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Abstract—Efficacy of commercial wireless networks can be coverage area. Cooperation between providers entailsngpol
substantially enhanced through large scale cooperation aamg and sharing some of these resources to ultimately bettee ser
involved entities such as providers and customers. The SUBSS ha common pool of customers. This pooling and sharing of
of such cooperation is contingent upon the design of judiciss . . .
resource allocation strategies that ensure that the indiduals resources car! Improve coverage_ and Fhrothpgt' which can in
payoffs are commensurate to the resources they offer to the turn lead to higher customer satisfaction and higher regsnu
coalition. The resource allocation strategies depend on vith for the providers.
entities are decision-makers, and whether and how they shar  \We now describe the benefits of cooperation among service
their aggregate payoffs. Initially, we consider the scenao where providers. When different providers cooperate, their tses

the providers are the only decision-makers, and they do notrare h t d infrastruct likelv to b imal
their payoffs. We formulate the resource allocation problen as such as spectrum and infrastructure are likely to be optymal

a nontransferable payoff coalitional game and show that thee Utilized. For example, if a provider's resources exceeffitra
exists a cooperation strategy that leaves no incentive forrgy demands of its customers, it can use the underutilizedqorti
subset of providers to split from the grand coalition, i.e.,the to serve customers of other providers in its coalition, and
core is nonempty. To compute this cooperation strategy and gnpance jts profit. Similarly, even when its resources are

the corresponding payoffs, we subsequently relate this gaen d . - litv in th
and its core to an exchange market setting, and its equilibtim congested, owing to poor propagation quality in the spettru

which can be computed by several efficient algorithms. Nextve it owns, or temporary demand overload, it can deliver the
investigate cooperation when customers are also decisionakers desired quality of service to its customers using the resesir

and decide which provider to subscribe to, based on whether of jts collaborators. Such sharing turns out to be mutually
there is cooperation. We formulate a coalitional game in ths beneficial as different providers are unlikely to experienc

setting and show that it has a nonempty core. We extend the lity of t L d load at th i
formulations and results to the cases, where players assumePQOr qualily Of fransmission and overioad at the same tme.

more general payoff sharing relations, that is, sub-groupsof Simi[arly, providers Can.augment their coverage areas by
providers can share the revenue among each other, and the utilizing each others service units. Thus, overall, theviaters

benefits are modeled as "vector payoff functions”, where oyl  can substantially enhance their net payoffs by cooperating
some components can be shared. Finally, we also consider rtiul

hop networks. B. Research challenges and Contributions

. INTRODUCTION The success of this setup, however, is contingent on whether
providers, as selfish entities, find the cooperation worilevh
More specifically, a provider expects to receive a payoff
We have witnessed a significant growth in commercigbmmensurate to the resources such as service units and
wireless services in the past few years, and the trend dannels it offers the coalition, and the wealth it genexate
likely to continue in the foreseeable future. This growtls harhe cooperation strategy of each provider involves therdete
been in part fueled by demand for new services such gfination of which providers to cooperate with and how to
network games and multimedia transmissions. These servigfare resources (i.e., the allocations of the service wmits
are taxing the available transmission resources whichitirere the spectrum to the customers). Design of rational coojerat
limited (e.g., spectrum, transmission energy), or costy( strategies is imperative to motivate providers to partitép
infrastructure). Cooperation among service providersthas jn such cooperation. In particular, different choices oésé
potential to substantially improve the resource utiligatiand decision variables determine the individual payoffs and th
should therefore facilitate the prOIiferation of wirelesgvices. eﬁicacy of Cooperation_ Also, C0||aborating providers ntw
To serve its customers, each provider uses (i) wireleggle to share their profits. However, some providers may only
spectrum that it acquires either directly from central ters  pe willing to collaborate so as to enhance individual profits
such as the FCC or in secondary markets from other providgjist may not be willing to share the profits, due to lack of
that have already licensed this spectrum from the regudatofryst, the nontransferable nature of the profit, or othesoea.
and (i) infrastructure such as base station, access ponsh |n general, providers’ total utilities could be a functiof o
points (which we refer to as service units) that it deploy&sn different types of payoffs, and they may be willing to share
o . . _ _ some types but not the rest. Coalition formation also depend
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A. Motivation



upside. coordinating with others, e.g., [2]-[8]. This scenario,igfh

We introduce our communication model, notion of coalihas been investigated using noncooperative game theory, in
tions and feasible actions and payoffs of providers in aicoatjeneral suffers from inefficient utilization of resourc8s [The
tion and relate them to realistic wireless systems (Sedtipn other perspective has been to assume that entities seffless|
We present a coalitional game framework [1] for cooperatiochoose their actions so as to optimize a global utility fiorct
among providers in a single-hop network using tools fromaven when such actions may deteriorate individual incestiv
cooperative game theory (Section IV-A). In particular, wstfi of some entities (e.g., [2], [6]). We investigate interan8
investigate providers’ cooperative resource allocationthe among providers assuming that each provider would be \gillin
scenario, where providers do not engage in payoff sharirtg.cooperate and coordinate its actions with others wheh suc
Using this framework, we show that there exists an operatiggoperation enhances its individual incentives.
point and corresponding payoffs that renders it optimaldibr ~ We obtained optimal cooperation schemes using the frame-
providers to cooperate. Specifically, if a subset of prosddework of cooperative game theory. This choice of tools alldwe
leave the grand coalition, regardless of how they cooperaisto combine the desirable features of the extreme appesach
among each other, at least one provider will be worse off{Sestudied in the existing literature, that of allowing ermti
tion IV-A). In the cooperative game theory terminology,sthito choose their actions guided by selfish objectives, and of
is equivalent to saying that the core of the game is nonemptiyaximizing global utility functions. Surprisingly, coorzdive
To compute such an operating point, we next construct an "exame theory has seen only limited use in wireless context so
change market” setting, where service providers are censttl far. For bandwidth allocation among mobiles in heterogeiseo
to be agents in the market, and service units and channgligeless access environments, a Shapley value basedthigori
are the goods (Section IV-B). Agents will then trade goods proposed in [10]. Nash bargaining solutions have been pro
so as to maximize their own benefits. We show that in thigosed for power control and spectrum sharing among multiple
setting, market equilibrium exists. Furthermore, we shbatt users [11]. Coalitional games have been used recently for
the allocation of goods in the economy given by the markeiodeling cooperation among nodes in the physical layer, [12]
equilibrium can be translated to a cooperation strategyramo[13], rate allocation in multiple access channels (MAC)][14
providers with the corresponding payoffs in the core. As and rate allocation among mobiles and admission control in
result, we can compute an element of the core, by computihgterogeneous wireless access environments [10]. Allethes
the market equilibrium, which is possible by using severalorks use the framework of transferable utility coalitibna
available algorithms. This result is also of independetariest, games as they assume that players can share their aggregate
as it links two different concepts in this context. payoffs in any arbitrary way. Non-transferable utility diea

Next we study cooperation in a scenario, where customeisnal games have been used to model cooperation between
are also decision makers. Particularly, customers carcsibles single antenna receivers and transmitters in an interferen
to the provider of their choice, and that choice can depetfiannel [15], and to study collaborative sensing by secgnda
on providers’ cooperation decisions (section V). We pr@posisers in cognitive radio networks [16]. For an overview of
a cooperation model and show that the core of this gameaigplications of coalitional game theory in communication
nonempty. Subsequently, we examine an algorithm to obtaistworks, see [17].
a core element in this game. We also adopt the framework of non-transferable utility

Finally, we generalize our framework to accommodate &palitional games. However, our problem formulation, ol
more general payoff sharing rules, such as when there asehniques, and results significantly differ from the abowe
groups of providers, and providers within each group wouligg to the difference in contexts - our focus is on cooperatio
share their payoffs, while those in different groups would,n among providers and customers at the network and MAC
b) vector payoff functions that are comprised of mixed trangayers. Cooperation among providers has been previously
ferable and nontransferable components of different tymed studied in [18], using transferable payoff coalitional gam
¢) multi-hop wireless networks where providers use ciutameln the current work, we generalize formulations and results
as potential relays. We formulate three coalitional gamiés win [18], so as to consider (i) more general payoff sharing
the above three generalizations (section VI). We show thaifles, (ii) the scenario, where customers are also players i
the previous results extend to these scenarios as well. Cee game, and (iii) vector payoff functions with components
sidering different payoff functions, we numerically evale of various types. In order to obtain these results, we use
the providers’ and customers’ payoff increases resultiognf different analytical tools and concepts, e.g., nontraasie
cooperation for a range of available demands (customets) gayoff coalitional games and exchange market.
assets (base stations, spectrum) (Section VII).

Il. RELATED WORK IIl. SYSTEM MODEL

Interactions between different entities in wireless nek80  We present the communication model in Section IlI-A
have primarily been investigated from the following exteemand describe in Section IlI-B how the formulations capture
perspectives. In the first, each entity is assumed to sdkectthe essence of existing wireless technologies. We describe
actions so as to maximize its individual incentive withouproviders’ coalitions and their payoffs in Section IlI-C.



A. Communication Model [20]. Each base station has access to only one band and thus

Consider a network with a set of provide¥é Each provider the base stations are the service units. Customers in areell a
i deploys a set of base stations (or access points) in ordeSg§ved ortime-sharingoasis, i.e., a base station transmits to at
serve its set of customerst;. Each base station has acceg®0St one customer at a given time. Also, at any given time, a
to a certain set of channels (frequency bahdahd each base customer receives transmissions from at most one baserstati
station-channel pair is referred to as a service unit. Thus,T"en, {e;jx(w)} represent the fraction of times customers
provider's resources are its service-units. Istbe the set of are served by different base stations. When base stdtion
service units of provider, B; N B; = § andM; "M, = § for transmits to customet and the channel gain realizationds
i # j. ForaS C N, let Bs and Mg denote the set of servicethe achievable rate; (w) from k to j is a function of the
units and customers associated with provider§imhusB, downlink SINR SINRy.(w) [19, Chapter 5], where

and M, are the sets of all service units and all customers .

) . ) R (w) Py

in the network, respectively; we also defild = M. We SINRjx(w) = 5 Ty (@) By + NoWW’
assume, unless mentioned otherwise, that the serviceamts vEBN\{k} T ’ 0

the customers communicate via single-hop links. We assumg (w) are the channel gains between customer-base station
that the achievable rates of a customer-service unit pair gairs, N, is the power spectral density of the additive noise and
not depend on communications of other customers and servigeis the spectrum bandwidthThus, SINR(w) and hence
units. Each customer or a service unit may be involved in &}, (w), is independent of which customers are being served
most one communication at a given tintére sharing. The by other base stations.

system can be represented by a complete bipartite g@ph ( In a variant of the above service disciplinpogver shar-
(V,€)) where the customers and the service units represefg), a base station distributes its total power among the
the nodes and there exists a link between every customg@swnlink transmissions in its cell. Orthogonal codes and
service unit node pair. Any customer-service unit assigmmechip synchronous transmissions can ensure that the ietta-c
corresponds to a matching (a set of links such that no tvitterference for a customer is negligible. As in the earlier
links have a common node) in the above graph. case, the inter-cell interference remains fixed. Thep(w)

For ease of exposition, we consider only downlink commis the fixed peak rate between customieand base statio,
nications in our model (the results easily extend to the cagfad is achieved wheh uses its entire power to transmit to
where communications involve both uplinks and downlinks). The variables{a;(w)} account for the fractional power
We consider frequency selective fading and assume that whglcatior?. We formulate the characteristic functions consid-

customer; is served by service unit, j receives at a rate ering time-sharing, and point out the modifications reqtire
i, @ random variable which is a function of the location ofor incorporating power sharing.

customer;j and the state of channglboth of which can vary  Next, consider downlink communications in a multi-cell

randomly. Letw represent a network state (customer locatio@FDMA system [19, Chapter 6]. Different providers ac-
channel qualities resulting from fading and channel acoéssquire non-overlapping bands and the bandwidth acquired by
primary users)2 be the collection of alls andIP(w) be a provider is divided into several channels (sub-carriers i
the probability that the network state és The ratesr;;, are  OFDM terminology) (For small-scale providers, some of thes
functions ofw and are denoted as;;(w). We assume that channels can be secondary access channels or spectrum white
|| is finite, since (i) feasible service rates in any practicalpaces acquired from primary users). In order to manage
communication system belong to a finite set, and (ii) we cafterference, each provider partitions the set of subieesr
partition the service region in such a way that the servitesrainto reuse groups, assigning one such group of sub-carriers
received by the customers inside a member of the partition @9each base-station so as to ensure that inter-cell inéerde

not depend on the locations of the customers. to simultaneous transmissions in other base-stationcantier
kpairs is negligible. At any given time, a base station assign

a sub-carrier to only one customer, but more than one sub-

We now illustrate via examples how our framework caarrier can be assigned to a customeultiple allocation).
be used to model specific communication systems. Consi§ffin such reuse partitioning and spatial allocation of sub-

elastic data transfers in the downlink of a CDMA cellulag,priers we can assume that the interference (both inter-ce
system (e.g., used for internet access of cellular subsS)b 5.4 intra-cell) is zero. Also assume that each base-station
[19, Chapter 5] with provider sef. Owing to simplicity

of physical layer implementations, a base statioralways  2This SINR expression assumes that all base stations useathe lsand.
transmits at a pre-determined fixed powey (which may be This facilitates smooth hand-overs but provides poor SINRhe mobiles

. : : - at cell boundaries owing to high interference from neigltphbase stations.
different for different base Statlons)' This happens everw Note that CDMA technology can provide acceptable rates @v@nesence of

no mobiles associated with it require downlink transmissidow SINRs. Nevertheless, in some implementations, neighdase stations
are allocated different bands. In that case, we sum overoatihannel base
lWwe assume that each base station has a separate radio laviilabvery  stations to obtain the aggregate interference in the dematoni
channel. Most of our formulations and all our results go tigto even when 3In the low SNR regime, the rates are proportional to the SNR|, thus
some base stations have fewer radios than channels - whexgpiicable we the peak rates are shared among the mobiles in the same fiwopas the
mention the necessary changes in the formulations in this.ca overall power.

B. How the formulations relate to existing wireless netvgor



each statev, assigns a fixed transmit power to each of itpayoffs. For a coalitiorS, a feasible allocatioqa;x(w),j €
carriers. thus, the downlink rate that a customer gets froMls, k € Bs,w € Q} satisfies the following conditions.
a service unit (which denotes a base-station and sub-carng S ajr(w) <1,k € Bs,we N
. . .. . JEMs I =5 )
pair) to which it is assigned depends only on the channg) S ens k(W) < 1,j € Ms,w € Q
gain from the corresponding base-station-sub-carrier fmi 3) (W) > 0,j € Mg,k € Bs,w € Q.

itself, channel usage of primary users as applicable, and Reynstraints (1) ensure that for all service uriits Bs, their
on the assignments of other customers and service units. W& ice times are upper bounded By Constraints (2) ensure
communication model presented in Section IlI-A capturés aj 4t for all j € S, the fraction of time customef is served
these attributes except the multiple allocation conditid® s at most1. Incidentally, constraints (1), (2) arise from the
will point out the modifications required for allowing mudte time-sharing modef, but for the multiple allocation model,
allocation while formulating the feasible allocations lire thext only constraints (1) suffice - all results presented beloterat

subsection. even in absence of constraint (2).
- Let A(S) denote the set of feasible joint actions of coalition
C. Coalitions and Payoffs S. Now, consider a joint actiom € A(S). Define F5(a) €

R€ to be the payoff vector generated by the joint actign.e.,

the ith component ofF®(a) is 3_ .o P(w) fi(y? (w)), Vi €

S, where(y? (w),i € S,w € Q) are the rate vectors resulting
A service unit can serve a customer only when eithéfom the joint actiono.

both are associated with the same provider, or the providersAssociated with each coalitio§, there is a set of feasible

associated with them are in a coalition. Consider a netwoplayoff profiles,v(S), defined as:

statew. Let a;x(w) € [0,1] be the fraction of time service s s

unit & serves customei. Now consider a coalitios. A joint ~ v(S) = {x € R” : x < 7 (a) for somea € A(S)}. (1)

allocation forS is {a;i(w),j € Mg,k € Bs,w € Q}. Let

Definition 111.1. A coalition S C A is a subset of providers
who cooperate. We refer t§ as the grand coalition.

S d h Sre M . f In other wordsy/(S) contains all payoff profiles which are less
yﬂ'k(w) enote the rate a customgre M receives 1om a ., o equal to the payoff vector generated by some feasible

service unitk € Bs; yj; (w) = aji(w)rjr(w). In coalitionS,  i5int action. Now the stage is set for the following definitio
provider: receives a benefit (payoff in economics terminology)

fi(y? (W) wherey? (w) = (45, (), € Mi,k € Bs) is the IV. PROVIDER COALITIONAL GAME

rate vector of its customery; (w) = yV (w). The payoff of a A. An NTU Game Formulation

provider may be the revenue it earns from its customers or Ma¥sinition IV.1. A nontransferable payoff cooperative (NTU)
reflect any other benefits it incurs by serving the customebsame consists of a paik A,v >, where A is the set

e.g., reputation, social welfare, etc. The payoff funcsigi-)s of players, andu(S), ¥S C A is the set of feasible payoff
are assumed to be concave since customers would paypliﬂfiles satisfying -

accordance with their satisfactions, which are usuallycesr .

functions of rates [21], [22]. Usually (and especially ftnet ;) :;or eachs, U(g) IS a glos.er? set. h

revenue connotationy; (y;) are additive functions of different ) If z € v(S) andx € R® with x < z, thenx € v(S)..
YA 3) The set of vectors im(S) in which each player inS

components, i.f;(yi) = 3_e n, hij (2 Yjk), wherehy; () receives no less than the maximum that he can obtain by
is a concave (either strict or linear) revenue function emos himself is a nonempty, bounded set

by provideri for customerj. We therefore allow the revenue
functions to be different for different customers of the gam When the providers cooperate can take any feasible joint
provider, though mostlyh;;(z) = h.(z) for all j,k € M;, action, and consequently, achieve any payoff profile(iN).
i.e., a provider uses the same revenue functions for allsof ithus, cooperation has the potential to enhance the qudlity o
customers. The expected payoff provider S earns will be service to customers, which in turn can increase providers’
Yoo P(W) fily$ (w))*. We assume that the payoff functionayoffs. However, there is a need for a criterion that deter-
fi(.)s are decided apriori (based on governmental regulatiomsines which payoff profile in(A') will be acceptable to the
customer charging policies etc.), and do not investigage throviders. We use a well known solution concept in coaliion
optimal selections of these functions. Thus, in our setap, a

5This condition can be modified to capture the scenario whesnace unit

joint allocat_lon{ajk(w)} umquely determines the payOﬁs thas access to multiple channels with onlyadio, as follows. The modified
all the providers. Constraint (1) for a service unit, bounds the sumngf, (w) over customers
Providers in a coalitiorS have to decide how to schedulei € M:s, and channel& accessed by that service unit, by 1. It can be shown

. . . . that all the subsequent results extends to this scenario.
service units to customers, i.e., select the vanablﬁg{w)s, SNote that for eachw, {a;(w)} comprise a feasible allocation of service

for eachw € (2, based on the payoff function$(.)s, and the units to customers if and only if there exists a correspogdinliection of
service unit to customer rates;, (w)s so as to maximize their matchingsLy, Lo, . .. and a collection of non-negative real numbersyz, ..
such that (i)Fi v = 1, v > 0 and (i) if the service unit - customer
allocation follows matchingL; for ~; fraction of time for each:, then
4One can also define the payoff of provideo be a function of the expected service unitk transmits to customej for o (w) fraction of time for all
service rates, i.e.fi(z ca P(w)y? (w)) - all results extend to this type of j, k. Constraints (1), (2) provide the necessary and sufficiemdition for
payoff functions as well. feasibility of {c;;(w)} for eachw [23].



game theorgore, to provide a rational basis for choosingu({1}) = v({2}) = [0, P] and v({1,2}) = {(z1,22) : 71 <
a payoff profile. The idea behind the core in a cooperativ@, x> < Q}. Clearly, customerg and3 get better rates, while
game is analogous to that behind a Nash equilibrium of caistomerl does not get any service in the coalition.

noncooperative game: an outcome is stable if no deviation is
profitable. B. Nonemptyness of The Core

Definition IV.2. A payoff profilex € v(\) is said to be In several coalitional games the core is empty, i.e., the
blockedby coalitionS C W\, if there is a payoff profiles € grand coalition can not be stabilized [1, Exampii).3] [15,

v(S) such thatz; > x; for all i € S, i.e., z makes every Example 20], and in general it is NP-hard to determine
provider in S better off. whether the core of a coalitional game is nonempty [24].

o _ Nevertheless, in this section we show that the gam¥, v >
Definition 1V.3. The coreC of the game< A, v > is the set always has a nonempty core.

of all feasible payoff profiles which can not be blocked by any
coalition. That is, Definition IV.4. A collection of coalitiong c 2V'\@ is called

C = {x € v(N) : VS, #z € v(S) such thatz; > x;, Vi € S} tbhaalli:\nced if there exist nonnegative weighis;, S € Z) such
)

The significance of the core comes from the fact that every
payoff profile in the core renders the grand coalition stable
To see thiS, let providers form the grand coalition and gelec Note that the balancedness condition for a collection of
a joint action that results in a payoff profile € C. Now, coalitions does not depend on the players’ payoff functions
Suppose a set of provide& C N leave the grand coalition but Only on membel’ships of the coalitions in the collection.
and choose a joint action and the corresponding payoff proflntuitively, a collection is balanced if the players aretdisited
z € v(S). They, however, would do so only if all of them“Uniformly” among the coalitions in the collection. For era
receive a higher payoff than what they could in the gra,fae, a collection, where each player is in the same number
coalition, i.e.,z; > x;, Vi € S. But this contradicts the fact (say k) of coalitions, is balanced. Then, les = 1/k for
thatx € C. Therefore, the grand coalition is stablhis is a €achS € Z, and since exactly coalitions include the player
globally desirable outcome, since the grand coalition Haes t %, for eachi, > s 7. ;.5 As = k x (1/k) = 1. On the other
potential to achieve higher network-wide efficiency. hand, if one player, say playér belongs in all the coalitions

We now elucidates(-) andC using a simple example. in the collection, and every other player belongs in only one

) ) coalition each, the coalition is not balanced. To see ttose n
Example IV.1. Consider a n_etwork withV' = {_1, 2, 3}_, and  hat for a playeri (i # 1), Yscr. 1es As €quals only oné\s,
[$2] = 1. Suppose each provider has one service unit and Ofj¢, one that contains and hence thiss must equall if this
customer.B; = M; = {i},i=1,2,3. Letri; =1,i = 12,3, co|lection is to be balanced. Now, for playerS™ s 7. o As

r21 = 132 = T3 = 3, andry = i = 123 = 2, and the equalsy"s.; \s, which exceedd since each\s equalsl.
payoff of each provider equal the aggregate service rate of

its customers. When providers do not cooperate, each attafpxample IV.3. Let N = {1,2,3}. Then 7, =

a payoff of 1. In other wordsy({i}) = [0,1], Vi. For the {{1,2},{2,3},{1,3}} is balanced; every player is in exactly
coalition {1,2}, we can similarly specify the feasible payoffwo coalitions, so\s = 3 is the balancing weight for each
profiles asv({1,2}) = {(x1,x2) : 21 < 2,25 < 3}. Finally, coalition S € 7;. On the other hand; = {{1,2},{2,3}}
for the grand coalition we have({1,2,3}) = {(x1,z2,23) : IS not balanced, since there do not exist nonnegativand
z; < 3, Vi}. Note that the feasible payoff profil@,3,3) A2 such that\; =1, Ay + A2 = 1, and A2 = 1. Note that
is not blocked by any coalition, and hence is in the coréere player2 belongs in both coalitions, whereas playérs3
This profile enhances the payoff of each provider209% belong in one coalition each.

compared to when_they operate individ_ually - rate .diversi%efinition IV.5. A game is balanced if for every balanced
(customers have different rates from different Serv'cqs‘)'n'collection of coalitionsZ, if « € RN anduS € v(8) for all
leads to a better match between customers and service unlts 7 thenu e w(N)T

in presence of cooperation (e.d’s service units provides the ’ '

highest rate t@®2's customer). Thus, balancedness of a game depends on the payoff func-

. . , . tions and feasible payoff profiles. For any coalitional game
Though cooperation enhances providers’ payoffs, it may 1 lancedness provides a sufficient condition for non-emept

pe advantag_eous for all the customers. The following example o core [25].
illustrates this.

Y As=1, VieN.

SEeZ: ieS

Example IV.2. Consider a network with\V' — {1,2}, and Theorem IV.1. A balanced game always has a nonempty core.

Q] =1. B; = {i},i = 1,2, M; = {1,2} and M, = {3}. Here is the main result.

Letr; = r30 = P, 199 = 131 = Q and Tik = 0 otherwise.

SupposeP < . Suppose t.hat the paygff of each provider 706 anyy, ¢ RV, we denote byuS € RS, the sub-vector ofu
equals the aggregate service rate of its customers. Thebiresponding to the coalitios, i.e., ud = u;, Vi € S



Theorem 1V.2. The coalitional game among providers;
N,v >, is balanced and hence has a nonempty core.

. _ N P)filyi@) = D Pw) Y Asfi(yi(w)
Proof: Consider a balanced collection of coalitidhsLet wen wen SeT:ieS
(As,S € Z) be the corresponding balancing weights. Also, _ A P(w)f;
let u € RV be such thau® € v(S) for all S € Z, i.e, there SG;GS Su;Q Mily? @)
exists a joint action{ajy,(w),j € Ms,k € Bs,w € Q} for S Z et
eachS € 7 such that = , st
SEeTeS

1) {a5(w),j € Ms,k € Bs,w € Q} satisfy feasibility = U

constraints (1) - (3) in Section lll, for eachi € 7. Thus, the game is balanced. It then follows from Theo-

2) ui < YoeaPW)fiyP(w), Vi € 5, wherey?(w) rem IV.1 that the core of the game is nonempty. n
denotes the rate vector corresponding to joint actio

{%k( w),j € Ms,k € Bs,w € Q}. C. Computation of a Payoff Profile in the Core

We next show thatu € wv(N). Define a joint action  We first construct an “exchange market” setting, a concept

{ajk(w),j € Mp,k € By,w € Q} as follows borrowed from micro-economics (Section IV-C1), and show
that amarket equilibriumin this setting, if exists, corresponds
to a payoff profile in the core of our NTU game (Sec-

arw) = Y Asaf(w). (3) tion IV-C2). Note that the fact that two different concepts
SeT: Jkeex\éts are equivalent in this context, can itself be of independent

interest. Finally, we show that a market equilibrium exists
(Section IV-C3), and can be computed without requiring ex-

change of confidential information among the providers {Sec
Step 1: We show that{a;x(w), j € My, k € By,w € ion IV-C4).

0} satisfy feasibility constraints (1) in Section IlI.

The rest of the proof consists of two steps.

1) Exchange Market PreliminariesiVe now introduce the
concept of "exchange market” from micro-economic theory.
Consider a market with a set of agett§ Let £ denote the

Z ajp(w) = Z Z )\safk (w) set of goods in the market. Each agéritas a positive initial
JEMA JEMN go7IEMs endowment of the goods given by the veatpr= (¢!, € £).
k€Bs Associated with each agentis a utility functionw; : ]R§r —
= Z As Z afk(w) R; wi(x;) represents the satisfaction level of agéntrom
S€T: keBs  jEMs the allocation of goodsx; = (z!,l € L£). Now let vector
< Z As p = (pi,1 € L) denote the prices of goods in the market. The

agents will then try to maximize their utilities through diag

S€eI: keB
sl of goods according to pricgs. We now present the definition
= > As (wherek € B;) of the market equilibrium [26, pp. 579].
SeZ: ieS
= 1 Definition 1V.6. An allocation x* and a price vectorp

constitute a market equilibrium if

The first equality follows from (3). The inequality follows #) X; € argmax, cge ui(x;) subject top.x; < p.e;, Vi €

from feasibility of {Of‘fk(w)aj € Ms,k € Bs,w € Q} for N. Note thatp.x is the value of agent’s allocation,
S € 7 and Constrainis (1) in Section III. which clearly can not be larger than the value of his

Similarly, one can show that feasibility constraints (28 ar initial endowment (budget constraint).
also satisfied. Constraints (3) are trivial. Thus, the jaiction #) 2ien (i — ;) = 0, that is, it is possible to attain the
{Qn(@), ] € M k € By,w € 9} is feasible. agents’ deswed allocations, just by using the total iditia
J Ste;o o Wo s’how thaifu <y P(w) fi(yi(w)). Vi € endowments in the market (market clearing).
N where(3.r-( )icS,we) arewteh% rate VZeZtZOI'S resultlngSUCh an allocatiorx* is called a market equilibrium alloca-
from the joint actlon{ajk( ),j € Mpr,k € Byryw € Q). tion.

Using (3), it can be easily verified that We now elucidate equilibrium prices and equilibrium allo-
cations using a simple example.
> AsyP(w), Vie N,weQ, (4)  Example IV.4. Consider a market with two agents and two
S€TueS goods. Initial endowments of goods aee = (1,0) and

eg = (0,1). Ut|I|ty functions arew;(x},z?) = B log(1 +
i.e., yi(w) are convex combinations dfy$ (w),S € T :i € )+512 log(1+ 2),i = 1,2. For identical utility functions,
S}. Sincefi(-)s are concave, for each providewe have: i.e., with 5;; = 8, B = 1, (45 155) (75, 95)) Is an



equilibrium allocation with(3, 1) as an equilibrium price vec- providersN as the agents in the market. The combinations
tor. For non-identical utility functions, i.e., witfi811, 512) = of service units and network realization8, x €, then
(1,58) and (891, B22) = (B,1), ((g3,1 — gs), (1 — ¢s,q3)) constitute the goods in the economy. Specifically, an agent
is a market equilibrium allocation, wherg; = 0 if 3 > 2, i with allocationx; can access service uritat mostz¥ (w)

qs = |f B € (1/2,2) andgs = 1 otherwise. Here(1,1) fraction of time, when the realization is. Consequently, the

is an equlllbnum price vector. initial endowments of the providers are the full access ® th

t of service units they own; for a providerfor all w € €,

(w) is 1if k € B; and0, otherwise.

Now consider an allocation of goods in this setup. We
%efme the providers’ corresponding utilities to be the maxi

only a small part 1/(1 + §)) of this more valuable good mum payoff they can obtain by serving their own customers

by ceding a large part®/(1 + ) of its initial possession. usmg their access levels of service units. In other words,
Thus, the first (second, resp.) ends up with a higher (lower
Uj (X) maxzu;esz ( )fl(yz( ))

resp.) shares/(1 + ) (1/(1 + 3)) of both goods. Note that
subject to:
the equilibrium price is higher for the first good. For non- 1) yi(w) = (ir (@), j € Mi, k € By), cn
identical utility functions, each agent values the othezrdiy Yilw) = \Yjklw © N @
: : A) Yik(w) = aje(W)rje(w), J € Mik € By,we
initial possession more, and hence they engage in an ev
i Y okeny Qk(w )S jeM;we.

exchange after which each possesses greater amount of t €Bn - Le B O
good it values more. In fact, fg8 > 2, agents exchange their c Zje./\/[igj(l;( ),— :i\l/l(wk BE NWEE :
initial possessions fully, and each possesses the gootligzra ) k(@) 20, j € My k € By,w € Q.
more, in its entirety. The goods have equal equilibriumegsic Example IV.6. We now obtain the exchange market for the

The following theorem provides a sufficient condition for aetting of Example IV.1. Each provider constitutes an agent
market equilibrium to exist [26, pp. 585]. and each service unit constitutes a good. Providpossesses
the ith good entirely, initially. Consider the payoff profile of
(3,3,3). This is attained when the first (second, third, resp.)
service unit serves agegts (3’s, 1's) customers respectively
for the entire time. This corresponds to allocations of good
%(1- to agents as followsx; = (0,0,1),x2 = (1,0,0) and
x3 = (0,1, 0) - thus, the first agent gets the whole of the third

Now suppose instead of trading, agents pool their googeod and so on. The utilities of the agents can be obtained by
and reallocate them among themselves. The amount of gosadlving the above optimizations.

allocated to each agent has to be commensurate with agen%e next show how an allocation in the core of the market

initial endowments, or some agents would not agree to l:tan be used to obtain a payoff profile in the core of the NTU
Consequently, one can use the conceptat of the market

as a policy to determine the allocation of goods among agerﬁs
An allocationx* = (x},i € N) € ch/\/ is in the core of the Theorem IV.5. Consider any allocationx* belonging toc.
market, ¢, if is can not be blocked by any coalition of agentdhen(u;(x;),i € N) € C.
S C N, i.e, foranyS C N, there does not exist an allocation .

= = ) Proof: First, let € M,k € By,w € Q} be
(xi,i € S) € RE* with the properties: {aj. (@), 7 Aw € Qf

S

We explain the above equilibrium allocations assuming thaf
8 > 1. For identical utility functions, both agents value agentl
1’s initial possession more. The second agent is able tombtaj

Theorem IV.3. Suppose that for every agentc N, u;(-)
is continuous, strictly concave, and strictly increasidgso
suppose thaf",_\,e; € R4 . Then a market equilibrium
exists, with the property that the price vector is strictl
positive, i.e.p € R4,

an optimal solution of the optimization defining(x;). Note
i) D iesXi < Zzes €;. that {7, (w),j € My, k € By, w € Q} constitute a feasible
i) wi(xi) > wi(x;), Vi € S. joint action of providers inV. Thus (u; (x? ), i € A') € v(A7).
We now prove the claim by Contradlctlon. Suppose
i(x),i € N) ¢ C. Then there exist a coalitio§ and a
payoff profilez € v(S) such thatz; > u;(x}) forall i € S.
We argue that there exists an aIIocau(m i € S) such
that (I) Zies x; < ZieS €e; and (II) ui(xi) >z Vi €S,
as follows. Consider the joint actiofw;,(w),j € Ms,k €
Bs,w € Q}, corresponding to payoff profile. Now define
Xi = (X jem, kW), k € Bs,w € Q). Since{a;;(w),j €
The following theorem states the relation between markat(s, k € Bs,w € Q} is a feasible joint action of providers in
equilibria and the core of the market [26, pp. 654]. S, it satisfies Constraint (1) in Section Ill. This fact, toget
with the definitions ofx; ande;, implies that) s k(W) =
djems Girw) <1 =3 se ek(w) for all k € Bs,w € Q.
Thus (1) holds. Also, smcéajk( w),j € M,k € Bs,w € 0}
2) Provider Coalition as an Exchange Marke€onsider is a feasible solution and; is the corresponding value of
the NTU game defined in Section Ill. Think of the set othe optimization defining:;(x;), (i) immediately follows. As

Example IV.5. Consider the setting of Example IV.4. The fwsg
condition for an a||OCatI0r(y1,y1,y2, yz) to be in the core of
the market¢, is thaty! + y3 = el +e3 =1 andy? + y3 =

e? +e3 =1, and henceyd =1 —yj andy3 = 1 — 2. The
second condition is that eithetlog(1 + 1) + log(1 + y$) >
Blog(1+ui) +log(1l+27), or log(2 — yl) +log(2 - yi) >
Blog(2 — z1) + log(2 — 2?), for anyz1,2? € [0, 1].

Theorem IV.4. Any market equilibrium allocation is in the
core of the market.



a consequence of (iiju;(x;) > u;(x}),Vi € S. Thisis in asd;(p) = arg Maxy, g~ u;(x;) subject top.x; < p.e;,
contradiction withx* € €. B ie., an allocation of goods to agedt that maximizes his
utility, subject to his budget constraint. Then the aggtega
excess demand in the market is the function R — R
given by {(p) = > ,cn(di(p) — €;), i.e., the aggregate
demand minus the total endowment. From Definition 1\p6,
Proof. Using Theorems 1V.4 and IV.5, the claim immeds an equilibrium price vector if(p*) = 0. This equation
diately follows. B can be solved using thglobal Newton method27]. The
3) Existence of The Market Equilibriumin this section, market equilibrium allocationx},i € N) then is d;(p*).

we establish the existence of the market equilibrium in odten, by Theorem IV.6, the corresponding payoff vector,

model. We make the following technical assumptions. (ui(x}),7 € N), is in the core of the NTU game.

1) The functionsf;s are strictly concave, strictly increasing, The above computation can be executed using a central
and smooth functions (i.e., the first two derivatives existontroller but without requiring any providerto reveal its
and are continuous). own benefit functiond;(-) and the service-unit-customer rates

2) For any feasible allocation of interedtx;, € N), Con- r;,(w) forits customerg € M, and any service unit € By
straints (3) in the optimizations defining (-)s are never to other providers (or the central controller). The central
binding. controller only needs to know the total number of servicdsuni

We originally considered the functiongs to be concave; of the providers and the number of network states. The need

assumption (1) imposes stronger conditions. Assumptijn (ﬁor limited access to global information ensures confidaityi

on the other hand, can be motivated by considering the numpé&operations. At each iteration, the central controlleests

of customers high enough so that it is always sub-optimal & initial price vectorp® arbitrarily, and broadcasts it to all

Theorem IV.6. If x* is a market equilibrium allocation in the
exchange market, the corresponding payoff prdfilgx; ), €
N) is in the core of the NTU game.

serve any one customer all the the time. providers. Each provider calculates its demand vedtgp®)
Using Assumption (2) we can rewrite the providirutility ~ (as in the last paragraph), usifw) for eachw € Q, fi(-)
functionu;(-) as and the service-unit-customer rateg,(w) for its customers
Prui(x;) =max ) o P(w)fi(yi(w)) Jj € M; and any service unit € By and at eachv. Once
subject to: the central controller receives the demand vectors from the
1) yi(w) = (yjx(w),j € M,k € By), weQ providers, it determines the excess for this pricg vector as
2) yir(w) = djk(w)rjk(w), j € MikeBy,weQ EPY) = X (di(P?) - e;), and updates th.e price vector
3) 3 ien, k(W) < ¥ (w), ke By,we. bgsed on the value of th_|s excésand communicates the new
4) Oéjk(w)mz 0, j€MkeBy,we. price vector to the providers. The process is repeatedgusin

It follows from Assumptions (1) and (2) that functionsthe NEw price ve_ctor _at each sj[ep, unt_|l the_exces‘.}s_ IS
u;(-)s are continuous, strictly increasing, strictly concavej a | "€ computation time of this algorithm is dominated by
smooth. Then Theorem IV.3 implies that a market equilibriuﬁlimlt of theGlobal N_ewton Method'l_'h|s method, _deSP'te not
exists. guaranteed to run in polynomial time, in practice, is known
We give a simple example to illustrate the above notions?o, terminate fagt for large problems (i.e., grows polyndiyia
with problem size) [29, pp. 670]. But, when the customer
Example IV.7. Consider a network withV" = {1,2}, and |ocations and channel states are random, the number of net-
1 =1. B; = {i},i=1,2, and M; = {2i — 1,2i},i=1,2. work states||, and therefore the problem size, and hence
Letrj; = P,j € M, rj1 = Q,j € Mo, andrjs = 2Q,j € the computation times can grow very fast (exponentiallyhwi
M. A provider's payoff is a function of rate received by eacthcrease in the number of service units and customers. This
of its customersfi(y7) = > c aq, 108(X s ¥56): @ = 1,2.  may not however pose a major challenge as the computations
The set of all market equilibrium prices and allocationsare done off-line using large work-stations and at a slower

(p,x), is , time-scale (only when the network state statistics change o
{(8,1),((0,8),(1,1=8)) : B € [55,1]} the coalitions are assessed). In addition, the above tigois
u{(1,8),((1-p5,1),(8,0):8 € [g, 1]}. efficient (i.e., attains low computation time) for smgl|, i.e.,

Each provider allocates its share equally among its custsmefor deterministic and pseudo-deterministic systems inciwhi
Finally, we obtain the following set of payoff profiles thaea customers are (almost) static and the qualities of chararels
in the core. also (almost) fixed.

21 2log(LHIAIEY . g e (L1 o
{ Og(fg;)lgffé 2 ﬁQ) pe [QQP’ I} Remark IV.1. We can solve the optimization problem P by
U {(21og( 2 );210g(5%)) : B € [ 1]} solving separate problems for each € Q. Each problem

4) Computation of the Market equilibrium:
8The global Newton methocupdates the prices ap”t! = p» —

By Theorem IV.6, a payoff profile in_the core of thea-dj(Jf(pn))g(pn)’ where, J.), adj-) are theJacobianof a multivariate
NTU game can be obtained by computing a market equimction [28, Sectiond.5] and the adjont of a matrix [28, Section0.8.2]

librium, which can be computed as follows. For a pric&spectively. In practice, thég%‘;flaiifesp_'aggfpr?{ fts finite difference
vector p, define the demand vector of agent (provideér) approximation;(J(p™)), i, = == . .

€




yields {zF(w), ajr(w),i € N,j € Mn,k € By}. The Consider a network realizatiow, and also a coalition
number of variables in these problem | times that in the (S,7). Let y;‘g(w) denote the rate a customge 7 receives
original problem. This substantially reduces the compotat from a service uni& € Bs; yfkT(w) = i (w)rji(w). Define
complexity because the computation time for a convex prograustomer;’s rate vecto(yfT('w) = (yfkT(w), k € Bs), and its
is polynomial in the number of variables, af@d|, typically, rate vector from a providei € S, yij(w) — (yfg(w),k c

is large. B;). For serving customey, provider: receives a payoff
(e.g., revenue from) fi;(yS% (w)), while customer; attains
V. PROVIDER-CUSTOMER COALITIONAL GAME a payoff (satisfactionyj(yf%(w)), which is a function ofj’s

We h f d that th ; bscripti received rate. Such revenue and satisfaction functigp$-{s
¢ nave so far assume at the customer subscrip 'Oa{?1sdgj(-)s, resp.) are widely assumed to be concave [21], [22].
are determined apriori. However, cooperation among persid

. Thus, the expected payoffs of provideand customey will
may make some of their customers worse off (see Exa P hay b y

oS (vST (vST -
ple 1V.2). Thus, customers can strategically subscribehto t@ezigﬂ)(w)f” (viy" (W) andyeq Pw)g;(y5™ (@), re

providers of their choices depending upon providers’ C@pectlv_eiy, and are determined once the service-unioust
operation decisions. Then, cooperation may enhance soffcations{a;.(w)} are decided.

providers’ customer bases' and reduce others’. The f(]HgW| Similar to that in Section “I, we define a feasible jOint
example further elucidates this point. action of providers and customers in coalitié, 7) as an

. . . . Aallocation{o;x(w),j € T,k € Bs,w € Q} that satisfies the
Example V.1. Consider two providers with one service unifo|lowing conditions.

each, i.e.,B; = {i}. Customerl (say C'1) would subscribe 1) Yy an(w) <1k € Bs,w e Q
to one of them. Let the network have two states, e+ J .

_ _ _ T 2) Y ainw) < LjeT,weQ
{wl,wg}, P(wl) = P(u}g) = 1/2 andru(wl) = O,Tll(u}g) = 3) oz-k(w) >0 je T ke BS we .
H,719(w1) = r12(ws) = L, whereH > L > 1. C'1’s expected J - ’ ’
satisfaction is)_ ., P(w)log(z(w)) if its rate is z(w) in
state w. In the non-cooperative regim&,;1 must choose
as with 1 its expected satisfaction isoo sincez(w;) = 0,
but with 2 it may belog(L) > 0 instead (since potentially
x(w1) = z(w2) = L > 1.) But,C'1’s decisionmay be different
if providers cooperate. Then, 1 subscribes t@, its expected
utility may still be (at mostjog(L). This is because abs,
provider 1 may not serve2’s customers sinc€ may not be
able to reciprocate (owing to low transmission quality).tBu

Note that for any feasible joint actiofr;(w),j € T,k €
Bs,w € 1}, there is a schedule that allocates service units to
customers, ensuring that for glle 7,k € Bs,w € €, service
unit k£ serves customej for «,;(w) fraction of time [23].
Let A(S,T) denote the joint action space of coaliti¢§, 7).

For a joint actiona € A(S,7), let 757 (a) € RSY7 be
the resulting payoff vector. We now define the set of feasible
payoff profiles,v(S,T), as follows:

if C'1 subscribes td, 1 may have2 serveC1 at w; (possibly v(S,T) = {x e RV : x < F57(a) for some .
by serving atu; one of2’s customers to whom it may have a ae AS,T)). ®)
high rate) and offer ratelf to C1 at w,. Thus,C1's expected ) ) ] )

utility is (log(L) + log(H)) /2 which exceediog(L). That is, v(S,7T) is the set of all payoff profiles which are

achievable through some feasible joint action of coalition
It is therefore important to understand how (and Whethe@;, T), and all payoff profiles lower than those. Now, accord-
coalitions will be formed when both providers and customefgg to Definition V.1, < (N, M),v > is a well defined NTU
are decision-makers. We formulate the interactions amoggme. The core of the game is defined as follows.
providers and customers as a nontransferable payoff mosit
game, and show that this game has a nonempty core (Seg- )
tion V-A). Thus, the grand coalition is optimal in the senseg = {x € v W, M) : (5, T), Fz € v(8, T) such that (6)
that it generates at least one payoff profile for providerd an
customers that can not be blocked by any coalition. We thepte that every payoff profile in the core renders the grand
investigate how to compute such a profile and prove that it éalition stable. To see this, let providers and customems f
polynomial time computable when the payoffs are linear fungne grand coalition and select a joint action that results in
tions and the network states are deterministic (SeCtion).V-Bpayoff profile x € C. Now, suppose a set of providers and
customers(S,7) C (N, M) leave the grand coalition and
A. An NTU Game Formulation choose a joint action and the corresponding payoff prafite
v(SUT). They, however, would do so only if all of them
receive a higher payoff than what they could in the grand
Definition V.1. A coalition (§,7),S CN,7 C M, is a coalition, i.e.,z; > x;,z; > x;, Vi € §,j € 7. But this
subset of providers and customers who cooperate, that is e@montradicts the fact that € C. Therefore, the grand coalition
customer in7 agrees to subscribe to one of the providers iis stable. Also note that the condition for a payoff profilet
S, and providers inS jointly serve customers ifi. Thegrand in the core, as given in (6), does not depend on which provider
coalition now refers to(N, M). a customer subscribes to. Therefore, once the grand cwaliti

Z; >X;,2; >X;, VieS,jeT}

We first redefine a coalition as follows.
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has been formed, a customer can not improve his payoff Bpd customers’ payoffs arg, 0,0, P). Clearly, cooperation
changing subscription. reduces the payoffs of providdrand customerl - but the
Allowing customers also to be decision makers is likely t8ggregate providers’ (customers’, resp.) payoffs impfove

improve the global utility, as the following example shows. We now prove that the core of the above game is nonempty.

Example V.2. Let N' = {1,2}, B; = {i},i = 1,2, and Thgorem V1. The nontransferable payoff game

M = {1,2,3}. Letry, = Pandry, = @ forj > 1, — (\ M),v > is balanced and hence has a nonempty
for all & € By. SupposeP < Q. Let each provider's g

payoff equal the sum of the service rates it provides to the

customers, and each customer’s payoff equa| its serviee rat Proof: Consider a balanced collection of coalitions
Then the only payoff allocation in the core provides payok C 2V““\0 and the corresponding balancing weights
O to each provider and) to customers,3 each and0 to (Asz,(S.7) € I). Also, let u € RNYM be such that
customer1. This allocation corresponds to customets3 u°7 € v(S,T) for all (S,7) € Z° i.e., there exists a joint
being served full-time from the service units and custom@gtion{as (w),j € T,k € Bs,w € Q} for each(S,T) € 7

1 receiving no service whatsoever. We now prove that tHigch that

payoff profile is the only allocation in the core. Note thad) {oszT(w),j € T,k € Bs,w € Q} satisfy feasibility
neither the providers nor customegs3 can enhance their  constraints (1) - (3) introduced in this section, for each
payoffs in any other coalition. If customdr receives any (8§, 7)€

service (say from providet), then either custome? or 3 b) u; < > jer IP(w)fij(yij(w)), Vi € S, WhereyfT(w)
rece_ives lower payoffs (gs they can no longer receive iimiet denoteswgﬂzstomej’s rate vector corresponding to joint
service), and then _prowdet_ (an_d 2) generates revenue at action {57 (w),j € T,k € Bs,w € Q).

rate P for the fraction of time it serves customér Thus, ¢) u; < ZwegP(w)gj(y;ST(w)% VieT,

provider 1's (or 2's or for both) payoff decreases belo@. L
Then the provider whose payoff decreases can split aloriy wie next show thati € v(N, M). The.procedgre IS _5|.m|lar o
in the proof of Theorem IV.2. First, define a joint action

one of the customers whose payoff decreases and each ,
obtain a payoff of - thus this payoff blocks any allocation1k(«):7 € M,k € By, w € 2} as follows
that provides custome? a positive payoff. Now, note that ST
the payoff profile in the core provides an aggregate rate of ajk(w) = > dsrafl (W) )
2(@) to the customers. This is the maximum possible aggregate (S,T)eI:kjeeBTS
rate to the customers. In fact, if customers had subscribed
apriori, say M; = {1}, M, = {2,3} (coalition game in The following two steps, concludes the proof.
Section V), and providers’ payoffs had been the sum of their Step 1: We need to show thafa,(w),j € M,k €
customers ratesy({1}) = [0, P],v({2}) = [0,Q], and the Bn,w € 0} satisfy feasibility constraints (1) - (3). The argu-
only payoff in the core would have beéR, Q) - this is the Mmentis similar to that in Step 1 of the proof of Theorem IV.2,
only payoff that provides a payoff of at leaBt(Q, resp.) to and is omitted for brevity.
provider 1 (2, resp.). This corresponds to serving providés Step 2: Using concavity of f;;(-)s and g;(")s, it is
(2's, resp.) customer using providéis (2's, resp.) service unit Straightforward to show that
respectively. Thus, _effectively, there is no cooperatiisb, i) u; < Zje/\él P(w)fij (y{}“‘/‘ (w)), Vi e N, and

we
the customers obtain a lower aggregate raie;+ Q. i) < Yo P(w)g; (yﬁ-\”‘”‘ ), Vj € M,

In general, cooperation is expected to enhance the p@here(y)™(w),j € M,w € Q) are the rate vectors resulting
ticipants’ payoffs. But, in provider customer games, as tiffom the joint action{ajx(w),j € M,k € By,w € Q} (Re-
following example illustrates, it can reduce the payoffsafne fer to Step 2 of the proof of Theorem IV.2 for analogous
of the providers and customers. This is because cooperatigguments).
provides more options to the providers and customers. Thus the game is balanced, and nonemptyness of the core

Example V.3. Consider a provider customer game with = follows from Theorem IV.1. u

M = {1,2,3,4}, B; = {i}, i = 1,2,3,4 and |Q] = 1.
LetT11:T44:P,T21:T43:Qand7’jk20 .
otherwise. Supposf < . Suppose that the payoff of each The coalitional game< (N’M)_’” > can not be re- )
provider (customer, resp.) equals the aggregate rate ivioies Iated. to the exchange market setting that we gonstructed in
(receives, resp.). The unique core payoff for providersaust  S€ction 1V-B. But, we obtain a payoff profile in the core,
tomers in the grand coalition (of all providers and custosyer With arbitrary precision using a different technique. Westfir
are (Q,0,0Q,0) and (0,Q,0,Q), respectively. In coalitions introduce the concept approximate core

with 1 provider and1 customer each, i.e§;, = 7; = {i} 9For anyu € RNUM. we denote byuST € RSUT, the sub-vector
(prOVidF‘TrS do not cooperate _and CUStomhas SUbSC"?bed of u corresponding to the coalitionS, 7), i.e., u$T = wi,Vi € S and

to provider i without examining other options), providers'u§7 =u;,vj e T

B. Computation of a Payoff Profile in the Core
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A feasible payoff profile is said to be in the approximate  Step 2: Consider the discrete coalitional game
core of the game< (N, M), v >, C,, if it can not be blocked (N, M),V >, whereV(S,7) is as defined in Step 1. Let

by at least a margin of, by any coalition. Formally, C./» denote thee/2 approximate core ok (N, M),V >.
In the following, we show thaﬁE/Q # (), and an element of

C. = {x € (N, M) : ¥(S,T), 3z € v(S, T) such that Ce/2 can be computed in finite time using a brute force search.
8) Next, we show thaf,,, C C., and consequently, the result of

2 > Xit€2; > X +e VieS jeT} the brute force search belongsd.

It is straightforward to check that far< 0, ¢ = 0, ande > 0, Theorem V.2. @6/2 # 0. Furthermore,C, /, C C..
C. is a subset of, equal to, and supersetCofrespectively.
Here we are naturally interested in the approximate corafor Proof: Consider a payoff profilex € C, the core of the
strictly positive value of. It is also evident from the definition Original game. Such a payoff profile exists, by Theorem \1. |
of the approximate core (8), that by |ettimw0 to 0’ payoff follows from the construction 0V(M,N) that there exists a
profiles in the approximate core get closer to those in the cok € V/(V, M) satisfyingx; —%; < ¢/2,x; —%; < ¢/2, Vi€
of the game, hence the name approximate core. N, j € M. We prove via contradiction that € C./,. Suppose
Let us fix ane > 0. In the following two steps, we presentit is not true. Then there exists a coalitio, 7) and a payoff
an algorithm to compute a payoff profile in the approximatdrofile z € V(S,7) such thatz; > x; + ¢/2,2; > x; +
Core'ce' of our NTU game. 6/2, Vi € S7j € 7. This ImplleS thatil > Xi,zj > Xj, Vi €
Step 1: For each coalition(S, 7) C (N, M), construct S:J € 7, i-e., x is blocked by the coalitionS, 7') through
a finite sequence of payoff profiles (S, T), V(S,T) = tAhe payoff profilez. This is in contradiction withx € C. Thus
{ulST 25T . #s7:STY such that any payoff profile in X € Ce/2, @nd s0Cc /s # 0. A
v(S,T) is dominated by at least one profile (S, 7) after ~ We now show thatC.» C C.. Consider somexC,/s.
¢/2 is added to each component of the latter. In other word8Upposex ¢ C.. Then by (8), there exists a coalitiq, 7)
and a payoff profilez € v(S,7) such thatz, > x; +¢€,2; >
Xj+¢€ VieS,je 7. Itfollows from the construction of
vx € v(S,T), ™7 € V(S,T) such that V(S,T) that there exists & € V(S,7T) satisfyingz; > z; —
x — u™(8T) < E]llx(SuT)- ©) €/2,z; > z; —€/2, Vi € S,j € T. Putting these inequalities
2 together, we have; > x;+¢€/2,2; > X;+¢€/2, Vi€ S,j € T.
We next show how to construgt(S, 7), for any (S, T) C Thi_s contradicts the fact that 56/2. Thusx € C. and the
(N, M). Note that we can restrict our search to the ParetGl-a'm_ follows. _ _ n
optimal payoff profiles inu(S,T), i.e., those such that no This method requires us to quantize the set of payoff profiles
other payoff profile inu(S, T) can give every one S, 7) a In & finite set (Step 1), which and therefore the computation
strictly better payoff. Also, every Pareto-optimal paypfbfile  time) grows exponentially in the dimension of the problerd an

x in v(S,7) can be obtained as a solution of the folIowingEarameterE- In addition, the quantization and the subsequent
optimization, OPTAST), for different choices oAST; AST £ rute-force search is centralized in that a central unitdeee

0 are sets of nonnegative weights [30, Sectiofi3]. to know all the payoff functionsf(-), g(-). The algorithm
OPTIAST) : max Y, s )\;-STXi-FZjeT )‘B‘STXJ' tf}lerefo_re gssenhally provides a proof of cqncept, thz?\t. an
subject to: a ?cgtlor) in the core can be computed to arbitrary prenisio
R ST in finite time.

1) xi = ZL{FJIP w)fii (yi5" (@) A payoff profile in the core may however be computed
2) x; = ZWGQIP(w)gj(yfT(w)) in polynomial time using distributed computations in an im-
3) yfkT(w) = p(w)rjr(w), je€T,keBs,wel portant special case: (i) the network states are detertiinis
4) > jerajpw) <1, keBs,we (i.e., |©2] = 1) and (ii) providers and customers have linear
5) Y kens Wik(w) <1, jeT,we payoff functions, i.e./fi;(yij) = Bi D _pep, Yix andg;(y;) =

6) ajp(w) >0, jeT,keBs,we Vi Swese Yik + Bi,y; > 0 foralli € N, j € M. Also, no

Let x(A\S7) be the solution of OPMS7). Note that the provider: (customerj, resp.) is required to reveal its revenue
function x(A\S7) is continuous inAS7. Also, since scal- (satlgfactlon) per unit throughput; (v;, resp.) to any other
ing AT does not change the solution of the above optRrovider (provider and customer, resp.).
mization, we can seb”, S)\ST + Y T)\ST — 1. As a Let the non-zero link rates;;, be in{ry,rs,...,r} where
! S % JE J ' . .

result, we have a continuous function over a bounded dat™> "2 > .- > 7z, and&; be the set of service-unit-customer
(ST S0 AST +5°. - AST = 1}, whose range covers nks with rate r;, G be the bipartite graptV,&;) (i.e.,

: 1€ ) JjE Vi ! . . .
the set of Pareto-optimal feasible payoff profiles. It thef€ service-unit-customer gragh= (V,€) but with only the
follows that if we select an appropriate collection of wetgh links in &). We describe a service-unit-customer allocation
{ALST \2ST  N\ks7:ST) the set of feasible payoff pro- algorithm for the grand coalitiorALG (elucidated in Fig. 1):
files obtained by solving the above optimization will be the 1) Leti =1, & = ¢.
desired selV (S, 7). 2) Assign service units to customers as per any maximal
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Provider 1 Provider 2 Provider 3

matching® in G = (V,& \ &_,). Let & be the set
of links incident to service units or customers matched
(allocated service) so far.

3) If £+1\ & is empty, terminate; else incrementand go
to the previous step.

Theorem V.3. For networks with linear payoff functions and
deterministic states, the payoff profile correspondind\td@s ,
ALG-PAYOFF, is in the core.

Proof: We prove thatALG-PAYOFF , denoted ax, is in Provder 1 Provider 2 Provider 3
C. Suppose not. Then there exists sétand 7 of providers

and customers respectively, and a Pareto optimal payofi@ro
in v(S, T) that blocksx. Every such payoff profile im(S,7)
can be obtained as a solution of QR¥7). However, in the
case of linear payoff functions, OPY*7) becomes a linear
optimization problem with totally unimodular [31] consina
matrix, and hence assumes only integral solutions [32], (i.e | =
a;, €{0,1},7 € T,k € Bs), Thus all Pareto optimal payoff ¢t c2ocsca
profiles inv(S, 7) correspond to matchings.In the following Fig. 1: The top figure shows an example network. Each base
we prove that no payoff profile itV (S, 7'), that corresponds to station has access to only one channel and therefore agastit

a matching, can block. Otherwise, there exists a service uniene service unit. The solid and dashed links have ratés

k € Bs that serves in the coalitionS,7) at strictly higher Kbps and100 Kbps respectively; no link between a service
rate than in the grand coalition. Assume that its new rate igit-customer pair denotésrate. The bottom figure shows the
-, andk serves customef € 7 at this rate. Let customer Service-unit-customer allocations generatedilys : the solid

and service unik obtain rates;, andr;, respectively, in the and dashed links are selected in iteratiorand?2 respectively.
grand coalition;)” > I*. Now, there are two possibilities.

1) I’ > I*: this implies that till the*th stage inPALG neither
customer;j nor service unitc were allocated (matched),
and link (4, k) was not selected at thith stage. This ’ ) )
contradicts the algorithm. i) we also consider fractional assignments ( [34] only al-

2) I’ < [*: this is equivalent tos, > 7+, and so contradicts lowed integral matchings).
the fact that(S, 7') can blockx. In a two-sided market, an allocation, to be a market equilib-

m lum, must satisfy a certiareciprocity condition (see [34, Sec-
ALG can be computed inBy|2[My|? time. This is tion 3]) in addition tobudget constrainand market clearing

becauseALG needs at most€| iterations, in each of which For the provider-customer competitive market, this cdodit
it executes (i)|€| operations and (ii) computes a maximafakes the following form. , , ,
matching. A maximal matching can be computed in a graﬁﬂuprocny: if customery is assignedy;;, fraction of a service

with |€| edges inO(log(|€])) time [33]. The result follows by Unit k¥ & Bi, the provideri gets > .z, ;. fraction of
observing thaté| = [Bx|| M. customer;j (considered as a good now).
It is shown in [34] (by means of a counter-example)

C. Provider Customer Coalition as a Competitive Market that a competitive equilibrium need not exist in a two-sided
The coalitional game< (A, M),v > can not be related competitive market, even when the market has a non-empty

to the exchange market setting (Section IV-B). HowevefOre.

interaction among providers and customers when both ard\evertheless, in order to ensure consistency with the tivera

decision makers can be modelled as a two-sided market whi@fup we use, we choose to position the provider-customer

has been studied in [34] ("pairing model” in the terminologynteractions in a cooperative context. This positioningvies

of [34]). In a pairing model, providers as well as customees afollowing important advantages. It allows us to analyze the

agenets, while service units and customers themselvesecarifPact of composition and size of coalitions on the payoffs

considered as goods; the providers’ goods are paired agaRfsproviders and customers using coalitional game theory -

the customers’ goods. Our setup is more general than the ¢hé0! that may not port to the competition interpretation.
in [34] in the following two ways: Specmcally., we do not conglude apriori that any customer

can be assigned to any provider, but allow the possibiliat th

10A matching is maximal if it is not a proper subset of any othatching. the assignments will occur in smaller sets (coalitions)t, Bu
“Note that all the payoff profiles in the core are Pareto offiina \ye show, that the grand coalition is optimal (or stable) in
vV, M), and hence, following the arguments in the proof, corredptm the sense that there exists one service unit-customeraalloc
matchings. Thus, if payoff functions are linear, fractibaasociations are not ™ ) -
needed to achieve a payoff profile in the core. tion such that the corresponding payoff profile can not be

f
=]
|

C

BS1

i) we allow multiple goods per agent (more than one service
units for a provider).
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blocked by that of any smaller coalition, and thus no set ahd customers. Defin§, = S NN, VI € L. We consider
providers and customers has incentive to split from the dram generalized payoff sharing among providers in which for
coalition(Theorem V.1). We also present a fully distriligend eachl € £ providers in the samé,; share their payoffs, but
polynomial time algorithm to compute such an allocation arttiose in differentS; do not share their payoffs. For example,
the corresponding payoff profile for linear payoff functoonif P = A/, all providers in a coalition share their payoffs,
and deterministic network states, that can be executedufithwhile if P = {{i},: € N’} no provider shares its payoff with
participants having to reveal confidential informationls@s others. The feasibility constraints, and consequentlystiteof
payoff functions to each other (Section V-B). feasible joint actions remain the same as in Section V. But
Finally, we use the above theoretical framework to discovésr a payoff profile to be in the set of feasible payoff profiles
several interesting artifacts of the system through examplv(S,7), we only need theggregate payofbf each sharing
For instance, as Example V.3 shows, some providers and cgssup to be less than or equal to that in the payoff vector
tomersmaybe worse off in the grand coalition, than when theyesulting from some feasible joint action. Formally,
operate in smaller groups, since the grand coalition offerse
choices to everybody, including the potential collaborsiof oS, T)={x R : Y %< z,VieL

the participants. More importantly, the participants mapt n €S €S (10)
be able to circumvent this loss by separating from the grand xj <z;,Vj €T, where
coalition, as they need to persuade others to leave thetiooali 7 = }‘ST(a) for somea € A(S,T)}.

with them so as to enhance their payoffs (i.e., a customer

needs to persuade a provider to leave with it in order not With this definition, the coalitional game (N, M), v > is

to have O rate and therefore O satisfaction, and sim”arty foow well defined. The definition of the core of this game will
a provider). However, our numerical evaluations demotstrae the same as (6). Using a similar technique as that used in th
how pervasive this phenomenon is (SectionVII-B). We see tH¥0of of Theorems V.2 and V.1, one can show that this game
providers’ payoffs usua"y increase due to coalitions arasin is balanced. It then follows from Theorem IV.1 that the caoire o
of the customers’ payoffs and their aggregate payoffs wmc this game is nonempty, and thus the grand coalition is stable

increase, but payoffs of some customers may decrease as wgg0, a payoff profile in the approximate core of this game
can be computed by an algorithm similar to the one discussed

VI. GENERALIZATIONS in Section V-B. All the formulations and results extend te th
A. Generalized Payoff Sharing scenario where there are groups of customers, and only those

We have so far assumed that players (providers and c¥4thin the same group share their payoffs.
tomers) do not share their payoffs. When a group of provider.
for instance, agree to share their payoffs, instead of eaeh
trying to maximize its own payoff, they attempt to maximize We have so far focused on coalitional games with scalar
their aggregate payoff, which is generally higher than thgayoff functions. In this section, we examine the scenario
sum of the maximized individual payoffs - the increase iwhere players have vector payoff functions. Such functions
the aggregate may lead to increase in individual shares. T¢a&n have several payoff components of different types. For
following example illustrates this phenomenon. instance, a provider's payoff can be a vector of its total

. . . . revenue, its competitive power in the market, fairness m th
Example VI.1. Consider the provider coalitional game in Sec- P P

; ) f L . network, reputational issues and social welfare, amongreth
tion IV (i.e., customers have subscribed apriori) and thitirsg b o

of Example V.2M, — {1}, Ms — {2,3}, and provider's A customer’s payoff, on the other hand, may consist of its

. service rate and cost, power consumption, the size of the
payoffs (revenues) equal the sum of their customers rate% o .

) network, and so on. Note that it is possible to have payoff
Recall that when the providers do not share the aggregat

payoffs, the only payoff in the core(i®, Q). But, the providers \&ctors with mixed transferable and nontransferable dayof

can generate an aggregate revenue i by serving onl components. Then, which components can be shared does not
g yareg y g y only depend on the players in a coalition, but also on thesype

provider 2's customers, which can for example be share(gf components. Specifically, there could be groups of player

P+Q Q—P H ) ’
as (. 7, @ + =5). Then, prowderls (Z's, resp.) payoff and players within each group would share the transferable
is higher (lower, resp.) than its aggregate customer reeenu mponents of payoffs, whenever they are in a coalition.

gtl; }[’ctlea;l:”;] ?g?/\gg%ruse FtJ:y(;ff é;ns(:]:r?r?ce()ct:ri zs:grve\(?f;tg)r;hyo??m this section, we investigate cooperation among progider
yimp pay 9 P " in presence of vector payoff functions with two components;

But, again, players may (i) refuse to share payoffs owing e transferable and another nontransferable. We consider
mutual distrust (and the need to disclose individual pasjoffthe scenario where all providers in a coalition would share
(ii) not be able to share payoffs as not all types of payoffs cdhe transferable component. The formulations and resalts ¢
be shared, since they may not have monetary equivalence artend to more general cases, where payoff functions have
may have individual satisfaction connotations. several components, and for given groups of providersjsiar

Let P = {M,l € L} be a partition of the set of of transferable components happens only among providers
providers . Now consider a coalitionS,7) of providers within the same group.

. Vector Payoff Functions
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Consider a coalitionS and a provideri € S. Assume In words,C. is the set of all payoff profiles that can not be
that provideri's transferable and nontransferable payoff conblocked lexicographically by a margin ef by any coalition.
ponents bef!(y?(w)) and fI'(y$(w)), respectively. Func- Here is the main result.
tions f!(-)s and f*(-)s are concave. The definitions of
rate vectory? (w), a feasible payoff profile{a;x(w),j €
Mg,k € Bs,winQ}, and a joint action spacei(S) are Proof: Suppose that instead of lexicographic ordering,
exactly the same as those in Section Ill. Now consider paoviders use a linear ordering to compare different pajoff
joint action o € A(S). We defineF®(a) € RS x R to i.e., for some giver\ > 0, (x!,x?) is preferred overz!,z)
be the payoff vector corresponding to the joint actigni.e., if Ax! + x? > \z! + z”. In other words, we can assume that
F3(a) = (x',x™) wherex! = > _oP(w)f!(yS(w)) and providers have scalar payoff functions given kg (-)+ f/(-)
xP =3 cqPw) [l (yS(w)) foralli € S, and(y? (w),i € foralli e N. We redefine the sets of feasible payoff profiles,
S,w € Q) are the rate vectors resulting from the joint actiori(S), S C A/, according to the new payoff functions. We can
e then define the core()), as follows.

C(\) = {(x',x") € v(N) : VS, H(z',2") € v(S) such that
Azl + 2z > Mt +xP, Vi e S}
v(S) = {(x!,x") € RS x RS : x! - 1145 <z - 1ixs, (14)
x" < z", It is straightforward to verify that the coalitional game
t  ny_ TS N,v > is balanced. Here, Theorem IV.1 applies, and we
where(z*,z") = 77 («) for somea € A(S)}&'ll) conclude that’(\) is nonempty for allA > 0..
_ o _ We next claim that C(\) < C. if X =
In words, v(S) is the set of all payoff profiles in which the ¢ /(1ax; (xtxmyen(A) X1). We prove this claim via
nontransferable utilities of providers ifi, as well as the sum contradicti(,)n.7Consider a payoff profilext,x") € é(A).
of their transferable utilities, are either equal to or Iéisan Suppose thaix!,x") ¢ C.. Then by (13)’ there exists a
those in the payoff vector generated by some feasible joigdajition S and a payoff profile(z!,z") € v(S) such that

action. _ _ _ either of the following holds for ali € S.
We now define the core of this game. To do this, an., ,, "
. . : i)z} >x'+e
order relation between two different payoff profiles of aii) 2" — x4 andzt > xt
provider is necessary, i.e., we need to know which of the’ ™ 7t i i

two payoffs, (x¢,x?) and (z!,z?), provideri prefers. We i

rheorem VI.1. For anye > 0, C. is nonempty.

We now define the set of feasible payoff profilesS), as
follows.

Since(x!,x™) € C()), it can not be blocked in linear ordering

consider a lexicographic ordering, in which a provider pref SENSe, by coalitioss. Thus, there exits ane S such that
the payoff that offers him higher nontransferable utilitg. Mzt + 7! < Axt 4+ xP, (15)
case there are several payoffs with this property, the oat th

n_xn < t_ gt
offers the highest transferable utility is preferred. Withis or, z' = xi <A —7),

%

lexicographic order relation in place, the core of the game i or, zj —xj <e (16)
defined to be the set of payoff profiles that can not be blockgfhe |55t inequality  follows  since A\ _
lexicographically, by any coalition, i.e., e/ (maxienr (st xmycovy X1). Clearly, (15) implies that (i)

can not hold fori. On the other hand, (16) implies that (i)
C={(x"x") € v(N):VS,H(z",2") € v(S) such that  also can not hold fori. These are in contradiction with
z' > X!, orz} = x? andz! > x!, Vi € S}. (x',x") ¢ Ce.
(12) Thus, the claim and subsequently, the theorem follovss.

We seek to show thdt is nonempty. Since function& (-)s Remark VI.1. Note that Theorem VI.1 does not imply tigat
and f*(-)s are concave, using a similar technique as in thi® nonempty. However, the approximate core can be made as
proof of Theorem V.2, it is straightforward to verify thatis close to the core as required, by selectingppropriately.

game is balanced. But since the coalitional games considere . . — .
in [25] have scalar payoff functions, it is not evident wheth We now discuss computing a paygﬁ profile in the_ approxi-
' mate core. A€ (\) C C., we can obtain a payoff profile ifi.

balancedness leads to nonemptiness of the core, in pres%‘fﬁnding one inC’(/\). SinceC’()\) i< the core of a coalitional

of vector payoff functions. However, with a slight twist in me with scalar payoff functions, a payoff profiled(v\) can

the definition of the core, we can use Theorem IV.1 a . . . .
derive interesting results. Towards this end, we first detfiree € computed by the algorithm discussed in Section IV-C4.

approximate cordor this game as follows C. Cooperation In Multi-hop Networks
. . In this section, we investigate cooperation among progider
Ce = {(x',x") € v(N) : VS, #(2",2") € v(S) such that in multi-hop networks. Similar to the single-hop scenario,

z" > x"+e orz' =x!"+eandz! >x!, vie S}  providersin multi-hop networks can cooperate by poolirgjith
(13) resources, such as service units and spectrum. In addition,
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they have the possibility to share their communicationesut provider or the providers associated with them are in a
which is a component specific to these types of networksoalition. Let random variable;;;, € [0, 1] be the fraction of
Having access to a larger set of routes, providers then hdime, service unit or customértransmits packets to customer
the potential to redirect their traffic through possibly teet j. oS are determined by the allocation scheme.
routes, which in turn can enhance their transmission powerNow consider a coalitios. When the providers associated
efficiency. In the following, we generalize the framework ofvith customer; and service unit or customérare inS and
Section Ill to accommodate cooperation in such networkihe network realization is), j receives a service ra,t;fk (w) =
We then formulate cooperation as another coalitional game;; (w)r;x(w) from k. For a provideri € S, define the rate
Finally, we show that this game has a nonempty core amdctorys (w) = (y‘sk(w),yfj(w),j € M,k € BsUMs,l €
therefore, the grand coalition is stable . Ms). In words,y? (w) is comprised of all the rates received
Consider a network in which customers can communicabg customers of provider (either form service units or other
with service units via potentially multi-hop routes. In ier  customers) as well as the rates these customers delivenéo ot
ular, customers can act as relays and carry packets of otbastomers. Providei receives a payoff equal tg;(y? (w)),
customers to their destination or other relays, in retumn favhich is the difference between the revenugeceives from
service discounts, for example. In such a network, a providigs customers, and the costs (e.g., power consumptionjutrn
has to determine the allocation of its service units to ausits by serving the customers in the coalition. Functigis)s are
as well as the communication routes. If now a set of providesssumed to be concave. The expected payoff provideS
cooperate and pool their resources (which in this case decluearns will be}" _, P(w) f;(y? (w)).
service units and customers/relays), besides gainingsadce  For a coalition S, a feasible joint action (allocation)
others’ service units, they also enjoy a larger set of relayfo;,(w),j € Ms, k € Bs UMg,w € Q} should satisfy the
This, in turn, can enhance customers’ service rates andtyuafollowing conditions.
of service, and can also improve power efficiency in the) ZjeMs ajr(w) <0, keBs,we

network. 2) % wpw) + 3 ajlw) < 6, j €
As in Section III, let\ be the set of providers. Leé%; and M’fﬁ%”ff ’ feMs T
M, be the sets of providefs service units and customers, re=3) > e i (W)rij(w) <

spectively. As before, we consider downlink communicagion S keBaums Yk (W)TjR(W), jE Ms,w e Q
We assume that each service unit (likewise, each custorasr) h) « ZS(), Sj €E Ms, ke BsUMgs,w e

access to a single channel (for transmission). In addite®, constraints (1) and (2) ensure that each node (service unit o
assume that no two service units in a vicinity have access {@stomer) communicates for at mastiraction of time. By

the same channel. We also assume that a pair of customers ¢&fstraints (3), each customer transmits packets at mast at
communicate with each other (to relay packets) withoutrinte aie |ess than or equal to that of receiving packets. AL&S)
fering with the communications of other customer-customggnote the joint action space of coalition

or ser\(ice unit-customer pairs (owing to appropriate _c@nn Consider a joint actiom € A(S) and let FS(a) be the
allocation for example). Therefore, the necessary andcseifii  resylting payoff vector. We can now define the sets of feasibl
condition for the simultaneous transmissions to be sumlesspayoﬁ profiles (v(S), S € ) and the core of the gamé

is that the set of transmitter-receiver pairs form a matghingjmilar to (1) and (2). Then our NTU game N,v > is
Similar communication models have extensively been asdumge|| defined. Using Theorem IV.1 for balanced games, we

in related contexts [22], [35]. can prove the following.
A sufficient condition for a schedule to be feasible is that th

fraction of time each service unit or customer communicatd§ieorem VI.2. The nontransferable payoff game \V, v >
be belows, whered is a constant ir{0, 1] and depends on the S balanced, and hence has a nonempty core.

network topology. For bipartite networks, for instanées 1, Proof: The proof is similar to those of Theorems IV.2
which is also a necessary condition [23]. It has been showRq v 1 and is omitted. -
that in generald = % is a sufficient but not a necessary

condition [23]. We assume that the network operates in a VII. QUANTITATIVE EVALUATIONS

way that this condition always holds. This assumption canWe evaluate the benefits of cooperation in context of the
be motivated by the fact that operating the network at fufirovider coalitional game (Section V) as well as provider-
capacity raises the delay which is not desirable. customer game (Section V). We consider logarithmic and
Suppose now that a service unit or customean transmit linear payoff functionsf(-) (¢(-)) for providers (customers,
to another customek at a rate equal to;;;, a random variable resp.). Such functions are concave, increasing and assome n
which is a function of the location of customgand the state negative values, and have been widely used as satisfaction
of channelk. Let Q2 be the state space of the channels’ statésnctions of customers and therefore constitute good eandi
and customers’ locations. We assuffig is finite. Letw be dates for the revenues they pay (and hence for the payoffs
an outcome in this state space dh@lv) be its probability.  the providers obtain) [21], [22]. We allow the rateg, to be
A service unit and a customer, or two customers, camiformly distributed over the sef0, 100,200} Kbps, and to
communicate only when both are associated with the saileindependent across service-unit-customer gairsin each



16

figure, the legends appear in the same order as the plots (ethe core and thus the lack of sharing did not introduce any
x5 is the topmost plot in the left sub-plot of Figure 2). inefficiency in any of these cases. Note that providers’ fffayo
and payoff gains are in increasing order of their number of
customers.

We have mostly considered systems where providers do not . .
share their payoffs (except Section VI-A). Example VI.1 reB- Provider Customer Coalitional Game
veals that the lack of payoff sharing may be inefficient as-pay Example V.3 demonstrated that cooperation in provider
offs of each provider (and hence the aggregate) may increasistomer games, can reduce the payoffs of some of the
in presence of sharing. But, again, such lack of payoff sigariproviders and customers. The question then is how pervasive
may be enforced due to mutual distrust among the providetisis phenomenon is, and also whether cooperation in gen-
We now examine whether such inefficiencies are pathologieial improves the aggregate payoffs of providers (custemer
or pervasive. Note that the maximum aggregate payoff anesp.)?
the corresponding service unit-customer allocationsefrefi we seek to answer the above considering logarithmic profit
to as theoptimal allocationhenceforth) can be computed byfunctions as beforef;;(yi;) = log (14 (X ,ez, y;x)) and
solving a concave maximization with the linear feasibility;(y;) = log (1+ (X ,cs, ¥jx)). We consider a provider
constraints (1), (2), (3) (see Section IV-A). The questioant customer game in the symmetric scenario described in the
is does the core of the non-transferable utility coaliti@mge second paragraph of Section VII-A. The service unit-cugtom
(i.e., where payoffs can not be shared) usually have at leafibcation that maximizes the aggregate payoffs of allipart
one payoff profile that maximizes the aggregate payoffs gfants (providers’ and customers’) is referred to as sbgial
the providers - more specifically does the payoff profile cosptimal. The payoff profile for providers and customers eerr
responding to the optimal allocation belong in the coredAlssponding to the socially optimal allocation have been plbtt
what are the payoff gains due to cooperation for each provida Figure 4. Owing to symmetry, all providers (customers,
for such a payoff profile (if it is in the core)? We seek to anresp.) receive equal payoffs - in the figures, (y,., resp.)
swer these questions considering logarithmic payoff fimmst is the payoff of a provider (customer, resp.) when it is in
for the providers:fZ(vi) = 3", 108 (1 4+ (Xyeps ¥ir))- @ coalition with o providers and5 « n « k customers. In
Note that log (1+ (X ,cz. ¥ix)) is the payoff (revenue) each case, the payoff profile turns out to be in the tore
provideri earns from its customer when in coalitionS. Note that for any givenk, z,,y, increase withn - as

We first assume a symmetric scenario withproviders, the size of the coalition increase, each participant’s ffayo
each provider having one base station &adcustomers. We increases. Thus, cooperation becomes more beneficial s bot
considern = 1,2,3,5 and varyk from 1 to 20. Owing to the the resources (service units) and the demands (customers)
symmetry, under the optimal allocation, all providers ggi@ increase. Customers’ payoffs decrease with increage fior
payoffs ¢, for n providers) and percentage payoff gains (ag8ny givenn as each customer needs to contend with more
compared to when each operates individually, irg), which customers for sharing the same amount of resource. The trend
we plot as a function of for differentn in Figure 2. In each is the opposite for providers’ payoffs as demand increasts w
case, the payoff profile corresponding to the optimal alioca increase ink. The aggregate providers’ payoffs increase with
belongs in the corfé. Thus, the lack of sharing of payoffs doesncrease im, k. The aggregate customers’ payoffs (the third
not introduce any inefficiency in these cases. The payoffgaisub-figure in Figure 4), and therefore the overall (i.e.,rale
are significant (in the range @b% — 40% for each provider), participants) aggregate payoffs also increase with irseréa
and both payoffs and payoff gains increase with increase rnnk.
n, k. Thus cooperation becomes more beneficial with increaseNext, we consider an asymmetric setting and linear payoff
in the size of the grand coalition, and the number of custsmdunctionsf;; (yi;) = > e, ¥ir andg;(y;) = > _rep, Yik (@S
(demand) of each provider. in Example V.3). Also, following Example V.3, we consider

Now we consider an asymmetric scenario with = 3, deterministic network realizations, where each realaratis
B, = By = Bs =1 and M; = 3k, M, = 4k, M3 = 5k obtained as per the service unit-customer rate distribatio
where k& ranges from1 to 20. (Note that Example VI.1 considered so far. A payoff profile in the core is chosen as
demonstrated the inefficiency due to lack of sharing using N _— 4 coalition hacrovid . i
an E.isymmemc setting). NO\.N’ due to a.lsymmet.ry' th? pay%ﬁ%sto(r?tlelrj: 7@3:51: L;ir;(q;d)t. itett (i*?r;[]) bce? étlhlgogayogf) rpor\(l)lfilzrscc?rrr]egpz:drng to
profile resulting from the optimal allocation provides @ifént  the socially optimal allocation. Now, Consider a generialition (S, 7) with
payoffs to different providers (Figure 3). The third subdfig n’ < n providers andn’ < m customers (', m’) # (n,5 xn x k)). There
shows thaty, s 27 > 5(S) forall S € N, for all the chosen 3 two possibilities.

: ; ia e i 1) m < 5 xm/ x ki The first sub-figure in Figure 4 reveals that the
parameter values. Thus, in each case, this payoff profile is | aggregate subplot of all the’ providers is less in(S,7T) than in the

grand coalition. Thus no feasible payoff profile can makeoélthem

A. Provider Coalitional Game

1270 verify whether a payoff profile(z}, z5,...,x;,) is in the core, it happier, and sdS,7") can not block(x*,y*).
suffices to check thaEieS zf > o(S) for all S C N, where(S) is 2) m’ > 5xm’ xk: The second sub-figure in Figure 4 reveals that not all
the maximum aggregate payoff of providersSn In the symmetric case we m/ customers can obtain better payoffs(ii, 7). Thus, again(S,T)
check the above fog} =z, for all 4. Sinces(S) equals|S|z|s|, we only can not block(x*,y*).

need to ensure that, > z,—1 > ... > x1, which holds as per Figure 2.
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Fig. 2: The left, middle and right sub-plots respectivelpwra provider’s payoff, payoff gains and percentage payaihg as
functions of the number of customers. The payoff of a providdénenn of them cooperate, is denoted by,.
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Fig. 3: The left and middle sub-plots respectively show piexs’ payoffs and payoff gains as functions of the number of
customers: the three providers hafe 4k and 5k customers, respectively. The payoff of providés x; when it is operating
alone, andx} in the grand coalition. The last plot shows aggregate payoiffder the globally optimal allocation and the
maximum aggregate payoffs for coalitiose {{1, 2}, {1,3},{2,3}}.

per ALG (Section V-B) in each realization and the payoffef the time).
are averaged over all the realizations. Hehe,= 3,B; = Note that customers of provider (2, 3, resp.), attain
By = B3 = 3,M = 6k, and we varyk from 1 to 10. We mostly lower (higher, resp.) grand-coalition payoff thao-n
consider the payoffs of providers and customers, (i) whén @boperation payoff. This is because the aggregate resource
participants are in the grand coalition (grand-coaliticayp (number of service units) to demand (number of customers)
offs), and (ii) when each providéroperates individually with is higher (equal, lower, resp.) for customers of providgg,
M; subscribed customers (no-cooperation payoff) (Figure %), resp.) in the no cooperation case. Customers of provder
Here, My = k, My = 2k, M3 = 3k. For ease of reference, weattain slightly higher payoff in grand coalition owing totea
denote the customers ifv; as those of provider (though in  diversity (in the grand coalition they find service units hwit
the grand coalition they can seek service from and pay to ahigh rates even when their rates from providirservice units
provider). are low). Thus, cooperation may reduce the rates of certain
Owing to symmetry, providers (and customers) attain equélasses of customers (which they can not circumvent since
grand-coalition payoff; no-cooperation payoffs are hoarevthey can not persuade providers to leave the grand coalition
higher for providers with larger number of customers ands they are gaining from cooperation).
lower for customers with larger number of contenders (i.e., Finally, the choice of the payoff functions ensures that the
larger k) (Figure 5). The grand-coalition payoff of a provideraggregate of providers payoffs equals that of the customers
however exceeds its no-cooperation payoff, suggestingiha payoffs for any service-unit-customer allocation. Figlse
and large providers enhance their payoffs through coojoerat reveals that undeALG the aggregate grand coalition payoff
As k increases, each provider’s (both grand-coalition and nof customers (and hence of providers) is (i) identical to the
cooperation) payoff initially increases rapidly but sutpgently maximum aggregate grand-coalition payoff, and (ii) exseed
saturates (once the number of customers becomes largetendbgir aggregate no-cooperation payoff. ThAtG is efficient
to allow the utilization of the service units at highest seateost in the above sense, and ensures that the customers arel overal
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aggregate customers’ payoff§, = 5« n x k x y,,.
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Fig. 5: The left and middle sub-plots respectively show [dexs’ and customers’ payoffs as functions of the number of
customers: the three providers have2k and 3k customers respectively. The payoff of providefcustomers) is z; (y;) in

the absence of cooperation. Each provider (customer)ge{g*) in the grand coalition. The right sub-plot shows aggregate
payoffs of customers (and hence of providers) with and withemoperation, and also their maximum aggregate payoffs.

better off after cooperation. customer’s payoffs may either increase or decrease (mostly
increases) depending on the resources and demands of the
VIIl. CONCLUSION AND FUTURE WORK coalitions and the nature of the payoff functions (Sectidh.V

We formulated interaction among cooperating service Computing a payoff profile in the core using distributed
providers and customers in wireless networks as nontraf®lynomial time solutions in systems with arbitrary payoff
ferable utility coalitional games. We showed nonemptyne8#nctions and random state evolution remains open. Next,
of cores in various scenarios (see Theorems IV.2, V.1 etd)) practice, coalition formation can incur overheads, ,eig.
implying that cooperation is globally desirable. We used tHan lead to increased loads on the call processors andgpillin
concept of market equilibrium to obtain a payoff profile ireth Systems. Finally, we have assumed that participants aomeat
core when customer subscriptions are fixed (Section IV-C2J). that they do not separate from coalitions unless they can
When customers strategically select their subscriptioves, improve their payoffs by separating. But, a participant may
showed how to compute a payoff profile in the core usingdopt @ more detrimental attitude towards others, in tiat, i
distributed polynomial time computations for linear pdyofits payoff is significantly less than that of the others it \ebu
functions and deterministic network states; we presentedn@t cooperate even at the cost of reducing its payoff by not
technique to obtain a payoff profile in the approximate co@0ing so. Investigating the stability of the grand coatitio
when the above assumptions must be relaxed (Section V-Bynsidering the coalition formation overheads and the fiayo
Many of our algorithms do not require participants to revedarity objectives constitute interesting open problems.
their confidential information (such as payoff functions) t
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