Achieving fairness in multicasting with almost stateless rate
control

Saswati Sarkar!, Tianmin Ren? and Leandros Tassiulas?
Department of Electrical and Systems Engineering, University of Pennsylvania
swati@ee.upenn.edu, 215 573 9071 (Ph) 215 573 2068 (fax)
2Department of Electrical and Computer Engineering and Institute for Systems Research
University of Maryland, College Park
{rtm,leandros}@isr.umd.edu, 301 405 6620(Ph)
*Address all correspondence to Saswati Sarkar

ABSTRACT

Several flow control algorithms have been proposed for attaining maxmin fair rates. All of these strategies use
flow specific states at all nodes in the network, and are hence unsuitable for deployment in the current internet.
We propose a new approach which attains maxmin fairness in unicast networks while maintaining per flow
states at the edge nodes only. Next, we consider multirate, multicast network and argue that any flow control
algorithm must use flow specific states at the forking points of the multicast tree. This happens because the
packet forwarding rates must be different for different branches at the forking point, and thus the session specific
forwarding rates must be stored at the forking point. Finally, we present a maxmin fair bandwidth allocation
policy for multirate, multicast networks, which uses per flow states only at the forking nodes, and no per flow
state at the intermediate nodes.

1. INTRODUCTION

One primary goal for rate based flow control is to achieve fairness of rate allocation among different sessions in
a network. Different notions of fairness are possible and each of these leads to a different optimization objective.
We adopt the notion of maxmin fairness. A rate allocation is maxmin fair, if no receiver can be allocated a
higher rate without hurting another receiver having equal or lower rate. Maxmin fairness satisfies many intuitive
fairness properties.

Maxmin fair allocation has been studied extensively in the unicast context!**57 and more recently in the
multirate, multicast scenario.®® However, all the algorithms proposed so far need per flow state. In this paper,
we propose a distributed asynchronous algorithm for computation of maxmin fair rates in a unicast network,
which does not require per flow states at any intermediate node. This property makes our algorithm scalable
and practical for large networks.

Next, we consider multicast networks. Multicasting allows a single source to simultaneously communicate
with several receivers. We consider multirate multicast networks which allow different receivers of the same
session to receive messages at different rates. Multirate mechanisms allow the network to cater to the specific
requirements and capabilities of the individual receivers. However, it is not possible to eliminate per flow states
at the forking nodes in any multirate congestion control scheme. This is because different branches need different
transmission rates for the same session at the forking nodes, and such a node should know these bandwidth
specifically in order to cater to the individual traffic demands of the different receivers. Thus session specific
states must be maintained at the forking points of the multicast tree. We propose a flow control scheme for
allocating the maxmin fair rates in multirate, multicast networks with per flow states only at these junction
nodes and the source nodes. Thus this algorithm uses minimal per flow states in multirate, multicast network.
Since a node needs to maintain per flow states for only those multicast sessions which fork at the node, storage
and processing requirements at the nodes are well under control in this policy.

This paper is organized as follows. We first describe our network model and formally define our fairness
objective for unicast and multirate multicast networks in Section 2. Next, we describe a stateless flow control

scheme for unicast networks in Section 3. Subsequently, we generalize our policy for multirate, multicast
networks in Section 4. We evaluate the fairness properties of these algorithms in Section 5. The conclusion is
presented in Section 6.

2. NETWORK MODEL

We present a mathematical model for multicast networks. Network heterogeneity poses a challenge in the
implementation of multicast communication. This is because different receivers of the same session receive
traffic through different paths, and these paths often have widely varying congestion levels. Also, different
receivers have different service limitations. For example, one may be a modem, whereas another may be an
ethernet LAN. Thus, a single rate of transmission for all receivers tends to overwhelm the slow ones and starve
the fast ones. This problem can be addressed if the receivers of the same application are allowed to receive
information at different rates, and the session rate in a link is the maximum of that of the receivers downstream
of the link. This mechanism is known as multirate multicast.

Multirate multicast can be attained by layered encoding. For this purpose, a source hierarchically encodes
its signal in several layers. The lowest layer consists of the most important information and all receivers of the
session should receive it. Receivers can subscribe to higher layers for successive refinement of reception quality
at the expense of additional bandwidth. If the path to a receiver is congested, then it receives the lowest layer
only, whereas a receiver subscribes to a large number of layers if its data path has a lot of bandwidth. Different
receivers of the same session can receive different number of layers. The number of layers transmitted in a link
is the maximum of the subscriptions of the receivers downstream.

A multicast session is identified by the pair (v,U), where v is the source node of the session and U is the
group of intended destination nodes or receivers. We assume that the traffic from node v is transported across
a predefined multicast tree to nodes in U and do not concern ourselves with the routing problem in this paper.
Since different receivers of the same session can be allotted different bandwidth, we need to consider receiver
rates instead of session rates. Let there be IV sessions and M receivers. Rate allocation is an M-dimensional
VECtOr (711, ., Tlmyy -+ sTils s Timgy o> N1y« "Nmy), Where 7;; is the rate allocated to the jth receiver
of the ith session. For simplicity, we will use a single index, henceforth. A rate allocation (ri,...,ras) is
feasible, if the total bandwidth consumed by all sessions traversing a link does not exceed the capacity of the
link. Bandwidth consumed by a session in a link is equal to the maximum of the bandwidth allocated to its
receivers downstream of the link. Bandwidth consumed by a session in one link may be different from that in
another link, as different receivers of the same session may have different bandwidth. Formally, a rate allocation
7= (r1,...rm) is a feasible rate allocation if }_,c, ;ymaxjen(iyr; < Ci (capacity condition), where n(l)
denotes the set of sessions passing through link I, m(k,!) denotes the set of receivers of session k downstream
of link [and C; denotes the capacity of link [. Figure 1 illustrates an example network with a few capacity and
maximum rate constraints.

A feasible bandwidth allocation is maxmin fair if it is not possible to maintain feasibility and increase the
rate of a receiver without decreasing that of any other receiver which has equal or lower rate. More formally, a
feasible rate allocation %' is maxmin fair if it satisfies the following property with respect to any other feasible
rate allocation @2: if there exists i such that the ith component of @? is strictly greater than that of @ (u? > u}),
then there exists j such that the jth component of ', u]1 is less than or equal to the ith component of @, u}
(uj < uf) and the jth component of @* (u?) is strictly less than the jth component of @' (u3 < u}). Refer to
the network of figure 1 for an example of maxmin fair bandwidth allocation.

Now, we discuss the special case of a network with unicast sessions only. A unicast session has only one
receiver. Every session can be characterized by a source destination pair and we need to consider session rates
only. If there are N sessions then the rate allocation vector is an N —dimensional vector. The fairness objective
is similar for unicast and multicast. The essential difference in the mathematical model is in the feasibility
condition. For unicast networks the capacity condition is that for every link [, EjEn(l) r; < Cj, where 7;
is the rate of session j. Thus the capacity condition is linear as opposed to the nonlinear capacity condition
for networks involving multicast sessions. This additional complication necessitates different resource allocation

approaches in unicast and multirate, multicast networks. We first focus on unicast networks, and later generalize
our approach for multirate, multicast sessions.

We present the intuition behind our approach in the next section.

3. A STATELESS ALGORITHM FOR MAXMIN FAIRNESS IN UNICAST
NETWORKS

In this section, we present a flow control scheme for attaining maxmin fairness in unicast networks. The
algorithm does not need any per flow state in the intermediate nodes, and thus scales well with an increase in
the number of sessions in the network. We first describe the intuition behind the policy.

3.1. Intuition behind our policy for unicast networks

We first describe the basic approach of the flow control policy of* for attaining the maxmin fair rate allocation.
Incidentally, the basic philosophy is similar for other algorithms® 7 as well but the algorithm details differ. Every
link offers equal bandwidth to all sessions traversing the link. The bandwidth utilized by a session equals the
minimum offered in its path. For this purpose, a link computes a fair share, where fair share of a link equals the
total bandwidth divided by the number of sessions. This fair share is offered to each session traversing the link.
If a session can not utilize this fair share, it is saturated, otherwise it is unsaturated. Fair shares are updated
to reflect the total bandwidth not utilized by saturated sessions divided by the number of unsaturated sessions.
The saturation status and the saturation bandwidth of sessions change all the time. A link keeps track of both
the quantities for each session. Hence, it maintains per flow states.

We follow the same approach without maintaining any per flow state at the routers. The basic observation
is that a link needs the sum of the utilization of the saturated sessions and the number of unsaturated sessions.
The link does not require the individual bandwidth utilization of any session. However, the scheduler uses the
individual utilization and the fair shares to compute the saturation status of each session, and the saturation
status of the sessions are used to compute their total utilization and the total number of unsaturated sessions.
We compute these quantities using estimation and some additional information carried in the data packets, but
without maintaining the saturation status or the individual bandwidth utilization of sessions in the links.

At each link, the total rate of arrival of packets of saturated sessions is considered an estimate for the total
utilization of the saturated sessions. Note that this does not require per flow states at the individual routers.
The storage burden is shifted to the source, which maintains the saturation status of the session in each link
on its path. This is acceptable as the source node often handles only one session. The data packets need an
additional overhead of 1 bit per link to indicate the saturation status of the respective link.

The link maintains the number of saturated sessions. The estimate is updated as the saturation status of
sessions change. The source sends special control packets (rate packets) periodically, to obtain information
about the saturation status of the session in the links. The link uses the information in these rate packets
to update the number of saturated sessions. A rate packet contains the estimated rate of the session. The
saturation status of a session can be estimated in a link by comparing the rate value in the rate packet and the
fair share of the link. If the rate value is less than the fair share, then the session is not utilizing the offered
bandwidth, and is thus congested elsewhere. It is considered to be saturated in the link. If the rate value exceeds
the fair share, then the session is not congested elsewhere, and is considered unsaturated in the link. The rate
value in the rate packet is subsequently decreased to the fair share so that the estimated rate is the minimum of
the fair shares on the path of the session. However, the number of saturated sessions can not be updated based
on the current determination of the saturation status only, as the current estimate carries no information about
the previous saturation status, and this information is essential in updating the number of saturated sessions.
The router can learn the earlier saturation status if the rate packet contains a saturation vector indicating the
previous saturation status in the links. So the source adds a saturation vector in the rate packet. The routers
use the saturation vector, rate value and fair share for updating the number of saturated sessions. Subsequently,
the corresponding bit in the saturation vector is also updated to reflect the new saturation status of the session
in the link. When the rate packet returns, the source stores the new saturation vector, and inserts it in the
next rate packet.

Finally, the fair share computation uses the maximum utilization of the sessions in a link when all sessions
are saturated in the link in the algorithm of.# The maximum rate of saturated sessions can be estimated
periodically from the rate values in the rate packets for the saturated sessions. We discuss this in details later.

3.2. Algorithm description for unicast networks

We first describe the policy. Subsequently we will provide a pseudo-code and discuss the salient features of the
policy.

Control Packet Exchange: Every source periodically sends forward rate packets downstream along the
session path. When a receiver receives a forward rate packet, it returns it as a backward rate packet to the
source. The rate packets infer the congestion condition along the path, and the source adjusts its transmission
rate accordingly. Each rate packet contains: 1) a congestion bit to identify whether this session should increase
its data transmission rate, 2) a rate field to specify the data transmission rate and 3) a saturation vector which
contains the saturation status of the session in the links on its path. The source always sets the congestion bit
to 0 to indicate no congestion, and the links update the congestion bit appropriately. The source sets the rate
field of the first forward rate packet to a large rate value (ideally infinity). The saturation vector in the first
rate packet indicates unsaturation for all the links.

Every link stores the fair bandwidth share also known as the link control parameter, the number of unsatu-
rated sessions and an estimate of the maximum rate of the saturated sessions traversing the link. When a link
receives a forward rate packet, it compares the rate value in the rate packet with its link control parameter. If
the rate value is greater than or equal to its link control parameter, the session is considered unsaturated in
this link. If the rate is less than its link control parameter, the session is considered saturated in the link. The
link can detect a change in the saturation status from the saturation vector. Subsequently, the link updates
the number of unsaturated sessions and the corresponding saturation status indicator in the saturation vector
of the rate packet. Next, if the rate value is greater than or equal to the link control parameter, the link sets
the congestion bit in the rate packet to 1 indicating that there is congestion in the path of the session, and the
session rate should not be increased. Also, the link will reduce the rate value to the link control parameter.
Then, the link updates the maximum rate estimate and finally forwards the forward rate packet downstream.

When a receiver gets a forward rate packet, it sends the packet upstream as a backward rate packet. Every
node simply forwards a backward rate packet upstream. A source node stores its last received backward rate
packet. It uses the contents of this backward rate packet to determine the contents of the next forward rate
packet. If the congestion bit in the backward rate packet is 1, then there is congestion in the path, and the rate
value in the forward rate packet is set equal to that in the backward rate packet. Otherwise, the rate value is
a large number, typically infinity. The saturation vector of the forward rate packet is the same as that in the
backward rate packet.

Data transmission: Source node regulates the rate of data packet transmission in accordance to the rate
value in its last received backward rate packet. The header of every data packet contains the saturation status
vector. We may use the unused bytes in the IP header for this purpose. Also, the header contains a pointer.
Initially, the pointer points to the first bit in the saturation vector, and the links gradually advance this pointer.
Every link maintains two separate queues of data packets, one for packets of saturated sessions, another for
packets of unsaturated sessions. When a link receives a data packet, it infers the saturation status of the session
from the corresponding bit in the saturation vector. The position in the saturation vector is indicated by the
pointer. If the bit indicates saturation, then the data packet is placed in the saturation queue, otherwise it is
placed in the unsaturation queue. The link periodically measures the total arrival rate of the saturated sessions.
This is an estimate of the total bandwidth utilized by the saturated sessions.

Link Control Parameter Computation: Every link maintains an estimate of the total bandwidth utilized
by the saturated sessions, the number of unsaturated sessions and an estimate of the maximum rate of the
saturated sessions. The link control parameter update procedure can be described as follows. The residual
capacity is the bandwidth not utilized by the saturated sessions, i.e., it is the difference between the link
capacity and the bandwidth utilized by the saturated sessions. If there is at least one unsaturated session, then
the link control parameter is the residual capacity divided by the number of unsaturated sessions. If all sessions
are saturated, then link control parameter is the sum of the maximum rate of sessions and the residual link
capacity. Every link estimates the maximum rate of the saturated sessions periodically and computes its link
control parameter at regular intervals. We discuss the choice of the computation intervals later.

Estimation of the maximum rate of the saturated sessions: Every link maintains two estimates, new
estimate and old estimate. At the beginning of each estimation interval, the new estimate is initialized as 0.
Every time a forward rate packet of a saturated session arrives, the new estimate is updated as the maximum
of the current value of the new estimate and the rate value in the forward rate packet. At the end of each
interval, the old estimate is assigned equal to the new estimate. The maximum rate used to update the link
control parameter is the maximum of the new and the old estimates.

3.3. Pseudocode

First we introduce some terminologies.
pi is the rate of transmission of session 3.

r Rate value of rate packet
u Congestion bit of rate packet Rate Packet
¢ Saturation vector of rate packet

Any link will store the following.

v Link control parameter

K1 Number of sessions
traversing link [

Vi Number of unsaturated
sessions traversing link [

v Number of packets transmitted

for saturated sessions in the Link [record

current interval
R;1 New estimate of the maximum
rate of the saturated sessions
Rj> Old estimate of the maximum
rate of the saturated sessions

|(&) indicates logical or (and) operation.

The pseudocode follows:
Source process for session i:
Let the previous backward rate packet have rate value ry,, congestion bit s, saturation vector ¢°.

1. Send traffic at the rate ry.

2. Send forward rate packets periodically with parameters r¢, uy, 7.
If up =0, 75 = o0, else ry = 14.

ur =0, (j'f = (jb
Process at Link [:

1. When session 4 forward rate packet(r,u, ¢) is received:

(a) If (r <) & (@ =0) or
(r >) & (¢ = 1), (If saturation status changes.)
call estimate-link-control-parameter(7, vy, v, C)
(b) If r < 1y,
e if ¢ =0, = — 1 (number of unsaturated sessions decreasing) and ¢ = 1
e Ry = max(Ry;,7)

(C) if?”ZT/fl’
o T=1
o u=1

e if ¢ =1,y = + 1 (number of unsaturated sessions increasing)and
e ;=0
(d) generate-forward-rate-packet(r,u,q) and transmit it on link I.

2. When session ¢ backward rate packet(r, u, §) is received, link [sends the backward packet upstream.
3. Periodically calls estimate-link-control-parameter(7;,~;, v, C)

4. Periodically calls update-maximum-saturated-rate(R1;, R2;) to update the estimate of the maximum rate of
the saturated sessions in the link

Process at Receiver s of session ¢ :
When a forward rate packet(r, u,) is received, generate-backward-rate-packet(r, u, ¢) and send it towards the source
of session 1.

Subroutine generate-forward-rate-packet(r, u,q) (generate-feedback-rate-packet(r,u,q)) simply generates a
forward(backward) rate packet with rate value equal to r and the congestion bit equal to v and saturation vector equal
to q.

estimate-link-control-parameter(7, vy, v, C;) is described below.

: c
Loif v = ke, 0 = ZH
1

Y1

o R N—
2. else if v; > 0, ¢y, = —interval size

ot}

3. else ¢ — maX(Ru, Rgz) +C) — m
4. v = 0

Routine estimate-link-control-parameter (7, vy, v, C;) is called by a link, if the saturation status changes, or if
the link control parameter has not been updated for a pre-specified period of time.

Routine update-maximum-saturated-rate(R1;, R2;) is used to update the estimate of the maximum rate of sat-
urated sessions. The operation is described below.
1. Ra = Ry, (old maximum rate estimate is updated)

2. Ry =0, (new maximum rate estimate is reduced to 0 at the start of a fresh estimation cycle)

3.4. Discussion
We discuss some salient features of this policy in this subsection.

We first examine the convergence properties. Intuitively, the output of this algorithm should converge to the
maxmin fair allocation. This is because in our policy every link offers equal bandwidth to all sessions initially. If
a session can not utilize the offered bandwidth, then the residual bandwidth is distributed among other sessions.
Observe that the link control parameter is the offered bandwidth in any link, and the estimated rate of a session
is the minimum of the link control parameters on the path of the session. A session is considered saturated in

a link if this estimated bandwidth is less than the link control parameter. Initially, all sessions are unsaturated
and the link control parameter is the link capacity divided by the number of sessions. Link control parameter
is updated as the residual capacity divided by the number of unsaturated sessions (residual capacity is the
bandwidth not utilized by the saturated sessions). This update redistributes the unutilized bandwidth among
the unsaturated sessions. This is the basic principle for well established flow control algorithms which attain
maxmin fairness.»* Thus, intuitively our policy should converge to the maxmin fair rates. Experimental results
support this intuition. Our contribution is to implement this philosophy using a message exchange sequence
and an estimation based approach which eliminate the flow specific states at the nodes. This does not alter the
convergence properties in general. However, our policy exhibits oscillatory behavior for certain choices of the
parameters. We discuss this later.

We estimate the bandwidth not utilized by the saturated sessions through estimation, and estimation errors
may be caused by transients. Also, initially the sessions transmit at high bandwidth and the transmission rates
are not feasible. This leads to transients which cause estimation error. But, estimation error is present for any
stateless rate computation scheme(e.g.,?), because any such scheme typically computes the utilized bandwidth
in a link from the arrival rates, and the arrival rates in a link depend on the scheduling and the transients in
all previous links. However, typically links have additional bandwidth to absorb the transients. For example, if
a link [actually has C; bandwidth then it aims at an utilization of aC;, where o < 1. In our case, link control
parameter computations assume that the capacity of link [is aC} for all links [, « < 1. The additional bandwidth
(1—)C is used to absorb the initial transients. Thus, the convergence is not sensitive to the transients and the
exact scheduling policy. We found that our policy converges to the maxmin fair rates for an utilization factor
as high as 90% with simple FIFO scheduling. We also found that the convergence is not sensitive to the size of
the estimation interval. However, as expected very short intervals lead to transients, and very large intervals
slow response to congestion, and the policy exhibits oscillatory behavior for both the extremes. Convergence
properties are good for all reasonable interval sizes, e.g., order of a few round trip times.

We refresh the maximum rate estimate periodically. As a result the maximum rate estimate at a particular
time may not be the right one. Besides, very short estimation intervals lead to incorrect estimates as rate
packets of all sessions may not be encountered in one interval. Very long intervals lead to slow response to
change in the maximum rates. We found good convergence properties for moderate estimation intervals, e.g.,
intervals of the order of a few round trip times.

We experimentally observed convergence for a wide range of network topologies and link capacities. However,
as discussed, some pathological choice of the estimation intervals lead to oscillation. But, the only known flow
control policies which guarantee convergence for all parameter choices, e.g.,"**8 need per flow states at the
intermediate routers. From an implementation point of view, it is better to deploy a stateless algorithm which
converges to the maxmin fair output in general, rather than an algorithm which guarantees convergence, but
requires per flow states.

Now, we examine the storage and the processing requirements at the links. A link originating from an
intermediate node, just needs to store the number of unsaturated sessions, link control parameter, and the
maximum rate of the saturated sessions. Thus intermediate nodes does not need any per flow state. A source
node needs to store the previous backward rate packet of the session, and thus needs flow specific states for
the session. Source nodes are at the edge of a network and only a few sessions originate from a source node,
and hence it is acceptable to have a source node store specific states of the sessions originating from the node.
Processing wise, a link needs to periodically compute the fair share, and estimate the maximum rate of the
saturated sessions. Both of these are computationally simple. A link also needs to modify the contents of the
forward rate packets suitably. The necessary computation just involves computing the minimum of two real
numbers and again comparing two real numbers. Neither operation is computationally intensive. However,
modifying the contents may consume some more time, but the link needs to modify the contents of only the
control packets, and not the data packets (a link may need to advance a pointer in a data packet header, but
the IP module anyway alters the packet header before transmitting the packet in a new link). Control packets
are sent periodically, and this period can be adjusted suitably. The tradeoff is that if the control packets are
sent after long time intervals then the convergence is slow. Thus there is a tradeoff between convergence speed
and link processing complexity.

Now, we examine the message exchange overhead. Additional control packets contribute to the message
exchange overhead. However, control packet exchange interval can be adjusted suitably. Thus, there is a
tradeoff between convergence speed and the message exchange overhead as well. There is a small amount of
additional overhead in the data packet headers. The data packet header must contain the saturation vector,
but the saturation vector has only one bit per link.

Summarizing, the algorithm is computationally simple, distributed, asynchronous and stateless. The algo-
rithm need not restart every time there is a topology change, e.g., a session joins or leaves. Thus it is suitable
for deployment in a dynamic scenario like the current internet.

We generalize our policy to address multirate, multicast sessions in the next section.

4. A REDUCED STATE FAIR ALLOCATION POLICY FOR MULTIRATE
MULTICAST NETWORK

We first describe the distinctive challenges of multirate, multicast networks. We briefly argue that multirate
multicast needs per flow states at the junction nodes. Multirate, multicast is realized by a layered transmission
scheme. Source encodes its signal into several layers and different layers are transmitted as different multicast
groups. Higher the number of layers received, better is the reception quality. Thus receivers with higher
bandwidth subscribe to a higher number of layers for better reception quality. A junction node needs to
maintain a list of downstream links for each layer in its routing table. There are several layers for each session
and the forwarding is different for each. Hence flow specific states are required at each junction node. However,
intermediate nodes can aggregate the flow states.

We highlight another important difference between resource allocation of multicast and unicast networks.
Multicast trees have several receivers and hence several paths. The receivers receive service at different band-
width. The bandwidth allocated to a session in a link should depend on the congestion in all the paths involving
the link, and in particular on the bandwidth allocation of the least congested path. Maxmin fairness can be
attained in a multirate, multicast network by initially allocating equal bandwidth to every session traversing
a link.® If a session does not utilize the offered bandwidth because of constraint elsewhere, then the residual
bandwidth is distributed among the unconstrained sessions. This is similar to the unicast case, and can be
attained by offering every session a bandwidth equal to the link control parameter where the link control pa-
rameter is updated as the residual capacity per unsaturated session. The principal difference is in determining
the saturation status and the bandwidth of a saturated session. A session will not utilize the full bandwidth
offered in a link if all the session paths involving the link are congested, and it is only then that a session is
considered saturated in a link. The congestion status of the least congested path is required. We acquire this
information as follows.

The source sends the control packets downstream to collect congestion information. The junction nodes
multicast the control packets to all downstream links of the multicast tree. The receivers return the control
packets towards the source. The junction nodes aggregate all the backward rate packets and send only one
backward rate packet upstream. The aggregated backward rate packets reflect the congestion information of
the least congested path traversing the junction node only. The source and the junction nodes transmit data
packets in accordance with the rate information in the returning control packets, and also infer the congestion
status of the session in the downstream links from these control packets. The details are described next.

4.1. Algorithm description

We first describe the policy, and subsequently we will provide a pseudo-code and discuss the salient features of
the policy. We focus on the differences with the unicast case.

We now define a junction node formally. A junction node is an intermediate node of a multicast tree (a
non-terminal node) where the tree forks into branches. A junction link of a session is a link which originates
from a junction node and is on the path of the session.

Control Packet Exchange: The content of the forward rate packet is similar to that for the unicast case,
with one important difference. The saturation vector reflects the congestion status of the session in links till
the next junction node, and contains one bit for each of these links.

Now we consider the processing of forward rate packets at the links. The processing of rate packets and
storage at the non-junction links are the same as that for the unicast case. The storage at these non-juction links
is also the same. There is additional storage and processing at the junction nodes and junction links though.
Every junction link stores the previous backward rate packet for the session. When a forward rate packet arrives
at a junction node, the junction node stores it till the corresponding backward rate packets arrive. In addition,
it sends a new forward rate packet in each of its outgoing junction links. The saturation vector in each forward
rate packet is set equal to that in the backward rate packet stored in the corresponding link. The rate value
in the new forward rate packet is determined as the minimum of the link control parameter, rate value in the
incoming forward rate packet and the rate value in the previous backward rate packet.

When a receiver gets a forward rate packet, it sends it upstream as a backward rate packet. A nonjunction
node simply forwards a backward rate packet upstream. However, a junction node needs further processing with
the backward rate packets. A junction node aggregates all the backward rate packets that arrive in the different
outgoing links, and sends one backward rate packet upstream. The contents of the aggregated backward rate
packet are determined as follows. The rate value in this backward rate packet is the maximum of the rates in
the incoming backward rate packets. The congestion bit is set to 1 if the incoming forward rate packet has
congestion bit 1 or if all the incoming backward rate packets have congestion bit 1. Thus the contents of an
aggregated backward rate packet reflect congestion only if all downstream paths are congested. The contents
also reflect the offered bandwidth in the least congested path.

A source node stores its last received backward rate packet. It uses the contents of this backward rate packet
in determining the contents of the next forward rate packet as in a unicast network.

Data Transmission: The source node incorporates the saturation vector of the stored backward rate packet
in the headers of the data packets. The links use this saturation vector to estimate the total bandwidth of the
saturated sessions. We first describe the transmission procedure in a junction link. Such a junction link stores a
backward rate packet for the session. The junction node also stores the incoming forward rate packet. The rate
of the session in the link is the minimum of the rate values in the two rate packets, and need not be estimated
from the data packets. Also, the link knows the saturation status of the session in the link from the content
of the saturation vector in the backward rate packet. Thus, the link does not perform any estimation for the
session. It may estimate the total bandwidth consumed by other saturated sessions for which it is not a junction
link. Also a junction node selectively forwards data packets downstream at a rate which equals the minimum of
the rate values in the stored forward and backward rate packets. Finally, the saturation vector in a data packet
header is set equal to that in the stored backward rate packet.

4.2. Pseudocode for multirate multicast networks
For each non-junction node and link, the algorithm is the same as that for the unicast networks.

The storage for each junction link and node follows:

If nQde n is the junctionvnode for session i, it stores phe last forward rate packet (r}, uj}, (j’}) for each session 1,
where 7% is the rate value, u} is the congestion bit and ¢} is the saturation vector: .
Every junction link [of session i stores the previous backward rate packet,(r;, up, ¢;) for each session i, where r} is
the rate value, u} is the congestion bit and ¢} is the saturation vector. In addition, such a link stores the link control
parameter.

Process at junction link [:

1. Junction link uses some local variables z;;1 and z;2. When the junction link receives a session ¢ forward rate
packet(ry, uf, ¢}):

(a) If up =0, zin = 1%, else zi1 = min(ry,75),

(b) Zil2 = 07
(©) I (2 < 1) & (G, = 0) or
(zi1 > 1) & (@, = 1), (If saturation status changes.)
call estimate-link-control-parameter(7, vy, v, C)
(d) If zin < Y,
e if ¢ =0, v = — 1 (number of unsaturated sessions decreasing) and g, = 1
e Ry = max(zi1, Ru)
(e) if zu1 >,

® 21 =Y

® 22 =1

o if @, =1, v, = v + 1 (number of unsaturated sessions increasing)and
* g, =0

(f) generate-forward-rate-packet(z1, zi2, @) and transmit it on link I.
2. When session i backward rate packet(rs,ul, qt) reaches link I, it stores it
3. Periodically calls estimate-link-control-parameter(7;,~;, v, C)

4. Periodically calls update-maximum-saturated-rate(R1;, R2;) to update the estimate of the maximum rate of
the saturated sessions in the link

Process at junction node n:

1. When the junction node receives a session 4 forward rate packet(r}, u}, (j’}), it stores it
2. When all the junction links originating from a junction node receives a session ¢ backward rate packet, the junction
node generates a backward-rate-packet(r;, up, ¢,), and sends it towards the source, where
e 7 is the maximum of the rates of all these backward rate packets

o ul =1, if ujc = 1 or the congestion bits of all the backward rate packets are 1. Otherwise, uf = 0.

%

* G, = qs.

)

Let n be the origin node of link [and let link [be added to the path of a session 4. Session initiation can
cause addition of links on its path. A link may also be added to the path of an existing session on account of
some new receiver joins. If n is the origin node,

1. Hl:ﬁl—"la 'Yl:'yl—’—la

2. If session ¢ was not traversing node n, prior to addition of link I, 7/* = {l}, else 77" = 7* U {I}.

Note that we do not need to initialize other parameters because of the operation of the algorithm.

Let n be the origin node of link [/ and let link [be removed from the path of a session 4. Session exit can
cause removal of all links on its path. A link may also be removed from the path of a continuing session, if all
receivers downstream leave. When a session is removed from a link, the link knows about the removal from a
control packet from the nearest upstream junction node or sender, and the junction node or sender knows the
saturation status of the session in the links of the branch to be removed and puts the saturation status vector
for this branch in the header of this control packet.

Lorf =\,
2. Iil:Iil—].,
3. If(jl:O,'yl:'yl—l.

A junction node forwards a data packet in a link [only at the rate b;; for session 7 in link [. Also, a junction

node replaces the existing ¢ in the source header by stored ¢* for the link.

4.3. Discussion
We discuss some salient features of our policy in this subsection.

An algorithm for computing maxmin fair rates in multirate, multicast networks has been proposed in.® We
follow the same philosophy as that in.® Namely the network first tries to equalize the bandwidth of all sessions in
each link. If a session can not utilize the offered bandwidth in a link, then the residual bandwidth is distributed
among the unsaturated sessions. The key point is that a session can not utilize the offered bandwidth in a
link if all the session paths involving the link are congested. The basic approach is provably fair. However, the
basic approach uses flow specific states at all links to attain its objective. We use estimation and additional
information in the data packets to obtain the necessary information without maintaining per flow states. Thus,
intuitively the policy should converge to the maxmin fair rates. Experimental results support this intuition.

The discussion regarding the choice of the estimation intervals for the unicast network applies in the multicast
case as well. We describe the storage at each node now. The storage at a non-junction link is exactly the same
as that for the unicast case. Hence, these links do not maintain per flow states. However, a junction link
maintains flow specific states for the session. As we discussed before, any multirate flow control scheme needs
per flow states at the junction nodes, and thus our policy uses the minimum possible per flow states.

The processing requirements are similar to the unicast case. The source and the junction nodes incorporate
the saturation vector in the headers of the data packets.

Finally, the control packet aggregation prevents the control packet implosion problem, as the overhead in a
link does not depend on the number of receivers downstream.

5. PERFORMANCE EVALUATION

We have studied the performance of our algorithm in a large number of different topologies. The output
converged to the maxmin fair rates in all cases. We present some of the results below. We assume FIFO
scheduling and an utilization factor of 90% all through. Thus, the link control parameters are computed
assuming that the link capacity is 90% of its actual value. We deliberately used a high utilization factor, as
estimation error is likely to be high at high loads, and the experiments indicate that the system converges at
high loads as well. We selected an estimation interval of size 1500 for both link control parameter and maximum
rate estimation. This is of the oder of 5 — 6 round trip travel times of the control packets. The parameters
were selected on an ad-hoc basis in this case. We found that the convergence is not sensitive to the size of these
intervals.

We first present our simulation results for a 10-node network. We first study the network with unicast
sessions only(Figure 2(a)). We assume negligible propagation delay for each link. The delay in convergence
is mainly because of the time needed by the control packets to reach the receivers. The control packets need
some time to reach the receivers as the links are loaded on account of the high utilization factor. Most of the
sessions get their maxmin fair rates by the time one or two control packets complete their round trip journey.
After four round trip travel of the control packets, the rates of all the sessions converge to the maxmin fair
values. Figure 3(a) shows the convergence for two sessions whose rates converge relatively slowly. We studied
the discrepancy from the maxmin fair rate at any time. If maxmin fair rate of a session s at time ¢ is " (¢),

and the computed rate at time ¢ is r¢(t), then relative computation error for session s is |1 — :5,((tt))| at time t.

Figure 3(b) plots the maximum of the relative errors of the sessions. This figure indicates that the attained
rates of all the sessions converge to the respective maxmin fair rates.

Next, we consider the same network with multicast sessions (Figure 2(b)). All sessions achieve their fair rates
in a few round trip travels of the control packets. We show the convergences for two relatively slow receivers in
Figure 4(a). Again, we study the discrepancy between the attained and the maxmin fair rates of the receivers
at any time. Figure 4(b) plots the maximum of the relative errors of the receivers as a function of time. The
experimental result indicates that the attained rates of all the receivers converge to the maxmin fair rates.

Next, we show our results for a large random network. The network has 100 nodes, 603 links, 10 multicast
sessions and 84 receivers. Nodes are points on a 10X 10 grid. There exists an edge between any two nodes with

a probability (p) that depends on the euclidean distance between the nodes (d) (p = exp(8(1 —d))), where 3 is
the decay constant. We assumed [= 2. We adopted this edge probability model because the distant nodes are
less likely to have an edge between them. The propagation delay between the two nodes is equal to the euclidean
distance between them. Source and the receivers of every session have been selected randomly. The session
route consists of the shortest paths between the source and the destinations. Most of the receivers obtain their
maxmin fair rates in the first few round trip travel times of the control packets. However, the control packets
take longer to travel the network because of the propagation delay and the processing delay in the long source
receiver paths. Thus convergence is slower than that in Figure 4. Figure 5(a) plots the attained rates of a few
sample receivers. Figure 5(b) plots the maximum error of the receiver as a function of time. The maximum is
taken over all currently active receivers. Both these figures indicate that the rates of all receivers converge to
the respective maxmin fair rates.

We have studied the case when receivers join or leave the multicast sessions dynamically. We show results
for the 10—node network of Figure 2(a) in Figure 6. All the receiver rates have converged to the maxmin fair
rates by time ¢t = 5000. Receiver 7 joins session 3 at time ¢t = 10, 680 units. Maximum error is initially high, as
the new receiver starts from a low rate initially. Gradually, all receivers attain their maxmin fair rates and the
maximum error decreases to 0. Receiver 9 leaves session 5 at ¢ = 17889. Initially, maximum error is high, but
again it drops to 0. Finally receiver 9 leaves session 4 at t = 26, 706. The attained rates again converge to the
maxmin fair rates.

6. CONCLUSION

We present a new algorithm for attaining maxmin fairness of rate allocation in unicast networks. This algorithm
does not need per flow state in the intermediate nodes. Next we generalize our algorithm to address maxmin
fair rate allocation in multirate multicast networks, which only requires minimum possible per flow states. The
algorithms are scalable and practical for implementation. Simulation results exhibit rapid convergence to the
maxmin fair rates even in presence of network topology changes.

REFERENCES

1. S. Abraham and A. Kumar: A Stochastic Approximation Approach for Max-Min Fair Adaptive Rate
Control of ABR Sessions with MCRs. Proceedings of IEEE INFOCOM 99, New York, March 99.

2. S. Athuraliya, S. H. Low, and D. Lapsley: “Random Early Marking,” Proceedings of IEEE GLOBECOM
99, Rio De Janeiro, December’ 99.

3. T. Ballardie, P. Francis, and J. Crowcroft. Core based trees: an architecture for scalable inter-domain
multicast routing, Proceedings of ACM SIGCOMM, Sept. 1993, pp. 85-95

4. A. Charny: An Algorithm for Rate Allocation in a Packet Switching Network with Feedback. M.S. thesis,
Massachusetts Institute of Technology, May 1994

5. Y. T. Hou, H. H. Y. Tzeng and S. S. Panwar. A Generalized Max-Min Rate Allocation Policy and its
Distributed Implementation Using the ABR Flow Control Mechanism, Proceedings of IEEE Infocom’ 98,
San Francisco, CA, March 1998

6. D. Rubenstein, J. Kurose D. Towsley: The Impact of Multicast Layering on Network Fairness Proceedings
of ACM SIGCOMM’99, Cambridge, MA, September, 1999

7. J. Ros, W. K. Tsai: A General Theory of Constrained Max-Min Rate Allocation for Multicast Networks
IEEE ICON’00, Singapore, 2000

8. S. Sarkar, L. Tassiulas: Distributed Algorithms for Computation of Fair Rates in Multirate Multicast Trees
Proceedings of IEEE INFOCOM’00, Tel Aviv, Israel, 2000

Session 1 (S, {1,2,3})
Session 1 (SA) Session 2 (S{4})
Session 2 (S,B)
Session 3 (S1)

Session 4 (S,1)

©)

Figure 1. A session is represented by a source destination set pair in the two figures. The numbers in brackets, () denote
the capacities of the respective links. For example, e; has capacity 10 units in Figure (a).

We consider Figure (a) first. There are 4 sessions. The rate allocation vector is (r1,72,73,74). The capacity constraint
for link ey is 71 +r2 + 73 + r4 < 10. The maxmin fair bandwidth allocation is (1, 2.33, 2.33,2.33). Session 1 is constrained
in link e4. The remaining bandwidth in link e; is split between sessions 2,3 and 4 so as to equalize their bandwidth.
Now we consider Figure (b). The capacity constraint for link e; is max(r1,r2,73)+rs < 6 and that for link es is rs+r4 < 8.
The maxmin fair bandwidth allocation is (3.5, 1,3, 2.5) for receivers 1, 2, 3, 4 respectively. Session 2 is constrained in link
e7. Session 1 receives the remaining bandwidth of 3.5 units in link e;. Receivers 2 and 3 are constrained in links es and
es respectively. However, receiver 1 can receive the full offered bandwidth of 3.5 units.

Sesson0 | e Session 1
******** Session 2 [Session 2
********* Session 8 Session 4

Figure 2. Figure (a) shows a unicast network of 10 nodes. The numbers next to the links denote the capacities of the
respective links. The network has 14 sessions. We show only 3 sessions in the figure for convenience. The average length
of a session path is 2.7 edges. On an average 2.1 sessions traverse each link.

Figure (b) shows a multicast network of 10 nodes. The network has 6 sessions and 14 receivers in all. We show only 3
sessions for convenience. The average number of receivers per session is 2.33. The average length of a session tree is 5
edges. On an average, 1.6 sessions traverse each link.

(a) (b)

g 5
& 4 i
° E
2 2 o0sp 4
2 i g
@ =
7 0 % % %% % % % %
591 q
—*— Receiver 8 of Session 0
5.8 —0— Receiver 7 of Session 8 b
57 I I I I I ~05 I I I I I
"o 05 1 15 2 25 3 0 05 1 15 2 25 3
Time 3 Time 4

Figure 3. Figure(a) shows the attained rates of sessions 0 and 8 shown in Figure 2(a). The attained rates converge to
the maxmin fair rates (6.333 for session 0, 6.5 for session 8). These sessions have slower convergence than others in the
network of Figure 2(a).

Figure(b) shows that the maximum relative error rapidly decreases to 0. This indicates that the rates of all sessions
converge to the maxmin fair rates.

(@) ()
16 T 15 T
15 q
14 4
1 i
13 q
12 q
e 5
.4 i}
Q11 g E 05l B
3
S £
g K]
10 %% =
ol 4
0 - * * * ¥ % % * —k
8l 4
—— Receiver 6 of Session 1
T —0— Receiver 5 of Session 4 7
6 I I I I I ~05 I I I I I

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Time Time

Figure 4. Figure(a) shows the attained rates of receiver 6 of session 1 and receiver 5 of session 8 shown in Figure 2(b).
The attained rates converge to the maxmin fair rates (15 and 10 for the two respectively). These receivers have slower
convergence than others in the network of Figure 2(b).

Figure(b) shows that the maximum relative error rapidly decreases to 0. This indicates that the rates of all receivers
converge to the maxmin fair rates.

(@)

8 T (b)
15 T
7+ i
6 4
1 i
/\ N — N
% — Ak =%
5 4
®
2 s
@ =
B4 2
L 4 £
% z 051 B
14 E]
=
3r 4
P J 0
1+ i
o s L
0 05 1 15 2 25 3 o 05 1 15 2 25 3
Time Units x10° Time x10°

Figure 5. We show the performance of our policy in a randomly generated multicast network with 100 nodes and 603
links. The average number of receivers per session is 8.4. The average length of a session tree is 28 edges. On an average,
0.45 sessions traverse each link. Figure(a) shows the attained rates of two sample receivers in a random network. The
attained rates converge to the maxmin fair rates (5.5 and 0.75 for the two respectively).

Figure(b) shows that the maximum relative error rapidly decreases to 0. This indicates that the rates of all receivers
converge to the maxmin fair rates.

Maximum Error

) N |
or ¥ * * * *

=t L L L L L L

Figure 6. We plot the maximum error in the network of Figure 2(b). We allow receivers to join and leave the network
dynamically. The figure indicates that the rates converge to the maxmin fair rates after every join and leave.

