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Abstract—Efficacy of commercial wireless networks can be
substantially enhanced through large scale cooperation among
involved entities such as providers and customers. The success
of such cooperation is contingent upon the design of judicious
resource allocation strategies that ensure that the individuals
payoffs are commensurate to the resources they offer to the
coalition. The resource allocation strategies depend on which
entities are decision-makers, and whether and how they share
their aggregate payoffs. Initially, we consider the scenario where
the providers are the only decision-makers, and they do not share
their payoffs. We formulate the resource allocation problem as
a nontransferable payoff coalitional game and show that there
exists a cooperation strategy that leaves no incentive for any
subset of providers to split from the grand coalition, i.e., the
core is nonempty. To compute this cooperation strategy and
the corresponding payoffs, we subsequently relate this game
and its core to an exchange market setting, and its equilibrium
which can be computed by several efficient algorithms. Next,we
investigate cooperation when customers are also decision makers
and decide which provider to subscribe to, based on whether
there is cooperation. We formulate a coalitional game in this
setting and show that it has a nonempty core. We extend the
formulations and results to the cases, where players assume
more general payoff sharing relations, that is, sub-groupsof
providers can share the revenue among each other, and the
benefits are modeled as ”vector payoff functions”, where only
some components can be shared. Finally, we also consider multi-
hop networks.

I. I NTRODUCTION

A. Motivation

We have witnessed a significant growth in commercial
wireless services in the past few years, and the trend is
likely to continue in the foreseeable future. This growth has
been in part fueled by demand for new services such as
network games and multimedia transmissions. These services
are taxing the available transmission resources which are either
limited (e.g., spectrum, transmission energy), or costly (e.g.,
infrastructure). Cooperation among service providers hasthe
potential to substantially improve the resource utilization, and
should therefore facilitate the proliferation of wirelessservices.

To serve its customers, each provider uses (i) wireless
spectrum that it acquires either directly from central regulators
such as the FCC or in secondary markets from other providers
that have already licensed this spectrum from the regulators,
and (ii) infrastructure such as base station, access points, mesh
points (which we refer to as service units) that it deploys inits
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coverage area. Cooperation between providers entails pooling
and sharing some of these resources to ultimately better serve
the common pool of customers. This pooling and sharing of
resources can improve coverage and throughput, which can in
turn lead to higher customer satisfaction and higher revenues
for the providers.

We now describe the benefits of cooperation among service
providers. When different providers cooperate, their resources
such as spectrum and infrastructure are likely to be optimally
utilized. For example, if a provider’s resources exceed traffic
demands of its customers, it can use the underutilized portion
to serve customers of other providers in its coalition, and
enhance its profit. Similarly, even when its resources are
congested, owing to poor propagation quality in the spectrum
it owns, or temporary demand overload, it can deliver the
desired quality of service to its customers using the resources
of its collaborators. Such sharing turns out to be mutually
beneficial as different providers are unlikely to experience
poor quality of transmission and overload at the same time.
Similarly, providers can augment their coverage areas by
utilizing each others service units. Thus, overall, the providers
can substantially enhance their net payoffs by cooperating.

B. Research challenges and Contributions

The success of this setup, however, is contingent on whether
providers, as selfish entities, find the cooperation worthwhile.
More specifically, a provider expects to receive a payoff
commensurate to the resources such as service units and
channels it offers the coalition, and the wealth it generates.
The cooperation strategy of each provider involves the deter-
mination of which providers to cooperate with and how to
share resources (i.e., the allocations of the service unitsand
the spectrum to the customers). Design of rational cooperation
strategies is imperative to motivate providers to participate
in such cooperation. In particular, different choices of these
decision variables determine the individual payoffs and the
efficacy of cooperation. Also, collaborating providers maybe
able to share their profits. However, some providers may only
be willing to collaborate so as to enhance individual profits,
but may not be willing to share the profits, due to lack of
trust, the nontransferable nature of the profit, or other reasons.
In general, providers’ total utilities could be a function of
different types of payoffs, and they may be willing to share
some types but not the rest. Coalition formation also depends
on whether and how providers share their resulting payoffs.
Finally, cooperation among providers could have negative
effects on the customer base of some providers. A successful
cooperation strategy may as well be required to guarantee that
such potential downside of cooperation does not outweigh its
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upside.
We introduce our communication model, notion of coali-

tions and feasible actions and payoffs of providers in a coali-
tion and relate them to realistic wireless systems (SectionIII).
We present a coalitional game framework [1] for cooperation
among providers in a single-hop network using tools from
cooperative game theory (Section IV-A). In particular, we first
investigate providers’ cooperative resource allocation in the
scenario, where providers do not engage in payoff sharing.
Using this framework, we show that there exists an operating
point and corresponding payoffs that renders it optimal forall
providers to cooperate. Specifically, if a subset of providers
leave the grand coalition, regardless of how they cooperate
among each other, at least one provider will be worse off (Sec-
tion IV-A). In the cooperative game theory terminology, this
is equivalent to saying that the core of the game is nonempty.
To compute such an operating point, we next construct an ”ex-
change market” setting, where service providers are considered
to be agents in the market, and service units and channels
are the goods (Section IV-B). Agents will then trade goods
so as to maximize their own benefits. We show that in this
setting, market equilibrium exists. Furthermore, we show that
the allocation of goods in the economy given by the market
equilibrium can be translated to a cooperation strategy among
providers with the corresponding payoffs in the core. As a
result, we can compute an element of the core, by computing
the market equilibrium, which is possible by using several
available algorithms. This result is also of independent interest,
as it links two different concepts in this context.

Next we study cooperation in a scenario, where customers
are also decision makers. Particularly, customers can subscribe
to the provider of their choice, and that choice can depend
on providers’ cooperation decisions (section V). We propose
a cooperation model and show that the core of this game is
nonempty. Subsequently, we examine an algorithm to obtain
a core element in this game.

Finally, we generalize our framework to accommodate a)
more general payoff sharing rules, such as when there are
groups of providers, and providers within each group would
share their payoffs, while those in different groups would not,
b) vector payoff functions that are comprised of mixed trans-
ferable and nontransferable components of different types, and
c) multi-hop wireless networks where providers use ciutomers
as potential relays. We formulate three coalitional games with
the above three generalizations (section VI). We show that
the previous results extend to these scenarios as well. Con-
sidering different payoff functions, we numerically evaluate
the providers’ and customers’ payoff increases resulting from
cooperation for a range of available demands (customers) and
assets (base stations, spectrum) (Section VII).

II. RELATED WORK

Interactions between different entities in wireless networks
have primarily been investigated from the following extreme
perspectives. In the first, each entity is assumed to select its
actions so as to maximize its individual incentive without

coordinating with others, e.g., [2]–[8]. This scenario, which
has been investigated using noncooperative game theory, in
general suffers from inefficient utilization of resources [9]. The
other perspective has been to assume that entities selflessly
choose their actions so as to optimize a global utility function
even when such actions may deteriorate individual incentives
of some entities (e.g., [2], [6]). We investigate interactions
among providers assuming that each provider would be willing
to cooperate and coordinate its actions with others when such
cooperation enhances its individual incentives.

We obtained optimal cooperation schemes using the frame-
work of cooperative game theory. This choice of tools allowed
us to combine the desirable features of the extreme approaches
studied in the existing literature, that of allowing entities
to choose their actions guided by selfish objectives, and of
maximizing global utility functions. Surprisingly, cooperative
game theory has seen only limited use in wireless context so
far. For bandwidth allocation among mobiles in heterogeneous
wireless access environments, a Shapley value based algorithm
is proposed in [10]. Nash bargaining solutions have been pro-
posed for power control and spectrum sharing among multiple
users [11]. Coalitional games have been used recently for
modeling cooperation among nodes in the physical layer [12],
[13], rate allocation in multiple access channels (MAC) [14],
and rate allocation among mobiles and admission control in
heterogeneous wireless access environments [10]. All these
works use the framework of transferable utility coalitional
games as they assume that players can share their aggregate
payoffs in any arbitrary way. Non-transferable utility coali-
tional games have been used to model cooperation between
single antenna receivers and transmitters in an interference
channel [15], and to study collaborative sensing by secondary
users in cognitive radio networks [16]. For an overview of
applications of coalitional game theory in communication
networks, see [17].

We also adopt the framework of non-transferable utility
coalitional games. However, our problem formulation, solution
techniques, and results significantly differ from the aboveow-
ing to the difference in contexts - our focus is on cooperation
among providers and customers at the network and MAC
layers. Cooperation among providers has been previously
studied in [18], using transferable payoff coalitional games.
In the current work, we generalize formulations and results
in [18], so as to consider (i) more general payoff sharing
rules, (ii) the scenario, where customers are also players in
the game, and (iii) vector payoff functions with components
of various types. In order to obtain these results, we use
different analytical tools and concepts, e.g., nontransferable
payoff coalitional games and exchange market.

III. SYSTEM MODEL

We present the communication model in Section III-A
and describe in Section III-B how the formulations capture
the essence of existing wireless technologies. We describe
providers’ coalitions and their payoffs in Section III-C.
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A. Communication Model

Consider a network with a set of providersN . Each provider
i deploys a set of base stations (or access points) in order to
serve its set of customersMi. Each base station has access
to a certain set of channels (frequency bands)1, and each base
station-channel pair is referred to as a service unit. Thus,a
provider’s resources are its service-units. LetBi be the set of
service units of provideri, Bi∩Bj = ∅ andMi∩Mj = ∅ for
i 6= j. For aS ⊆ N , let BS andMS denote the set of service
units and customers associated with providers inS. ThusBN

andMN are the sets of all service units and all customers
in the network, respectively; we also defineM = MN . We
assume, unless mentioned otherwise, that the service unitsand
the customers communicate via single-hop links. We assume
that the achievable rates of a customer-service unit pair do
not depend on communications of other customers and service
units. Each customer or a service unit may be involved in at
most one communication at a given time (time sharing). The
system can be represented by a complete bipartite graph (G =
(V , E)) where the customers and the service units represent
the nodes and there exists a link between every customer-
service unit node pair. Any customer-service unit assignment
corresponds to a matching (a set of links such that no two
links have a common node) in the above graph.

For ease of exposition, we consider only downlink commu-
nications in our model (the results easily extend to the case
where communications involve both uplinks and downlinks).
We consider frequency selective fading and assume that when
customerj is served by service unitk, j receives at a rate
rjk, a random variable which is a function of the location of
customerj and the state of channelk both of which can vary
randomly. Letω represent a network state (customer location,
channel qualities resulting from fading and channel accessof
primary users),Ω be the collection of allωs andP(ω) be
the probability that the network state isω. The ratesrjk are
functions of ω and are denoted asrjk(ω). We assume that
|Ω| is finite, since (i) feasible service rates in any practical
communication system belong to a finite set, and (ii) we can
partition the service region in such a way that the service rates
received by the customers inside a member of the partition do
not depend on the locations of the customers.

B. How the formulations relate to existing wireless networks

We now illustrate via examples how our framework can
be used to model specific communication systems. Consider
elastic data transfers in the downlink of a CDMA cellular
system (e.g., used for internet access of cellular subscribers)
[19, Chapter 5] with provider setN . Owing to simplicity
of physical layer implementations, a base stationk always
transmits at a pre-determined fixed powerPk (which may be
different for different base stations). This happens even when
no mobiles associated with it require downlink transmission

1We assume that each base station has a separate radio available for every
channel. Most of our formulations and all our results go through even when
some base stations have fewer radios than channels - wherever applicable we
mention the necessary changes in the formulations in this case.

[20]. Each base station has access to only one band and thus
the base stations are the service units. Customers in a cell are
served ontime-sharingbasis, i.e., a base station transmits to at
most one customer at a given time. Also, at any given time, a
customer receives transmissions from at most one base station.
Then, {αjk(ω)} represent the fraction of times customers
are served by different base stations. When base stationk
transmits to customerj and the channel gain realization isω,
the achievable raterjk(ω) from k to j is a function of the
downlink SINR SINRjk(ω) [19, Chapter 5], where

SINRjk(ω) =
hjk(ω)Pk

∑

i′∈BN \{k} hji′ (ω)Pi′ + N0W
,

hjk(ω) are the channel gains between customer-base station
pairs,N0 is the power spectral density of the additive noise and
W is the spectrum bandwidth2. Thus, SINRjk(ω) and hence
rjk(ω), is independent of which customers are being served
by other base stations.

In a variant of the above service discipline (power shar-
ing), a base station distributes its total power among the
downlink transmissions in its cell. Orthogonal codes and
chip synchronous transmissions can ensure that the intra-cell
interference for a customer is negligible. As in the earlier
case, the inter-cell interference remains fixed. Thenrjk(ω)
is the fixed peak rate between customerj and base stationk,
and is achieved whenk uses its entire power to transmit to
j. The variables{αjk(ω)} account for the fractional power
allocation3. We formulate the characteristic functions consid-
ering time-sharing, and point out the modifications required
for incorporating power sharing.

Next, consider downlink communications in a multi-cell
OFDMA system [19, Chapter 6]. Different providers ac-
quire non-overlapping bands and the bandwidth acquired by
a provider is divided into several channels (sub-carriers in
OFDM terminology) (For small-scale providers, some of these
channels can be secondary access channels or spectrum white-
spaces acquired from primary users). In order to manage
interference, each provider partitions the set of sub-carriers
into reuse groups, assigning one such group of sub-carriers
to each base-station so as to ensure that inter-cell interference
to simultaneous transmissions in other base-station-sub-carrier
pairs is negligible. At any given time, a base station assigns
a sub-carrier to only one customer, but more than one sub-
carrier can be assigned to a customer (multiple allocation).
With such reuse partitioning and spatial allocation of sub-
carriers we can assume that the interference (both inter-cell
and intra-cell) is zero. Also assume that each base-station, in

2This SINR expression assumes that all base stations use the same band.
This facilitates smooth hand-overs but provides poor SINR to the mobiles
at cell boundaries owing to high interference from neighboring base stations.
Note that CDMA technology can provide acceptable rates evenin presence of
low SINRs. Nevertheless, in some implementations, neighboring base stations
are allocated different bands. In that case, we sum over all co-channel base
stations to obtain the aggregate interference in the denominator.

3In the low SNR regime, the rates are proportional to the SNR, and thus
the peak rates are shared among the mobiles in the same proportion as the
overall power.
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each stateω, assigns a fixed transmit power to each of its
carriers. thus, the downlink rate that a customer gets from
a service unit (which denotes a base-station and sub-carrier
pair) to which it is assigned depends only on the channel
gain from the corresponding base-station-sub-carrier pair to
itself, channel usage of primary users as applicable, and not
on the assignments of other customers and service units. The
communication model presented in Section III-A captures all
these attributes except the multiple allocation condition. We
will point out the modifications required for allowing multiple
allocation while formulating the feasible allocations in the next
subsection.

C. Coalitions and Payoffs

Definition III.1. A coalition S ⊆ N is a subset of providers
who cooperate. We refer toN as the grand coalition.

A service unit can serve a customer only when either
both are associated with the same provider, or the providers
associated with them are in a coalition. Consider a network
stateω. Let αjk(ω) ∈ [0, 1] be the fraction of time service
unit k serves customerj. Now consider a coalitionS. A joint
allocation forS is {αjk(ω), j ∈ MS , k ∈ BS , ω ∈ Ω}. Let
yS

jk(ω) denote the rate a customerj ∈ MS receives from a
service unitk ∈ BS ; yS

jk(ω) = αjk(ω)rjk(ω). In coalitionS,
provideri receives a benefit (payoff in economics terminology)
fi(y

S
i (ω)) whereyS

i (ω) = (yS
jk(ω), j ∈ Mi, k ∈ BS) is the

rate vector of its customers;yi(ω) = yN
i (ω). The payoff of a

provider may be the revenue it earns from its customers or may
reflect any other benefits it incurs by serving the customers,
e.g., reputation, social welfare, etc. The payoff functionsfi(·)s
are assumed to be concave since customers would pay in
accordance with their satisfactions, which are usually concave
functions of rates [21], [22]. Usually (and especially for the
revenue connotation),fi(yi) are additive functions of different
components, i.e.,fi(yi) =

∑

j∈Mi
hij (

∑

k yjk), wherehij(·)
is a concave (either strict or linear) revenue function chosen
by provideri for customerj. We therefore allow the revenue
functions to be different for different customers of the same
provider, though mostly,hij(x) = hik(x) for all j, k ∈ Mi,
i.e., a provider uses the same revenue functions for all of its
customers. The expected payoff provideri ∈ S earns will be
∑

ω∈Ω P(ω)fi(y
S
i (ω))4. We assume that the payoff functions

fi(.)s are decided apriori (based on governmental regulations,
customer charging policies etc.), and do not investigate the
optimal selections of these functions. Thus, in our setup, any
joint allocation{αjk(ω)} uniquely determines the payoffs of
all the providers.

Providers in a coalitionS have to decide how to schedule
service units to customers, i.e., select the variablesαjk(ω)s,
for eachω ∈ Ω, based on the payoff functionsfi(.)s, and the
service unit to customer ratesrjk(ω)s so as to maximize their

4One can also define the payoff of provideri to be a function of the expected
service rates, i.e.,fi(

∑

ω∈Ω
P(ω)yS

i
(ω)) - all results extend to this type of

payoff functions as well.

payoffs. For a coalitionS, a feasible allocation{αjk(ω), j ∈
MS , k ∈ BS , ω ∈ Ω} satisfies the following conditions.
1)

∑

j∈MS
αjk(ω) ≤ 1, k ∈ BS , ω ∈ Ω

2)
∑

k∈BS
αjk(ω) ≤ 1, j ∈ MS , ω ∈ Ω

3) αjk(ω) ≥ 0, j ∈ MS , k ∈ BS , ω ∈ Ω.
Constraints (1) ensure that for all service unitsk ∈ BS , their
service times are upper bounded by15. Constraints (2) ensure
that for all j ∈ S, the fraction of time customerj is served
is at most1. Incidentally, constraints (1), (2) arise from the
time-sharing model6, but for the multiple allocation model,
only constraints (1) suffice - all results presented below extend
even in absence of constraint (2).

Let A(S) denote the set of feasible joint actions of coalition
S. Now, consider a joint actionα ∈ A(S). DefineFS(α) ∈
R

S to be the payoff vector generated by the joint actionα, i.e.,
the ith component ofFS(a) is

∑

ω∈Ω P(ω)fi(y
S
i (ω)), ∀i ∈

S, where(yS
i (ω), i ∈ S, ω ∈ Ω) are the rate vectors resulting

from the joint actionα.
Associated with each coalitionS, there is a set of feasible

payoff profiles,v(S), defined as:

v(S) = {x ∈ R
S : x ≤ FS(α) for someα ∈ A(S)}. (1)

In other words,v(S) contains all payoff profiles which are less
than or equal to the payoff vector generated by some feasible
joint action. Now the stage is set for the following definition.

IV. PROVIDER COALITIONAL GAME

A. An NTU Game Formulation

Definition IV.1. A nontransferable payoff cooperative (NTU)
game consists of a pair< N , v >, where N is the set
of players, andv(S), ∀S ⊆ N is the set of feasible payoff
profiles satisfying

1) For eachS, v(S) is a closed set.
2) If z ∈ v(S) andx ∈ R

S with x ≤ z, thenx ∈ v(S).
3) The set of vectors inv(S) in which each player inS

receives no less than the maximum that he can obtain by
himself is a nonempty, bounded set.

When the providers cooperate can take any feasible joint
action, and consequently, achieve any payoff profile inv(N ).
Thus, cooperation has the potential to enhance the quality of
service to customers, which in turn can increase providers’
payoffs. However, there is a need for a criterion that deter-
mines which payoff profile inv(N ) will be acceptable to the
providers. We use a well known solution concept in coalitional

5This condition can be modified to capture the scenario when a service unit
has access to multiple channels with only1 radio, as follows. The modified
Constraint (1) for a service unit, bounds the sum ofαjk(ω) over customers
j ∈ MS , and channelsk accessed by that service unit, by 1. It can be shown
that all the subsequent results extends to this scenario.

6Note that for eachω, {αjk(ω)} comprise a feasible allocation of service
units to customers if and only if there exists a corresponding collection of
matchingsL1, L2, . . . and a collection of non-negative real numbersγ1, γ2, ..
such that (i)

∑

i
γi = 1, γi ≥ 0 and (ii) if the service unit - customer

allocation follows matchingLi for γi fraction of time for eachi, then
service unitk transmits to customerj for αjk(ω) fraction of time for all
j, k. Constraints (1), (2) provide the necessary and sufficient condition for
feasibility of {αjk(ω)} for eachω [23].
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game theory,core, to provide a rational basis for choosing
a payoff profile. The idea behind the core in a cooperative
game is analogous to that behind a Nash equilibrium of a
noncooperative game: an outcome is stable if no deviation is
profitable.

Definition IV.2. A payoff profilex ∈ v(N ) is said to be
blockedby coalitionS ⊆ N , if there is a payoff profilez ∈
v(S) such thatzi > xi for all i ∈ S, i.e., z makes every
provider in S better off.

Definition IV.3. The coreC of the game< N , v > is the set
of all feasible payoff profiles which can not be blocked by any
coalition. That is,

C = {x ∈ v(N ) : ∀S, ∄z ∈ v(S) such thatzi > xi, ∀i ∈ S}
(2)

The significance of the core comes from the fact that every
payoff profile in the core renders the grand coalition stable.
To see this, let providers form the grand coalition and select
a joint action that results in a payoff profilex ∈ C. Now,
suppose a set of providersS ⊂ N leave the grand coalition
and choose a joint action and the corresponding payoff profile
z ∈ v(S). They, however, would do so only if all of them
receive a higher payoff than what they could in the grand
coalition, i.e.,zi > xi, ∀i ∈ S. But this contradicts the fact
that x ∈ C. Therefore, the grand coalition is stable.This is a
globally desirable outcome, since the grand coalition has the
potential to achieve higher network-wide efficiency.

We now elucidatev(·) andC using a simple example.

Example IV.1. Consider a network withN = {1, 2, 3}, and
|Ω| = 1. Suppose each provider has one service unit and one
customer;Bi = Mi = {i}, i = 1, 2, 3. Let rii = 1, i = 1, 2, 3,
r21 = r32 = r13 = 3, and r31 = r12 = r23 = 2, and the
payoff of each provider equal the aggregate service rate of
its customers. When providers do not cooperate, each attains
a payoff of 1. In other words,v({i}) = [0, 1], ∀i. For the
coalition {1, 2}, we can similarly specify the feasible payoff
profiles asv({1, 2}) = {(x1, x2) : x1 ≤ 2, x2 ≤ 3}. Finally,
for the grand coalition we havev({1, 2, 3}) = {(x1, x2, x3) :
xi ≤ 3, ∀i}. Note that the feasible payoff profile(3, 3, 3)
is not blocked by any coalition, and hence is in the core.
This profile enhances the payoff of each provider by200%
compared to when they operate individually - rate diversity
(customers have different rates from different service units)
leads to a better match between customers and service units
in presence of cooperation (e.g.,1’s service units provides the
highest rate to2’s customer).

Though cooperation enhances providers’ payoffs, it may not
be advantageous for all the customers. The following example
illustrates this.

Example IV.2. Consider a network withN = {1, 2}, and
|Ω| = 1. Bi = {i}, i = 1, 2,M1 = {1, 2} and M2 = {3}.
Let r11 = r32 = P , r22 = r31 = Q and rjk = 0 otherwise.
SupposeP < Q. Suppose that the payoff of each provider
equals the aggregate service rate of its customers. Then,

v({1}) = v({2}) = [0, P ] and v({1, 2}) = {(x1, x2) : x1 ≤
Q, x2 ≤ Q}. Clearly, customers2 and3 get better rates, while
customer1 does not get any service in the coalition.

B. Nonemptyness of The Core

In several coalitional games the core is empty, i.e., the
grand coalition can not be stabilized [1, Example260.3] [15,
Example 20], and in general it is NP-hard to determine
whether the core of a coalitional game is nonempty [24].
Nevertheless, in this section we show that the game< N , v >
always has a nonempty core.

Definition IV.4. A collection of coalitionsI ⊂ 2N \∅ is called
balanced if there exist nonnegative weights(λS ,S ∈ I) such
that

∑

S∈I: i∈S

λS = 1, ∀i ∈ N .

Note that the balancedness condition for a collection of
coalitions does not depend on the players’ payoff functions,
but only on memberships of the coalitions in the collection.
Intuitively, a collection is balanced if the players are distributed
“uniformly” among the coalitions in the collection. For exam-
ple, a collection, where each player is in the same number
(say k) of coalitions, is balanced. Then, letλS = 1/k for
eachS ∈ I, and since exactlyk coalitions include the player
i, for eachi,

∑

S∈I: i∈S λS = k × (1/k) = 1. On the other
hand, if one player, say player1, belongs in all the coalitions
in the collection, and every other player belongs in only one
coalition each, the coalition is not balanced. To see this, note
that for a playeri (i 6= 1),

∑

S∈I: i∈S λS equals only oneλS ,
the one that containsi, and hence thisλS must equal1 if this
collection is to be balanced. Now, for player1,

∑

S∈I: 1∈S λS

equals
∑

S∈I λS , which exceeds1 since eachλS equals1.

Example IV.3. Let N = {1, 2, 3}. Then I1 =
{{1, 2}, {2, 3}, {1, 3}} is balanced; every player is in exactly
two coalitions, soλS = 1

2 is the balancing weight for each
coalition S ∈ I1. On the other handI2 = {{1, 2}, {2, 3}}
is not balanced, since there do not exist nonnegativeλ1 and
λ2 such thatλ1 = 1, λ1 + λ2 = 1, and λ2 = 1. Note that
here player2 belongs in both coalitions, whereas players1, 3
belong in one coalition each.

Definition IV.5. A game is balanced if for every balanced
collection of coalitionsI, if u ∈ R

N and uS ∈ v(S) for all
S ∈ I, thenu ∈ v(N )7.

Thus, balancedness of a game depends on the payoff func-
tions and feasible payoff profiles. For any coalitional game,
balancedness provides a sufficient condition for non-emptiness
of the core [25].

Theorem IV.1. A balanced game always has a nonempty core.

Here is the main result.

7For any u ∈ RN , we denote byuS ∈ RS , the sub-vector ofu
corresponding to the coalitionS, i.e., uS

i
= ui, ∀i ∈ S
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Theorem IV.2. The coalitional game among providers,<
N , v >, is balanced and hence has a nonempty core.

Proof: Consider a balanced collection of coalitionsI. Let
(λS ,S ∈ I) be the corresponding balancing weights. Also,
let u ∈ R

N be such thatuS ∈ v(S) for all S ∈ I, i.e, there
exists a joint action{αS

jk(ω), j ∈ MS , k ∈ BS , ω ∈ Ω} for
eachS ∈ I such that

1) {αS
jk(ω), j ∈ MS , k ∈ BS , ω ∈ Ω} satisfy feasibility

constraints (1) - (3) in Section III, for eachS ∈ I.
2) ui ≤

∑

ω∈Ω P(ω)fi(y
S
i (ω)), ∀i ∈ S, where yS

i (ω)
denotes the rate vector corresponding to joint action
{αS

jk(ω), j ∈ MS , k ∈ BS , ω ∈ Ω}.

We next show thatu ∈ v(N ). Define a joint action
{αjk(ω), j ∈ MN , k ∈ BN , ω ∈ Ω} as follows

αjk(ω) =
∑

S∈I:
j∈MS

k∈BS

λSαS
jk(ω). (3)

The rest of the proof consists of two steps.

Step 1: We show that{αjk(ω), j ∈ MN , k ∈ BN , ω ∈
Ω} satisfy feasibility constraints (1) in Section III.

∑

j∈MN

αjk(ω) =
∑

j∈MN

∑

S∈I:j∈MS

k∈BS

λSαS
jk(ω)

=
∑

S∈I: k∈BS

λS

∑

j∈MS

αS
jk(ω)

≤
∑

S∈I: k∈BS

λS

=
∑

S∈I: i∈S

λS (wherek ∈ Bi)

= 1.

The first equality follows from (3). The inequality follows
from feasibility of {αS

jk(ω), j ∈ MS , k ∈ BS , ω ∈ Ω} for
S ∈ I and Constraints (1) in Section III.

Similarly, one can show that feasibility constraints (2) are
also satisfied. Constraints (3) are trivial. Thus, the jointaction
{αjk(ω), j ∈ MN , k ∈ BN , ω ∈ Ω} is feasible.

Step 2: We show thatui ≤
∑

ω∈Ω P(ω)fi(yi(ω)), ∀i ∈
N , where(yi(ω), i ∈ S, ω ∈ Ω) are the rate vectors resulting
from the joint action{αjk(ω), j ∈ MN , k ∈ BN , ω ∈ Ω}.

Using (3), it can be easily verified that

yi(ω) =
∑

S∈I:i∈S

λSyS
i (ω), ∀i ∈ N , ω ∈ Ω, (4)

i.e., yi(ω) are convex combinations of{yS
i (ω),S ∈ I : i ∈

S}. Sincefi(·)s are concave, for each provideri we have:

∑

ω∈Ω

P(ω)fi(yi(ω)) ≥
∑

ω∈Ω

P(ω)
∑

S∈I:i∈S

λSfi(y
S
i (ω))

=
∑

S∈I:i∈S

λS

∑

ω∈Ω

P(ω)fi(y
S
i (ω))

≥
∑

S∈I:i∈S

λSui

= ui

Thus, the game is balanced. It then follows from Theo-
rem IV.1 that the core of the game is nonempty.

C. Computation of a Payoff Profile in the Core

We first construct an ”exchange market” setting, a concept
borrowed from micro-economics (Section IV-C1), and show
that amarket equilibriumin this setting, if exists, corresponds
to a payoff profile in the core of our NTU game (Sec-
tion IV-C2). Note that the fact that two different concepts
are equivalent in this context, can itself be of independent
interest. Finally, we show that a market equilibrium exists
(Section IV-C3), and can be computed without requiring ex-
change of confidential information among the providers (Sec-
tion IV-C4).

1) Exchange Market Preliminaries:We now introduce the
concept of ”exchange market” from micro-economic theory.
Consider a market with a set of agentsN . Let L denote the
set of goods in the market. Each agenti has a positive initial
endowment of the goods given by the vectorei = (el

i, l ∈ L).
Associated with each agenti is a utility functionui : RL

+ →
R; ui(xi) represents the satisfaction level of agenti from
the allocation of goodsxi = (xl

i, l ∈ L). Now let vector
p = (pl, l ∈ L) denote the prices of goods in the market. The
agents will then try to maximize their utilities through trading
of goods according to pricesp. We now present the definition
of the market equilibrium [26, pp. 579].

Definition IV.6. An allocation x∗ and a price vectorp
constitute a market equilibrium if

i) x∗
i ∈ arg max

xi∈RL
+

ui(xi) subject top.xi ≤ p.ei, ∀i ∈
N . Note thatp.x∗

i is the value of agenti’s allocation,
which clearly can not be larger than the value of his
initial endowment (budget constraint).

ii)
∑

i∈N (x∗
i − ei) = 0, that is, it is possible to attain the

agents’ desired allocations, just by using the total initial
endowments in the market (market clearing).

Such an allocationx∗ is called a market equilibrium alloca-
tion.

We now elucidate equilibrium prices and equilibrium allo-
cations using a simple example.

Example IV.4. Consider a market with two agents and two
goods. Initial endowments of goods aree1 = (1, 0) and
e2 = (0, 1). Utility functions areui(x

1
i , x

2
i ) = βi1 log(1 +

x1
i ) + βi2 log(1 + x2

i ), i = 1, 2. For identical utility functions,
i.e., with βi1 = β, βi2 = 1, (( β

1+β , β
1+β ), ( 1

1+β , 1
1+β )) is an
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equilibrium allocation with(β, 1) as an equilibrium price vec-
tor. For non-identical utility functions, i.e., with(β11, β12) =
(1, β) and (β21, β22) = (β, 1), ((qβ , 1 − qβ), (1 − qβ , qβ))
is a market equilibrium allocation, whereqβ = 0 if β > 2,
qβ = 2−β

1+β if β ∈ (1/2, 2) and qβ = 1 otherwise. Here,(1, 1)
is an equilibrium price vector.

We explain the above equilibrium allocations assuming that
β > 1. For identical utility functions, both agents value agent
1’s initial possession more. The second agent is able to obtain
only a small part (1/(1 + β)) of this more valuable good
by ceding a large part (β/(1 + β)) of its initial possession.
Thus, the first (second, resp.) ends up with a higher (lower,
resp.) shareβ/(1 + β) (1/(1 + β)) of both goods. Note that
the equilibrium price is higher for the first good. For non-
identical utility functions, each agent values the other agent’s
initial possession more, and hence they engage in an even
exchange after which each possesses greater amount of the
good it values more. In fact, forβ > 2, agents exchange their
initial possessions fully, and each possesses the good it values
more, in its entirety. The goods have equal equilibrium prices.

The following theorem provides a sufficient condition for a
market equilibrium to exist [26, pp. 585].

Theorem IV.3. Suppose that for every agenti ∈ N , ui(·)
is continuous, strictly concave, and strictly increasing.Also
suppose that

∑

i∈N ei ∈ R
L
++. Then a market equilibrium

exists, with the property that the price vector is strictly
positive, i.e.,p ∈ R

L
++.

Now suppose instead of trading, agents pool their goods
and reallocate them among themselves. The amount of goods
allocated to each agent has to be commensurate with agents
initial endowments, or some agents would not agree to it.
Consequently, one can use the concept ofcore of the market
as a policy to determine the allocation of goods among agents.
An allocationx∗ = (x∗

i , i ∈ N ) ∈ R
L×N
+ is in the core of the

market,C, if is can not be blocked by any coalition of agents
S ⊆ N , i.e., for anyS ⊆ N , there does not exist an allocation
(xi, i ∈ S) ∈ R

L×S
+ with the properties:

i)
∑

i∈S xi ≤
∑

i∈S ei.
ii) ui(xi) > ui(x

∗
i ), ∀i ∈ S.

Example IV.5. Consider the setting of Example IV.4. The first
condition for an allocation(y1

1 , y
2
1 , y

1
2 , y

2
2) to be in the core of

the market,C, is that y1
1 + y1

2 = e1
1 + e1

2 = 1 and y2
1 + y2

2 =
e2
1 + e2

2 = 1, and hencey1
2 = 1 − y1

1 and y2
2 = 1 − y2

1. The
second condition is that eitherβ log(1 + y1

1) + log(1 + y2
1) ≥

β log(1+x1
1)+ log(1+x2

1), or β log(2− y1
1)+ log(2− y2

1) ≥
β log(2 − x1

1) + log(2 − x2
1), for anyx1

1, x
2
1 ∈ [0, 1].

The following theorem states the relation between market
equilibria and the core of the market [26, pp. 654].

Theorem IV.4. Any market equilibrium allocation is in the
core of the marketC.

2) Provider Coalition as an Exchange Market:Consider
the NTU game defined in Section III. Think of the set of

providersN as the agents in the market. The combinations
of service units and network realizations,BN × Ω, then
constitute the goods in the economy. Specifically, an agent
i with allocationxi can access service unitk at mostxk

i (ω)
fraction of time, when the realization isω. Consequently, the
initial endowments of the providers are the full access to the
set of service units they own; for a provideri, for all ω ∈ Ω,
ek

i (ω) is 1 if k ∈ Bi and0, otherwise.
Now consider an allocation of goodsx in this setup. We

define the providers’ corresponding utilities to be the maxi-
mum payoff they can obtain by serving their own customers
using their access levels of service units. In other words,
ui(xi) = max

∑

ω∈Ω P(ω)fi(yi(ω))
subject to:

1) yi(ω) = (yjk(ω), j ∈ Mi, k ∈ BN ), ω ∈ Ω
2) yjk(ω) = αjk(ω)rjk(ω), j ∈ Mi, k ∈ BN , ω ∈ Ω
3)

∑

k∈BN
αjk(ω) ≤ 1, j ∈ Mi, ω ∈ Ω.

4)
∑

j∈Mi
αjk(ω) ≤ xk

i (ω), k ∈ BN , ω ∈ Ω.
5) αjk(ω) ≥ 0, j ∈ Mi, k ∈ BN , ω ∈ Ω.

Example IV.6. We now obtain the exchange market for the
setting of Example IV.1. Each provider constitutes an agent,
and each service unit constitutes a good. Provideri possesses
the ith good entirely, initially. Consider the payoff profile of
(3, 3, 3). This is attained when the first (second, third, resp.)
service unit serves agent2’s (3’s, 1’s) customers respectively
for the entire time. This corresponds to allocations of goods
xi to agents as follows:x1 = (0, 0, 1),x2 = (1, 0, 0) and
x3 = (0, 1, 0) - thus, the first agent gets the whole of the third
good and so on. The utilities of the agents can be obtained by
solving the above optimizations.

We next show how an allocation in the core of the market
can be used to obtain a payoff profile in the core of the NTU
game.

Theorem IV.5. Consider any allocationx∗ belonging toC.
Then(ui(x

∗
i ), i ∈ N ) ∈ C.

Proof: First, let {α∗
jk(ω), j ∈ Mi, k ∈ BN , ω ∈ Ω} be

an optimal solution of the optimization definingui(x
∗
i ). Note

that {α∗
jk(ω), j ∈ MN , k ∈ BN , ω ∈ Ω} constitute a feasible

joint action of providers inN . Thus(ui(x
∗
i ), i ∈ N ) ∈ v(N ).

We now prove the claim by contradiction. Suppose
(ui(x

∗
i ), i ∈ N ) /∈ C. Then there exist a coalitionS and a

payoff profilez ∈ v(S) such thatzi > ui(x
∗
i ) for all i ∈ S.

We argue that there exists an allocation(xi, i ∈ S) such
that (i)

∑

i∈S xi ≤
∑

i∈S ei and (ii) ui(xi) ≥ zi ∀i ∈ S,
as follows. Consider the joint action{αjk(ω), j ∈ MS , k ∈
BS , ω ∈ Ω}, corresponding to payoff profilez. Now define
xi = (

∑

j∈Mi
αjk(ω), k ∈ BS , ω ∈ Ω). Since{αjk(ω), j ∈

MS , k ∈ BS , ω ∈ Ω} is a feasible joint action of providers in
S, it satisfies Constraint (1) in Section III. This fact, together
with the definitions ofxi andei, implies that

∑

i∈S xk
i (ω) =

∑

j∈MS
αjk(ω) ≤ 1 =

∑

i∈S ek
i (ω) for all k ∈ BS , ω ∈ Ω.

Thus (i) holds. Also, since{αjk(ω), j ∈ Mi, k ∈ BS , ω ∈ Ω}
is a feasible solution andzi is the corresponding value of
the optimization definingui(xi), (ii) immediately follows. As
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a consequence of (ii),ui(xi) > ui(x
∗
i ), ∀i ∈ S. This is in

contradiction withx∗ ∈ C.

Theorem IV.6. If x∗ is a market equilibrium allocation in the
exchange market, the corresponding payoff profile(ui(x

∗
i ), i ∈

N ) is in the core of the NTU game.

Proof: Using Theorems IV.4 and IV.5, the claim imme-
diately follows.

3) Existence of The Market Equilibrium:In this section,
we establish the existence of the market equilibrium in our
model. We make the following technical assumptions.
1) The functionsfis are strictly concave, strictly increasing,

and smooth functions (i.e., the first two derivatives exist
and are continuous).

2) For any feasible allocation of interest,(xi,∈ N ), Con-
straints (3) in the optimizations definingui(·)s are never
binding.

We originally considered the functionsfis to be concave;
assumption (1) imposes stronger conditions. Assumption (2),
on the other hand, can be motivated by considering the number
of customers high enough so that it is always sub-optimal to
serve any one customer all the the time.

Using Assumption (2) we can rewrite the provideri’s utility
function ui(·) as
P: ui(xi) = max

∑

ω∈Ω P(ω)fi(yi(ω))
subject to:

1) yi(ω) = (yjk(ω), j ∈ Mi, k ∈ BN ), ω ∈ Ω
2) yjk(ω) = αjk(ω)rjk(ω), j ∈ Mi, k ∈ BN , ω ∈ Ω
3)

∑

j∈Mi
αjk(ω) ≤ xk

i (ω), k ∈ BN , ω ∈ Ω.
4) αjk(ω) ≥ 0, j ∈ Mi, k ∈ BN , ω ∈ Ω.

It follows from Assumptions (1) and (2) that functions
ui(·)s are continuous, strictly increasing, strictly concave, and
smooth. Then Theorem IV.3 implies that a market equilibrium
exists.

We give a simple example to illustrate the above notions.

Example IV.7. Consider a network withN = {1, 2}, and
|Ω| = 1. Bi = {i}, i = 1, 2, andMi = {2i − 1, 2i}, i = 1, 2.
Let rji = P, j ∈ Mi, rj1 = Q, j ∈ M2, and rj2 = 2Q, j ∈
M1. A provider’s payoff is a function of rate received by each
of its customers;fi(y

S
i ) =

∑

j∈Mi
log(

∑

k∈BS
yS

jk), i = 1, 2.
The set of all market equilibrium prices and allocations,
(p,x), is
{(β, 1), ((0, β), (1, 1 − β)) : β ∈ [ P

2Q , 1]}

∪ {(1, β), ((1 − β, 1), (β, 0)) : β ∈ [P
Q , 1]}.

Each provider allocates its share equally among its customers.
Finally, we obtain the following set of payoff profiles that are
in the core.
{(2 log(βQ), 2 log(Q+(1−β)P

2 ) : β ∈ [ P
2Q , 1]}

∪ {(2 log( (1−β)P+2Q
2 ), 2 log(βQ

2 )) : β ∈ [P
Q , 1]}.

4) Computation of the Market equilibrium:

By Theorem IV.6, a payoff profile in the core of the
NTU game can be obtained by computing a market equi-
librium, which can be computed as follows. For a price
vector p, define the demand vector of agent (provider)i

as di(p) = argmax
xi∈RL

+
ui(xi) subject top.xi ≤ p.ei,

i.e., an allocation of goods to agenti, that maximizes his
utility, subject to his budget constraint. Then the aggregate
excess demand in the market is the functionξ : RL

+ → R
L

given by ξ(p) =
∑

i∈N (di(p) − ei), i.e., the aggregate
demand minus the total endowment. From Definition IV.6,p∗

is an equilibrium price vector ifξ(p∗) = 0. This equation
can be solved using theglobal Newton method[27]. The
market equilibrium allocation(x∗

i , i ∈ N ) then is di(p
∗).

Then, by Theorem IV.6, the corresponding payoff vector,
(ui(x

∗
i ), i ∈ N ), is in the core of the NTU game.

The above computation can be executed using a central
controller but without requiring any provideri to reveal its
own benefit functionsfi(·) and the service-unit-customer rates
rjk(ω) for its customersj ∈ Mi and any service unitk ∈ BN

to other providers (or the central controller). The central
controller only needs to know the total number of service units
of the providers and the number of network states. The need
for limited access to global information ensures confidentiality
of operations. At each iteration, the central controller selects
an initial price vectorp0 arbitrarily, and broadcasts it to all
providers. Each provider calculates its demand vectordi(p

0)
(as in the last paragraph), usingP (ω) for eachω ∈ Ω, fi(·)
and the service-unit-customer ratesrjk(ω) for its customers
j ∈ Mi and any service unitk ∈ BN and at eachω. Once
the central controller receives the demand vectors from the
providers, it determines the excess for this price vector as
ξ(p0) =

∑

i∈N (di(p
0) − ei), and updates the price vector

based on the value of this excess8, and communicates the new
price vector to the providers. The process is repeated, using
the new price vector at each step, until the excess is0.

The computation time of this algorithm is dominated by
that of theGlobal Newton Method. This method, despite not
guaranteed to run in polynomial time, in practice, is known
to terminate fast for large problems (i.e., grows polynomially
with problem size) [29, pp. 670]. But, when the customer
locations and channel states are random, the number of net-
work states|Ω|, and therefore the problem size, and hence
the computation times can grow very fast (exponentially) with
increase in the number of service units and customers. This
may not however pose a major challenge as the computations
are done off-line using large work-stations and at a slower
time-scale (only when the network state statistics change or
the coalitions are assessed). In addition, the above algorithm is
efficient (i.e., attains low computation time) for small|Ω|, i.e.,
for deterministic and pseudo-deterministic systems in which
customers are (almost) static and the qualities of channelsare
also (almost) fixed.

Remark IV.1. We can solve the optimization problem P by
solving separate problems for eachω ∈ Ω. Each problem

8The global Newton methodupdates the prices as:pn+1 = p
n −

adj(Jξ(pn)) ξ(pn), where, J(·), adj(·) are theJacobian of a multivariate
function [28, Section4.5] and the adjont of a matrix [28, Section0.8.2]
respectively. In practice, theJacobian is replaced by its finite difference

approximation;(Jξ(pn))jk =
ξj(pn + ǫek) − ξj(pn)

ǫ
.
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yields {xk
i (ω), αjk(ω), i ∈ N , j ∈ MN , k ∈ BN }. The

number of variables in these problems is1|Ω| times that in the
original problem. This substantially reduces the computation
complexity because the computation time for a convex program
is polynomial in the number of variables, and|Ω|, typically,
is large.

V. PROVIDER-CUSTOMER COALITIONAL GAME

We have so far assumed that the customer subscriptions
are determined apriori. However, cooperation among providers
may make some of their customers worse off (see Exam-
ple IV.2). Thus, customers can strategically subscribe to the
providers of their choices depending upon providers’ co-
operation decisions. Then, cooperation may enhance some
providers’ customer bases, and reduce others’. The following
example further elucidates this point.

Example V.1. Consider two providers with one service unit
each, i.e.,Bi = {i}. Customer1 (say C1) would subscribe
to one of them. Let the network have two states, i.e.,Ω =
{ω1, ω2}, P (ω1) = P (ω2) = 1/2 andr11(ω1) = 0, r11(ω2) =
H, r12(ω1) = r12(ω2) = L, whereH > L > 1. C1’s expected
satisfaction is

∑

ω∈Ω P (ω) log(x(ω)) if its rate is x(ω) in
state ω. In the non-cooperative regime,C1 must choose2
as with 1 its expected satisfaction is−∞ sincex(ω1) = 0,
but with 2 it may be log(L) > 0 instead (since potentially
x(ω1) = x(ω2) = L > 1.) But,C1’s decisionmaybe different
if providers cooperate. Then, ifC1 subscribes to2, its expected
utility may still be (at most)log(L). This is because atω2,
provider 1 may not serve2’s customers since2 may not be
able to reciprocate (owing to low transmission quality). But,
if C1 subscribes to1, 1 may have2 serveC1 at ω1 (possibly
by serving atω1 one of2’s customers to whom it may have a
high rate) and offer rateH to C1 at ω2. Thus,C1’s expected
utility is (log(L) + log(H)) /2 which exceedslog(L).

It is therefore important to understand how (and whether)
coalitions will be formed when both providers and customers
are decision-makers. We formulate the interactions among
providers and customers as a nontransferable payoff coalitional
game, and show that this game has a nonempty core (Sec-
tion V-A). Thus, the grand coalition is optimal in the sense
that it generates at least one payoff profile for providers and
customers that can not be blocked by any coalition. We then
investigate how to compute such a profile and prove that it is
polynomial time computable when the payoffs are linear func-
tions and the network states are deterministic (Section V-B).

A. An NTU Game Formulation

We first redefine a coalition as follows.

Definition V.1. A coalition (S, T ),S ⊆ N , T ⊆ M, is a
subset of providers and customers who cooperate, that is each
customer inT agrees to subscribe to one of the providers in
S, and providers inS jointly serve customers inT . Thegrand
coalition now refers to(N ,M).

Consider a network realizationω, and also a coalition
(S, T ). Let yST

jk (ω) denote the rate a customerj ∈ T receives
from a service unitk ∈ BS ; yST

jk (ω) = αjk(ω)rjk(ω). Define
customerj’s rate vectoryST

j (ω) = (yST
jk (ω), k ∈ BS), and its

rate vector from a provideri ∈ S, yST
ij (ω) = (yST

jk (ω), k ∈
Bi). For serving customerj, provider i receives a payoff
(e.g., revenue fromj) fij(y

ST
ij (ω)), while customerj attains

a payoff (satisfaction)gj(y
ST
j (ω)), which is a function ofj’s

received rate. Such revenue and satisfaction functions (fij(·)s
andgj(·)s, resp.) are widely assumed to be concave [21], [22].
Thus, the expected payoffs of provideri and customerj will
be

∑

j∈T
ω∈Ω

P(ω)fij(y
ST
ij (ω)) and

∑

ω∈Ω P(ω)gj(y
ST
j (ω)), re-

spectively, and are determined once the service-unit-customer
allocations{αjk(ω)} are decided.

Similar to that in Section III, we define a feasible joint
action of providers and customers in coalition(S, T ) as an
allocation{αjk(ω), j ∈ T , k ∈ BS , ω ∈ Ω} that satisfies the
following conditions.

1)
∑

j∈T αjk(ω) ≤ 1, k ∈ BS , ω ∈ Ω
2)

∑

k∈BS
αjk(ω) ≤ 1, j ∈ T , ω ∈ Ω

3) αjk(ω) ≥ 0, j ∈ T , k ∈ BS , ω ∈ Ω.

Note that for any feasible joint action{αjk(ω), j ∈ T , k ∈
BS , ω ∈ Ω}, there is a schedule that allocates service units to
customers, ensuring that for allj ∈ T , k ∈ BS , ω ∈ Ω, service
unit k serves customerj for αjk(ω) fraction of time [23].
Let A(S, T ) denote the joint action space of coalition(S, T ).
For a joint actionα ∈ A(S, T ), let FST (α) ∈ R

S∪T be
the resulting payoff vector. We now define the set of feasible
payoff profiles,v(S, T ), as follows:

v(S, T ) = {x ∈ R
S∪T : x ≤ FST (α) for some

α ∈ A(S, T )}.
(5)

That is, v(S, T ) is the set of all payoff profiles which are
achievable through some feasible joint action of coalition
(S, T ), and all payoff profiles lower than those. Now, accord-
ing to Definition IV.1,< (N ,M), v > is a well defined NTU
game. The core of the game is defined as follows.

C = {x ∈ v(N ,M) : ∀(S, T ), ∄z ∈ v(S, T ) such that

zi > xi, zj > xj , ∀i ∈ S, j ∈ T }
(6)

Note that every payoff profile in the core renders the grand
coalition stable. To see this, let providers and customers form
the grand coalition and select a joint action that results ina
payoff profile x ∈ C. Now, suppose a set of providers and
customers(S, T ) ⊂ (N ,M) leave the grand coalition and
choose a joint action and the corresponding payoff profilez ∈
v(S ∪ T ). They, however, would do so only if all of them
receive a higher payoff than what they could in the grand
coalition, i.e.,zi > xi, zj > xj , ∀i ∈ S, j ∈ T . But this
contradicts the fact thatx ∈ C. Therefore, the grand coalition
is stable. Also note that the condition for a payoff profile tobe
in the core, as given in (6), does not depend on which provider
a customer subscribes to. Therefore, once the grand coalition
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has been formed, a customer can not improve his payoff by
changing subscription.

Allowing customers also to be decision makers is likely to
improve the global utility, as the following example shows.

Example V.2. Let N = {1, 2}, Bi = {i}, i = 1, 2, and
M = {1, 2, 3}. Let r1k = P and rjk = Q for j > 1,
for all k ∈ BN . SupposeP < Q. Let each provider’s
payoff equal the sum of the service rates it provides to the
customers, and each customer’s payoff equal its service rate.
Then the only payoff allocation in the core provides payoff
Q to each provider andQ to customers2, 3 each and0 to
customer1. This allocation corresponds to customers2, 3
being served full-time from the service units and customer
1 receiving no service whatsoever. We now prove that this
payoff profile is the only allocation in the core. Note that
neither the providers nor customers2, 3 can enhance their
payoffs in any other coalition. If customer1 receives any
service (say from provider1), then either customer2 or 3
receives lower payoffs (as they can no longer receive full-time
service), and then provider1 (and 2) generates revenue at
rate P for the fraction of time it serves customer1. Thus,
provider 1’s (or 2’s or for both) payoff decreases belowQ.
Then the provider whose payoff decreases can split along with
one of the customers whose payoff decreases and each can
obtain a payoff ofQ - thus this payoff blocks any allocation
that provides customer2 a positive payoff. Now, note that
the payoff profile in the core provides an aggregate rate of
2Q to the customers. This is the maximum possible aggregate
rate to the customers. In fact, if customers had subscribed
apriori, say M1 = {1},M2 = {2, 3} (coalition game in
Section IV), and providers’ payoffs had been the sum of their
customers rates,v({1}) = [0, P ], v({2}) = [0, Q], and the
only payoff in the core would have been(P, Q) - this is the
only payoff that provides a payoff of at leastP (Q, resp.) to
provider1 (2, resp.). This corresponds to serving provider1’s
(2’s, resp.) customer using provider1’s (2’s, resp.) service unit
respectively. Thus, effectively, there is no cooperation!Also,
the customers obtain a lower aggregate rate,P + Q.

In general, cooperation is expected to enhance the par-
ticipants’ payoffs. But, in provider customer games, as the
following example illustrates, it can reduce the payoffs ofsome
of the providers and customers. This is because cooperation
provides more options to the providers and customers.

Example V.3. Consider a provider customer game withN =
M = {1, 2, 3, 4}, Bi = {i}, i = 1, 2, 3, 4 and |Ω| = 1.
Let r11 = r44 = P , r21 = r43 = Q and rjk = 0
otherwise. SupposeP < Q. Suppose that the payoff of each
provider (customer, resp.) equals the aggregate rate it provides
(receives, resp.). The unique core payoff for providers andcus-
tomers in the grand coalition (of all providers and customers)
are (Q, 0, Q, 0) and (0, Q, 0, Q), respectively. In coalitions
with 1 provider and1 customer each, i.e.,Si = Ti = {i}
(providers do not cooperate and customeri has subscribed
to provider i without examining other options), providers’

and customers’ payoffs are(P, 0, 0, P ). Clearly, cooperation
reduces the payoffs of provider4 and customer1 - but the
aggregate providers’ (customers’, resp.) payoffs improve!

We now prove that the core of the above game is nonempty.

Theorem V.1. The nontransferable payoff game
< (N ,M), v > is balanced and hence has a nonempty
core.

Proof: Consider a balanced collection of coalitions
I ⊂ 2N∪M\∅ and the corresponding balancing weights
(λST , (S, T ) ∈ I). Also, let u ∈ R

N∪M be such that
uST ∈ v(S, T ) for all (S, T ) ∈ I9, i.e., there exists a joint
action{αST

jk (ω), j ∈ T , k ∈ BS , ω ∈ Ω} for each(S, T ) ∈ I
such that

a) {αST
jk (ω), j ∈ T , k ∈ BS , ω ∈ Ω} satisfy feasibility

constraints (1) - (3) introduced in this section, for each
(S, T ) ∈ I.

b) ui ≤
∑

j∈T
ω∈Ω

P(ω)fij(y
ST
ij (ω)), ∀i ∈ S, whereyST

j (ω)

denotes customerj’s rate vector corresponding to joint
action{αST

jk (ω), j ∈ T , k ∈ BS , ω ∈ Ω}.
c) uj ≤

∑

ω∈Ω P(ω)gj(y
ST
j (ω)), ∀j ∈ T .

We next show thatu ∈ v(N ,M). The procedure is similar to
that in the proof of Theorem IV.2. First, define a joint action
{αjk(ω), j ∈ M, k ∈ BN , ω ∈ Ω} as follows

αjk(ω) =
∑

(S,T )∈I: j∈T
k∈BS

λST αST
jk (ω). (7)

The following two steps, concludes the proof.
Step 1: We need to show that{αjk(ω), j ∈ M, k ∈

BN , ω ∈ Ω} satisfy feasibility constraints (1) - (3). The argu-
ment is similar to that in Step 1 of the proof of Theorem IV.2,
and is omitted for brevity.

Step 2: Using concavity of fij(·)s and gj(·)s, it is
straightforward to show that

i) ui ≤
∑

j∈M
ω∈Ω

P(ω)fij(y
NM
ij (ω)), ∀i ∈ N , and

ii) uj ≤
∑

ω∈Ω P(ω)gj(y
NM
j (ω)), ∀j ∈ M,

where(yNM
j (ω), j ∈ M, ω ∈ Ω) are the rate vectors resulting

from the joint action{αjk(ω), j ∈ M, k ∈ BN , ω ∈ Ω} (Re-
fer to Step 2 of the proof of Theorem IV.2 for analogous
arguments).

Thus the game is balanced, and nonemptyness of the core
follows from Theorem IV.1.

B. Computation of a Payoff Profile in the Core

The coalitional game< (N ,M), v > can not be re-
lated to the exchange market setting that we constructed in
Section IV-B. But, we obtain a payoff profile in the core,
with arbitrary precision using a different technique. We first
introduce the concept ofapproximate core.

9For any u ∈ RN∪M, we denote byuST ∈ RS∪T , the sub-vector
of u corresponding to the coalition(S,T ), i.e., uST

i
= ui, ∀i ∈ S and

uST
j

= uj ,∀j ∈ T
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A feasible payoff profile is said to be in the approximate
core of the game< (N ,M), v >, Cǫ, if it can not be blocked
by at least a margin ofǫ, by any coalition. Formally,

Cǫ = {x ∈ v(N ,M) : ∀(S, T ), ∄z ∈ v(S, T ) such that

zi > xi + ǫ, zj > xj + ǫ, ∀i ∈ S, j ∈ T }
(8)

It is straightforward to check that forǫ < 0, ǫ = 0, andǫ > 0,
Cǫ is a subset of, equal to, and superset ofC, respectively.
Here we are naturally interested in the approximate core foran
strictly positive value ofǫ. It is also evident from the definition
of the approximate core (8), that by lettingǫ go to 0, payoff
profiles in the approximate core get closer to those in the core
of the game, hence the name approximate core.

Let us fix anǫ > 0. In the following two steps, we present
an algorithm to compute a payoff profile in the approximate
core,Cǫ, of our NTU game.

Step 1: For each coalition(S, T ) ⊆ (N ,M), construct
a finite sequence of payoff profiles inv(S, T ), V (S, T ) =
{u1,ST , u2,ST , . . . , ukST ,ST }, such that any payoff profile in
v(S, T ) is dominated by at least one profile inV (S, T ) after
ǫ/2 is added to each component of the latter. In other words,

∀x ∈ v(S, T ), ∃um,(ST ) ∈ V (S, T ) such that

x − um,(ST ) ≤
ǫ

2
11×(S∪T ).

(9)

We next show how to constructV (S, T ), for any (S, T ) ⊆
(N ,M). Note that we can restrict our search to the Pareto-
optimal payoff profiles inv(S, T ), i.e., those such that no
other payoff profile inv(S, T ) can give every one in(S, T ) a
strictly better payoff. Also, every Pareto-optimal payoffprofile
x in v(S, T ) can be obtained as a solution of the following
optimization, OPT(λST ), for different choices ofλST ; λST 6=
0 are sets of nonnegative weights [30, Section2.6.3].
OPT(λST ) : max

∑

i∈S λST
i xi +

∑

j∈T λST
j xj

subject to:

1) xi =
∑

j∈T
ω∈Ω

P(ω)fij(y
ST
ij (ω))

2) xj =
∑

ω∈Ω P(ω)gj(y
ST
j (ω))

3) yST
jk (ω) = αjk(ω)rjk(ω), j ∈ T , k ∈ BS , ω ∈ Ω

4)
∑

j∈T αjk(ω) ≤ 1, k ∈ BS , ω ∈ Ω
5)

∑

k∈BS
αjk(ω) ≤ 1, j ∈ T , ω ∈ Ω

6) αjk(ω) ≥ 0, j ∈ T , k ∈ BS , ω ∈ Ω

Let x(λST ) be the solution of OPT(λST ). Note that the
function x(λST ) is continuous inλST . Also, since scal-
ing λST does not change the solution of the above opti-
mization, we can set

∑

i∈S λST
i +

∑

j∈T λST
j = 1. As a

result, we have a continuous function over a bounded set
{λST :

∑

i∈S λST
i +

∑

j∈T λST
j = 1}, whose range covers

the set of Pareto-optimal feasible payoff profiles. It then
follows that if we select an appropriate collection of weights
{λ1,ST , λ2,ST , . . . , λkST ,ST }, the set of feasible payoff pro-
files obtained by solving the above optimization will be the
desired setV (S, T ).

Step 2: Consider the discrete coalitional game<
(N ,M), V >, whereV (S, T ) is as defined in Step 1. Let
Ĉǫ/2 denote theǫ/2 approximate core of< (N ,M), V >.
In the following, we show that̂Cǫ/2 6= ∅, and an element of
Ĉǫ/2 can be computed in finite time using a brute force search.
Next, we show that̂Cǫ/2 ⊂ Cǫ, and consequently, the result of
the brute force search belongs toCǫ.

Theorem V.2. Ĉǫ/2 6= ∅. Furthermore,Ĉǫ/2 ⊂ Cǫ.

Proof: Consider a payoff profilex ∈ C, the core of the
original game. Such a payoff profile exists, by Theorem V.1. It
follows from the construction ofV (M,N ) that there exists a
x̂ ∈ V (N ,M) satisfyingxi − x̂i ≤ ǫ/2,xj − x̂j ≤ ǫ/2, ∀i ∈
N , j ∈ M. We prove via contradiction that̂x ∈ Ĉǫ/2. Suppose
it is not true. Then there exists a coalition(S, T ) and a payoff
profile ẑ ∈ V (S, T ) such thatẑi > x̂i + ǫ/2, ẑj > x̂j +
ǫ/2, ∀i ∈ S, j ∈ T . This implies that̂zi > xi, ẑj > xj , ∀i ∈
S, j ∈ T , i.e., x is blocked by the coalition(S, T ) through
the payoff profileẑ. This is in contradiction withx ∈ C. Thus
x̂ ∈ Ĉǫ/2, and soĈǫ/2 6= ∅.

We now show thatĈǫ/2 ⊂ Cǫ. Consider somêxĈǫ/2.
Supposêx /∈ Cǫ. Then by (8), there exists a coalition(S, T )
and a payoff profilez ∈ v(S, T ) such thatzi > x̂i + ǫ, zj >
x̂j + ǫ, ∀i ∈ S, j ∈ T . It follows from the construction of
V (S, T ) that there exists âz ∈ V (S, T ) satisfyingẑi ≥ zi −
ǫ/2, ẑj ≥ zj − ǫ/2, ∀i ∈ S, j ∈ T . Putting these inequalities
together, we havêzi > x̂i+ǫ/2, ẑj > x̂j+ǫ/2, ∀i ∈ S, j ∈ T .
This contradicts the fact that̂x ∈ Ĉǫ/2. Thus x̂ ∈ Cǫ and the
claim follows.

This method requires us to quantize the set of payoff profiles
in a finite set (Step 1), which and therefore the computation
time) grows exponentially in the dimension of the problem and
parameterǫ. In addition, the quantization and the subsequent
brute-force search is centralized in that a central unit needs
to know all the payoff functionsf(·), g(·). The algorithm
therefore essentially provides a proof of concept, that an
allocation in the core can be computed to arbitrary precision,
in finite time.

A payoff profile in the core may however be computed
in polynomial time using distributed computations in an im-
portant special case: (i) the network states are deterministic
(i.e., |Ω| = 1) and (ii) providers and customers have linear
payoff functions, i.e.,fij(yij) = βi

∑

k∈Bi
yjk andgj(yj) =

γj

∑

k∈BS
yjk , βi, γj > 0 for all i ∈ N , j ∈ M. Also, no

provideri (customerj, resp.) is required to reveal its revenue
(satisfaction) per unit throughputβi (γj , resp.) to any other
provider (provider and customer, resp.).

Let the non-zero link ratesrjk be in{r1, r2, . . . , rL} where
r1 > r2 > . . . > rL, andEi be the set of service-unit-customer
links with rate ri, G(i) be the bipartite graph(V , Ei) (i.e.,
the service-unit-customer graphG = (V , E) but with only the
links in Ei). We describe a service-unit-customer allocation
algorithm for the grand coalition,ALG (elucidated in Fig. 1):

1) Let i = 1, E ′
0 = φ.

2) Assign service units to customers as per any maximal
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matching10 in G(i) = (V , Ei \ E ′
i−1). Let E ′

i be the set
of links incident to service units or customers matched
(allocated service) so far.

3) If Ei+1 \ E
′
i is empty, terminate; else incrementi, and go

to the previous step.

Theorem V.3. For networks with linear payoff functions and
deterministic states, the payoff profile corresponding toALG ,
ALG-PAYOFF , is in the core.

Proof: We prove thatALG-PAYOFF , denoted asx, is in
C. Suppose not. Then there exists setsS andT of providers
and customers respectively, and a Pareto optimal payoff profile
in v(S, T ) that blocksx. Every such payoff profile inv(S, T )
can be obtained as a solution of OPT(λST ). However, in the
case of linear payoff functions, OPT(λST ) becomes a linear
optimization problem with totally unimodular [31] constraint
matrix, and hence assumes only integral solutions [32] (i.e.,
αjk ∈ {0, 1}, j ∈ T , k ∈ BS), Thus all Pareto optimal payoff
profiles inv(S, T ) correspond to matchings.11 In the following
we prove that no payoff profile inV (S, T ), that corresponds to
a matching, can blockx. Otherwise, there exists a service unit
k ∈ BS that serves in the coalition(S, T ) at strictly higher
rate than in the grand coalition. Assume that its new rate is
rl∗ , andk serves customerj ∈ T at this rate. Let customerj
and service unitk obtain ratesrl′ andrl′′ respectively, in the
grand coalition;l′′ > l∗. Now, there are two possibilities.

1) l′ > l∗: this implies that till thel∗th stage inALG neither
customerj nor service unitk were allocated (matched),
and link (j, k) was not selected at thel∗th stage. This
contradicts the algorithm.

2) l′ ≤ l∗: this is equivalent torl′ ≥ rl∗ , and so contradicts
the fact that(S, T ) can blockx.

ALG can be computed in|BN |2|MN |2 time. This is
becauseALG needs at most|E| iterations, in each of which
it executes (i)|E| operations and (ii) computes a maximal
matching. A maximal matching can be computed in a graph
with |E| edges inO(log(|E|)) time [33]. The result follows by
observing that|E| = |BN ||MN |.

C. Provider Customer Coalition as a Competitive Market

The coalitional game< (N ,M), v > can not be related
to the exchange market setting (Section IV-B). However,
interaction among providers and customers when both are
decision makers can be modelled as a two-sided market which
has been studied in [34] (”pairing model” in the terminology
of [34]). In a pairing model, providers as well as customers are
agenets, while service units and customers themselves can be
considered as goods; the providers’ goods are paired against
the customers’ goods. Our setup is more general than the one
in [34] in the following two ways:

10A matching is maximal if it is not a proper subset of any other matching.
11Note that all the payoff profiles in the core are Pareto optimal in

v(N ,M), and hence, following the arguments in the proof, correspond to
matchings. Thus, if payoff functions are linear, fractional associations are not
needed to achieve a payoff profile in the core.

BS 1 BS 4

C 1 C 6C 5C 2 C 4C 3

BS 3BS 2

Provider 1 Provider 2 Provider 3

BS 1 BS 4

C 1 C 6C 5C 2 C 4C 3

BS 3BS 2

Provider 1 Provider 2 Provider 3

Fig. 1: The top figure shows an example network. Each base
station has access to only one channel and therefore constitutes
one service unit. The solid and dashed links have rates200
Kbps and100 Kbps respectively; no link between a service
unit-customer pair denotes0 rate. The bottom figure shows the
service-unit-customer allocations generated byALG : the solid
and dashed links are selected in iterations1 and2 respectively.

i) we allow multiple goods per agent (more than one service
units for a provider).

ii) we also consider fractional assignments ( [34] only al-
lowed integral matchings).

In a two-sided market, an allocation, to be a market equilib-
rium, must satisfy a certianreciprocitycondition (see [34, Sec-
tion 3]) in addition tobudget constraintandmarket clearing.
For the provider-customer competitive market, this condition
takes the following form.
reciprocity: if customerj is assignedαjk fraction of a service
unit k ∈ Bi, the provider i gets

∑

k∈Bi
αjk fraction of

customerj (considered as a good now).
It is shown in [34] (by means of a counter-example)

that a competitive equilibrium need not exist in a two-sided
competitive market, even when the market has a non-empty
core.

Nevertheless, in order to ensure consistency with the overall
setup we use, we choose to position the provider-customer
interactions in a cooperative context. This positioning provides
following important advantages. It allows us to analyze the
impact of composition and size of coalitions on the payoffs
of providers and customers using coalitional game theory -
a tool that may not port to the competition interpretation.
Specifically, we do not conclude apriori that any customer
can be assigned to any provider, but allow the possibility that
the assignments will occur in smaller sets (coalitions). But,
we show, that the grand coalition is optimal (or stable) in
the sense that there exists one service unit-customer alloca-
tion such that the corresponding payoff profile can not be
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blocked by that of any smaller coalition, and thus no set of
providers and customers has incentive to split from the grand
coalition(Theorem V.1). We also present a fully distributed and
polynomial time algorithm to compute such an allocation and
the corresponding payoff profile for linear payoff functions
and deterministic network states, that can be executed without
participants having to reveal confidential information such as
payoff functions to each other (Section V-B).

Finally, we use the above theoretical framework to discover
several interesting artifacts of the system through examples.
For instance, as Example V.3 shows, some providers and cus-
tomersmaybe worse off in the grand coalition, than when they
operate in smaller groups, since the grand coalition offersmore
choices to everybody, including the potential collaborators of
the participants. More importantly, the participants may not
be able to circumvent this loss by separating from the grand
coalition, as they need to persuade others to leave the coalition
with them so as to enhance their payoffs (i.e., a customer
needs to persuade a provider to leave with it in order not
to have 0 rate and therefore 0 satisfaction, and similarly for
a provider). However, our numerical evaluations demonstrate
how pervasive this phenomenon is (SectionVII-B). We see that
providers’ payoffs usually increase due to coalitions and most
of the customers’ payoffs and their aggregate payoffs typically
increase, but payoffs of some customers may decrease as well.

VI. GENERALIZATIONS

A. Generalized Payoff Sharing

We have so far assumed that players (providers and cus-
tomers) do not share their payoffs. When a group of providers,
for instance, agree to share their payoffs, instead of each one
trying to maximize its own payoff, they attempt to maximize
their aggregate payoff, which is generally higher than the
sum of the maximized individual payoffs - the increase in
the aggregate may lead to increase in individual shares. The
following example illustrates this phenomenon.

Example VI.1. Consider the provider coalitional game in Sec-
tion IV (i.e., customers have subscribed apriori) and the setting
of Example V.2:M1 = {1},M2 = {2, 3}, and provider’s
payoffs (revenues) equal the sum of their customers rates.
Recall that when the providers do not share the aggregate
payoffs, the only payoff in the core is(P, Q). But, the providers
can generate an aggregate revenue of2Q by serving only
provider 2’s customers, which can for example be shared
as (P+Q

2 , Q + Q−P
2 ). Then, provider1’s (2’s, resp.) payoff

is higher (lower, resp.) than its aggregate customer revenue;
but, each provider’s payoff (and hence the aggregate payoff)
strictly improves due to payoff sharing (compare with(P, Q)).

But, again, players may (i) refuse to share payoffs owing to
mutual distrust (and the need to disclose individual payoffs)
(ii) not be able to share payoffs as not all types of payoffs can
be shared, since they may not have monetary equivalence and
may have individual satisfaction connotations.

Let P = {Nl, l ∈ L} be a partition of the set of
providersN . Now consider a coalition(S, T ) of providers

and customers. DefineSl = S ∩ Nl, ∀l ∈ L. We consider
a generalized payoff sharing among providers in which for
eachl ∈ L providers in the sameSl share their payoffs, but
those in differentSl do not share their payoffs. For example,
if P = N , all providers in a coalition share their payoffs,
while if P = {{i}, i ∈ N} no provider shares its payoff with
others. The feasibility constraints, and consequently theset of
feasible joint actions remain the same as in Section V. But
for a payoff profile to be in the set of feasible payoff profiles
v(S, T ), we only need theaggregate payoffof each sharing
group to be less than or equal to that in the payoff vector
resulting from some feasible joint action. Formally,

v(S, T ) = {x ∈ R
S∪T :

∑

i∈Sl

xi ≤
∑

i∈Sl

zi, ∀l ∈ L,

xj ≤ zj , ∀j ∈ T , where

z = FST (α) for someα ∈ A(S, T )}.

(10)

With this definition, the coalitional game< (N ,M), v > is
now well defined. The definition of the core of this game will
be the same as (6). Using a similar technique as that used in the
proof of Theorems IV.2 and V.1, one can show that this game
is balanced. It then follows from Theorem IV.1 that the core of
this game is nonempty, and thus the grand coalition is stable.
Also, a payoff profile in the approximate core of this game
can be computed by an algorithm similar to the one discussed
in Section V-B. All the formulations and results extend to the
scenario where there are groups of customers, and only those
within the same group share their payoffs.

B. Vector Payoff Functions

We have so far focused on coalitional games with scalar
payoff functions. In this section, we examine the scenario
where players have vector payoff functions. Such functions
can have several payoff components of different types. For
instance, a provider’s payoff can be a vector of its total
revenue, its competitive power in the market, fairness in the
network, reputational issues and social welfare, among others.
A customer’s payoff, on the other hand, may consist of its
service rate and cost, power consumption, the size of the
network, and so on. Note that it is possible to have payoff
vectors with mixed transferable and nontransferable payoff
components. Then, which components can be shared does not
only depend on the players in a coalition, but also on the types
of components. Specifically, there could be groups of players,
and players within each group would share the transferable
components of payoffs, whenever they are in a coalition.

In this section, we investigate cooperation among providers
in presence of vector payoff functions with two components;
one transferable and another nontransferable. We consider
the scenario where all providers in a coalition would share
the transferable component. The formulations and results can
extend to more general cases, where payoff functions have
several components, and for given groups of providers, sharing
of transferable components happens only among providers
within the same group.
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Consider a coalitionS and a provideri ∈ S. Assume
that provideri’s transferable and nontransferable payoff com-
ponents bef t

i (y
S
i (ω)) and fn

i (yS
i (ω)), respectively. Func-

tions f t
i (·)s and fn

i (·)s are concave. The definitions of a
rate vectoryS

i (ω), a feasible payoff profile{αjk(ω), j ∈
MS , k ∈ BS , ωinΩ}, and a joint action spaceA(S) are
exactly the same as those in Section III. Now consider a
joint action α ∈ A(S). We defineFS(α) ∈ R

S × R
S to

be the payoff vector corresponding to the joint actionα, i.e.,
FS(a) = (xt,xn) where xt

i =
∑

ω∈Ω P(ω)f t
i (y

S
i (ω)) and

xn
i =

∑

ω∈Ω P(ω)fn
i (yS

i (ω)) for all i ∈ S, and(yS
i (ω), i ∈

S, ω ∈ Ω) are the rate vectors resulting from the joint action
α.

We now define the set of feasible payoff profiles,v(S), as
follows.

v(S) = {(xt,xn) ∈ R
S ×R

S : xt · 11×S ≤ zt · 11×S ,

xn ≤ zn,

where(zt, zn) = FS(α) for someα ∈ A(S)}.
(11)

In words,v(S) is the set of all payoff profiles in which the
nontransferable utilities of providers inS, as well as the sum
of their transferable utilities, are either equal to or lessthan
those in the payoff vector generated by some feasible joint
action.

We now define the core of this game. To do this, an
order relation between two different payoff profiles of a
provider is necessary, i.e., we need to know which of the
two payoffs, (xt

i,x
n
i ) and (zt

i, z
n
i ), provider i prefers. We

consider a lexicographic ordering, in which a provider prefers
the payoff that offers him higher nontransferable utility.In
case there are several payoffs with this property, the one that
offers the highest transferable utility is preferred. Withthis
lexicographic order relation in place, the core of the game is
defined to be the set of payoff profiles that can not be blocked
lexicographically, by any coalition, i.e.,

C = {(xt,xn) ∈ v(N ) : ∀S, ∄(zt, zn) ∈ v(S) such that

zn
i > xn

i , or zn
i = xn

i andzt
i > xt

i, ∀i ∈ S}.
(12)

We seek to show thatC is nonempty. Since functionsf t
i (·)s

and fn
i (·)s are concave, using a similar technique as in the

proof of Theorem IV.2, it is straightforward to verify that this
game is balanced. But since the coalitional games considered
in [25] have scalar payoff functions, it is not evident whether
balancedness leads to nonemptiness of the core, in presence
of vector payoff functions. However, with a slight twist in
the definition of the core, we can use Theorem IV.1 and
derive interesting results. Towards this end, we first definethe
approximate corefor this game as follows

Cǫ = {(xt,xn) ∈ v(N ) : ∀S, ∄(zt, zn) ∈ v(S) such that

zn
i > xn

i + ǫ, or zn
i = xn

i + ǫ andzt
i > xt

i, ∀i ∈ S}.
(13)

In words,Cǫ is the set of all payoff profiles that can not be
blocked lexicographically by a margin ofǫ, by any coalition.
Here is the main result.

Theorem VI.1. For any ǫ > 0, Cǫ is nonempty.

Proof: Suppose that instead of lexicographic ordering,
providers use a linear ordering to compare different payoffs,
i.e., for some givenλ > 0, (xt

i,x
n
i ) is preferred over(zt

i, z
n
i )

if λxt
i + xn

i > λzt
i + zn

i . In other words, we can assume that
providers have scalar payoff functions given byλf t

i (·)+fn
i (·)

for all i ∈ N . We redefine the sets of feasible payoff profiles,
v̂(S),S ⊆ N , according to the new payoff functions. We can
then define the core,̂C(λ), as follows.

Ĉ(λ) = {(xt,xn) ∈ v(N ) : ∀S, ∄(zt, zn) ∈ v(S) such that

λzt
i + zn

i > λxt
i + xn

i , ∀i ∈ S}.
(14)

It is straightforward to verify that the coalitional game<
N , v̂ > is balanced. Here, Theorem IV.1 applies, and we
conclude that̂C(λ) is nonempty for allλ > 0..

We next claim that Ĉ(λ) ⊂ Cǫ if λ =
ǫ/(maxi∈N ,(xt,xn)∈v(N ) x

t
i). We prove this claim via

contradiction. Consider a payoff profile(xt,xn) ∈ Ĉ(λ).
Suppose that(xt,xn) /∈ Cǫ. Then by (13), there exists a
coalition S and a payoff profile(zt, zn) ∈ v(S) such that
either of the following holds for alli ∈ S.

i) zn
i > xn

i + ǫ
ii) zn

i = xn
i + ǫ andzt

i > xt
i

Since(xt,xn) ∈ Ĉ(λ), it can not be blocked in linear ordering
sense, by coalitionS. Thus, there exits ani ∈ S such that

λzt
i + zn

i ≤ λxt
i + xn

i , (15)

or, zn
i − xn

i ≤ λ(xt
i − zt

i),

or, zn
i − xn

i ≤ ǫ. (16)

The last inequality follows since λ =
ǫ/(maxi∈N ,(xt,xn)∈v(N ) x

t
i). Clearly, (15) implies that (ii)

can not hold fori. On the other hand, (16) implies that (i)
also can not hold fori. These are in contradiction with
(xt,xn) /∈ Cǫ.

Thus, the claim and subsequently, the theorem follows.

Remark VI.1. Note that Theorem VI.1 does not imply thatC
is nonempty. However, the approximate core can be made as
close to the core as required, by selectingǫ appropriately.

We now discuss computing a payoff profile in the approxi-
mate core. AŝC(λ) ⊂ Cǫ, we can obtain a payoff profile inCǫ

by finding one inĈ(λ). SinceĈ(λ) is the core of a coalitional
game with scalar payoff functions, a payoff profile in̂C(λ) can
be computed by the algorithm discussed in Section IV-C4.

C. Cooperation In Multi-hop Networks

In this section, we investigate cooperation among providers
in multi-hop networks. Similar to the single-hop scenario,
providers in multi-hop networks can cooperate by pooling their
resources, such as service units and spectrum. In addition,
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they have the possibility to share their communication routes,
which is a component specific to these types of networks.
Having access to a larger set of routes, providers then have
the potential to redirect their traffic through possibly better
routes, which in turn can enhance their transmission power
efficiency. In the following, we generalize the framework of
Section III to accommodate cooperation in such networks.
We then formulate cooperation as another coalitional game.
Finally, we show that this game has a nonempty core and
therefore, the grand coalition is stable .

Consider a network in which customers can communicate
with service units via potentially multi-hop routes. In partic-
ular, customers can act as relays and carry packets of other
customers to their destination or other relays, in return for
service discounts, for example. In such a network, a provider
has to determine the allocation of its service units to customers
as well as the communication routes. If now a set of providers
cooperate and pool their resources (which in this case include
service units and customers/relays), besides gaining access to
others’ service units, they also enjoy a larger set of relays.
This, in turn, can enhance customers’ service rates and quality
of service, and can also improve power efficiency in the
network.

As in Section III, letN be the set of providers. LetBi and
Mi be the sets of provideri’s service units and customers, re-
spectively. As before, we consider downlink communications.
We assume that each service unit (likewise, each customer) has
access to a single channel (for transmission). In addition,we
assume that no two service units in a vicinity have access to
the same channel. We also assume that a pair of customers can
communicate with each other (to relay packets) without inter-
fering with the communications of other customer-customer
or service unit-customer pairs (owing to appropriate channel
allocation for example). Therefore, the necessary and sufficient
condition for the simultaneous transmissions to be successful
is that the set of transmitter-receiver pairs form a matching.
Similar communication models have extensively been assumed
in related contexts [22], [35].

A sufficient condition for a schedule to be feasible is that the
fraction of time each service unit or customer communicates
be belowθ, whereθ is a constant in(0, 1] and depends on the
network topology. For bipartite networks, for instance,θ = 1,
which is also a necessary condition [23]. It has been shown
that in general,θ = 2

3 is a sufficient but not a necessary
condition [23]. We assume that the network operates in a
way that this condition always holds. This assumption can
be motivated by the fact that operating the network at full
capacity raises the delay which is not desirable.

Suppose now that a service unit or customerj can transmit
to another customerk at a rate equal torjk, a random variable
which is a function of the location of customerj and the state
of channelk. Let Ω be the state space of the channels’ states
and customers’ locations. We assume|Ω| is finite. Let ω be
an outcome in this state space andP(ω) be its probability.

A service unit and a customer, or two customers, can
communicate only when both are associated with the same

provider or the providers associated with them are in a
coalition. Let random variableαjk ∈ [0, 1] be the fraction of
time, service unit or customerk transmits packets to customer
j. αjks are determined by the allocation scheme.

Now consider a coalitionS. When the providers associated
with customerj and service unit or customerk are inS and
the network realization isω, j receives a service rateyS

jk(ω) =
αjk(ω)rjk(ω) from k. For a provideri ∈ S, define the rate
vectoryS

i (ω) = (yS
jk(ω), yS

lj(ω), j ∈ Mi, k ∈ BS ∪MS , l ∈
MS). In words,yS

i (ω) is comprised of all the rates received
by customers of provideri (either form service units or other
customers) as well as the rates these customers deliver to other
customers. Provideri receives a payoff equal tofi(y

S
i (ω)),

which is the difference between the revenuei receives from
its customers, and the costs (e.g., power consumption) it incurs
by serving the customers in the coalition. Functionsfi(·)s are
assumed to be concave. The expected payoff provideri ∈ S
earns will be

∑

ω∈Ω P(ω)fi(y
S
i (ω)).

For a coalition S, a feasible joint action (allocation)
{αjk(ω), j ∈ MS , k ∈ BS ∪MS , ω ∈ Ω} should satisfy the
following conditions.
1)

∑

j∈MS
αjk(ω) ≤ θ, k ∈ BS , ω ∈ Ω

2)
∑

k∈BS∪MS
αjk(ω) +

∑

l∈MS
αlj(ω) ≤ θ, j ∈

MS , ω ∈ Ω
3)

∑

l∈MS
αlj(ω)rlj(ω) ≤

∑

k∈BS∪MS
αjk(ω)rjk(ω), j ∈ MS , ω ∈ Ω

4) αjk ≥ 0, j ∈ MS , k ∈ BS ∪MS , ω ∈ Ω

Constraints (1) and (2) ensure that each node (service unit or
customer) communicates for at mostθ fraction of time. By
constraints (3), each customer transmits packets at most ata
rate less than or equal to that of receiving packets. LetA(S)
denote the joint action space of coalitionS.

Consider a joint actionα ∈ A(S) and letFS(α) be the
resulting payoff vector. We can now define the sets of feasible
payoff profiles(v(S),S ⊆ N ) and the core of the gameC,
similar to (1) and (2). Then our NTU game< N , v > is
well defined. Using Theorem IV.1 for balanced games, we
can prove the following.

Theorem VI.2. The nontransferable payoff game< N , v >
is balanced, and hence has a nonempty core.

Proof: The proof is similar to those of Theorems IV.2
and V.1 and is omitted.

VII. QUANTITATIVE EVALUATIONS

We evaluate the benefits of cooperation in context of the
provider coalitional game (Section IV) as well as provider-
customer game (Section V). We consider logarithmic and
linear payoff functionsf(·) (g(·)) for providers (customers,
resp.). Such functions are concave, increasing and assume non-
negative values, and have been widely used as satisfaction
functions of customers and therefore constitute good candi-
dates for the revenues they pay (and hence for the payoffs
the providers obtain) [21], [22]. We allow the ratesrjk to be
uniformly distributed over the set{0, 100, 200} Kbps, and to
be independent across service-unit-customer pairsj, k. In each
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figure, the legends appear in the same order as the plots (e.g.,
x5 is the topmost plot in the left sub-plot of Figure 2).

A. Provider Coalitional Game

We have mostly considered systems where providers do not
share their payoffs (except Section VI-A). Example VI.1 re-
veals that the lack of payoff sharing may be inefficient as pay-
offs of each provider (and hence the aggregate) may increase
in presence of sharing. But, again, such lack of payoff sharing
may be enforced due to mutual distrust among the providers.
We now examine whether such inefficiencies are pathological
or pervasive. Note that the maximum aggregate payoff and
the corresponding service unit-customer allocations (referred
to as theoptimal allocationhenceforth) can be computed by
solving a concave maximization with the linear feasibility
constraints (1), (2), (3) (see Section IV-A). The question then
is does the core of the non-transferable utility coalition game
(i.e., where payoffs can not be shared) usually have at least
one payoff profile that maximizes the aggregate payoffs of
the providers - more specifically does the payoff profile cor-
responding to the optimal allocation belong in the core? Also,
what are the payoff gains due to cooperation for each provider
for such a payoff profile (if it is in the core)? We seek to an-
swer these questions considering logarithmic payoff functions
for the providers:fS

i (yi) =
∑

j∈Mi
log

(

1 + (
∑

k∈BS
yjk)

)

.
Note that log

(

1 + (
∑

k∈BS
yjk)

)

is the payoff (revenue)
provider i earns from its customerj when in coalitionS.

We first assume a symmetric scenario withn providers,
each provider having one base station and5k customers. We
considern = 1, 2, 3, 5 and varyk from 1 to 20. Owing to the
symmetry, under the optimal allocation, all providers get equal
payoffs (xn for n providers) and percentage payoff gains (as
compared to when each operates individually, i.e.,x1), which
we plot as a function ofk for differentn in Figure 2. In each
case, the payoff profile corresponding to the optimal allocation
belongs in the core12. Thus, the lack of sharing of payoffs does
not introduce any inefficiency in these cases. The payoff gains
are significant (in the range of20%−40% for each provider),
and both payoffs and payoff gains increase with increase in
n, k. Thus cooperation becomes more beneficial with increase
in the size of the grand coalition, and the number of customers
(demand) of each provider.

Now we consider an asymmetric scenario withN = 3,
B1 = B2 = B3 = 1 and M1 = 3k, M2 = 4k, M3 = 5k
where k ranges from1 to 20. (Note that Example VI.1
demonstrated the inefficiency due to lack of sharing using
an asymmetric setting). Now, due to asymmetry, the payoff
profile resulting from the optimal allocation provides different
payoffs to different providers (Figure 3). The third sub-figure
shows that

∑

i∈S x∗
i ≥ v̄(S) for all S ⊂ N , for all the chosen

parameter values. Thus, in each case, this payoff profile is in

12To verify whether a payoff profile(x∗
1
, x∗

2
, . . . , x∗

n) is in the core, it
suffices to check that

∑

i∈S
x∗

i
≥ v̄(S) for all S ⊂ N , where v̄(S) is

the maximum aggregate payoff of providers inS. In the symmetric case we
check the above forx∗

i
= xn for all i. Sincev̄(S) equals|S|x|S|, we only

need to ensure thatxn ≥ xn−1 ≥ . . . ≥ x1, which holds as per Figure 2.

the core and thus the lack of sharing did not introduce any
inefficiency in any of these cases. Note that providers’ payoffs
and payoff gains are in increasing order of their number of
customers.

B. Provider Customer Coalitional Game

Example V.3 demonstrated that cooperation in provider
customer games, can reduce the payoffs of some of the
providers and customers. The question then is how pervasive
this phenomenon is, and also whether cooperation in gen-
eral improves the aggregate payoffs of providers (customers,
resp.)?

we seek to answer the above considering logarithmic profit
functions as before:fij(yij) = log

(

1 + (
∑

k∈Bi
yjk)

)

and
gj(yj) = log

(

1 + (
∑

k∈BS
yjk)

)

. We consider a provider
customer game in the symmetric scenario described in the
second paragraph of Section VII-A. The service unit-customer
allocation that maximizes the aggregate payoffs of all partic-
ipants (providers’ and customers’) is referred to as socially-
optimal. The payoff profile for providers and customers corre-
sponding to the socially optimal allocation have been plotted
in Figure 4. Owing to symmetry, all providers (customers,
resp.) receive equal payoffs - in the figures,xn (yn, resp.)
is the payoff of a provider (customer, resp.) when it is in
a coalition with n providers and5 ∗ n ∗ k customers. In
each case, the payoff profile turns out to be in the core13.
Note that for any givenk, xn, yn increase withn - as
the size of the coalition increase, each participant’s payoff
increases. Thus, cooperation becomes more beneficial as both
the resources (service units) and the demands (customers)
increase. Customers’ payoffs decrease with increase ink for
any givenn as each customer needs to contend with more
customers for sharing the same amount of resource. The trend
is the opposite for providers’ payoffs as demand increases with
increase ink. The aggregate providers’ payoffs increase with
increase inn, k. The aggregate customers’ payoffs (the third
sub-figure in Figure 4), and therefore the overall (i.e., over all
participants) aggregate payoffs also increase with increase in
n, k.

Next, we consider an asymmetric setting and linear payoff
functionsfij(yij) =

∑

k∈Bi
yjk andgj(yj) =

∑

k∈BS
yjk (as

in Example V.3). Also, following Example V.3, we consider
deterministic network realizations, where each realization is
obtained as per the service unit-customer rate distributions
considered so far. A payoff profile in the core is chosen as

13Let us assume that the grand coalition hasn providers and5 ∗ n ∗ k
customers (n, k fixed). Let (x∗,y∗) be the payoff profile corresponding to
the socially optimal allocation. Now, Consider a generic coalition (S,T ) with
n′ ≤ n providers andm′ ≤ m customers ((n′, m′) 6= (n, 5 ∗n ∗k)). There
are two possibilities.

1) m′ ≤ 5 ∗ m′ ∗ k: The first sub-figure in Figure 4 reveals that the
aggregate subplot of all then′ providers is less in(S, T ) than in the
grand coalition. Thus no feasible payoff profile can make allof them
happier, and so(S,T ) can not block(x∗,y∗).

2) m′ > 5∗m′ ∗k: The second sub-figure in Figure 4 reveals that not all
m′ customers can obtain better payoffs in(S,T ). Thus, again,(S,T )
can not block(x∗,y∗).
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Fig. 2: The left, middle and right sub-plots respectively show a provider’s payoff, payoff gains and percentage payoff gains as
functions of the number of customers. The payoff of a provider, whenn of them cooperate, is denoted byxn.
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Fig. 3: The left and middle sub-plots respectively show providers’ payoffs and payoff gains as functions of the number of
customers: the three providers have3k, 4k and5k customers, respectively. The payoff of provideri is xi when it is operating
alone, andx∗

i in the grand coalition. The last plot shows aggregate payoffs under the globally optimal allocation and the
maximum aggregate payoffs for coalitionsS ∈ {{1, 2}, {1, 3}, {2, 3}}.

per ALG (Section V-B) in each realization and the payoffs
are averaged over all the realizations. Here,N = 3, B1 =
B2 = B3 = 3, M = 6k, and we varyk from 1 to 10. We
consider the payoffs of providers and customers, (i) when all
participants are in the grand coalition (grand-coalition pay-
offs), and (ii) when each provideri operates individually with
Mi subscribed customers (no-cooperation payoff) (Figure 5).
Here,M1 = k, M2 = 2k, M3 = 3k. For ease of reference, we
denote the customers inMi as those of provideri (though in
the grand coalition they can seek service from and pay to any
provider).

Owing to symmetry, providers (and customers) attain equal
grand-coalition payoff; no-cooperation payoffs are however
higher for providers with larger number of customers and
lower for customers with larger number of contenders (i.e.,
largerk) (Figure 5). The grand-coalition payoff of a provider
however exceeds its no-cooperation payoff, suggesting that by
and large providers enhance their payoffs through cooperation.
As k increases, each provider’s (both grand-coalition and no-
cooperation) payoff initially increases rapidly but subsequently
saturates (once the number of customers becomes large enough
to allow the utilization of the service units at highest rates most

of the time).
Note that customers of provider1 (2, 3, resp.), attain

mostly lower (higher, resp.) grand-coalition payoff than no-
cooperation payoff. This is because the aggregate resource
(number of service units) to demand (number of customers)
is higher (equal, lower, resp.) for customers of provider1 (2,
3, resp.) in the no cooperation case. Customers of provider2
attain slightly higher payoff in grand coalition owing to rate
diversity (in the grand coalition they find service units with
high rates even when their rates from provider2’s service units
are low). Thus, cooperation may reduce the rates of certain
classes of customers (which they can not circumvent since
they can not persuade providers to leave the grand coalition
as they are gaining from cooperation).

Finally, the choice of the payoff functions ensures that the
aggregate of providers payoffs equals that of the customers
payoffs for any service-unit-customer allocation. Figure5
reveals that underALG the aggregate grand coalition payoff
of customers (and hence of providers) is (i) identical to the
maximum aggregate grand-coalition payoff, and (ii) exceeds
their aggregate no-cooperation payoff. Thus,ALG is efficient
in the above sense, and ensures that the customers are overall
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aggregate customers’ payoffsYn = 5 ∗ n ∗ k ∗ yn.
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Fig. 5: The left and middle sub-plots respectively show providers’ and customers’ payoffs as functions of the number of
customers: the three providers havek, 2k and3k customers respectively. The payoff of provideri (customersi) is xi (yi) in
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better off after cooperation.

VIII. C ONCLUSION AND FUTURE WORK

We formulated interaction among cooperating service
providers and customers in wireless networks as nontrans-
ferable utility coalitional games. We showed nonemptyness
of cores in various scenarios (see Theorems IV.2, V.1 etc.)
implying that cooperation is globally desirable. We used the
concept of market equilibrium to obtain a payoff profile in the
core when customer subscriptions are fixed (Section IV-C2).
When customers strategically select their subscriptions,we
showed how to compute a payoff profile in the core using
distributed polynomial time computations for linear payoff
functions and deterministic network states; we presented a
technique to obtain a payoff profile in the approximate core
when the above assumptions must be relaxed (Section V-B).
Many of our algorithms do not require participants to reveal
their confidential information (such as payoff functions) to
each other. Our numerical investigations indicate that usually
cooperation enhances providers’ payoffs, aggregate providers’
(and customers’) payoffs substantially, whereas individual

customer’s payoffs may either increase or decrease (mostly
increases) depending on the resources and demands of the
coalitions and the nature of the payoff functions (Section VII).

Computing a payoff profile in the core using distributed
polynomial time solutions in systems with arbitrary payoff
functions and random state evolution remains open. Next,
in practice, coalition formation can incur overheads, e.g., it
can lead to increased loads on the call processors and billing
systems. Finally, we have assumed that participants are rational
in that they do not separate from coalitions unless they can
improve their payoffs by separating. But, a participant may
adopt a more detrimental attitude towards others, in that, if
its payoff is significantly less than that of the others it would
not cooperate even at the cost of reducing its payoff by not
doing so. Investigating the stability of the grand coalition
considering the coalition formation overheads and the payoff
parity objectives constitute interesting open problems.
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