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Dynamic Contract Trading in Spectrum Markets

G. Kasbekar, S. Sarkar, K. Kar, P. Muthusamy, A. Gupta

Abstract—We address the question of optimal trading of band-
width (service) contracts in wireless spectrum markets, for the
primary as well as the secondary spectrum providers. We propose
a structured spectrum market and consider two basic types of
spectrum contracts that can help attain desired flexibilities and
trade-offs in terms of service quality, spectrum usage efficiency
and pricing: long-term guaranteed-bandwidth contracts, and
short-term opportunistic-access contracts. A primary provider
(seller) and a secondary provider (buyer) creates and maintains
a portfolio composed of an appropriate mix of these two types of
contracts. The optimal contract trading question in this context
amounts to how the spectrum contract portfolio of a seller (buyer)
in the spectrum market should be dynamically adjusted, so
as to maximize return (minimize cost) subject to meeting the
bandwidth demands of its own subscribers. In this paper, we
formulate the optimal contract trading question as a stochastic
dynamic programming problem, and obtain structural properties
of the optimal dynamic trading strategy that takes into account
the current market prices of the contracts and the subscriber
demand process in the decision-making. We evaluate and study
the optimal dynamic trading strategy numerically, and compare
it with a static portfolio optimization strategy where the key
trading decision is made in advance, based on the steady-state
statistics of the price and subscriber demand processes.

I. INTRODUCTION

The number of users of the wireless spectrum, as well as
the demand for bandwidth per user, has been growing at an
enormous pace in recent years. Since spectrum is limited, its
effective management is vitally important to meet this growing
demand. The spectrum available for public use can be broadly
categorized into the unlicensed and licensed zones. In the
unlicensed part of the spectrum, any wireless device is allowed
to transmit. To use the licensed part, however, license must be
obtained from appropriate government authority – the Federal
Communications Commission (FCC) in the United States, for
example – for the exclusive right to transmit in a certain block
of the spectrum over the license time period, typically for a
fee. The need for bringing market-based reform in spectrum
trading, with the goal of ensuring efficient use of spectrum
and fairness in allocation and pricing of bandwidth, is being
increasingly recognized by both economists and engineers [4],
[8], [17], [18], [19], [28]. The literature on the economics of
spectrum allocation has so far mostly focused on the debate
of spectrum commons [13], [17], [19] and spectrum auction
mechanism design [11], [20], [26], [27]. Spectrum sharing
games and/or pricing issues have been considered in [5],
[7], [9], [16], [23]. A clear design of the spectrum market
structure, precise definition of spectrum contracts, or how the
different contracts can be optimally traded in a dynamic market
environment is yet to emerge. This is the space in which we
contribute in this paper.
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We consider a spectrum market where the license holders
(referred to as primary providers henceforth) can potentially
sell to the secondary providers1 the spectrum they have
licensed from the FCC but do not envision using in near future.
Primary providers may either be providers of TV broadcasts,
or large providers of wireless service who operate nation-
wide. Secondary providers are relatively smaller, but larger in
number, and can be geographically limited providers, whose
access to spectrum occurs through the bandwidth (service)
contracts that they buy from primary providers. Providers in
both categories have their subscriber (TV or mobile commu-
nication subscriber) bases whom they need to serve using the
spectrum they respectively license from the FCC or buy in the
spectrum market. This spectrum market structure is motivated
by, and closely resembles, secondary financial markets used
for trading of financial instruments (such as stocks, bonds)
among investment banks, hedge-funds etc. Like in secondary
financial markets, we allow trading in spectrum markets,
not only of the raw spectrum (bandwidth), but also of the
different kinds of service contracts derived from the use of
spectrum. A question that is key to the efficient operation
of the spectrum market is how the players in the market
– the primary and the secondary providers – should trade
spectrum (bandwidth/service) contracts dynamically, based on
time-varying demand patterns arising from their subscribers, to
maximize their returns while satisfying their subscriber base.
This is the central focus of this paper.

We formulate and evaluate the solutions for the spectrum
contract trading problem for the primary and the secondary
providers. We consider two basic forms of contracts that are
used for selling/ buying spectral resources: i) Guaranteed-
bandwidth (Type-G) contracts, and (ii) Opportunistic-access
(Type-O) contracts. Under the Type-G contracts, a secondary
provider purchases a guaranteed amount of bandwidth (in units
of frequency bands or sub-bands) for a specified duration of
time (typically a “long term”) from a primary provider, and
pays a fixed fee (either as a lump-sum or as a periodic payment
through the duration of the contract) irrespective of how much
it uses this bandwidth. If after selling the contract, the primary
is unable to provide the promised bandwidth (this may for
example happen when the primary is forced to use a band it has
sold due to an unexpected rise in its subscriber demand), the
primary financially compensates the secondary for contractual
violation. On the other hand, Type-O contracts are short-term
(one time unit in our model), and a secondary which buys
a Type-O contract pays only for the amount of bandwidth it
actually uses on the corresponding band. The primary does
not provide any guarantee on a Type-O contract and may use
the channel sold as a Type-O contract without incurring any
penalty. Thus, a Type-O contract provides the secondary the

1Note that our notion of “primary” and “secondary” spectrum providers
must be distinguished from similar terms often associated with users (sub-
scribers in our case) in the spectrum allocation literature.
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right to use the channel if the primary is not using it.
The spectrum contract trading problem that we formulate

and solve allows the primary (secondary) provider to dynam-
ically adjust its spectrum contract portfolio, i.e, choose how
much of each type of contract to sell (buy) at any time, so as
to maximize (minimize) its profit (cost) subject to satisfying
its own subscriber demand that varies with time, and given the
current market prices of Type-G and Type-O contracts which
also vary with time. The exact nature of the spectrum contract
trading (selling/buying) question will depend on whether it
is considered from the perspective of the primary provider
(seller) or the secondary provider (buyer). We therefore sep-
arately address the Primary’s Spectrum Contract Trading
(Primary-SCT) problem (Section II) and the Secondary’s Spec-
trum Contract Trading (Secondary-SCT) problem (Section III).
We formulate each problem as a finite horizon stochastic
dynamic program whose computation time is polynomial in
the input size. We prove several structural properties of the
optimum solutions. For example, we show that the optimal
number of Type-G contracts, for both primary and secondary
providers, are monotone (increasing or decreasing) functions
of the subscribers’ demands and the contract prices. These
structural results provide more insight into the problems, and
allow us to develop faster algorithms for solving the dynamic
programs. Finally, using numerical evaluations, we investigate
properties of the optimal solutions and demonstrate that the
revenues they earn substantially outperform static spectrum
portfolio optimization strategies that determine the portfolio
based on the steady-state statistics of the contract price and
subscriber demand processes (Section IV).

Although the spectrum contract trading problem has been
motivated by analogues in financial markets, the actual ques-
tions posed and the techniques used to answer them turn
out to be quite different owing to the nature of the specific
commodity, that is RF spectrum, under consideration. First,
both the primary and the secondary must decide their trading
strategies considering their subscriber demand which changes
with time. For example, a primary (or secondary) can not
simply decide to sell (buy) a large number of Type-G contracts
at any given time at which their market prices are high (low).
This is because a primary will need to pay a hefty penalty if it
can not deliver the promised bandwidth owing to an increase
in its subscriber demand, and the secondary will need to pay
for the contract even if it does not use the corresponding bands
owing to a decrease in its subscriber demand. The portfolio
optimization literature in finance does not usually address the
demand satisfaction constraint. Next, spectrum usage must
satisfy certain temporal and spatial constraints that are perhaps
unique. Specifically, a frequency band can not be simulta-
neously successfully used at neighboring locations (without
causing significant interference), but can be simultaneously
successfully used at geographically disparate locations. Thus,
the spectrum trading solution for the primary provider must
also take into account spatial constraints for spectrum reuse,
and therefore the computation of the optimal trading strategy
requires a joint optimization across all locations. We prove
a surprising separation theorem in this context: when the
same signal is broadcast at all locations, the Primary-SCT
problem can be solved separately for each location and the
individual optimal solutions can subsequently be combined

so as to optimally satisfy the global reuse constraints, and
obtain the same revenue as the solution of a computationally
prohibitive joint optimization across locations (Section II).

The question we address in this paper also differs signifi-
cantly from existing related work in the Economics and Oper-
ations Research literature. In the inventory problem [24], [25],
a firm maintains an inventory of some good to meet customer
demand, which is uncertain. The firm needs to decide the
amount to purchase in every slot of a finite or infinite horizon.
There is a tradeoff between purchasing and storing costs of
the inventory and the cost of not satisfying customers. This is
somewhat related to our model, in which a secondary provider
needs to decide the number of Type-G and Type-O contracts
to buy in every time slot to meet its subscriber demand.
However, contracts in our model have a different nature from
goods in the inventory model: e.g., Type-G contracts, once
bought, can be used in every subsequent time slot to satisfy
subscriber demand, whereas goods in an inventory can be
used only once to satisfy customer demand. This aspect of
Type-G contracts is loosely related to production capacity:
once a firm installs capacity, it can be used to manufacture
goods in all subsequent time periods. In capacity expansion
problems [6], [14], a firm needs to optimally decide the
volumes, times, and locations of production plants; the tradeoff
is that if capacity falls short of demand, the demand cannot
be met; on the other hand, if capacity exceeds demand, the
excess capacity is wasted. However, our model differs in
several aspects from the capacity expansion problem: e.g., (i)
there is no counterpart of Type-O contracts in the capacity
expansion model, (ii) Type-G contracts can be bought on
the spot, whereas capacity installation typically needs to be
planned in advance. Finally, spatial reuse constraints being
spectrum-specific, are not considered in either inventory or
capacity expansion models.

Recently in [15], the authors considered a spectrum market
with two types of spectrum contracts– one that provides
guaranteed bandwidth, possibly at a higher price, and the other
that provides an uncertain amount of bandwidth. A buyer
needs to decide the optimal numbers of the two types of
contracts to buy, so as to minimize cost subject to constraints
on bandwidth shortage. However, in [15], contract trading and
optimization are done in a single slot at a time (which makes
it a “static” optimization question), unlike in our paper, which
considers trading and “dynamic” optimization over a horizon
of multiple slots.

II. THE PRIMARY’S SPECTRUM CONTRACT TRADING
(SCT) PROBLEM

In this section we pose and address Primary-SCT, the
spectrum contract trading question from a primary provider’s
perspective. We first formulate the problem when a primary
provider owns channels in a single region (Section II-A),
solve it using a stochastic dynamic program (Section II-B),
and identify the structural properties of the optimal solution
(Section II-C). Later we formulate and solve the trading
problem when the primary owns channels in multiple loca-
tions, considering the spatial reuse of channels across different
locations (Section II-D).
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A. SCT in a single region
We now define the Primary-SCT problem for a primary

provider that owns M orthogonal frequency bands (channels)
in a single region, which it sells as Type-G or Type-O
contracts to secondary providers. We assume that each channel
corresponds to one unit of bandwidth and at most one contract
– either Type-G or Type-O – can stand leased on a channel
at any time. We also assume that the spectrum market has
infinite liquidity: there is a large number of buyers, and hence
the primary provider can sell any or all of the channels it
owns anytime and in any combination of Type-G and Type-O
contracts.

We assume that time is slotted. Trading of bandwidth is
done between primary and secondary providers separately in
each of successive time windows of duration T slots each.
Henceforth, we focus on the trading and optimization in
a single window or time horizon of T time slots. At the
beginning of each slot t, the primary determines the number of
channels xG(t) and xO(t) to be sold as Type-G and Type-O
contracts respectively. A Type-G (“long term”) contract that is
sold at the beginning of any slot t = 1, . . . , T lasts till the end
of the horizon. T therefore represents the maximum duration
of a Type-G contract. Type-O contracts last for a single slot
from the time they are negotiated.

The prices of both types of contracts (i.e, the prices at
which they can be bought/ sold in the spectrum market) vary
randomly with time and are determined “by the market”,
possibly depending on the current supply-demand balance in
the market and other factors. The “per-slot” market prices for
Type-G and Type-O contracts at time t are denoted by cG(t)
and cO(t) respectively. When a Type-G contract is sold at slot
t, it remains active for T − t + 1 slots (that is, until the end
of the optimization horizon), and therefore fetches a revenue
of (T − t + 1)cG(t)

2. We assume that the process {cG(t)}
(respectively, {cO(t)}) constitutes a Discrete time Markov
chain (DTMC) with a finite number of states and transition
probability HG

c,d (respectively, HO
c,d) from state c to d. For

simplicity, we assume that the DTMCs {cG(t)} and {cO(t)}
are independent of each other, although our results readily
extend to the case when the joint process {cG(t), cO(t)} is a
DTMC.

Each primary provider is associated with a randomly time-
varying demand process, {i(t)} which corresponds to its
subscriber demand (of TV channel subscribers or wireless
service subscribers, for example) that it must satisfy. We
assume that the process {i(t)} constitutes a DTMC with a
finite number of states and transition probability Qij from state
i to j, that is independent of the price process; each demand
state lies in [0,M ] and corresponds to an integral amount of
bandwidth consumption in subscriber demand.

We assume that the transition probabilities {HG
c,d}, {HO

c,d}
and {Qij} are known to the primary provider. They can be
estimated from the history of the price and demand processes.

The contract trading is done at the beginning of time
slot t, and (xG(t), xO(t)) are determined after the market
prices cG(t), cO(t) and demand levels i(t) are known. Let

2All our results readily generalize to the case in which a Type-G contract
that is sold at slot t fetches a revenue of α(T − t+1)cG(t), where α(n) is
any (deterministic) increasing function of n and captures the increase in value
of a Type-G contract with the number of slots for which it remains active.

(aG(t), xO(t)) denote the spectrum contract portfolio held by
the primary during time slot t, i.e. the number of Type-G and
Type-O contracts that stand leased. Since Type-G contracts
last till the end of the time horizon, we have:

aG(t) =
∑
t′≤t

xG(t
′) (1)

The bandwidth not leased as Type-G contracts or used to
satisfy the demand is sold as Type-O contracts. Thus, at any
time t:

xO(t) = K(aG(t), i(t)) := max{0,M − aG(t)− i(t)}. (2)

However, for all slots, t, for which aG(t) + i(t) > M , the
primary will have to use channels already sold under Type-G
contracts to satisfy its subscriber demand, due to unavailability
of additional bandwidth. In this case, the primary incurs a
penalty, Y (aG(t), i(t)), for breaching Type-G contracts. The
penalty is proportional to the number of such channels the
provider uses for satisfying its subscriber demand. Thus,

Y (aG(t), i(t)) = βmax{0, aG(t) + i(t)−M}, (3)

where β is the proportionality constant. We make the natural
assumption that the penalty is hefty; in particular, β is greater
than or equal to the maximum possible price of a Type-O
contract.

The Primary-SCT problem then is to choose the primary’s
trading strategy ((xG(t), xO(t)), t = 1, . . . T , so as to maxi-
mize its expected revenue, expressed as

E

(
T∑

t=1

((T − t+ 1)cG(t)xG(t) + cO(t)xO(t)

−Y (aG(t), i(t)))) , (4)

subject to relations (1)-(3). The optimum strategy must be
causal in that for each t ∈ {1, . . . T}, (xG(t), xO(t)) must be
chosen by time t. Note that at time t, {i(t′), cG(t′), cO(t′) :
t′ = 1, . . . , t} are known, but {i(t′), cG(t′), cO(t′) : t′ =
t + 1, . . . , T} are not known to the primary provider. From
(1) and (2), xO(t) is a function of {xG(t

′) : t′ = 1, . . . , t}
and the current demand i(t). Therefore, the Primary-SCT
problem as defined above reduces to finding the optimal
(xG(t), t = 1, . . . , T ).

Note that the revenue function in (4) ignores any revenue
earned from the primary’s subscribers. Since the subscriber
demand process i(t) is unaffected by the trading decisions,
such revenue adds a constant offset to the revenue in (4),
and therefore does not influence the optimal spectrum trading
decisions.
Generalizations:
1) For a Type-O contract, the secondary provider pays the
primary only for the amount of bandwidth it uses. Thus,
the expected revenue earned by a primary on selling such
a contract equals the secondary’s expected usage of such a
channel times the market price of such a contract. We can
incorporate this by considering the revenue from a Type-O
contract in slot t as κcO(t), where κ is the secondary’s
expected usage of such a channel. The formulation and the
results extend to this case.
2) Our formulation and results can be extended to consider
the case that i(t) is only an estimate of the demand in slot
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t, and the estimation error in each slot is an independent,
identically distributed random variable whose distribution is
known to the primary. Then, xO(t) must be selected so that
M − xO(t) − aG(t) is greater than or equal to the actual
demand with a desired probability. Thus, xO(t) will be a
function, K (aG(t), i(t)), of (aG(t), i(t)), which may be
different from that in (2), but can nevertheless be determined
from the knowledge of the distribution of the estimation error.
Also, in this case, the lack of exact knowledge of the demand
will force the primary to use part or whole of the bandwidth it
has sold as Type-O contracts to satisfy its demand. This will
not incur any penalty for the primary owing to the nature of
the contract, but will reduce the secondary’s expected usage
κ of each channel sold as a Type-O contract, and thereby
reduce the expected amount κcO(t) the secondary pays the
primary for each such channel.
3) For clarity of exposition, we assumed integral demands
i(t). However, in practice, the demands may be fractional.
For example, when a set of subscribers intermittently access
the Internet on a channel, a fraction of the bandwidth on a
channel is used every slot. In this case, a Type-G or Type-O
contract may be sold on the channel (while incurring a
penalty proportional to the fraction used on the channel for
the former). All our results apply without change in this case.

B. Polynomial-time optimal trading

We show that the Primary-SCT problem defined in Sec-
tion II-A can be solved as a stochastic dynamic program
(SDP) [21]. A policy [21] is a rule, which specifies the decision
(xG(t)) at each slot t, as a function of the demands and prices
and past decisions. Now, since the demand and prices are
Markovian, the statistics of the future evolution of the system
from slot t onwards are completely determined by the vector
(aG(t−1), i(t), cG(t), cO(t)), which we call the state at slot t,
and the primary’s decisions {xG(t

′) : t′ = t, . . . , T} under the
policy being used. Now, in general, a policy may determine
xG(t) at slot t based on all past states and actions. However,
a well-known result (Theorem 4.4.2 in [21]) shows that there
exists an optimal policy which specifies the optimal xG(t) at
any slot t only as a (deterministic) function of the current state
and t 3. We next compute such an optimal policy by solving
a SDP.

For a given t, let n = T − t + 1 be the number of slots
remaining until the end of the horizon, and Vn(a, i, cG, cO)
denote the maximum possible revenue from the remaining
n slots, under any policy, when the current state is (aG(t −
1), i(t), cG(t), cO(t)) = (a, i, cG, cO). In particular, note that
VT (0, i, cG, cO) is the maximum possible value of the expected
revenue in (4) under any policy when i(1) = i, cG(1) = cG
and cO(1) = cO. The function Vn(.) is called the value
function [21]. We have:

Vn(a, i, cG, cO) = max
0≤x≤M−a

Wn(a, i, cG, cO, x), (5)

where Wn(a, i, cG, cO, x) = ncGx+ J(x+ a, i, cO)

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

QijVn−1(a+ x, j, dG, dO), and (6)

3Such a policy is called a deterministic Markov policy [21].

J(aG(t), i(t), cO(t)) = cO(t)K(aG(t), i(t))− Y (aG(t), i(t)),
(7)

and the maximum in (5) is over integer values of x in
[0,M − a]. Equation (5) is called Bellman’s optimality
equation [21] and holds because, by definition of Vn−1(.),
Wn(a, i, cG, cO, x) defined by (6) is the maximum possible
expected revenue when n slots remain until the end of the
horizon and xG(t) = x is chosen. Note that the first two
terms in (6) account for the revenue earned in slot t from the
sale of Type-G and Type-O contracts minus the penalty paid.
The last term in (6) is the maximum expected revenue from
slot t + 1 onwards. The summations over dG, dO and j take
the expectation of the revenue over the prices of Type-G and
Type-O contracts and the demand respectively in slot t+1. We
get (5) by taking the maximum over all permissible values of
x. Denote the (largest) x that maximizes Wn(a, i, cG, cO, x)
by x∗

n(a, i, cG, cO). The function x∗
n(.) provides the optimal

solution to the Primary-SCT problem.
Now, the value function and optimal policy can be found

from (5) using backward induction [21], which proceeds
as follows. Note that V0(.) = 0. Thus, W1(.) can be
computed using (6), and V1(.) and x∗

1(.) using (5), and
similarly, W2(.), V2(.), x

∗
2(.), . . .Wn(.), Vn(.), x

∗
n(.) can be

successively computed. This backward induction consumes
O((NGNOM

2)2T ) time, where NG (respectively, NO) is the
number of states in the Markov Chain {cG(t)} (respectively,
{cO(t)})– the computation time is therefore polynomial in the
input size.

Remark 1: Note that we consider a finite horizon formula-
tion. An alternative would be to consider an infinite horizon
formulation, in which a Type-G contract is valid for T slots
from the time of sale (instead of until the end of horizon),
where T is some finite constant. But in this case, at a given
slot t, the state would include (yG1 (t), . . . , y

G
T (t)), where yGj (t)

is the number of Type-G contracts that are valid for j slots
more. Thus, the size of the state space is O(MT ), which is
exponential in T . Hence, we do not consider an infinite horizon
formulation in our analysis. However, based on the insights
that we get from the analysis of the finite horizon formulation,
we design a heuristic for the infinite horizon formulation and
investigate its performance via simulations (see Section IV).

C. Properties of the optimal solution

We analytically prove a number of structural properties of
the optimal policy, which provide insight into the nature of
the optimal solution. Our results are quite general in that they
hold not only for the K(.), Y (.) functions defined in (2), (3),
but also for any functions that satisfy the following properties
(which are of course satisfied by those in (2), (3)). This loose
requirement allows our results to extend to the generalizations
described at the end of Section II-A.

Property 1: K(a, i) decreases in a and Y (a, i) increases in
a for each i. Hence, by (7), for each i and cO, J(a, i, cO)
decreases in a.

Property 2: The K(.), Y (.) functions are such that
J(a, i, cO) is concave 4 in a for fixed i, cO.

4A function f(k) with domain being a subset of the integers is concave [3]
if f(k + 2)− f(k + 1) ≤ f(k + 1)− f(k) for all k [22]. If the inequality
is reversed, f(.) is convex.
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Property 3: The K(.), Y (.) functions are such that, for each
a, J(a, i, cO)− J(a+ 1, i, cO) is an increasing function of i.

We next state a technical assumption on the statistics of the
demand and price processes that we need for our proofs.

Assumption 1: If Xi is the demand in the next slot given
that the present demand is i, or, if Xi is the price of a Type-
G (respectively, Type-O) contract in the next slot given that
the present price is i, then for i ≤ i′, Xi ≤st Xi′ (Xi is
stochastically smaller [22] than Xi′ ), i.e., for each b ∈ R,
Pr(Xi > b) ≤ Pr(Xi′ > b).

Intuitively, this assumption says that the primary’s demand
and the prices do not fluctuate very rapidly, and the demand
(or price) in the next slot is more likely to be high when
the current demand (or price) is high as opposed to when the
current demand (or price) is low.

We are now ready to state the structural properties of
the optimum trading policy. We defer the proofs of these
properties until Appendix A.

The first property identifies the relation between
x∗
n(a, i, cG, cO) and a:
Theorem 1: For each n, i, cG, cO,

x∗
n(a+ 1, i, cG, cO) = max(x∗

n(a, i, cG, cO)− 1, 0). (8)

Intuitively, this theorem suggests that for each n, i, cG, cO,
there exists an optimal portfolio level of Type-G contracts,
a∗G(t), such that if aG(t − 1) = a, then xG(t) should be
chosen so as to make aG(t) = a∗G(t). That is, the optimal
xG(t) = a∗G(t)− a (if the latter is non-negative).

Also, due to Theorem 1, for each n, i, cG and cO, it is suffi-
cient to find x∗

n(a, i, cG, cO) only for a = 0 while performing
backward induction, and x∗

n(a, i, cG, cO) for other a can be
deduced using (8). This reduces the overall computation time
by a factor of M : the optimal policy can now be computed in
O((NGNO)

2M3T ) time.
The next two results identify the nature of the dependence

between x∗
n(a, i, cG, cO) and the demand i and prices cG, cO.

Theorem 2: For each n, a, cG and cO, x∗
n(a, i, cG, cO) is

monotone decreasing in i.
Theorem 2 confirms the intuition that when the primary’s

demand is high, it should sell fewer Type-G contracts so as
to reserve bandwidth to meet its demand and vice versa. At
the same time, note that this result is not obvious– when the
demand is lower, more free bandwidth is available, which can
be sold as Type-G or as Type-O contracts. Clearly, the number
of Type-G versus Type-O contracts sold would influence the
states reached in the future and the revenue earned. Theorem 2
asserts that the primary should sell at least as many Type-G
contracts as before (that is, as for the high demand state), while
possibly also increasing the number of Type-O contracts to
sell.

Theorem 3: x∗
n(a, i, cG, cO) is monotone increasing in cG

for fixed n, a, i, cO and monotone decreasing in cO for fixed
n, a, i, cG.

Theorem 3 confirms the intuition that the primary should
preferentially sell the type of contract (G or O) with a “high”
price.

Remark 2: Theorems 2 and 3 can be used to speed up
the computation of the optimal policy using the monotone
backward induction algorithm [21]. Similarly, in Theorem 10
(in Appendix A), we prove that the value function is concave

in a for fixed n, i, cG, cO, which can be used to speed up
the computation of x∗

n(.) from the value function since the
maximizer in (5) can be found in O(logM) time using a
binary search like algorithm [10]. In both cases, the worst
case asymptotic running time remains the same, although
substantial savings in computation can be obtained in practice.

D. SCT across multiple locations

We now consider spectrum contract trading across multiple
locations from a primary provider’s point of view. Wireless
transmissions suffer from the fundamental limitation that the
same channel can not be successfully used for simultaneous
transmissions at neighboring locations, but can support simul-
taneous transmissions at geographically disparate locations.
Thus, a primary provider can not sell contracts in the same
channel at neighboring locations, but can do so at far off
locations. Hence, the spectrum contract trading problem at dif-
ferent locations is inherently coupled, and must be optimized
jointly. We now extend the problem formulation to consider
the case of multiple locations, taking into account possible
interference relationships between adjacent regions.

We model the overall region under consideration using
an undirected graph G with the set of nodes S. Each node
represents a certain area at some location in the overall
region. There is an edge between two nodes if and only
if transmissions at the corresponding locations on the same
channel interfere with each other. A primary provider owns M
channels throughout the region. At any time slot, at a given
node and on a given channel, (a) either a Type-G contract can
be sold, (b) a Type-O contract can be sold or (c) no contract
can be sold, subject to the constraint that at no point in time,
a contract can stand leased at neighbors on the same channel.
That is, on each channel, the set of nodes at which a contract
stands leased constitutes an independent set [29].

A primary provider needs to satisfy its subscriber demand
which is also subject to certain reuse constraints. We consider
the case where the subscribers of a primary provider require
broadcast transmissions. This, for example, happens when the
primary is a TV transmitter that broadcasts signals across
all locations over different channels. At any given slot t,
the primary needs to broadcast over a certain number, say
i(t), channels which randomly varies with time depending on
subscriber demands. Whenever the primary broadcasts on a
channel, the broadcast reaches all nodes, and thus the channel
can not be used by the secondaries at any node. Hence, if
the primary has sold a Type-G contract on the channel at any
node it incurs a penalty of β at the node. Thus, at slot t,
i(t) represents the primary’s demand at each node. Note that
the set of nodes at which the primary uses a given channel
for demand satisfaction does not constitute an independent
set (as opposed to the set of nodes at which contracts stand
leased). Also, the primary’s usage status on any given channel
at any given time (i.e., whether or not the primary is using the
channel for subscriber demand satisfaction) is the same across
all nodes.

The durations of Type-G and Type-O contracts are as
described in Section II-A. We assume that at any slot t,
Type-G (respectively, Type-O) contracts have equal prices
cG(t) (respectively, cO(t)) at all nodes. The processes
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{i(t)} , {cG(t)} , {cO(t)} evolve as per independent DTMCs
as stated in Section II-A.

The spectrum contract trading problem across multiple lo-
cations for a primary (Primary-SCTM) is to optimally choose
at each slot t, the type of contract to sell (if any) at each
location on each channel so as to maximize the total expected
revenue from all nodes over a finite horizon of T slots.

Theorem 4: Primary-SCTM is NP-Hard.
The proof is deferred until Appendix B.

We now characterize the optimal solution of the Primary-
SCTM problem.

Lemma 1: Consider the class of policies F , such that a
policy f ∈ F operates as follows. At the beginning of the
horizon, it finds a maximum independent set, I(S), in G. Then,
in each slot, it sells contracts only at nodes in I(S). There
exists a policy in F that optimally solves the Primary-SCTM
problem.
The proof is deferred until Appendix B.

We refer to a policy in F , which at each node in I(S), sells
contracts according to the optimal solution of the Primary-SCT
problem with demand and price processes {i(t), cG(t), cO(t)}
as a Separation Policy.

Theorem 5 (Separation Theorem): A Separation Policy op-
timally solves the Primary-SCTM problem.

Proof of Theorem 5: By Lemma 1, we can restrict our
search for an optimal policy to the policies in F . Now, the
total revenue of a policy in F is the sum of the revenues at
the nodes in I(S). Clearly, the total revenue is maximized
if the stochastic dynamic program for the single node case
is executed at each node. Note that this solution satisfies the
interference constraints since I(S) is an independent set.

Note that the optimum solution at any node can be computed
in polynomial time using the SDP presented in Section II-A.
However, computation of a maximum size independent set is
an NP-hard problem [12]. This computation therefore seems
to be the basis of the NP-hardness of Primary-SCTM. Also,
the following theorem, which is a direct consequence of
Theorem 5, shows that Primary-SCTM can be approximated
in polynomial time within a factor of µ if the maximum
independent set problem can be approximated in polynomial
time within a factor of µ.

Theorem 6 (Approximate Separation Theorem): Consider
a µ-separation policy that differs from a separation policy in
that it sells contracts as per the single node optimum solution,
at each node of an independent set whose size is at least
1
µ times that of a maximum independent set. This policy’s
expected revenue is at least 1

µ times the optimal expected
revenue.

However, in a graph with N nodes, the maximum size
independent set problem can not in general be approximated
to within a factor of O(N ϵ) for some ϵ > 0 in polyno-
mial time unless P = NP [1]. Nevertheless, polynomial
time approximation algorithms (PTAS) i.e., algorithms that
compute an independent set whose size is within (1 − ϵ)
of the maximum size independent set, for any given ϵ > 0,
using a computation time of O(N1/ϵ) are known in important
special cases, e.g., when the degree of each node is upper-
bounded [2] (this happens in our case when the number
of locations each location interferes with is upper-bounded).
Thus, in view of Theorem 6, for any given ϵ > 0, the Primary-

SCTM problem can be approximated within a factor of 1− ϵ
using a computation time of O(N1/ϵ) in such graphs.

III. SECONDARY’S SPECTRUM CONTRACT TRADING
PROBLEM

In this section we pose and address Secondary-SCT,
the spectrum contract trading question from a secondary
provider’s (buyer’s) perspective. First note that the Secondary-
SCT problem need not consider the interference constraints
for channels since the secondary provider buys the spectrum
bands that are offered in the market (presumably in a manner
that satisfies the reuse constraints), and also because they are
usually localized (i.e., operate in small regions). Thus, the
secondary’s spectrum trading decisions in different regions
can be separately optimized. So henceforth in this section,
we restrict ourselves to the case of a single location.

A. Formulation
We consider an arbitrary secondary provider that is inter-

ested in buying contracts in the secondary spectrum market.
Our assumptions regarding the optimization horizon T , the
durations of Type-G and Type-O contracts and their price
processes (cG(t), cO(t)) remain the same as in Section II-A.
Let ĩ(t) denote the subscriber demand of the provider at time
t– it is a DTMC similar to {i(t)} in Section II-A, but with
transition probabilities Pij in place of Qij .

The secondary decides the number of Type-G and Type-
O contracts it will buy (from primary providers) at slot t,
(x̃G(t), x̃O(t)), after it learns the market prices cG(t) and
cO(t) and the demand level ĩ(t) at t. We continue to assume
that the market has infinite liquidity, which now implies that
the market has a lot of sellers (i.e., primary providers), and
hence the secondary can buy as many contracts of any type
by paying their market price. Let (ãG(t), x̃O(t)) denote the
spectrum contract portfolio held by the secondary during slot
t, where ãG(t) denotes the number of Type-G contracts that
the secondary has leased out until time t. Then we have

ãG(t) =
∑
t′≤t

x̃G(t
′). (9)

The secondary provider’s spectrum trading goal is to meet its
time-varying subscriber demand in every time slot at the mini-
mum cost, by choosing an appropriate portfolio of Type-G and
Type-O contracts, {(ãG(t), x̃O(t))}, adjusted dynamically.

Note that there are uncertainties on how much bandwidth
the secondary actually ends up getting from each contract at a
time t during its duration, since a Type-O contract only allows
the secondary the right to use the channel when the owner
(primary) is not using it, and there is a non-zero probability
of contract violation for a Type-G contract by the primary
due to its subscriber demand level plus the number of Type-
G contracts sold exceeding its total owned spectrum (see the
Primary-SCT formulation in Section II). Due to this, the sub-
scriber demand ĩ(t) can be met only in statistical terms, e.g.,
in expectation, or with a certain probability, by any spectrum
contract portfolio. (We assume that statistics on such contract
violations are available (possibly from historical data) to the
buyers, and can be incorporated in the corresponding contract
trading decision.) We generalize this notion by associating
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with each value of subscriber demand δ, a demand satisfaction
set Fδ within which a spectrum contract portfolio (ãG, x̃O)
must lie for meeting the demand level δ satisfactorily. A
portfolio (ãG(t), x̃O(t)) is said to be demand-satisfactory at
time t if it can meet the demand level at time t satisfactorily,
i.e., if (ãG(t), x̃O(t)) ∈ Fĩ(t).

Thus, the Secondary-SCT problem is to minimize the ex-
pected contract trading cost subject to the spectrum contract
portfolio being demand-satisfactory at all times t. The objec-
tive is thus to minimize

E

(
T∑

t=1

((T − t+ 1)cG(t)x̃G(t) + cO(t)x̃O(t))

)
, (10)

subject to (9) and

(ãG(t), x̃O(t)) ∈ Fĩ(t), ∀t, (11)

and such that for each t ∈ {1, . . . T}, (x̃G(t), x̃O(t)) must be
chosen by time t. Note that at time t, {̃i(t′), cG(t′), cO(t′) :
t′ = 1, . . . , t} are known, but {̃i(t′), cG(t′), cO(t′) : t′ = t +
1, . . . , T} are not known.

We assume that the sets Fδ for different δ are given.
Typically, we will have Fδ′ ⊆ Fδ for δ ≤ δ′. Also, we make
the natural assumption that if (ãG, x̃O) ∈ Fδ for some δ, then
(ãG, x̃

′
O) ∈ Fδ ∀x̃′

O ≥ x̃O. Accordingly, let L(ãG(t), ĩ(t)) be
the minimum number of Type-O contracts x̃O required for a
portfolio (ãG(t), x̃O) to be in Fĩ(t), for a given (ãG(t), ĩ(t)).
It is easy to see that for a given (ãG(t), ĩ(t)), it is optimal to
select x̃O = L(ãG(t), ĩ(t)) (not more).

For example, suppose the secondary seeks to meet the cur-
rent demand level in expectation. Due to the uncertain amount
of bandwidth available on Type-G and Type-O contracts,
suppose the expected amount of bandwidth obtained from a
Type-G contract is γ (0 < γ ≤ 1). Also, η Type-O contracts
are required, on average, to meet one unit of demand, where
η is a positive integer. For simplicity, assume that the product
γη is an integer. Then:

L(ãG(t), ĩ(t)) = max
{
η(̃i(t)− γãG(t)), 0

}
(12)

Remarks: 1) Note that in (10), we do not consider the
revenue earned from the penalties paid by the primary due
to Type-G contract violations. Such penalties lead to a net
decrease in the price of a Type-G contract, and their effects can
be incorporated by considering the price process of Type-G
contracts as {c̃G(t)}, where c̃G(t) = cG(t)−κ(t), where κ(t)
is i.i.d and independent of {cG(t)}. Subsequent formulations
and analysis do not change owing to the above modification.
2) Like for the Primary-SCT problem, our results can be
extended to the case where the secondary knows only an
estimate of ĩ(t) at the beginning of time slot t.
3) Like for the Primary-SCT problem, the cost function in (10)
ignores any revenue earned from the secondary’s subscribers.
Since the subscriber demand process ĩ(t) is unaffected by
the trading decisions, such revenue adds a constant offset to
the cost in (10), and therefore does not influence the optimal
spectrum trading decisions.

B. Analysis
We formulate the secondary’s problem as a stochastic dy-

namic program (SDP) and prove a number of structural prop-
erties of the optimal solution. The formulation and analysis are

very similar to that for the primary; hence we only provide a
brief outline.

Let (ãG(t− 1), ĩ(t), cG(t), cO(t)) be the state at the begin-
ning of slot t, n = T − t + 1 and Vn(a, i, cG, cO) denote
the value function, i.e., the minimum possible cost over the
remaining slots, starting from slot t. In particular, note that
VT (0, i, cG, cO) is the minimum possible value of the expected
cost in (10) under any policy when ĩ(1) = i, cG(1) = cG and
cO(1) = cO. Then the optimality equation is given by:

Vn(a, i, cG, cO) = min
x

Wn(a, i, cG, cO, x) (13)

where

Wn(a, i, cG, cO, x) = ncGx+ cOL(x+ a, i)

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

PijVn−1(a+ x, j, dG, dO) (14)

and the minimum in (13) is over nonnegative integer values of
x. Denote the (smallest) x that minimizes Wn(a, i, cG, cO, x)
by x̃∗

n(a, i, cG, cO). The value function and optimal policy
can be found from (13) using backward induction [21] in
O((NGNOD

2)2T ) time, where D is the number of states in
the Markov Chain {̃i(t)}.

We now identify the structure of the optimal trading strategy
{x̃∗

n(a, i, cG, cO), n = 1, . . . , T} for the following properties
of the L(.) function, which are analogous to Properties 1, 2
and 3 of the J(.) function for the Primary-SCT problem. (i)
For each i, L(a, i) decreases in a, (ii) L(a, i) is convex in a for
fixed i, (iii) For each a, L(a, i)−L(a+ 1, i) is an increasing
function of i. It can be checked that these properties are true
for the function L(.) in (12). We also assume that the price
and demand processes satisfy Assumption 1.

We have the following structural results, which closely
parallel Theorems 1 to 3. The proofs are similar to those of
Theorems 1 to 3, and hence omitted.

Theorem 7: For each n, i, cG, cO, x̃∗
n(a + 1, i, cG, cO) =

max (x̃∗
n(a, i, cG, cO)− 1, 0) .

Theorem 8: For each n, a, cG and cO, x̃∗
n(i, a, cG, cO) is

monotone increasing in i.
Theorem 9: x̃∗

n(a, i, cG, cO) is monotone decreasing in cG
for fixed n, a, i, cO and monotone increasing in cO for fixed
n, a, i, cG.

IV. NUMERICAL STUDIES

We next study the properties of the optimal trading strategy
using numerical investigations, and explore how the expected
revenue varies as a function of key system parameters. Due to
the similarity in the results for Primary-SCT and Secondary-
SCT, we only present our results for the former. We consider
M = 20 channels, penalty parameter β = 3.0 and a birth-
death demand process with 21 states and integral state values
{0, 1, . . . , 20}. The price process cG(t) (cO(t), respectively)
is again a birth-death process that varies between 1.0 and 4.0
(1.0 and 2.0, respectively) with a total of 10 uniformly-spaced
states. For both the demand and price processes, we assume
that the forward and backward transition probabilities equal p
(a parameter).

In Theorems 2 and 3, we have established the monotonicity
properties of the optimal solution x∗

n(a, i, cG, cO) with respect
to the demand level i and prices cG, cO. Recall that n = T −
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t+1 at slot t, and represents the duration of a Type-G contract
made at slot t. Now, our numerical evaluations suggest that
the optimal solution x∗

n(.) is decreasing in n, and when n is
close to T , x∗

n(.) is zero (see Figure 1). Thus, the primary
prefers Type-G contracts towards the end of the optimization
horizon, and Type-O towards the beginning. This is because
when n is close to T , Type-G contracts are very long-term,
and hence likely to incur hefty penalties since demand and
prices may be difficult to predict long-term.

The two plots in Figure 2 show the variation in the primary’s
average (expected) revenue per slot with respect to p and T .
For these results, the initial state for the demand and price
processes are chosen according to the steady state distributions
of these processes. The average revenue obtained from the
optimal dynamic trading strategy is compared with that of
an optimal static strategy. In the latter strategy, the number
of Type-G contracts is chosen only once (optimally, based
on the steady state distribution of the demand and price
processes), at the very beginning of the time horizon; the
number of Type-O contracts made is adjusted dynamically
to the amount of “free bandwidth” available at any slot (i.e.,
the number of channels minus the sum of the demand and
Type-G contracts made). We observe that the average revenue
for the optimal static strategy is invariant to changes in p or
T – this happens because the initial states for the demand
and price processes follow their steady state distributions,
which in our case is uniform and does not depend on p
or T. We observe that the optimal dynamic contract trading
strategy significantly outperforms the optimal static strategy,
demonstrating the benefits of dynamic choice of the number
of Type-G contracts. Note that if the static strategy buys a
Type-G contract, it must buy one that is really long-term (i.e.,
one that lasts for the entire T slots), whereas the dynamic
strategy can choose the duration of Type-G contracts it buys
by deciding when they are purchased, based on its demand and
prices of the contracts that evolve dynamically. The figures
also show that the primary’s average revenue per slot under
dynamic choice increases with an increase in p and T (for
the same value of the other parameters). Note that a larger
p (respectively, larger T ) implies larger temporal variation in
the prices (respectively, a longer optimization horizon), giving
the primary more opportunities in which the price of a Type-G
contract is high and the primary can “lock in” a good price for
a contract. From the bottom plot in Figure 2, we also observe
that the average per-slot revenue shows diminishing returns as
T increases, and appears to stabilize eventually (at a faster rate
for a larger p). This is intuitive since the revenue earned per
unit time is upper bounded, and also because very long-term
Type-G contracts offer small returns.

Now, consider an alternative contract trading model as
described in Remark 1, in which there is an infinite horizon,
and a Type-G contract is valid for T slots from the point
of sale, where T is some finite constant. As explained in
Remark 1, computation of the optimal policy using stochastic
dynamic programming requires an exponential state space
formulation in this case. So now, we design a heuristic for this
case based on the insights that the analysis of the finite horizon
formulation provided. Suppose there are M = 20 channels,
and the demand and price processes are birth-death processes
with the parameters in the first paragraph of this section and
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with p = 0.4. Also, let T = 20. Let a(t − 1), cG(t), cO(t)
and i(t) be the number of Type-G contracts that stand leased
at the beginning of slot t, and the prices of Type-G and Type-
O contracts and the demand in slot t respectively. Also, at
the beginning of slot t, if a Type-G contract stands leased on
channel j, then let rj(t − 1) be the number of slots until its
expiry and let rj(t − 1) be 0 otherwise. Since the average
duration until expiry of a Type-G contract at an arbitrary slot
is T/2 slots,

∑M
j=1 rj(t−1)

(T/2) is the “number of Type-G contracts
of average duration” that stand leased at the beginning of slot
t, and is the analog of a in Theorem 1. Based on this fact, and
the insights into the structure of the optimal policy provided
by Theorems 1, 2 and 3, we consider the following heuristic
for selecting the number of Type-G contracts to sell. At the
beginning of slot t, the primary sells:

max

(
min

(
3M

4
−
∑M

j=1 rj(t− 1)

(T/2)
− i(t) + q(cG(t)− cO(t)),

M − a(t− 1)) , 0)

Type-G contracts, where q is a parameter. Fig. 3 plots the
average per-slot revenue achieved by this heuristic versus q
for different values of the penalty parameter β. Now, note
that for the parameter values used, the expected demand i(t)
is 10 channels, and the expected prices cG(t) and cO(t) are 2.5
and 1.5 respectively. So if the demand and prices were to be
constant at their expected values, the maximum average per-
slot revenue that any policy can achieve is 25 (the optimal
policy in this case always sells the free M − i(t) = 10
channels as Type-G contracts). Since computing the optimal
per-slot revenue when the demand and prices are dynamic
requires exponential time as explained in Remark 1, we use
the above value of 25 as a rough benchmark for evaluating
the performance of the heuristic. Fig. 3 shows that for an
appropriate choice of the parameter q, the heuristic achieves
an average per-slot revenue close to 25 and hence it performs
well. Also, consistent with intuition, the revenue is higher for
lower values of the penalty parameter β.

V. CONCLUSIONS

We proposed two types of spectrum contracts (Type-G and
Type-O) aimed at achieving the desired tradeoffs between
service quality, spectrum usage efficiency and pricing, and
formulated the problem of selection of an optimal portfolio of
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Fig. 3. The figure shows the average per-slot revenue of the heuristic versus
q for different values of the penalty parameter β. The simulations were run
for 106 slots.

Type-G and Type-O contracts for both primary and secondary
providers as a stochastic dynamic programming problem.
We provided a polynomial-time algorithm for this problem
and analytically proved several structural properties of the
optimal solution. These properties provide several insights
into the optimal solution, which we used, in particular, to
design a heuristic for the infinite horizon case and showed
via simulations that it performs well in practice.
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APPENDIX

A. Proofs of results in Section II-C
Notation: Let R denote the set of real numbers.
Let Xi be as in Assumption 1. Recall that Qij , HG

ij and
HO

ij are the transition probabilities of the demand and the
prices of Type-G and Type-O contracts respectively. So, if Xi

represents the demand, price of a Type-G contract or price of
a Type-O contract respectively in the next slot given that the
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present demand, price of a Type-G contract or price of a Type-
O contract equals i, then for a function f(.), E(f(Xi)) equals∑

j Qijf(j),
∑

j H
G
ijf(j) and

∑
j H

O
ij f(j) respectively. The

assumption Xi ≤st Xi′ for i ≤ i′ in Assumption 1 is
equivalent to the following condition [22]:

Condition 1: For every increasing function f(i),

E(f(Xi)) ≤ E(f(Xi′)) ∀i ≤ i′

i.e.,
∑

j Qijf(j),
∑

j H
G
ijf(j) and

∑
j H

O
ij f(j) are increasing

functions of i.
Note that in the summations in Condition 1, as well as in

those in the rest of this section, the summation is over all
possible states of the respective Markov Chain.

1) Proof of Theorem 1: We first prove that the value func-
tion is concave in a (Theorem 10). Then, using Theorem 10,
we prove Theorem 1. We start with a simple lemma, which is
used in the proof of Theorem 10.

Lemma 2: For fixed i, cG, cO, Vn(a, i, cG, cO) decreases in
a.

Proof: We prove the result by induction. Let
V0(a, i, cG, cO) = 0. Then the claim is true for n = 0.
Suppose Vn−1(a, i, cG, cO) decreases in a for each i, cG, cO.
Now, let a1 ≥ 1 and x∗

n(a1, i, cG, cO) = x1 for some x1.
Then, by (5):

Vn(a1, i, cG, cO) = Wn(a1, i, cG, cO, x1) (15)

Now,

Vn(a1 − 1, i, cG, cO)

≥ Wn(a1 − 1, i, cG, cO, x1) (by (5))
= ncGx1 + J(x1 + a1 − 1, i, cO)

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

QijVn−1(a1 + x1 − 1, j, dG, dO)

≥ ncGx1 + J(x1 + a1, i, cO)

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

QijVn−1(a1 + x1, j, dG, dO)

(by induction hypothesis and Property 1)
= Wn(a1, i, cG, cO, x1)

= Vn(a1, i, cG, cO) (by (15))

The result follows.
Theorem 10: For each n, Vn(a, i, cG, cO) is concave in a

for fixed i, cG, cO.
Proof: We prove the result by induction. V0(a, i, cG, cO)

is concave in a since it is equal to 0. Suppose
Vn−1(a, i, cG, cO) is concave in a for fixed i, cG, cO. Re-
call that Vn−1(a, i, cG, cO) is defined for integer values of
a. Now, for fixed i, cG and cO, define Ṽn−1(a, i, cG, cO)
for a real as the function obtained by linearly interpolating
Vn−1(a, i, cG, cO) between each pair of adjacent integers a0
and a0 + 1. Similarly, define J̃(a, i, cO).

Now, J(x + a, i, cO) (respectively, Vn−1(x + a, i, cG, cO))
is concave decreasing in x + a for fixed i, cO (respectively,
for fixed i, cG, cO) by Properties 1 and 2 (respectively, by
Lemma 2 and induction hypothesis). Hence, we get:

Property 4: J̃(x + a, i, cO) (respectively, Ṽn−1(x +
a, i, cG, cO)) is concave decreasing in x + a for fixed i, cO
(respectively, for fixed i, cG, cO).

Now, consider the function

W̃n(a, i, cG, cO, x) = ncGx+ J̃(x+ a, i, cO)

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij Ṽn−1(a+ x, j, dG, dO) (16)

as a function of the two real variables a, x, i.e. the vector
(a, x).

Recall the following property of composition of func-
tions [3]:

Property 5: Let h : R → R, g : Rk → R, where k ≥ 1
and Rk denotes the k-dimensional Euclidean space. Let f :
Rk → R be defined by f(v) = h(g(v)). If h(.) is concave
and decreasing, and g(v) is convex in v, then f(v) is concave
in v.

By the fact that a + x is linear and hence [3] convex in
(a, x), Property 4 and Property 5, it follows that J̃(x+a, i, cO)
(respectively, Ṽn−1(a + x, j, dG, dO)) is concave in (a, x)
for fixed i, cO (respectively, for fixed j, dG, dO). Also, x is
clearly concave in (a, x). Hence, W̃n(a, i, cG, cO, x) being a
nonnegative weighted linear combination of these functions,
is concave in (a, x) for fixed i, cG, cO.

Now, define:

Ṽn(a, i, cG, cO) = sup
x∈R,0≤x≤M−a

W̃n(a, i, cG, cO, x) (17)

Note that {x : x ∈ R, 0 ≤ x ≤ M−a} is a non-empty convex
set. Recall the following property [3]:

Property 6: If f(a, x) is concave in (a, x) and C is a
convex nonempty set, then the function

g(a) = sup
x∈C

f(a, x)

is concave in a, provided g(a) < ∞ for some a.
Now, Ṽn(a, i, cG, cO) < ∞ (since the costs of Type-G and

Type-O contracts are upper bounded). So by (17), Property 6
and the fact that W̃n(.) is concave in (a, x), Ṽn(a, i, cG, cO)
is concave in a for fixed i, cG, cO.

Now, we will show that Vn(a, i, cG, cO) = Ṽn(a, i, cG, cO)
for a integer, which will imply that Vn(a, i, cG, cO) is concave.

Fix i, cG, cO and an integer a. Note that by (5) and
(17) and since W̃n(.) = Wn(.) at integer a and x,
Vn(a, i, cG, cO) is the maximum of W̃n(a, i, cG, cO, x) over
integer x, whereas Ṽn(a, i, cG, cO) is the supremum over real x
in the range [0,M−a]. Hence, to prove that Vn(a, i, cG, cO) =
Ṽn(a, i, cG, cO), it will suffice to show that the supremum over
real x occurs at integer x.

Now, by the definition of the functions J̃(.) and Ṽn−1(.),
f(x) = W̃n(a, i, cG, cO, x) is continuous and piecewise linear
in x, with breakpoints at the integers. Also, note that the
endpoints of the domain of f(x), viz. 0 and M−a are integers
that are contained in the domain. As a result, it can be checked
that the maximum of f(x) must occur at an integer. This
completes the proof.
Note that Wn(a, i, cG, cO, x) is concave in (a, x) and
Vn(a, i, cG, cO) is the maximum of Wn(.) over a non-convex
set, namely the set of integers in [0,M − a]. This makes the
above proof more involved, since had the maximum been over
a convex set, the concavity of Vn(a, i, cG, cO) would have
simply followed from Property 6.

We are now ready to prove Theorem 1.
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Proof of Theorem 1: From (6), we have:

Wn(a, i, cG, cO, x) = Wn(a+ 1, i, cG, cO, x− 1)

+ncG, ∀x ≥ 1 (18)

Now, by optimality of x∗
n(a, i, cG, cO):

Wn(a, i, cG, cO, x
∗
n(a, i, cG, cO)) ≥ Wn(a, i, cG, cO, x) ∀x ≥ 1

(19)
If x∗

n(a, i, cG, cO) ≥ 1, then from (18) and (19) and some
algebra, we get:

Wn(a+ 1, i, cG, cO, x
∗
n(a, i, cG, cO)− 1)

≥ Wn(a+ 1, i, cG, cO, x− 1) ∀x ≥ 1

which shows that x∗
n(a + 1, i, cG, cO) = x∗

n(a, i, cG, cO) − 1
if x∗

n(a, i, cG, cO) ≥ 1.
Now, suppose x∗

n(a, i, cG, cO) = 0. By Theorem 10 and
Property 2, since Vn−1(a + x, j, dG, dO) and J(x + a, i, cO)
are concave in x for fixed a, j, dG, dO, i, cO, it follows from
(6) that Wn(a, i, cG, cO, x) is concave in x. For x ≥ 2, we
have:

Wn(a+ 1, i, cG, cO, x− 1)−Wn(a+ 1, i, cG, cO, 0)

= Wn(a, i, cG, cO, x)−Wn(a, i, cG, cO, 1) (by (18))
≤ Wn(a, i, cG, cO, x− 1)−Wn(a, i, cG, cO, 0)

(by concavity)
≤ 0 (since x∗

n(a, i, cG, cO) = 0)

which shows that x∗
n(a+ 1, i, cG, cO) = 0.

2) Proofs of Theorems 2 and 3: The proofs of Theorems 2
and 3 are based on the concepts of submodularity and super-
modularity, which we briefly review. Let I ⊆ R and X ⊆ R
be two sets. A function g(i, x) : I × X → R is called
supermodular [21] if for i+ ≥ i− in I and x+ ≥ x− in
X ,

g(i+, x+) + g(i−, x−) ≥ g(i+, x−) + g(i−, x+)

If the inequality is reversed, g is called submodular [21].
We will require the following key result [21].
Theorem 11: If g(i, x) is supermodular (submodular) on

I × X , then the (largest) maximizer of g(i, x) for a given
i:

f(i) = max{x′ : x′ ∈ argmax
x

g(i, x)}

is increasing (decreasing) in i.
To prove Theorem 2, we show that Wn(a, i, cG, cO, x) is

submodular in (i, x). The monotonicity of x∗
n(a, i, cG, cO) in

i then follows from Theorem 11. First, we prove some lemmas.
The following lemma provides a necessary and sufficient

condition for submodularity.
Lemma 3: Let g(i, x) be a function with domain being

integer values of x and real values of i. g(i, x) is submodular
in (i, x) if and only if g(i, x) − g(i, x + 1) is an increasing
function of i for all x.

Proof: The necessity directly follows from the definition
of submodularity. We now prove sufficiency. Suppose g(i, y)−
g(i, y+1) is an increasing function of i for all y. For an integer
z > 0:

g(i, x)− g(i, x+ z) = [g(i, x)− g(i, x+ 1)] + . . .

+[g(i, x+ z − 1)− g(i, x+ z)]

So g(i, x)−g(i, x+z), being the sum of increasing functions,
is increasing in i.

Hence, for x− < x+, g(i, x−)− g(i, x+) is increasing in i.
So for i− < i+:

g(i−, x−)− g(i−, x+) ≤ g(i+, x−)− g(i+, x+)

Hence, g(i, x) is submodular in (i, x) by definition.
For m ≥ 1, define 5

imn (a, cG, cO) = max {i : x∗
n(a, i, cG, cO) ≥ m} . (20)

Lemma 4: If x∗
n(a, i, cG, cO) is monotone decreasing in i,

then

i1n(a, cG, cO) ≥ i2n(a, cG, cO) ≥ . . . ≥ iM−a
n (a, cG, cO)

Also, x∗
n(a, i, cG, cO) = m if and only if imn (a, cG, cO) ≥ i >

im+1
n (a, cG, cO).

Proof: The result follows by definition of imn (.).
The next lemma establishes a sufficient condition for mono-

tonicity of x∗
n(i, a, cG, cO).

Lemma 5: Fix n. Suppose Vn−1(a, j, dG, dO)− Vn−1(a+
1, j, dG, dO) is an increasing function of j for each a, dG and
dO. Then x∗

n(a, i, cG, cO) is monotone decreasing in i for each
a,cG and cO.

It is important to note that the lemma requires
Vn−1(a, j, dG, dO) − Vn−1(a + 1, j, dG, dO) to be increasing
in j for a fixed n, and asserts that x∗

n(a, i, cG, cO) is monotone
decreasing in i for that n.

Proof: By (6):

Wn(a, i, cG, cO, x)−Wn(a, i, cG, cO, x+ 1)

= −ncG + [J(a+ x, i, cO)− J(a+ x+ 1, i, cO)]

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij (Vn−1(a+ x, j, dG, dO)

−Vn−1(a+ x+ 1, j, dG, dO))

The first term on the right hand side is constant, the second
term is increasing in i by Property 3 and the third term is
increasing in i since Vn−1(a+ x, j, dG, dO)− Vn−1(a+ x+
1, j, dG, dO) is increasing in j and by Condition 1.

So Wn(a, i, cG, cO, x)−Wn(a, i, cG, cO, x+1) is increasing
in i. Hence, by Lemma 3, Wn(a, i, cG, cO, x) is submodular
in (i, x) and so by Theorem 11, x∗

n(a, i, cG, cO) is monotone
decreasing in i.

The next lemma is a simple consequence of (8).
Lemma 6: Fix n. If x∗

n(a, i, cG, cO) is monotone decreasing
in i for each a, cG, cO, then im+1

n (a, cG, cO) = imn (a +
1, cG, cO) for m = 1, 2, . . ..

Proof: Fix cG and cO, and let m ≥ 1. Separately with a
and with a + 1, start with i = M (the highest demand state)
and keep decreasing it to the next lower state, one at a time.
By (8), the maximum i at which x∗

n(a, i, cG, cO) ≥ m+ 1 is
precisely the maximum i at which x∗

n(a + 1, i, cG, cO) ≥ m.
So im+1

n (a, cG, cO) = imn (a+1, cG, cO) by definition of imn (.).

Lemma 7: For each n, Vn(a, i, cG, cO)−Vn(a+1, i, cG, cO)
is an increasing function of i for each a, cG, cO.

Proof: We prove the claim by induction. Since
V0(a, i, cG, cO) ≡ 0, the claim is true for n = 0.

5If x∗
n(a, i, cG, cO) < m ∀i, then let imn (a, cG, cO) be equal to the

smallest demand state.
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Suppose the statement is true for n − 1, i.e.,
Vn−1(a, j, dG, dO) − Vn−1(a + 1, j, dG, dO) is an increasing
function of j for each a, dG, dO. Then by Lemma 5,
x∗
n(a, i, cG, cO) is monotone decreasing in i. Hence,

by Lemma 6, im+1
n (a, cG, cO) = imn (a + 1, cG, cO) for

m = 1, 2, . . ..
Now, we show that Vn(a, i, cG, cO) − Vn(a + 1, i, cG, cO)

is an increasing function of i. Fix a, cG and cO. We have the
following cases:

Case 1: i > i1n(a, cG, cO)
By Lemma 4 and Lemma 6:

i > i1n(a, cG, cO) ≥ i2n(a, cG, cO) = i1n(a+ 1, cG, cO)

So by Lemma 4, x∗
n(a, i, cG, cO) = x∗

n(a+ 1, i, cG, cO) = 0.
Hence, by (5) and (6):

Vn(a, i, cG, cO)− Vn(a+ 1, i, cG, cO)

= Wn(a, i, cG, cO, 0)−Wn(a+ 1, i, cG, cO, 0)

= (J(a, i, cO)− J(a+ 1, i, cO))

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij(Vn−1(a, j, dG, dO)

−Vn−1(a+ 1, j, dG, dO)) (21)

Case 2: imn (a, cG, cO) ≥ i > im+1
n (a, cG, cO), where m ≥

1.
By Lemma 4, x∗

n(a, i, cG, cO) = m and hence by Theorem 1,
x∗
n(a + 1, i, cG, cO) = m − 1. So by (5) and (6) and some

cancellation of terms, we get:

Vn(a, i, cG, cO)− Vn(a+ 1, i, cG, cO)

= Wn(a, i, cG, cO,m)−Wn(a+ 1, i, cG, cO,m− 1)

= ncG (22)

By (21) and (22), Vn(a, i, cG, cO)− Vn(a+ 1, i, cG, cO)

=


ncG if i ≤ i1n(a, cG, cO),
(J(a, i, cO)− J(a+ 1, i, cO))
+
∑

dG

∑
dO

HG
cGdG

HO
cOdO

∑
j Qij(Vn−1(a, j, dG, dO)

−Vn−1(a+ 1, j, dG, dO)) if i > i1n(a, cG, cO).

The expression for Vn(a, i, cG, cO)− Vn(a+ 1, i, cG, cO) for
i > i1n(a, cG, cO) is an increasing function of i by Property 3,
induction hypothesis and Condition 1. Thus, to show that
Vn(a, i, cG, cO) − Vn(a + 1, i, cG, cO) is increasing in i, it
is sufficient to show that for i > i1n(a, cG, cO):

(J(a, i, cO)− J(a+ 1, i, cO))

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij(Vn−1(a, j, dG, dO)

−Vn−1(a+ 1, j, dG, dO)) ≥ ncG (23)

By (6), (23) is equivalent to Wn(a, i, cG, cO, 0) ≥
Wn(a, i, cG, cO, 1), which is true because x∗

n(a, i, cG, cO) = 0
for i > i1n(a, cG, cO). The result follows.

From the above lemmas, we get the desired monotonicity
of x∗

n(i, a, cG, cO).
Proof of Theorem 2: Fix n, a, cG and cO. By Lemma 7,

Vn−1(a, j, dG, dO) − Vn−1(a + 1, j, dG, dO) is an increasing
function of j for each dG, dO. The result follows by Lemma 5.

Proof of Theorem 3: The proof is very similar to the
proof of Theorem 2 and hence omitted.

B. Proofs of results in Section II-D
Proof of Theorem 4: We show that the Maximum

Independent Set (MIS) problem is a special case of Primary-
SCTM. Consider the following special case of Primary-SCTM:
M = 1, T = 1. At each node, the primary’s demand is always
0, and the prices of Type G and O contracts are fixed, equal
to 1

2 and 1 respectively. Thus, it is optimal never to sell a type
G contract.

The Primary-SCTM problem reduces to that of finding a
maximum independent set of nodes (at which to sell Type O
contracts). The result follows, since the MIS problem is NP-
Hard [12].

Proof of Lemma 1: Let N t
e,j be the number of Type-j

contracts (j ∈ {G,O}) sold by a policy P in slot t on channel
e. We make the following key observations:
(1) The revenue of any policy depends only on the number
of Type-G and Type-O contracts it sells on each channel, in
each slot, independent of which nodes it sells them at. That
is, the revenue of the policy P is completely determined by:

{N t
e,G, N

t
e,O : e = 1, . . . ,M ; t = 1, . . . , T}

This follows from the fact that on each channel, the prices of
both types of contracts and the usage status (i.e., whether or
not the primary is using the channel for subscriber demand
satisfaction) are the same at all nodes.
(2) For every policy, on each channel, at any time, the total
number of Type-G and Type-O contracts currently leased is
at most equal to |I(S)|.
That is, for the above policy P , for every slot t:

t∑
τ=1

Nτ
e,G +N t

e,O ≤ |I(S)|, e = 1, . . . ,M (24)

This follows from the fact that I(S) is a maximum indepen-
dent set.

Now, let P be an optimal policy. Consider a policy f ∈
F , which initially finds a maximum independent set I(S).
Also, whenever P sells a contract, f sells the same type of
contract on the same channel at a node in I(S) at which no
contract has been sold on this channel. More precisely, number
the nodes in I(S) from 1 to |I(S)|. In slot t, on channel e,
policy f sells Type-G contracts at the nodes

∑t−1
τ=1 N

τ
e,G+1 to∑t

τ=1 N
τ
e,G and Type-O contracts at the nodes

∑t
τ=1 N

τ
e,G+1

to
∑t

τ=1 N
τ
e,G+N t

e,O. It can be checked that on each channel
e, (a) for policy f , two or more contracts never stand leased at
the same node and (b) by (24), in each slot t, f finds enough
nodes in I(S) to sell contracts at.

Now, by observation (1), the revenue of f is the same as
that of P , and therefore f is optimal.


