eachS such thati, j /∈ S, then the imputation allocates equal
shares to bothi and j (symmetry). (b) If ∆i(S) = v({i})
for eachS such thati /∈ S, then the imputation allocates
revenuev({i}) to i (dummy player allocation). (c) Consider
two coalitional games with the set of playersN , and the
characteristic functionsw1(·), w2(·), and a third coalitional
game with the same set of players, and the characteristic

function w1(·) + w2(·). Then, the imputation that constitutes
the Shapley value for the third coalitional game equals the
sum of those for the first two (additivity).

We next provide an example to demonstrate that the Shapley
value need not be inC.

Example VII.1. Let N = {1, 2, 3}. Let Bi = {i} and Mi

be arbitrary nonempty disjoint sets for each provideri. Let
rj2 = 1, j ∈ M∞ ∪M∋, rj1 = rj3 = 1, j ∈ M∈ and rjk =
0 otherwise. Also, letmj = 0, ∀j ∈ MN . Suppose utility
functions are the sum of the customers’ service rates and there
is no cost.

Clearly, v({i}) = 0 ∀ i, v({1, 2}) = v({2, 3}) =
v({1, 2, 3}) = 2, v({1, 3}) = 0. Table I shows all possible
orderingsU of the providers, and∆i(U) for each provideri
and orderingU . From (2) and Table I, the Shapley value of
the providers isx = ( 26 ,

8
6 ,

2
6 ). Note thatx1 + x2 = 10

6 <
v({1, 2}). Hencex 6∈ C.

Remark VII.1. Although unlike the nucleolus, the Shapley
value need not be in the core, its useful properties, such as
uniqueness and tractability, makes it an interesting solution
concept in cooperation analysis among many researchers in
different fields of study. Finally, note that finding a polynomial
time algorithm to compute the nucleolus and Shapley value in
our settings, remains an open problem.

TABLE I: All possible orderings and marginal contributions
of the players.

U ∆1(U) ∆2(U) ∆3(U)
123 0 2 0
132 0 2 0
213 2 0 0
231 0 0 2
312 0 2 0
321 0 2 0

VIII. O PTIMUM SELECTION OFSERVICE LEVEL

AGREEMENTS

In previous sections we assumed that the set of customers
subscribed to each provider is given a priori, and so is not part
of the decision variables. We now investigate cooperation in
the case where providers can in fact decide which customers
to accept as subscribers.

We first illustrate the impact of provider cooperation on
the customers and why the customers negotiate service level
agreements. Cooperation enhances providers’ aggregate pay-
offs which are increasing functions of service rates of the
customers. Thus, intuitively, the rates of most of the cus-
tomers increase when the providers cooperate. Cooperation
may however decrease the rates of some of the customers.
Consequently, it may induce unfairness to the customers and
may also reduce the customer base of individual operators.
In Example IV.1 when the providers do not cooperate, all
customers may receive non-zero rates; yet, the customers of
provider1 receive no service when the providers cooperate.
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The unfairness is however mitigated when the providers’
benefit functions are strictly concave - a choice allowed
by our framework. For example, if the benefit function in
Example IV.1 is logarithmic (instead of linear), i.e.,Ui(yi) =
∑

j∈Mi
log(1 + yj), then each customer of each provider is

served half of the time if the providers do not cooperate.
When providers cooperate, together they solve the following
optimization problem.
max

∑2
j=1 log(1 + αjP ) +

∑4
j=3 log(1 + αjQ)

subject to:
∑4

j=1 αj ≤ 2,
whereαj is the fraction of time customerj is served. We
have used the symmetry of service units to get a reduced op-
timization problem. We can further reduce it to the following
problem.
max log(1 + α1P ) + log(1 + α3Q)
subject to:

1) α1 + α3 ≤ 1
2) α2 = α1

3) α4 = α3

Consequently, it can be seen that each customer of provider
1 is served[1− (1/P − 1/Q)]/2 fraction of time while each
customer of provider2 is served[1+(1/P −1/Q)]/2 fraction
of time while (assuming1/P − 1/Q < 1 which for example
happens ifP > 1). Note that when bothP >> 1 (since
Q > P, thenQ >> 1 as well), then each customer of provider
1 (and of provider2 as well) is served approximately50%
of time. Thus, cooperation does not induce any unfairness
in this case15. The benefit functions may be chosen during
negotiations between providers and the customers and may
also be controlled by regulatory bodies (e.g., FCC in USA).

Our coalitional game framework also allows the customers
to mitigate this unfairness (even in presence of linear benefit
functions) by imposing minimum rate constraints through
SLAs (Example IV.1 had no SLAs), e.g., all the customers
in Example IV.1 may ask for a minimum rateP2 . Then,
v({1}) = P, v({2}) = Q, v({1, 2}) = P + Q, and each
customer receives the same rate irrespective of cooperation.
But, then, the core has the unique imputation of(P,Q) which
provides no payoff gain to any provider as compared to when
they do not cooperate. The question then is whether provider
1 should accept the above SLA? More generally, should
providers accept any SLA? The following discussion suggests
that the providers ought to accept SLAs, but selectively.

Consider the network model in Section III. Now letMi be
the set of potential customers of provideri. Each customer
j ∈ Mi negotiates an SLA (equivalently, minimum service
guarantee) with provideri, denoted bymj . If provider i
does not accept the SLA, customerj will subsequently leave
the network. The following example elucidates some counter-
intuitive phenomena.

15Under logarithmic benefit functions, cooperation does not enhance the
providers payoffs in this case either. This happens since each customer has
the same rate from all the service units. However, when customers have rate-
diversity, i.e., have potentially different rates from different service-units,
cooperation substantially enhances the payoffs of individual providers for
logarithmic and several other strictly concave benefit functions (Section IX)

Example VIII.1. Consider Example IV.1. Assume that
providers have agreed to cooperate and divide the payoffs
according to the nucleolus. Recall that the nucleolus is
(Q+P

2 , 3Q−P
2 ). Also, the customers of provider1 do not

receive any service. Now, suppose they demand minimum rate
guarantees, operator1 does not agree to these demands,
and these users subsequently leave. Then,M1 = φ. Thus,
v({1}) = 0, v({2}) = Q, v({1, 2} = 2Q, and the nucleolus is
(Q2 ,

3Q
2 ); operator1 gets less revenue than in the earlier case.

Thus, although the users of an operator do not generate any
revenue, their mere presence enhances the revenues earned by
the operator.

If a provider can not honor accepted SLAs by himself, he
is penalized drastically, should he not cooperate with others.
It affects provider’s standing in negotiations for dividing the
payoffs. However, as the following example shows, accepting
such SLAs may increase provider’s share in the coalition.

Example VIII.2. Let N = {1, 2, 3}. Let Bi = {i} and
Mi = {i}, for each provideri. Let rj1 = P, j = 2, 3,
r1k = P, k = 2, 3, and rjk = 0, otherwise. Also, let0 <
m1 < P andmj = 0, j = 2, 3. Let the utility functions be the
sum of the customers’ service rates. Since operator1 can not
provide ratem1 to user1, v({1}) = −∞. v({2}) = v({3}) =
v({2, 3}) = 0 and v({1, 2} = v({1, 3}) = v({1, 2, 3}) = 2P .
It is straightforward to verify thatC = {(2P, 0, 0)}. Now,
if operator 1 refuses the SLA of user1, M1 = φ and
v({1}) = 0. v({2}) = v({3}) = v({2, 3} = 0 and
v({1, 2} = v({1, 3}) = v({1, 2, 3}) = P . Again, we can see
thatC = {(P, 0, 0)}. Thus, the revenue of operator1 decreases
when it refuses the SLA of its user.

Accepting an SLA does not necessarily lead to a higher
share of payoff for a provider, even when it increases the
aggregate payoff of a coalition. Conversely, it is possible
that accepting an SLA by a provider decreases the aggregate
payoff, but increases that provider’s share. The following
example illustrates these situations.

Example VIII.3. Again consider Example IV.1, with the
difference that each customer of provider1 requests an SLA
equal to P

2 . Moreover, customers inM1 do not require
service rates above3P4 , and as a result will not pay for
any extra service16. We assume providers have agreed to
cooperate and divide the payoffs according to the nucleolus.
If provider 1 rejects both SLAs, customers inM1 leave and
we have:v({1}) = 0, v({2}) = Q, and v({1, 2}) = 2Q.
Consequently, providers’ shares will be(x1, x2) = (Q2 ,

3Q
2 ).

On the other hand, if provider1 accepts one of the SLAs
and rejects the other, we have:v({1}) = 3P

4 , v({2}) = Q,
and v({1, 2}) = P

2 + 3Q
2 , which lead to payoffs(x1, x2) =

( 5P+2Q
8 , 10Q−P

8 ). Finally, if provider1 accepts both SLAs, we
have:v({1}) = P, v({2}) = Q, and v({1, 2}) = P +Q, and
therefore,(x1, x2) = (P,Q). Now supposeP and Q satisfy
3P
2 < Q < 2P (this is more restrictive thanP < Q required

16This can be captured in our framework by simply choosing appropriately
upper bounded utility functions
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in Example IV.1). Then it is optimal for provider1 to accept
only one of the SLAs.

Remark VIII.1. Although accepting both SLAs increases
v({1}), it decreases provider1’s share, for it decreases the
aggregate payoff. On the other hand, rejecting both SLAs
increases the aggregate payoff, but decreases provider1’s
share, since it decreasesv({1}). Also, note that if provider
1 does not have any customer, even without any upper-bound
on the benefit functions,v({1}) = 0, v({2}) = Q, and
v({1, 2}) = 2Q and the nucleolus is(Q2 ,

3Q
2 ), whereas in

Example IV.1 (i.e., when the customers did not have SLAs and
provider 1 had 2 customers) provider1’s payoff share as per
the nucleolus wasQ+P

2 (last paragraph of Section VII-A).
Thus, although when the providers cooperate, the customers
of provider1 do not receive any service, and therefore do not
generate any revenue, their mere presence enhances the payoff
of provider1 (from Q/2 above toQ+P

2 )!

An interesting question now is: what is the optimum strat-
egy for providers in accepting the SLAs? We propose two
approaches to address this question.

A. Cooperative SLA Selection

As was shown in Example VIII.3, the preference of a
provider in accepting SLAs is not necessarily in line with that
of the coalition as a whole. One way to deal with this scenario
is to have providers select SLAs cooperatively. Clearly, the
optimal cooperation strategy then involves selecting a setof
SLAs that maximize the aggregate payoff. In Example VIII.3,
for instance, providers1 and2, respectively, select no SLA and
both SLAs (note that we can assume provider2’s customers
request SLAs equal to zero). However, as discussed before, if
the characteristic functionv(·) defined in Section IV is used
as the reference to compute each provider’s share, provider1
is likely to refuse this selection of SLAs. In fact, we observed
in Example VIII.3 that for the Shapley value computed using
function v(·), provider 1 prefers to accept one SLA, instead
of no SLA. Therefore, it is imperative to design an appro-
priate payoff sharing mechanism, so as to make cooperation
practical.

Let us redefine the characteristic function that is used to
characterize coalitions’ values as follows. Definev̂(S) to be
the maximum payoff achievable by coalitionS ⊂ N , among
all the possible choices of SLAs available toS17. In other
words, for a coalitionS ⊆ N , v̂(S) is given by the following
optimization problem.
PSLA(S) : max

∑

i∈S
ω∈Ω

P(ω)
(

Ui(yi(ω))− Vi(zi(ω))
)

subject to:
1) yj(ω) = sj

∑

k∈BS
αjk(ω)rjk(ω), j ∈ MS , ω ∈ Ω

2) zl(ω) =
∑

j∈MS
αjk(ω), k ∈ BS , ω ∈ Ω

3)
∑

k∈BS
αjk(ω) ≤ 1, j ∈ MS , ω ∈ Ω

4)
∑

j∈MS
αjk(ω) ≤ 1, k ∈ BS , ω ∈ Ω

5)
∑

ω∈Ω P(ω)yj(ω) ≥ sjmj , j ∈ MS

17In the original formulation,v(S) was the payoff of coalitionS, when the
set of SLAs selected byS was the corresponding subset of the set of SLAs
selected by the grand coalition.

6) sj ∈ {0, 1}, αjk(ω) ∈ [0, α], j ∈ MS , k ∈ BS , ω ∈ Ω,

where sj = 1 if customer j’s SLA is accepted and zero
otherwise. Note that for any customerj, the minimum rate
constraint is nontrivial, only ifsj = 1 (5). Also, for customers
with sj = 0, the service rateyj = 0 by (1). These two
conditions ensure that the customers whose SLAs are rejected
do not receive any service. Thus, in any optimal solution of
the above optimization problem, only customers with accepted
SLAs are served. For instance, in Example VIII.3,v̂({1}) =
P, v̂({2}) = Q, and v̂({1, 2}) = 2Q.

Notice that ifv̂(·) is used as the reference in payoff sharing,
instead ofv(·), a provider’s share does not depend on the
set of SLAs he accepted, but rather on the set of SLAs
accepted by his coalition. Therefore, providers’ only concern is
to maximize the aggregate payoff. Also note that in this setup,
towards maximizing the aggregate payoff, a provider may have
to accept a set of SLAs, it can not honor by itself. That is, the
optimization problem in Section IV becomes infeasible for a
coalition S. However,S will not be penalized for that, since
PSLA(S) is feasible for all coalitions, and thereforêv(S) ≥ 0
for all S ⊆ N . In Example VIII.3, for instance, suppose that
both customers of provider2 request a minimum rate ofQ.
Note that this does not change the optimum selection of SLAs
by the grand coalition, since the grand coalition can in fact
deliver the minimum rate requested. However, by accepting
both SLAs, provider2 can no longer honor the minimum rate
guarantees of his customers by himself and totally depends
on provider1. This fact can drastically weaken provider2’s
bargaining power in deciding individuals’ share, providedthat
v(·) is the reference function in payoff sharing. But since the
function v̂ remains unchanged (particularly,̂v({2}) = Q),
provider 2 is not penalized under this sharing policy and
therefore continues to accept both SLAs as part of the optimal
strategy.

Remark VIII.2. It remains an open problem, whether the
coalitional game< N , v̂ > has a nonempty core.

B. Competitive SLA Selection

Another approach to the SLA selection problem is to
let providers select their SLAs competitively. That is, first
each provider selects his SLAs according to some optimal
strategy without coordinating with other providers. Then,they
cooperatively allocate the service units and channels to their
customers as already studied (e.g., as given by the optimization
problem in Section IV) and divide the payoffs according to an
appropriate sharing rule (e.g., the core). It is evident that in this
scenario, the SLAs chosen by each provider, directly affects
his payoff. Thus in this scenario, each provider selects the
SLAs so as to maximize his share, rather than the aggregate
payoff. In Example VIII.3, for instance, provider1 accepts one
SLA, although it does not maximize the aggregate payoff.

Let A(S) denote the set of joint actions of providers in
coalitionS. That is,A(S) contains all the possible selections
of SLAs by providers inS. Now suppose providers form the
grand coalition and decide to divide the aggregate payoff as
per an already agreed on sharing rule (e.g., the nucleolus).
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Fig. 2: The left, middle and right sub-plots respectively show providers’ payoffs, payoff gains and percentage payoff-gains as
functions of the number of customers: the three providers have 3k, 4k and5k customers, respectively.

Then, for a joint actionα ∈ A(N ), providers receive payoffs
according to an imputationx(α), wherex(·) is the payoff
function defined by the sharing rule. We consider only joint
actions α ∈ A(N ), for which the optimization problems
solving v({i}) are feasible for alli ∈ N (this implies that the
optimization problems solvingv(S) are feasible for allS ⊂ N
and so allv(S) are well defined). Now

(

A(N ),x(·)
)

defines
a noncooperative game. A Nash equilibrium of this game can
be used by providers as their strategy for selection of SLAs.
In Example VIII.3, for instance, the following joint actionis
trivially a Nash equilibrium of the game: provider1 selects
one SLA and provider2 selects both. However, determining
whether the game

(

A(N ),x(·)
)

has a Nash equilibrium in
general remains an open problem.

C. Comparison

Cooperative selection of SLAs has the advantage of maxi-
mizing the aggregate payoff, and so is Pareto-optimal. How-
ever, should the core of the game be empty, motivating
providers to form a coalition is definitely not a forte of thisap-
proach. On the other hand, the competitive SLA selection has
the advantage that the core of the game< N , v >, as shown
in Section IV, is always nonempty. Thus, for any possible
selection of SLAs, we can find a sharing rule that stabilizes
the grand coalition and hence justifies the cooperation. The
drawback is that the outcome then could be significantly sub-
optimal which is not globally desirable.

IX. QUANTITATIVE EVALUATIONS

In the context of the resource pooling game (Section IV),
we evaluate the benefits of cooperation and compare differ-
ent payoff sharing schemes such as the dual-based payoff
shares (Section IV) and the nucleolus (Section VII) for a range
of benefit functions.

We first consider logarithmic revenue (benefit) functions
Ui(yi) =

∑

j∈Mi
log(1+yj) and zero cost functionsVi(zi) =

0. Ui(yi) are strictly concave functions and assumes positive
values except whenyi is the zero vector and in this case the
revenue is0. Note that logarithmic functions have been widely

used as satisfaction functions of customers and therefore con-
stitute good candidates for the revenues they pay (and hence
for the benefits the providers incur). The cost functions are
zero when the providers acquire the resources (spectrum, base-
stations) apriori by paying fixed (licensing or deployment)fees
and do not incur subsequent usage based costs18. Also, we
assume that the customers do not have SLAs as is typically
the case for elastic transfers from the Internet (e.g., file
transfers). We allow the service-unit-customer ratesrjk to be
uniformly distributed over the set{0, 100, 200}Kbps, and to
be independent across service-unit-customer pairsj, k. The
characteristic functionsv(S) for different coalitionsS and
the dual based imputation in the core can now be obtained
by solving the concave optimization P(S), D(S) (Section IV)
once the number of providersN , and the number of service-
units Bi and customersMi of the different providers are
specified. The nucleolus can subsequently be computed using
Definition VII.1. We denote the payoff of a provideri (i) in
absence of cooperation asxi (note thatxi = v({i}), (ii) in the
grand coalition asxo

i (as per the nucleolus) orx∗
i (via solving

the dual problem) orx+
i (as per the Shapley value). Owing

to large state spaces we useMonte Carlo simulationsin our
evaluations.

We first consider3 providers, andM1 = 3k,M2 =
4k,M3 = 5k and B1 = B2 = B3 = 1 where k ranges
from 1 to 20 (Figure 2). The plots show that cooperation leads
to substantial payoff improvements for all providers, and the
payoff-gains increase as number of customers increase. As
expected (from Definition VII.1),the nucleolus distributes the
payoff gains more equitably than the dual based profit-share
which allocates payoff gains in increasing order of the number
of customers (wealth generated), reserving the highest payoff
gain for the provider with the highest number of customers.
Nevertheless, the payoffs of each provider are similar under
both payoff sharing rules, and also to those under the Shapley

18Recall that the fixed service-unit deployment and acquisition fees need to
be considered explicitly only when the deployment and acquisition of service-
units constitute optimization decision variables as in the resource deployment
game in Section V, and not when these are decided apriori as in the resource
pooling game of Sections IV.
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value allocations (Figure 3) Furthermore,the percentage gains
in payoffs due to cooperation are quite significant (in the range
of 30%− 40%) for each provider.

Henceforth, for simplicity, we focus on2 providers. Note
that the Shapley value is the same as the nucleolus in this
case (Section VII - paragraph before Example VII.1). We
investigate the impact of varying only the (i) demands (number
of customers) and (ii) assets (number of service units) of one
provider while keeping the other’s demand and asset fixed.
First, let N = 2, B1 = B2 = 1, M1 = 20 and varyM2 the
number of customers of provider 2 (Figure 4). Next, we let
N = 2, M1 = M2 = 20, B1 = 5, and vary the number of
service unitsB2 of provider2 (Figure 5). As the demand (or
assets) of the second provider is increased, the payoff of the
second provider increases under both the nucleolus and dual-
based payoff sharing rules, but that of the first may either in-
crease (Figure 4) or decrease (Figure 5), depending on whether
its importance in the cooperation increases or decreases due
to the increase in the demands (or assets) of the second.
Mathematically,xo

1 = v({1, 2}) + v({1})− v({2})/2, and as
the demands (assets) of the second increases,v({1, 2}), v({2})
increase butv({1}) does not change. Thus, the difference
v({1, 2}) − v({2}) may either increase, or decrease. Never-
theless, the payoff of the first still remains significantly above
that when it does not cooperate with the second. Also, in both
cases the provider with the larger demand or asset obtains
higher payoffs under both sharing rules.

We now investigate how the choice of the revenue function
affects providers’ payoff gains. In particular, we consider
the generalizedα−fair revenue function [39]:Ui(yi) =
∑

j∈Mi

(yi)
1−α

1−α , where 0 < α < 1. Note that for eachj
∂2

∂2yj
Ui(~y) = −α and thus intuitively the “concavity” of the

revenue function increases with increase inα (the function
is linear at one extreme:α = 0). We plot the providers’
percentage payoff gains as a function ofα, for N = 2,
B1 = B2 = 1 and M1 = 10 and M2 = 20 (Figure 6).
Payoff gains are very similar under the nucleolus and the
dual based sharing rules. More importantly,the percentage
payoff gains for both providers increase significantly with
increase inα - thus, higher the concavity, the more beneficial
cooperation is.This can be explained as follows. For small
α (i.e., nearly linear benefit functions), at any network state
ω, the aggregate revenue is maximized by allocating each
service unit to one customer. Next, given that the number
of customers (10 or 20) significantly exceeds the number
of service units (1) of each provider, usually (i.e., for most
ω) each provider’s service unit has excellent transmission
conditions to at least one customer. Thus, cooperation can
not enhance the aggregate customers’ rates, nor the providers’
aggregate and hence individual payoffs. Asα increases, the
aggregate payoff is maximized by allowing the providers
to time-share among, and provide more equitable rates to,
the customers at eachω. When not in coalition, in order
to roughly equalize the rates of all the customers, each
provider’s service unit must therefore serve customers with
poor transmission qualityrjk for considerable fractions of
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Fig. 7: Providers’ payoffs as a function of the guaranteed rate
to the premium customers

time. When the providers cooperate, usually, most (or more)
of the customers have high transmission rates from at least one
service unit (rate-diversity) - thus equitable rates can also be
provided by allowing each service unit to time-share among
the customers (not necessarily those of the same provider)
that have good transmission quality from it. Thus, equity is
attained through good match between customers and service
units and without compromising the overall customer rates and
providers’ revenues. Thus, cooperation substantially enhances
aggregate, and therefore individual, payoffs. Cooperation turns
out to be beneficial even for lowα when a large number of
customers have statistically better transmission qualities from
other provider’s service units than those of the one they have
subscribed to.

Finally, we illustrate the benefits of cooperation and com-
pare the nucleolus, Shapley value and dual based payoff
shares in presence of SLAs. We consider3 providers each
with 3 service units and10 customers. Now,rjk = 100
Kbps (200Kbps, resp.) with probability0.8 (0.2, resp.). Each
provider has3 premiumand7 best effortcustomers: the former
have negotiated SLAs which guarantee a minimum average
ratem. We consider linear revenue functions:

Ui(yi) =

3
∑

j=1

(βm+ α(yj −m)) +

10
∑

j=4

αyj (3)

where β > α captures the higher payoff per Kbps for the
service guarantees to the premium customers. We choose
α = 1 and β = 1.5. The revenueα

∑10
j=1 yj is denoted as

“usage based revenue” and the rest(β − α)3m is the fixed
fee associated with SLAs. Due to symmetry, providers receive
equal payoffs under both dual and nucleolus based shares.
As Figure 7 reveals, cooperation enhances each provider’s
revenue: the increase is significant when the size of each
coalition increases from 1 to 2, and somewhat less when
the size increases to 3. For smallm, a provider does not
need to compromise on the efficient usage of resources (i.e.,
it preferentially serves the customers with high transmission
rates). Each provider’s payoff increases linearly withm in this
region due to the increase of the fixed fees associated withm.
However, beyond a certain threshold, each provider needs to
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value) as functions of the number of customers: the three providers have3k, 4k and5k customers, respectively. The last plot
shows that

∑

i∈S x+
i ≥ v(S) for all S ⊂ N , thus implying that, for the chosen parameter values, the Shapley value lies in the

core.
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owns5 service units while the number of
service units,B2, of the second is varied.
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Fig. 6: The percentage payoff gains of the
providers are plotted as functions ofα.

schedule a few lower rate links to the premium customers
(instead of the higher rate links to the best effort customers)
to satisfy the SLAs. This lowers the aggregate service rates,
and each provider’s payoff decreases linearly with increase in
m. Cooperation increases this threshold and also the aggregate
rate of all the customers by allowing the scheduling of higher
rate links more often.

Next, we consider an asymmetric scenario where each
provider has10 customers as before, but they respectively
have3, 0, k premium customers;k is varied from1 to 7. All
the premium customers demand a minimum guaranteed rate
of 125Kbps. It turns out that a provider alone cannot guar-
antee125Kbps to more than3 customers. Similarly, any two
providers can support at most8 premium customers together.
Thus, P({3}) is not feasible fork > 3, and assumption IV.1
no longer holds. Fork > 3, we definev({3}) as the objective
function of P({3}) with 3 premium customers, fork > 5,
v({1, 3}) is the objective function of P({1, 3}) with 5 premium
customers, and fork > 8, v({2, 3}) is the objective function

of P({2, 3}) with 8 premium customers. It turns out that the
dual and nucleolus payoff shares are in the core, and hence
the core is non-empty. In the left and middle subfigures of
Figure 8, we show the providers’ payoffs as functions of the
number of premium customers of the third provider. We have
plotted the providers’ payoffs that correspond to the dual based
allocation, the nucleolus and the Shapley value (the middle
subfigure) in the grand coalition. We have also plotted the
providers’ payoffs when they do not cooperate. In the right
subfigure, we plot the maximum attainable payoffs of all the
coalitions. The dual based allocation equally divides the total
usage based payoffs among all providers, and allocates the
fixed fees of each provider’s customers to the provider. Thus,
the payoffs of providers1, 2 do not change with increase ink,
but that of provider3 increases linearly with increase ink. The
nucleolus however transfers a part of the fixed fees provider3
earns to other providers - intuitively such transfer is warranted
as provider3 can not support all its premium customers by
itself for k > 3. Thus, payoff shares of all providers change
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3 are payoffs corresponding to the dual allocation, the nucleolus and

the Shapley value respectively.x1, x2, x3 are the providers’ payoffs if they do not cooperate. The right sub-figure shows the
maximum attainable payoffs of all the coalitions.

with increase ink, and evidently, the nucleolus based payoff
gains are more equitable than the dual based ones. In all
the allocations, a provider with larger number of premium
customers gets a larger payoff share, and each provider’s
payoff increases substantially due to cooperation.

Calculation of Characteristic Functions:Recall that in
presence of SLAs P(S) can not be solved by solving sepa-
rate convex optimizations (Section IV-A). Consequently, the
computation times can be large since|Ω|, typically, is large.
Let us focus on a scenario where there are two classes
of customers premium and best-effort ones. The premium
customers require a minimum guaranteed ratem while the
best-effort customers are not guaranteed any minimum rate.
We assume that (i) the channels are symmetric across all the
service units and customers, i.e., all service unit-customer pairs
see identical channel statistics, (ii) functionsUi(·) are piece-
wise linear and identical for all the service providers (e.g.,
see Equation (3)) (iii) functionsVi(·) = 0 for all i and
(iv) there are more customers than service units. Under these
assumptions, we show that the characteristic functions canstill
be solved by solving separate optimization problems, one for
eachω ∈ Ω. The following algorithm is for the case when each
channel can be in two states: good (rateH) or bad (rateL).
It can be suitably modified for the cases when each channel
can be in more than two states.

Step 1:Generate a network stateω, using the distribution
on the service unit-customer rates. For eachω, schedule as
many good channels as possible while giving preference to
the premium customers. If there are unmatched service units
left, schedule as many bad channels as possible again giving
preference to the premium customers. Subsequently, compute
the average rates of all the premium and best-effort customers
over a large number of runs.

If the average rates of premium customers (these will
be same for all premium customers) exceed the minimum
guaranteed rates, then the aggregate payoff of all the providers
corresponding to the above schedules gives the characteristic

function. Otherwise, we proceed to the following Step 2.
Step 2: If the average rates of the premium customers

are less than the minimum guaranteed ones, determine the
minimum fraction of time that must be shifted from the good
channels of best-effort customers to the bad channels of the
premium customers in order to meet their minimum rate
requirements. For this fraction of time, reduce the serviceto
the best-effort customers fromH to 0 and enhance the service
to the premium customers from0 to L. The aggregate payoff
of all the providers corresponding to the resulting schedules
gives the characteristic function.

X. CONCLUSION AND FUTURE WORK

We studied cooperation among service providers in wireless
networks. If service providers cooperate, they can pool their
resources (e.g., service units and spectrum) and allocate them
to the joint pool of customers in an optimal fashion. We for-
mulated the problem as a transferable utility coalitional game.
We showed nonemptyness of cores in various scenarios (see
Theorems IV.1, V.5, V.7 etc.) implying that cooperation is not
only globally optimal, but also makes each of the providers
better off. Our proof technique is constructive and also yields
an optimal resource allocation and corresponding profit shares.
We also discussed two other profit sharing rules, nucleolus and
Shapley value. Cooperative game framework provides insights
into a number of service providers’ decision problems, e.g.,
where should they place service unit (Section V) and which
service level agreements they should accept (Section VIII)

In practice, coalition formation can incur overheads, e.g., it
can lead to increased loads on the call processors and billing
systems. Investigating the stability of the grand coalition con-
sidering the coalition formation overhead constitutes an open
problem. Moreover, the computation time for an allocation
in the core will be high since it depends polynomially on
the number of possible channel state and mobile location
realizations (|Ω|), which is large. Obtaining near-optimal so-
lutions with low computation time remains open. Finally, we
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considered a system where the customer subscriptions and
the provider’s revenue function have already been determined.
Investigating cooperation among the providers when the cus-
tomers dynamically decide their subscription based on the
revenue functions, and how providers can dynamically and
optimally select the revenue functions so as to enhance their
individual share of the overall profit remain open.

We show that a concave function, that has a bounded
second derivative, can be approximated as the minimum of a
set of linear functions. Consequently, a concave optimization
problem can be solved with arbitrary precision in polynomial
time since linear optimizations are polynomial time solvable
using interior point methods.

Lemma .1. Consider a concave, double-differentiable function
g : R → R such that |g′′(x)| ≤ B for x ∈ [a, b]. Then,
given any ǫ > 0, for every integerl ≥ ⌈(b − a)2B/ǫ⌉
there existsl linear functions of the formct + dtx such that
g(x) ≤ ct + dtx for each x ∈ [a, b], t = 1, 2, . . . , l and
g(x) ≥ minlt=1 (ct + dtx)− ǫ.

Proof: Considera = 0 without loss of generality. Let
∆ = b/l, di = g′ ((i− 1)∆) , i = 1, . . . , l, c1 = g(0), {ci} is
such thatci+1 + di+1(i∆) = ci + di(i∆).

First, we prove using induction, thatg(x) ≤ ct + dtx for
eachx ∈ [0, b], t = 1, 2, . . . , l. Let t = 1. g(x) ≤ g(0)+g′(0)x
for x ≥ 0 (follows from the definition of concavity, Equation
3.2, p. 69, Boyd). Thus,g(x) ≤ c1 + d1x for all x ≥ 0. Now,
let the claim hold fort = 1, . . . ,m. We prove the claim for
t = m+1. First, letx ≤ m∆. Note thatcm+1+dm+1x ≥ cm+
dmx. This is because atx = m∆, cm+1+dm+1x = cm+dmx
anddm+1 ≤ dm. Now, the claim follows fort = m. Now, let
x > m∆. Again, from the definition of concavity,

g(x) ≤ g(m∆) + g′(m∆)(x−m∆)

≤ cm + g′ ((m− 1)∆)m∆+ g′(m∆)(x−m∆).

The last inequality follows from the induction hypothesis for
t = m at x = m∆. Now, cm+1 = cm + [g′ ((m− 1)∆) −
g′(m∆)]m∆. Thus,

g(x) ≤ cm+1 + g′(m∆)x.

The claim holds fort = m+ 1.
Note that for t = 1, . . . , l, (t − 1)∆ ≤ x ≤ t∆

argminlm=1 (cm + dmx) = t. Thus, for the second part of
the lemma, we just need to show that fort = 1, . . . , l,
(t − 1)∆ ≤ x ≤ t∆ g(x) ≥ ct + dtx − tB∆2. The result
follows sincel∆ = b. We prove this by induction. First, let
t = 1, andx ∈ (0,∆). By twice application of the mean value
theorem, for some0 < κ′ < κ < x,

g(x) = g(0) + g′(0)x+ g′′(κ′)xκ

≥ c1 + d1x−B∆2.

Now, let the claim hold fort = 1, . . . ,m. Let t = m+1, and
let x ∈ (m∆, (m+ 1)∆). First note that

cm+1 + dm+1x = cm+1 + dm+1m∆+ dm+1(x−m∆)

= cm + dmm∆+ dm+1(x−m∆)

≤ g(m∆) +mB∆2 + g′(m∆)(x−m∆).

By twice application of the mean value theorem, for some
m∆ < κ′ < κ < x,

g(x) = g(m∆) + g′(m∆)(x−m∆)

+g′′(κ′)(x−m∆)(κ−m∆)

≥ cm+1 + dm+1x− (m+ 1)B∆2.

Thus, the claim holds fort = m+ 1.
Now, consider a maximization with the objective function

∑Q
i=1 gi(xi) wherex is aQ−dimensional vector in a bounded

setG whereG is specified byC linear constraints involving
W variables (W ≥ Q), and gi(·) is a double-differentiable
concave function withg′′i (·) upper bounded byB. Then the
optimum value of this maximization is at mostQǫ less than
a linear program withQ additional variables andQ⌈ (b−a)2B

ǫ ⌉
additional constraints, wherea, b are the minimum and maxi-
mum values of any component ofx ∈ G. The objective func-
tion of the linear program isy1 + . . . yQ where the additional
constraints areyi less than or equal to each of the above linear
functions for thegi(·) function. Thus, given anyǫ > 0, b, a,B,
the concave maximization can be computed within an error
margin of ǫ in O(W 2(C + Q2(b−a)2B

ǫ )3/2) computation time
using Karmarkar’s algorithm [40, Chapter 10].
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