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~ Abstract— We investigate the faimess and throughput proper- scheduling is guaranteed to attain a certain fraction of the
ties of a simple distributed scheduling policy, maximal sceduling,  throughput region in arbitrary wireless networks [4], [1#is

in the context of a general ad-hoc wireless network. We desiy 4 ction turns out to be a constant in certain special cages [

a fully distributed algorithm that combines a token generaion 51 113]. Due to its simolicit d th vtical

scheme with maximal scheduling policy so as to attain max- 51, [_ ]. Due fo its _S|mp|C|y an_ _e gnaylca_ guaraem_
min fair rates within the feasible region of maximal scheduing. Obtained above, maximal scheduling is likely to find exte@si
We next present throughput guarantees of maximal schedulip applications in large scale multihop wireless networkseam
that quantify the performance loss of each session due to the fyture.

use of local information based scheduling. We show that the Nevertheless, maximal scheduling is really a class of poli-

performance loss for each session depends on the maximum . d licies in this cl Id allocate barttwid
“interference degree” in its neighborhood. We also demonstte cies, and some policies In this class could allocale barawi

that the performance penalties can not be localized any futter. ~ Very unfairly. Recently, Liret al. [5] and Buiet. al.[2] have
shown that in a specific interference model, the node exausi

spectrum sharing model, maximal scheduling can be used for
[. INTRODUCTION maximizing the network utility and congestion control. Qafe

Faimess and throughput are two important metrics thQr important contributions is to show that maxmin fairness
characterize the performance of any wireless network. Tﬁ@ndb? att_at;r_ledr:n ¥V|reless nlftv]\clorks _W'thl arl:;:trgr{ mhealle_ r?
question of providing throughput and fairmess guaranteB2d€ls within the framework of maximal scheduling, without
through intelligent link (packet) scheduling has receiwégt sac,jn.flcmg the simplicity anq tht_a distributed nature ofsthe
nificant attention in recent literature. However, most oé thPelicies. Using the characterizations for the throughpgion
scheduling algorithms proposed in this context have eithi maX|maI sched_ullng, we characterlze the feasible set of
been centralized [8], [10], [11], [12], or did not have am';erwce rate allocations for maximal scheduling, and ptbag
analytical guarantee [6], [7]. Characterization of tharfass @ Combination of a token generation scheme together with
and throughput properties of distributed scheduling ejias maximal scheduling attains maxmin fairness in this fee_S|bI
have remained largely unexplored; in this paper, we takesﬁt: The.token ggner_atlon _scher_ne .aIIows each session to
step towards addressing these important issues. estimate its maxmin fair rate in a distributed manner. $essi

We first investigate fair allocation of bandwidth using gisgontend for channel access in accordance with this esymate

tributed scheduling in multi-hop wireless networks. Atiag and the conte_ntion is resolved us_ing maxim_al scheduling. Th
faiess guarantees using distributed scheduling resjaibe token generation and the contention resolution can be ¢@cu

taining throughput guarantees through distributed reiwiwf in parallel. The maxmin fair rates need not be computed

medium access contention, and the latter remained an oy%H“C'tly’ and no knowledge of the statistics of the packet

problem for some time. Recently, some progress has beaerﬁ'val process is necessary for executing the algorithhe T

made towards solving the above open problem using a Sif:ﬁ)_mputation need not restart when the topology or the arriva

ple distributed scheduling strategypaximal schedulingThe rat\jzvs chart1ge. The st%hetrr?e IS ;hertefor_e rObeSt' imal schedul
maximal scheduling policy only ensures that if a transmitte € next compare the throughput region of maximai schedu-

u has a packet to transmit to a receivereither (u,v) or a Ny W'tl? _}_T]e maximum p0ﬁ3|ble througﬂput regror:j cgf the
transmitter-receiver pair that can not simultaneousindnait netwofr ) | IIS co:n_p?nsont_c a_racttﬁ nzesht de Ipena;\y uBelo t
with (u,v) is scheduled for transmission; the scheduling i € of only local information in the scheduling. A common

otherwise arbitrary. The maximal scheduling policy can pgature offall the eX|Zt|ng (;esults |nbtth_|s %orfnext |?as bmt 5
implemented in a distributed manner with only local sta ame performance bounds are obtained for all sessions [2],

information at each node [9]. It has been shown that maxi é'ﬂ]’ [5]. [13], [14]. This uniform characte_rization thewse
ounds the performance of the network in terms of that of

This work was supported by the National Science Foundatimteu grants _the_ V_V0r5t Ses_S'on' However'_ depending _On the interferance i
NCR-0238340, CNS-0435306 and CNS-0435141. individual neighborhoods, different sessions may be able t



accommodate different arrival rates. The natural nexttipes andd > 0,

now is whether it is possible to obtain better non-uniform Ty
bounds by considering the constraints of individual sessio P M — Nl >6% < i 1)
Let the interference degree of a liikin a session’s path be T T«

the number of links that interfere withbut do not interfere Note that a large class of arrival processes, e.g., petioiit,

with each other. We prove that under maximal scheduling, \jarkovian arrival processes with finite state spacesfgat
the performance of each session can be characterized by{ie 1yove assumption. For simplicity, we will sometimes-con
interference degree of only the links in its path, and t&qer 4 special case of the above general model. Specifically
interference degrees of the neighbors of these links. Tr‘\% will consider the “bounded-burstiness” arrival modekng

the performance penalty for each session, due to the USEre exists a burstiness vecmr (01,...,0n) Such that
of local information based scheduling, depends only on the Y

neighborhoods of the links in its path. The result is soméwha |A;(t) — Nit| < oy V £ (2)
counterintuitive as the overall performances of sessioag . . .
depend on each other even when they are separated by sm&?”e"er we use the above special case, we will explicity
hops. Furthermore, we prove that the performance penalt? gte so.

under maximal scheduling can not be localized any furtherl.'At‘tEChedé"mtg ?ol|cy|§ aT. ?(lg(:l_r]'ti]m thl‘zt tdemde_? n ?{ii’h
Specifically, the interference degrees of the links of aiemss 50t the SUDSEL of Session-links that would transmit pac

alone can not determine its throughput guarantee. the slot. Clearly, a subset of session-links can transncikeis

in any slot if no two session-links in the subset interferéhwi

The paper is organized as follows. We describe our SySt%'ych other, and every session-link in the subset has a packet

model in Section II. We describe the fairness and through%ttransmit
guarantees in Sections Il and IV respectively. We prove the :

analytical results in the appendix. We assume that every packet has lerigéiiot. LetD;(n) be

the number of packets that session-lihnkansmits in interval
(0,n],j =1,..., M. Let L; be the session-link corresponding
Il. SYSTEM MODEL to the last hop of session Clearly the transmissions depend
on the scheduling policy. If for some constafyt the limit

A wireless network can be modeled as a directed graphin—oc Dr,(n)/n = d; with probability1, thend; is denoted
G = (V,E), whereV and E respectively denote the sets ofis the departure rate of session
nodes and links. A link exists from a noddo another node Definition 1: The network is said to bstableif there exists
if and only if v can receiveu’s signals. The network consistsa departure rate vectal = (di,...,dy) such that with
of N end-to-end sessions, indexedlas. ., N. Each end-to- probability 1, for each session
end session can be viewed as a collection of §everal hop-by- . Dp,(n)/n=d; =X\, i=1,...,N. ©))
hop connections, one for each link it traverses; each ofethes n—oo iV ' )
hop-by-hop connections is calledsassion-linkof the session Thus, a network is stable if the arrival and departures rates

considered. Each session-link is of the fofmv), whereu equal _f‘?r_ each session. ) _ .
and v represent the transmitter and the receiver, respectively,Deflnltlon 2: Thethroughput regiorof a scheduling PO"CY
of the corresponding session-links. For any sessjolet P; i the set of arrival r_ate vectors su_ch that the network_ls_
denote the set of its session-links. L) denote the session Stable under the policy for any arrival process that sasisfie
of session-linkj, i.e., ¢(j) = {i : j € P,}. We assume that (1)_and. has arr|_val rate vector. The maximum throughput
there are a total of/ session-links in the network (over all'égion 1S the union of the throughput region ,Of all po_I|C|es.
sessions), and these are indexediby:. ., M. We now describe the “maximal scheduling” policy we

We now introduce the notion of interference. A sessionc-onS'der' This policy schedules a subsebf session-links

link j interfereswith session-linkk if & can not successfully such that (i) every session-link ifi has a packet to transmit,

transmit a packet whep is transmitting. Thenterference set .(ii) no session-link in interferes with any other session-link

of session-linkj, S;, denotes the set of session-linkssuch in S, (iii) if a session-link: has a packet to transmit, then

that eitherk interferes withj or j interferes withk (Fig. 1(a)). eitheri or a sess_|on-_l|nk ”Si’. is included inS. Qlegrly, many
) ) . Subsets of session-links satisfy the above criteria in atath
We now describe the arrival process. We assume that ti

'Waximal scheduling can select any such subset, and can be
is slotted. LetA;(n) be the number of packets that session g y '

o . implemented in distributed manner using standard algosth
generates in intervdDd,n], i = 1,..., N. We assume that any 9]

packet arriving in a slot arrives at the beginning of the, slatd
may be transmitted in the slot. We assume that at mgsf
packets arrive for any session in any slot. Further, theigtsex

Let A and AMS respectively denote the maximum through-
put region, and the throughput region attained by maximal

R : > scheduling.
a constanty > 1 and an arrival rate vector = (\q,...,An) If a rate vectors — (A Ay) satisfies
such that the empirical average of the arrivals in the system b
T slots converges ta at a rate faster tha@%. Mathematically, Z Ay <1, Yi=1,...,M, 4)

there existsl; such that for every € {1,...,m}, T > s, keS, 005}
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Fig. 1. In both figures, all sessions and session-links aidirentional, and the arrows show the direction of datadfan The circles indicate the interference
regions of session-links AB and HI (Fig. (a)) and SO, S1SL,(Fig. (b)).

In Fig. (a), session S1 consists of two session-links, AB B@ whereas sessions S2, S3, S4 are single-hop sessiostorSlek AB interferes with
session-links DE (session S2) and FG (session S3) and sdssicHI (session S4) interferes with session-link BC. Nd#wg = {BC, DE, FG}, Sgc =
{AB, HI}, Spg = Spg = {AB}, Sy = {BC}. Thus, token-buckets at node$, B, D, F, H consist of token-queues corresponding to session-links
{AB, BC, DE, FG}, { AB, BC, HI}, {AB, DE}, {AB, FG}, and{BC, HI}. Thus, token-buckets associated with session-link AB (B€)at nodes A, B,
D, F (A, B, H); these are denoted buckats . .4 of AB (1,2 of BC). The token generation for AB at buckétdepends on that for AB at buckatand BC

at bucketl of BC.

In Fig. (b), network consists of single-hop sessions ongss®n SO interferes with sessions TO, ..., TJ, wherea®nreSsinterferes with session S(i-1), for
i=1,2, ..., L. Thus K;(N) = 1 fori € {T0,...TJ, SL}, K;(NV) = 2fori € {S1,...S(L-1)}, Kso(N) = J+2, B;(N) = J+2fori € {T0,...TJ,S0, S3,
andB;(N) =2 forie S2...,SL, K(N) = (J +2). If Jand L are large, but > J, thenKj, 8; for most sessions are substantially smaller tBag\V).

then X ¢ AMS [4]. Thus, the above constraints specify dairness using maximal scheduling.

sufficiency condition for the stability of a network under We now formally define the notion of maxmin fairness
maximal scheduling. The constraints follow since any matimthat we seek to attain. For ani/-dimensional vectora,
scheduling always schedules at least one session-lisk in  let Z(a) denote a non-decreasing ordering of the compo-

{j} if session-linkj has a packet to transmit. The aboveents ofa. Therefore, ifa = (a1, a2,...,ay) andZ(a) =
constraints are also necessary for the stability of any osdw (a1, ao,...,an),then (ai,ds,...,an) is a permutation of
under maximal scheduling in the following sense. Given arfy1, az, . .., an), satisfyinga; < a> <... < an. A departure

network \/, if an arrival rate vecton does not satisfy (4), rate vectord* is said to be maxmm falr ifi* € AMS, and for
then for some maximal scheduling polloy,gz AMSin A/ [3]. any other departure rate vectdr € AMS, the first non-zero
Fairness issues are particularly relevant when the amatal component irﬁ(cf*)—I(cf) is positive. Intuitively, a departure
vector is not inAMS, because then maximal scheduling carate vector is maxmin fair if it is not possible to increasg an
not serve all sessions at their arrival rates, and therefase of its components without decreasing any other component of
necessary to fairly allocate the service rates or deparaies equal or lesser value [1]. Note thdt € AMS as AMS C AMS,
of sessions. We introduce the notion of teasible setAMS  Finally, if X € AMS, thend* = X.
of departure rate vectorsd = (dy,...,dn) which can be  Finally, we present a condition that is both necessary and
described as follows: sufficient for any departure rate vector to be maxmin fair. We
, first introduce the notion of a bottleneck constraint.
Z dywy = 1, Vj=1,....M, ®) Definition 3: For any departure rate vectdr an interfer-
kes;uis} ) ) ence constraint is a bottleneck constraint for a sessibffa)
(interference constraints) a session-linkj of i is involved in the constraint, (b}; > dy,
for all other sessions whose session-links are associated with
di < N Vi=1,...,N. (6) the constraint and (c) the inequality in the constraint is an
equality. .
The “interference constraints” (5) capture the interfeeen |emma 1: A departure rate vectdre AMS is maxmin fair
relations and are analogous to constraints (4) for thel&abiif and only if the following holds: for every sessioneither
region. The constraints (6) follow since the departuresratn ¢, = )\,, or the session has a bottleneck constraint.
not exceed the arrival rates. We omit the proof for the above lemma as the proof is
Note thatAMS C AMS. When X € AMS, the departure similar to that for the well-known bottleneck condition for
rate vector satisfied; = \; for eachi and hence both (5) maxmin fairness in wireline networks [1].
and (6) hold. Whenx ¢ AMS, depending on the maximal
scheduling policy used, the departure rate vector can be al}y MAX-MIN FAIRNESS UNDERMAXIMAL SCHEDULING
element ofAMS, and hence can be unfair for some sessions.We propose a modular approach for attaining maxmin
For example, when the network consists of only single-hdairness using maximal scheduling. The first module esémat
sessions, if maximal scheduling provides absolute pyidat the maxmin fair bandwidth share of each session in each node
a session, and A; > 1, thend; = 1 and the departure ratesin the session’s path, and releases packets for transmissio
of sessions inS; are(. This motivates our goal of ensuringaccordance with these estimates. The second module sekedul



the transmission of the released packets so as to attain Bfecedure Token Generation (nodg
estimates. Note that the modules operate in parallel. begin _
! . . . For all t andi, let C; o(t) = Ci b, +1(t) = oco.

We first describe the algorithm for the special case thakach bucket samples the sessions associated with it in naiial order.

Ai > 1 for eachi and thus every session always has aWhen session is sampled at itsith bucket in slott:
. . . if Ciyk(t) < Ci,k+1(t)+WandCi,k(t) < Ci,kfl(t)-ﬁ-W, then
packet to transmit (saturated sessions) and every SE§sMIS S generate a token for sessiomt its kth bucket (. 1, (¢ + 1) = C; 4 (t) + 1);
one link. We summarize the algorithm in Figure 2. We nextelse o
. . do not generate token for sessiomt its kth bucket C; 1 (t + 1) = C; 1 (1)),

motivate the changes required for the general case when allgng
sessions may not always have packets to transmit, and Bessio sample the next session at théh bucket in the round robin order.
traverse multiple links. At the end of the section, we preseﬁn
the performance guarantees. Ero_cedure Packet Release (souice

Let every session consists of only one session-liNk=£ egin y . )

X . R i . Release a new sessiopacket for transmission at sessiobsource node when a token
M) and \; > 1 for eachi. Fair bandwidth is estimated is generated for the session at the bucket at its source.
by a token generation process. The source node for e&id
bucket consists of a token-queue for each sessidf) in{i}. begin
Every token bucket generates tokens for all token-queues iffansmit the released packets using maximal scheduling.
it. The token generation process is so designed that e
token-queue receives tokens at a rate that equals the maxmin
fair departure rate of the corresponding session (we shortl
describe how this can be done) Whenever a new tokenFi . 2.  Pseudo code of the fair departure rate allocatiororithgn for
. ’ o saturated sessions

generated for a sessiarat the token bucket farati's source,
i's source releases a new packet for transmission. Thus, the

packet release rates are maxmin fair and hence belondfYo

onlv th | d ket liible for t A Thtoken-bucket. Again, all constraints involving a sessiomstn
nly the released packets are eligible for ranSMISSIONSIN (o the same rate to the session. This is attained by meglati

maximal scheduling transmits the released packets at the ra e token generation process for a given session at a given

at Whi_Ch t_hey are released. Hence, the rate allocations tken-bucket to that at the adjacent token-buckets fordimes
mzxmm falr.d ibe the tok i ‘ s%ssion. The number of tokens for a session at two adjacent
¢ now describe the token generation process 1or €agflo) ots associated with the session differ by at st any
token-bucket. A session is associated V.V'tm. - |5i] +1 time ¢, and the difference is at mosti¥ for that at any two
token-buckets, one for each of the sessions it interferés Wihuckets associated with the session. Thus, the rates ofi toke

?nkd |ts§ . l|<_ ett us de:qote tlrese tpken—_bu;:rlfet%asl.(, % Each generation for a session are nearly the same at any two Isucket
oken-bucket samples all sessions in the bucket in a rould. .-+ with the session.

robin order. LetC; . (t) be the number of tokens generated for . ) .
#(?) 9 Note that since\; > 1 for eachi, every session has a

session at bucketk in the interval(0, t]. Let token-bucket’ bot K traint under th in fair rate allocati
(€< 1) associtd witsessonbe sampled i it DOETECk consuent ner e o (v sloee
Then, k' generates a token for sessidm slot ¢ if and onl L . .

g y bandwidth offered by the bottleneck constraint which affer

if Ci,k’ (t) < W 4 min (Ci7k/_1(t), Ci7k/+1(t)) . Thus, session . . .
i receives a token at buckaf unless the number of tokensthe least bandwidth to the session. The bucket correspgndin

for session; at k&’ substantially exceeds that at the adjaceﬁ? the bottleneck constraint of a session is denoted as the

buckets; this prohibitive difference is the window paraenet bottlenepk buckefor the session. Now, a sessions token
. In slott, k' samples the next session in the bucket in %eneratlon rate at any token-bucket equals that at itsdnaitk

round robin order if and only i’ does not generate a toke bucket, which turns out to be the session’s maxmin fair rate.

for sessioni. Note that token-bucket andb; have only one nlcfois“:fre;i'togﬁr;?: .?alol\g r?gi:mgn?'.rt :ja(;zs trr:gp rgieboetﬂtirlz(r:\k
adjacent token-bucket for sessionand thus decide whether : ! W ' ! v

to generate a token based on the number of tokens at of eral times it is sampled at other buckets; other sessions

one adjacent token-bucket. Tokens are never removed front’  less severe constra|nt§ receive these tokens.
bucket. Let df be the max-min fair departure rate of sessiomhen
We now explain why the token generation rate for eadR€ following result holds.

session at each token-bucket associated with the sessiaiseq Lemma 2:Consider token-bucket of session:. For the
the session’s maxmin fair rate. Since > 1 for eachi, bounded-burstiness arrival model, there exists constaits,
constraints (5) subsume constraints (6), and hence ther laguch that if W > W, then for any interval(ny, no],
can be ignored. Note that each token-bucket correspond§%% —di| < 5
constraint (5) for somg € {1,...,M}. Since the goal is The token generation scheme here is based on the same
to allocate maxmin-fair rates, each constraint should ¢ry tlesign principle as that for an existing centralized faindda
allocate equal rates to all sessions in the constraint. Thigdth allocation algorithm [10], [12]. However, the coratits
motivates the round robin sampling of the sessions at eadtaracterizing the feasibility set for maximal schedularg




Procedure Token generation for a session at the bucket atAtescedure Token Generation (nodg

source node (bucket) begin
begln For session-linki, let I and m respectively be the previous and next session-links of
For all t andi, let Ci o(t) = Ci b, 41(t) = co. the same session.
Let the kth bucket of session be ati's source node. For each slot and session-link,
Let ANR(#) be the number of packets of sessioat slott that have been generated if i is the first-session-link of its sessionthen
at its source but not been released. Cio(t) = 00,Cip;41(t) = Cm,0(t)
Sampling procedure is the same as that in Figure 2 for aliGessssociated with else
the kth bucket. if 4 is the last session-link of its sessighen
Token generation procedure for all sessions other thiarsimilar to that in Figure 2. Ci,0(t) = Crp+1(t), Cip;+1(t) = 00
When sessiorn is sampled at itgth bucket in slott: else
it Cs k(t) < Cipgr () +W andCi () < Cin1 (1) + W and ANR(2) > 0, Cio(t) = Cup, (t) and Cip, 11 (t) = Cim 0 (1)
then Let AL\'R(t) be the number of packets of session-linkt slott that are in its waiting-
generate token for sessianat its kth bucket C; 1 (t + 1) = C; x(t) + 1); queue.
else LetO©; 1 (t) = A[.\'R(t) if the kth bucket of session-link is ati’s source-node, and
do not generate token for sessiorat its kth bucket C; 1 (t + 1) = C; x (1)), O, .1 (t) = oo otherwise.
and Each bucket samples the session-links associated withréund robin order.
sample the next session in the round robin order. When session-link is sampled at itsith bucket in slott:
end iLSrf’k(t) > 0andC x (t) < Cj 1 (t)+W andC; 1 (t) < Cy p—1(t) + W,
generate a token for session-linkat its kth bucket C; . (t+1) = C; x(t)+1);
else
Fig. 3. Pseudo code of the token generation process at thetsuassociated gﬁdnm generate token for sessiomt its kth bucket (i, (t +1) = Cik (),
with the source nodes of sessions when sessions may notuatest sample the next session-link at théh bucket in the round robin order.
end

significantly different from those characterizing the fbdity Eé%(i:r?dure Queue Management (session-)nk

set in [10], [12]; therefore, the scheme differs signifityimt When a new packet is generated for session4ioka new packet arrives at the source
the two cases. of session-linki from a previous session-link, add the new-packet in theimgijueue

. . . for session-link:.
We now describe the packet scheduling policy. Whenevefansfer a session-linkpacket from its waiting-gueue to its release-queue at itsceo

the source node of a sessiofngenerates a new token for node when a token is generated for it at the bucket at its sourc
i at i's token-bucket at the source (the one associated Wﬁﬂd
sessions irb;U{i}), i releases a new packet. Only the sessiofyocedure Packet Scheduling For Transmission
that have released packets waiting for transmission cdnteff9" _ N _
. . . Transmit the packets in the release-queues of the sesslandsing maximal schedul-
for scheduling, and are scheduled as per maximal schedulingyg.
When these sessions are scheduled, they transmit onlpeelegng
packets.
Packets that contend for scheduling and are transmitted by
maximal scheduling arrive as per the release process. Hig 4. Pseudo code of the fair departure rate allocatiomrégn when
release rate vector is maxmin fair (Lemma 2) and is therefot@ssions traverse multiple hops
in AMS, Maximal scheduling therefore provides departure rates
equal to the packet release rates. Thus, as the following
result states, a combination of token generation and maxind€ associated with token-buckets, and the source of each
scheduling attains the maxmin fair departure rates foryeve§€ssion-linkj maintains the bucket consisting of session-links
session. in S; U{j}. Again, token-buckets sample session-links rather
Theorem 1:For the bounded-burstiness arrival modethan sessions. The token generation process for the session
there exists a constari/y, such that whenWw > 1¥,, links are now similar to that for single-hop sessions. Thiy on
lim, oo Dp,(n)/n=4d:, i=1,...N. difference is that the token-generation process for a Gessi
We now consider two important generalizations. First, aink j at the first (last) token-bucket gf must also depend
sume that\; < 1 for some or all sessionis Thus, sessions may on the number of tokens generated at the last (first) token-
not always have packets to transmit. The only modification fucket for the previous (next) session-liik of the same
the algorithm is that the bucket at the source node of a sessigssion (Fig. 1(a)). We now describe the packet scheduling
now does not generate a new token for the session if all of Rglicy. The source of each session-link maintains two piscke
packets have already been released (Figure 3). Note that @h€ues: avaiting packet queue, andraleasedpacket queue.
modification applies to all sessions; therefore, the atgori On arrival, a packet is queued at the waiting packet queue.
need not know which sessions are saturated. If a sessiorhipacket is forwarded from the waiting to the released queue
saturated, then the modification will not be executed as Wéien a new token is generated at the token-bucket for the
source will always have packets that have not been releaségssion-link at the session-link’s source. Only sessiuks|
We next allow sessions to traverse multiple hops. Thugjth non-empty released queues contend for scheduling. The
N > M and a session consists of multiple session-link&est of the scheduling remains the same as that for the case of
We first describe the modifications in the token-generati@ingle-hop sessions. Refer to Figure 4 for a pseudo-code.
procedure. We must consider session-links instead ofsessi Both Lemma 2 and Theorem 1 hold for both these gen-
in this case. Therefore, session-links, rather than sessiceralizations (we prove Lemma 2 and Theorem 1 for the




first generalization); for the second generalization thente 3;(/\); the penalty for each session therefore depends only
‘session’ must now be replaced with ‘session-link’ in then its two-hop neighborhood. The following result shows
statement of Lemma 2. that a similar characterization in terms of the single-hop

Before we conclude this section, we make a few remarkgighborhood does not hold in general.
on our maxmin fair packet scheduling algorithm. Note that th Theorem 3: There exists a wireless netwovk and an
token-buckets associated with a session-linkeed to know arrival rate vector(\y,..., Ay) such that(Ay,...,Ay) € A
the number of tokens generated foat other token-bucketsin N, but (A\;/Ki(N), ..., Anv/Kn(N)) ¢ AMS,
associated withi. Also note that a token bucket associated Next we consider the case where a session can traverse
with i is either ati’s source or atj’s source, wherg € S;. several hops. Now, let3;(N) denote the maximum two-
Thus, a token bucket at the source of a sessiondinkeed hop interference degree of all session-links of sessjdre.,
only know the number of tokens generated at a token-buckg{N') = max;cp, 5;(N). In this case, we first show that
at the source of a session-lirikif and only if bothk and! maximal scheduling attains a weaker notion of stability, as
interfere with each other or with a common session-linkc8in described below. For any session-lifik= 1, ..., M, let A;(n)
only session-links in close proximity interfere with eacher denote the number of arrivals for the session-link in theetim
in a wireless network, the token-generation process reguiinterval (0, n]. Furthermore, we define a random variablge,
communication among nodes in proximity as well. Finallg thas follows. If session-link has a packet to transmit at tinig
analytical guarantees hold even when nodes know the numie@n B; ; is the length of its remaining busy period, otherwise
of tokens generated at other nodes after some delay, as Iéghg = 0. )
as the delay is upper-bounded by a constant. Theorem 4: Let the arrival rate vectot)\l, ..., Ay) be

such that\] < A /Gi(N),..., Ay < An/OBvNV ), where

IV. N ON-UNIFORM THROUGHPUTGUARANTEES WITH (AM,...,An) € A. Then under maX|maI scheduling, the packet

MAXIMAL SCHEDULING queue of every session-link will almost surely become empty

In this section, we relate the throughput region attainedfinitely often. Furthermore, for every session-linknd time
by maximal scheduling to the maximum throughput regioh E[B; ;] < cc.
by providing neighborhood-specific throughput guarantee f The above result implies that almost  surely
each session under maximal scheduling. hmbup,HooM =0 Vj = ,M. Thus,

We consider the notion of “interference degree” of a sessioifi the arrival rate vector satisfies the cond|t|on in Theorém
link, as introduced in [4]. Théterference degreef a session- and for each session link the limits of the departure and
link 4 in network N, K;(N) is (i) the maximum number the arrival rates exist almost surely, then almost surely
of sessions in its interference s§f that can simultaneously lim,, .., Dy, (n)/n = A\; Vi = 1,...N, and the system is
transmit, if S; is non-empty, and (ii)t, if S; is empty. The stable under maximal scheduling. But, there is no guarantee
two-hop interference degreef session-linki, is defined as that these limits exist. Thus, this is a weaker notion of
Bi(N) = maxjes,upiy Ki(N). Theinterference degree of a stability than the one defined in Secton Il. Whether the
network N/, K'(N), is the maximum interference degree oétronger notion of stability, holds in this case or not, raraa
session-links in the network. an open question.

First consider maximal scheduling without any enhance-We now consider some enhancements of maximal schedul-
ments. We have earlier shown in networks with single-hdpg that obtain strong stability results for multi-hop dess
sessions that i\ € A, then X/K(N) € AMS [4]. Note that for any arrival rate vector\;,...,\y) for which X} <
K;(N) determines the congestion in the neighborhood of ) /3, (N),..., Ay < An/Bn(N), where (\r,...,\y) €
session-linki. Thus, the existing bound characterizes the pek. Both enhancements combine maximal scheduling with a
formance of the entire network in terms of the worst sessiotoken-generation scheme. The first enhancement is the algo-
link, the session-link that has interference degi€e\). rithm proposed in Section Ill. The second enhancement has
In many networksK;(N) and 8;(N) may be significantly been proposed by Wat. al.[13], and uses a different token
less thanK (\') for most session-linkg (Figure 1(b)). Our generation strategy, but has the same scheduling straseby a
contribution in this paper has been to conclusively deteemialgorithm in Section Ill. We now describe the token generati
whether the performance of individual session-links can Beheme for the second enhancement. Every session-link has
characterized in terms of the interference-degrees inr thai regulator that generates tokens at the arrival-rate of the
neighborhoods. We prove that the performance of each sessiession. As stated before, Wat. al. [13], [14] show that
can be characterized by thig(N)s, but not by the/(;(N)s, this enhancement bounds the performance of all sessions in
of the corresponding session-links. terms of that of the worst session in the network. We however

We initially assume that each session traverses only opmve that for both these enhancements the performance of
link, and therefore consists of a single session-link. each session can be bounded in terms of the worst-case two-

Theorem 2: If  (A1,...,An) € A, then hop interference degree of all session-links of a session.

(A1 /BN, AN /BN (N)) € AMS, Theorem 5: If  (A\q,...,\y) € A, then

Thus, due to the use of local information based schedulingy; /31 (N), ..., Ax/Bx(N)) € AMS in AV
the performance of each sessidrdecreases by a factor of We prove Theorem 5 in technical report [3].



APPENDIX We introduce the notion of “rank” of a session for defining
A. Proof of Lemma 2 B and~. A session has rankif its maxmin fair rate isd,, the

o . pth lowest among the maxmin fair rates of different sessions.
We prove Lemma 2 for arbitrarx and when each sessmnpet F be the number of distinct rank < N.

spans one link. First, we show that if a session generates
packets at rate- or higher, and if it is sampled at rate a(l) = 0. (12)

or higher at every bucket associated with it, then it receive 1) = 13
. : e1(1) : (13)
tokens at rate or higher from each of its buckets (Lemma 3). _ gLl 14
We next show that a session’s sampling rate at any of its 2(p) = . 1§1 (). (14)
buckets equals its maxmin fair rate (Lemma 4). Now, the tesul e2(p) = 3" (e1(p) +0). (15)
follows, as by definition, a session’s maxmin fair rate issles g3(p) = 20+ max(L,2)(s2(p) +e2(p))
than or_equal _to its packet generation ra'ge. We prove Lemm_as 3 +OLW. (16)
and 4 in sections B and C. Thus, like in the current section, B 17
throughout sections B and C, we will assume that every sessio esp) = elp) (17)
spans one link. alp+1) = (L—1ss(p). (18)
We introduce some terminologies and subsequently state & (p+1) = (L —1)es(p)+ 1. (19)

Lemmas 3 and 4. Le$; ,,(¢t) be the number of times session q
i is sampled at token-bucket in the interval (0,¢], L = NOW. (= cs(F) andy = es(F).

max; bi, 0 = max; o;, and, v are constants that are specified NOW: for any given\, Lemma 2 follows from (10) and (11)
of Lemma 4 withp = 3+ v and Wy = 357 1(e1(F) + o) /2.

later.
Lemma 3: Consider an arbitrary$’ and a sequence af u
disjoint intervals, (¢;,w;], I = 1,..., K, that satisfies the g proof of Lemma 3

following property for session, for every positive integer
M’ and every sequence of sub-intervdls,,,y,.], m =
..., M, (@m,ym] C (t;,wy], for somel: At every bucket
n associated with,

We first present the intuition behind the proof. The proof
is by induction on the number of buckets associated with a
session. The sessions with one bucket form the base case. Not
that any such session receives a token at its bucket eveey tim

M M ) it is sampled at its bucket and has a packet that has not been
> (Sinym) = Sin(@m)) =7 > (ym —xm) —e — M'f,  released. since no adjacent bucket applies back-prestoine.
m=1 m=1 @) the lemma follows for the base case from the lower bounds on

the sampling and packet generation rates. We next assutne tha

wheree and f are constants that do not depend a# and . s
/ P the lemma holds for all sessions wittbuckets, and then prove

the sub intervalgz,,, ym], m = 1,...,M’. Let \; > r and i : , A
W > 3%-1(f + 0;)/2. Then, at every bucket associated the lemma for sessions with+ 1 buckets. Consider a session
with i ’ ' with p+1 buckets and adjacent bucketsindrn + 1 associated

K« with it. Bucketn + 1 does not prevent the generation of any
bie1 token atn unless the number of tokens atis W more than
> (Cin(w) = Cin(t)) = v} (wn—t)=2""e that atn+ 1. If the number of tokens at is W more than that
=1 =1 b1 atn-+1, n does not prevent any token generatiomat1, and
. ___K?_’ TS A o). (8_) the buckets: + 1,n + 2,... generate tokens oblivious to the
Lemma 4: Con§|der any positive !ntegﬁ’r, and an arbi- presence of the buckets. .., n, as though they constitute a
trary non—gegreasmg sequence of imegyi,..., 2k, Yx-  gessjion with fewer buckets. By induction hypothesis, anthfr
Let W > 3% (e1(F) +0)/2, wheree, (F) is defined in (12) e sampling and packet generation rates, the sessiovescei
to (17). For every bucket associated with session tokens at rate or higher at+1 in these intervals. In all these

K
(

K K slots, the number of tokens atexceeds that at + 1 by W.
(Sin(yr) = Sin(wx)) > di Z(yk —x) =B Thus, n’s token generation rate is lower bounded dby- 1's
k=1 k=1 token generation rate which is at leastn other slotsy + 1
—-K, (9)  does not prevent the generation of any tokemaThus, the

. K token generation at the buckets. .., n resembles that for a
(Cim(yx) = Cinlar)) = df Z(yk —zr) = f session with fewer buckets. Thus, by induction hypothesik a

M=

k=1 k=1 the assumption on the sampling rate, in all sletgyenerates
« _K;’ (10) tokens at rate- or higher for the session.
y Proof: We prove by induction on the number of buckets
> (Cinlye) = Cinlan) < di Y (ye =)+ p associated with a session.
=1 =1 First consider a sessianwith one bucket:. Let n not be at
+K. (11)

the source node af The lemma holds from the assumption on
Here, § and ~ are constants that do not depend orhe sampling rate (condition (7)). Now, letbe at the source
T, YLy TS YK node ofi. Let ANR(#) be the number of packets of session



L frfafa] | [2[ 3 [2] [1]1] | numbers. The last slot in such a sequence of tyip€2) slots

boowt e is denoted a “u” (“v”) slot. Thenth “u-slot” (“v-slot”) of the

t ta1 va taz Ith interval isw;,, (vi,) (Figure 5). Note that
Fig. 5. We show two intervalgti,wi] and (t2,w2], and some typel Cin(wm) = Cinp1(wm) +W VIim. (22)
and 2 slots. We also show the correspondingand v slots. Here(t1, u11], . _ .
(t2,u21], (v21,us22] are example sub-intervals that endeir-slots and start Cin1(vim) Cin(Vim) + W ¥ I,m. (23)
from the nearest—slot or¢; —slot. Cin(t) < Cing1(t) +W, Vi (24)

Consider a sub-interval that ends aweslot and starts from
at its source at time that have not been released. We no ; (not inclusive) or av—slot (not inclusive), whichever is
define a slot;. If ANR(¢) > 0 forall t € (t;,w;], z = t;, else the nearest to the—slot (F|gure 5). Let there bé; such sub-

tf 2 >t intervals in (¢;,w;], and ;" ; J; = I,. These sub-intervals

2] = max wl.ANR(p) — :
te (tr,wi], AF T (8)=0 do not consist of any type slot. Thus,n does not prevent
Cin(z1) = Cin(t)) = Ai(z) — Ai(ty) + ANR(t)) any sess_,ion' token ger_1eration at+1 in these sub—i_nterv_als.
> A=) — Ai(t) Hence, in these sub-intervals, the token generation; for
- ’ bucketsn + 1,...,p + 1 resembles that in the buckets of a
> r(z—t) — o;. (20)

session withp + 1 — n buckets, where: > 0. Condition (7)

The last inequality follows from (2) and sinee< \;. Clearly, Nolds fori in each of these buckets for every set of sub-

(20) also holds ifz; = t,. Bucketn generates a token for intervals of thesd, sub-intervals, since any such sub-interval

sessioni every time it samples in (z;,w;], ¥ L. is in (_tl, wy] for somel. Thus, the number of tokens generated
for 7 in thesel; sub-intervals in each of these buckets can
be lower bounded using the induction hypothesis. The sub-

(Cin(wi) = Cin(21)) intervals in (¢, w;] are (t;,u;1] and (vim—1, upm], m > 1, if

vp > wuyy as in Figure 5; the sub-intervals atey,, wim],

m > 1, otherwise. We assume that; > wu;; for all [; the

argument is similar ifv;; < w;; for some or alll. From

induction hypothesis,

M=

l

1

I
M=

(Sin(wi) = Sin(z1))

=1

K
> 1y (w—z)—e—Kf (from (7). (21) K
=1 Z((Oi,nJrl(ull) — Cint1(t))
=1

K Ji

> (Cim(wr) = Cin(tr)) + 3 (Cinsr(wim) = Ciny1(vim-1)))

=1 m=2

K K K 7

= Z (C’ln(wl) — Oln(Zl)) + Z (Czyn(zl) — Ci,n(tl)) > TZ ((Ull - tl) + Z (Ulm - Ulml))
=1 =1 =1 m=2
K —2P~te — 3P 4+ oy). (25)
> vy (w —t)—e—K(f +0;) (from (20) and (21)).
=1 _ Cin(un) — Cin(ty)
Th\;lvs, (8) holds in thteh bta?Se) cr?slz- o al _ o > Cim1(un) +W = Cinpa(t) — W (from (22) and (24))
e now assume tha olds for all sessions witlor _ o~ . 26

fewer buckets, and prove (8) for an arbitrary sessiosith Cinsr(wn) = Cins (t1) (26)
p+ 1 buckets. Consider an arbitrary bucketssociated with From (22) and (23),
1. If the number of tokens of at n does not exceed that at
buckets adjacent te by W or more in the intervalgt;, w;), Cin(uim) = Cin(vim—1) = Cint1(uim) = Cint1(Vim-1)
I =1,...,K, then the token generation process fat n is +2W. (27)

not affected by back-pressure, and the proof is similar & th
base case. Thus, we assume that there exists a bBckwit
is adjacent tow, andC; ,,(t) = C; g(t) + W at some time in
these intervals. Clearlyp € {n — 1,n + 1}. We consider the
case thatB = n + 1. The proof whenB = n — 1 is similar.
Let a slott whereC; ,,(t) exceeds”; ,,.+1(t) by W be a type
1 slot, and a slot whereC; ,,+1(t) exceed<; ,,(t) by W be
a type2 slot; a slot may neither be typgenor type2. Consider
each(¢;, w;] interval separately. Consider the sequences of type -
1 and2 slots that are obtained after removing the slots without

]~

((Cin(un) = Cin(tr))

1
Ji

<

+

(]

(Ci,n(ulm) - Ci,n(vlm—l )))

=2

((Cint1(wn) = Cinta(t)))

3

1]



of the round robin sampling, we show that all sessions are
sampled at a raté; or higher at every bucket. Now, (10),
the lower bound on the token generation rate follows from
Lemma 3. Next, we show (11), i.e., the token generation rates
i < are upper bounded by, for all sessions with rank. This
2 TZ (un =) + Z (tim = Vim—1) follows because the sampling and hence the token generation
= . rate is upper bounded by at the bottleneck bucket, and due
—2P~le — K3P71(f + 0y) . .
to back-pressure the token generation rates for a session ar
+(I = K)(2W =3P f — 37" 10y) (from (25)128) equal at different buckets in the session’s path. Now, ctensi
AOQe induction case, i.e., arbitrapy The token generation rates
sessions with rank lower thanare upper bounded by their
respective maxmin fair rates which are upper boundedg)y
Sessions of ranf or higher are sampled in a certain minimum
fraction of the slots in which the sessions with rank lower
of a session withn buckets, where: < p. The number of thanp do not receive tokens. Therefore, the lower bound on

sessioni tokens generated at in these sub-intervals canthe sampling rate of sessions with raplor higher follows.

be lower bounded from the induction hypothesis. There ain, the lower bound on the token generation rate follows
at mostl; + K such sub-intervals, which are of the for rom Lemma 3. We prove, as in the base case, the upper bound

(ttmm vim] @Nd (w7, w], Since we assume that; > uy V 1. on the token generation rate for sessions with rank

Jp
+ Z (Ci,n+l(ulm) - Ci,n+l(vlm—1)))
m=2

+2W (I; — K) (from (26) and (27))

m=2

Now, consider the sub-intervals obtained after removi
these I; sub-intervals fromufil(tl,wl]. These new sub-
intervals do not contain any type slot. Thus,n + 1 does
not prevent any sessiontoken generation at. Hence, the
session; token generation in buckets. .., n resembles that

In the formal proof, we relax the assumption that all session
K always have packets to transmit, i.e., we consider ar;;iﬁfar
Thus, Z (Cin(wi) — Cin(uy,)) We would like to clarify the usage of a particular notation
=1 before proceeding further. We have so far numbered token-

Ji—1 buckets based on the sessions traversing them. In thistekmi
+ Z (Cin(vim) — Ci,n(wm))> ogy, bucketn of session is i's nth bucket, and’; ,, (t), S; »(t)
m=1 are the number of tokens generated for sessioat and
K Ji—l the number of times sessianis sampled at its:ith bucket
2 TZ <(wl —uy)+ Z (Vi — ulm)) respectively. In the following proof, we number token-betsk
=1 m=1 separately. Thus, for example, we consider token-bueket
—20"te — (I = K)3" ' (f + 04) and all sessions associated with Now, n(i) will denote
—2K3P7N(f + oy). (29) the number for the bucket amongi's buckets. Thus, we
_ need to US€; ;) (t), Si () (t) instead ofC; , (t), Si,n (t). For
Adding (28) and (29), simplicity, we still useC; ,,(t), S; . (t). Thus, in the following
K proof, C; . (t),Sin(t) really stand forC; ;) (t), S n)(t)
(Cin(w) — Cin(tr)) respectively. Note that this inconsistency is limited te th
=1 following proof only, and does not lead to any error, because
K none of the analytical guarantees in other lemmas (inctudin
> TZ (w; —t;) — 2Pe — K3P(f + 03) those that are used in the following proof and those whose

l

L —K)2W =3P i) 30 .
+h I (f + 1)) (30) Proof: We prove the following for rankg = 1,...  F,
Note thatp + 1 < b; and thusW > 3?(f + 0;)/2. We have by induction onp.
implicitly assumed that at least one type slot exists in each

interval (¢;, w;]; this justifies the summation fro= 1 to K with » and has rank greater than or equal jto for any

n (25)..Under this assumptlpm > K. Hence,_ (8) holds for positive integerK, and for any nondecreasing sequence of
session at bucketn. If there is no type-1 slot in (¢;, w;] for imes z N
somel, then the summation in (25) must be over the intervalt LYL e TG YK
(t;,w;] that have at least one typé slot. Let K; be the

number of such intervals. NoW/; — K') must be replaced with

Il
-

proof use Lemma 4) depend on the token-bucket number.

For each bucket, for each session that is associated

(I — K1). Sincel; > K1, (8) holds at all buckets associated & K

with s. [ | Z (Sin(yx) — Sin(zk)) > d, Z(yk—Ik)—Q(p)—K&(p)-
k=1 k=1

C. Proof of Lemma 4 (31)

We outline the proof for the special case that all sessionsFor each bucket:, for each session that is associated
always have packets to transmit. We use induction on the ramkth n and has rank greater than or equal pto for any
p of a session. For the base cage={ 1), using a property positive integerk, and for any nondecreasing sequence of



timesxy,y1,..., %K, YK, sequence of non-decreasing timesyi, ..., Tk, Yx-

K K
i,n yk A n(ZCk))
Z i,n yk zn ZCk Zyk Ik KEQ( ) I;
k=1 k=1 (32) K—-1
- Cz n 1 N ZC XD ZC Cz n
If a sessioni has rankp, andd! = \;, n(ys) = ) zjl k1) n(oe))
K—-1
ANR(t) < 07 + 2 (p) + ea(p) V t. (33) < Cin(yx) — Cin(z1) —ds Z (Try1 — Yr)
k=1
For each bucket, for each sessionthat is associated with +62(1) + (K = Dea(1) (from (32) forp = 1) (35)
n and has rankp, for any positive integer’’, and for any Sinced; = dy andd; < \;, dy < \. First, letd, < ;.
nondecreasing sequence of timesyi, ..., Tk, ¥k, Thus, from Lemma 15 has a bottleneck constraint and hence

a bottleneck buckef3. Let X be the set of sessions associated

K K with B. Sincei has rankl, |X| = L, rank(j) =1V j € X,
Z i,n yk zn ZCk Z Yk — Tk +§3 +KE3( ) anddl = 1/L
k=1 k=1
(34) Cis(yx) — Ci,p(z1)
We first prove (31) to (34) fop = 1. Note thatd, = < yg — 1 — Z (Con.B(Yxr) — Com.B(11))

min(1/L, min; \;). Consider a buckeh. Let X' be the set meX\{i}
of sessions associated with Since at least one session is < yx —m
sampled at: in a slot, in any intervalz, y). (L-1) (dl(yK — ) — (1) — 52(1))

Z (Sim(yr) = Sjm(xr)) > yp — k. A(from (32) sinceranlg) =1, Vj € X)

jex = di(yx —x1) + (L — 1) (e2(1) +e2(1)) (36)

. . _ , (sinced, = 1/L).
Since sessions are sampled in round robin orfgk.(yx) — . ]
Sin(zr) = Sjn(yr) — Sjn(xi) — 1 for any two sessions, j Now, letd; = ;. Let B be the bucket at the source of

associated witle. Thus, for any sessionassociated with, Ci.g(yx) — Cig(x1)
AR (1) + Aiyx) — Ai(1)
oi +62(1) + e2(1) + Nilyx — 21) + i
-1 (from (33) and (2))
= di(yx —x1) 4 205 + ©2(1) + e2(1) (sinced;, = \;). (37)

Thus, every session associated with bucke sampled at grom (36) and (37), there exists a bucktassociated with
Ieastzk (ye—x1)/|X|—Q times for any arbitrary sequence; g ch that

<
X[ (Sin(yx) = Sim(zr) +1) = yp — ok, <

Y — Tk
Sim(yr) — Sin(Tr) >
(Yk) (k) ]

of nondecreasing times;, y1,...,xqg, yg, and any arbitrary
Q. Since|X| < L. d < 1/|X|. Thus. (31) holds withy (1) — Ci.p(yx) — Cip(21)
0,61(1) =1. < dl(yK—:c1)+2cri
Sinceer(1) > e1(1), W > 3L71(g4(1)+0)/2. Hence, (32) +max(L — 1,1) (c2(1) + e2(1)) . (38)

follows from Lemma 3 withey(1) = 254716, (1) andea(1) =
311 (1) + o).

Now, we prove (33) fop = 1. Consider a sessionwith Cin(yg) — Cin(21)
rank 1 andd; = A;. Thus,d; = \;. Let n be the bucket at

NOW, |Czyn(t) — CzyB(t” < b1W Y t. (39)

< . —C. .
the source node of B C}"B(yK) Ciup(@1) +26:W (from (39))
< dl(yK —xl)—l—max(L— 1,1) (§2(1)+€2(1))
ANR() = Ai(t) — Cin(t) +20;W + 20; (from (38)). (40)
< (i —d)t+ 0 + (1) +ea(1) From (35) and (40),
(from (2) and (32) forp = 1) K
= oi+o(l)+el(l) (sincecil = \). £ (Cin(yr) = Cin(xr))
K
Thus, (33) follows forp = 1. dy Z (yr — 1) + max(L,2) (c2(1) 4 2(1))
Now, we prove (34) forp = 1. Consider a sessionwith k=

rank 1. Let n be a bucket associated with Consider a +2b1W+2aZ+K52( ). (41)



Thus, forp = 1, (34) follows from (41) with ¢3(1) =

max(L,2) (¢2(1) + e2(1)) + 2LW + 20 andes(1) = e2(1).
Now, we assume (31) to (34) far,...
(31) to (34) hold forp + 1.

We first prove (31). Consider a sessibmwith rank greater
than or equal t + 1. Consider a bucket associated with
w IS associated with, rankw) < p} and
Z= {w : w is associated witm,rankw) > p + 1}. In any

1. Let Y= {w :

interval (xx, yx],
> (Simyr) = Sim(xn)) + D (Cin(yr) = Cinlwn))
jez jey
2 Yk — Tk

Since sessions are sampled in round robin orfgk,(yx) —
Sjn(zr) — 1 for any two sessions, j

Si,n(xk) Z S]n(yk) -
associated witm. Thus,

|21 (Sin(yk) — Sin(zr) +1)
> g —ar— Y (Cinlyr) — Cinlar)).

JjEY
Thus,
K

; (Si.n(yr)
(i

k=1

=226

JEY k=1

- S n(xk))

Y

- K|Z|

Cj,n(%k)))

(1 ~ 2jey d;) S (e — k)
|Z|
B;'f (p) —Kw.

The last inequality follows since rafk) < p, and d;,
drank( ,VweY. Also,ss(j) > c3(j—1), e3(j) > e3(i— 1)

k_xk

=

Y

Vj. Thus induction hypothesis (inequality (34)) applies. Now =

K

Z znyk

ln(xk))
Zjez i Sy (s — k) V)

> = 7=s3(p)
1Z] |Z]
_glBlH Vles(p) g|g3 (since > di + Y di, <1)
| | weZ wey
5 N
> dppr )y (s — ) — %%(P)
k=1

The last step follows since rankf > p + 1, and hence
dy, > dpt1, Vw €Z. Thus, from (42), (31) holds fop + 1,
(L—1)es(p)+1.

with ¢1 (p+1) = (L—1)s3(p), ande; (p+1) =

,p, and show that

Consider a sessiohwith rank greater than or equal tot-1.
Note that\; > d, 1, andW > 3E-1(e; (p+1) +0)/2. Thus,
(32) follows from Lemma 3, withia(p + 1) = 251 (p + 1)
andes(p+1) =371 (p+1) +0).

The proof for (33) is similar to that in the base case.

Now, we prove (34) forp + 1. The argument is similar
to that for the base case. We point out the differences.
Consider a session with rank p + 1. Let n be a bucket
associated withi. Consider any sequence of non-decreasing

timesxy,y1,..., Tk, Yk -
Z i,n yk i n('rk))
k=1
K—-1
= Cz,n(yK) z n 1’1 Z in xk-{-l Cz,n(yk))
k=1
S Cz,n(yK) - O’L ,n CC1 p+1 Z Th+1 — yk
+s(p+1)+ (K —1)ea(p+ 1). (43)

The last inequality follows from (32) fop + 1.

Sinced,;1 = d anddf < \;, dpi1 < ;. Now, first
let d,.1 < A;. Sinced: = d,y1, df < \. Thus, from
Lemma 1,7 is associated with a bottleneck constraint, and
hence a bottleneck buckeB. Let X be the set of sessions
associated withB. Sincei has rankp+ 1, ranks of all sessions
associated withB are less than or equal o+ 1.

Ci.s(yx) — Ci p(x1)
< Yk — 11— Z (Cm,B(Yk) — Cm, B (1))
meX\{i}
< Yk — T
- Y (@hyxk —11) —2p+1) —e(p+1))
mex\{i}

(from (32))
dpi1(yx — 1)

+(|X] = D(s2(p + 1) + e2(p + 1)). (44)

The last step follows SiNCEy 11 + 3 ,c 1 iy @i = 1.

Now, IethpH = \;. Let B be the bucket at the source node
of 4. Like in the base case, using (32) and (2), we can prove
that

< dprilyx — 21) + 20
+62(p+1) +e2(p +1).(45)

Ci.slyx) — Cip(x1)

From (44) and (45), there exists a bucketassociated with

1 such that,

Ci,B(yx) — Ci,g(z1)
< dpra(yx — 1) + 20

+max(L —1,1) (2(p+1) +e2(p+1)). (46)



From (46), like in the base case, Now, note thatk;(N) < §;(N) for every session-linki
S; U{i}. This is because ij € S;, theni € S;. Thus,
Ci,n(yK) - Ci,n(xl)

A Ao(
< dp+1(yK—$1)+20'i+2biW Z #&j\/)) > 1.
+max(L —1L,1) (ap+1) +e2(p+1)). @47) jesuy
= Ay > Ki(N). 49
From (43) and (47), jeg{i} 70 V) (49)
K Now consider an arbitrary scheduling polieay Under ,
(Ciin(yr) — Cin(zr)) > jes.u Di(n) < nk(N) for everyn > 0 as at most
k=1 « K;(N) nodes among; U {i} can be scheduled concurrently.
< dpna ;(yk — k) + 20,W + 20; + Kea(p+ 1) Thus, liminf 3 Dj(n) < K(N)
= n—oo ) n
+max(L, 2) (s2(p+ 1) + e2(p+ 1)) . (48) R o)
= liminf 2 < K,
Thus, (34) follows from (48) with ;(p + 1) = ,egg{i} minf == = KW)
max(L,2) (s2(p+ 1) + ea(p + 1)) + 2LW + 20 andes(p + e
1) = ea(p+1). Thus, (31) to (34) hold in the induction case. <Y Ay (from (49)).
Note thatg;(x),e;(z) are increasing in bothandz. Thus, je€8;U{i}
fr0111 (31), (32) and (34), Lemma 4 holds with= ¢3(F) and ~ liminf Dj(n) < Ay for somej € 5, U {i}
Y= 53(F). [ | n—oo n
= liminf M < A
D. Proof of Theorem 1 n—oo  n ()

We present the proof for arbitrasyand when each sessionThe last inequality follows sincéDy;(n) < D;(n) for all
spans one link. LetiR(¢) be the number of packets of session, n. Thus, iflim,, o DL;'L(") exists, then its value is less than
i that have been released at its source nod€0in]. Note ) .. Thus, the network is not stable under Alternatively,
that a packet is released for sessicat its source if and only if the limit does not exist, then also the network is not stabl
if a new token is generated for sessibat the bucket at its unders. Thus, X ¢ A. The result follows. u
source. Thus,V ¢, AR(t) = Ci.(t) wheren is the bucket at  Note that for the special case of single-hop sessions, ses-
i's source. Now, from Lemma 2, thl?ere exists constan®d’s, sions and session-links are identical, and for any singfe-h
such that wherV > Wy, V¢, |25 —dz| < 2. Thus, sessionj, §; = ;. Thus, Theorem 2 follows from Lemma 5
the packet release rate vectords € AMS. Since only the Since whenever any satisfies (4)\ € AMS.
released packets are available for scheduling and theseele,
rate vector is inAMS, the departure rate vector exists an

. Proof of Theorem 3

equals the release rate vector. The result follows. Consider a networkV" with three single-hop sessions i»
andig such thatS;, = {is,i3} andS;, = S;, = {i1}. Thus,
E. Proof of Theorem 2 Ky (N) =2andK;,(N) = K;;(N) = 1. Let \;; = \;, =

= 1/2. Note that a policy that schedules sessignin
slogs and, andis in the even slots stabilizes the system.
ce )\ e A.

A
We prove Theorem 2 using a supporting lemma, Lemmagé’d
which we state and prove first. The lemma and its proof qﬁ?en

not assume that the sessions are single-hop, and therefiore h Now. consider the arrival rate vector
for mult|-h0|? sessions as well. Oy /K (N, Ay /K iy (), Mg s, (V) = (1/4,1/2,1/2),
Lemma 5t If (A1, An) € A, then which corresponds to the following arrival process:
AM/Br(N), - An /BN (N)) satisfies (4). (i5, resp.) generates a packet every even (odd, resp.)
Proof: Let (Al/ﬁl(f\f),---,/\zv/ﬁzv(/\f)) not satisfy slot, andi; generates a packet in slofs5,9,.... Note
(4). We will show thatX ¢ A. thallt ah maximald scr:jedulingh policy thali schedulés .
- > > - only when i, and i3 do not have a packet to transmit,
theNrZV\éxissl?sC:l s)\els/ji)(rlj\ﬂ)r;ksuzs;l\]\{r/lf'sw/v)) not satisfy (4), never schedulesi; and is therefore unstable. Thus,
) ()‘11 /Kil (N)v )‘i2/Ki2 (N)v Al%/Kle (N)) g AMS, u
Aq()
—— > 1. G. Proof of Theorem 4
JjES;U{i} ﬁq(j) (N)

We prove Theorem 4 using Lemma 5 and another supporting
) . lemma, Lemma 6, which we state and prove next.
sincef; < By, Y. ML s Lemma 6: LetX strictly satisfy (4) (i.e., the inequalities
jeS:u{} Bi(N) are strict). Then the packet queue of every session-link wil



almost surely become empty infinitely often. Furthermane, f

every session-link and timet, E[B; ;| < oc.

Proof: Let X' strictly satisfy (4). Leta;(t) and D;(t)

denote the number of arrivals and departures respectieely f

session-linkj in slot t. Let Q;(¢) be the number of packets

for the session of session-link j waiting for transmissidn a

the source of session-link at the end of slot. Let S; U
X;, andn = |Xj;|. First, we obtain relations among
these parameters. If session-lipnkatisfyQ,;(v) > 0 for every

{i} =

v € [t,t + 7], then for every € [t, ¢ + 7],

> Di(v) =1 (50)
ke X;
t+7 t+7
Qi+ Y () < Y AnWw)
v=t+1 v=1
t+1
< {Omax + Z Aq(j)(y)' (51)
v=t+1
Now we have,
P {Bj,t > ’7'}
t+1 v
< PO @@+ > D alw)
o=t | |kex; v=t+1keX;
— Z Z Dk(l/) >0
v=t+1keX,
t+71
< P Qk(t)
v=t+1 | kex;

+ ar(v)—1] >0 (from (50))
v=t+1 \keX;
t+71
< P Qk Z Z Oék —T >0
kEX; v=t+1 keX,
tha )
< PQ— ZZAM )=1>0
v=t+1keEX];
(from (51))
tna =
_ max li
= Pi—"+ > |- Z Agi) (V) = Ay
keXx; v=t+1
=D Mw
keXx;
Letd=1—3)cx Ay Clearly,d > 0. Thus,
P{Bj,t > T}

< P{{tnamax S A(S }
T n+1

t+1
]

U Z Agmy (V) =Ny > =77
keX; v=t+1 n+1
< P{tnamax S A(S }
T n—+1
t+71 5
+ D Py ZAM — X > FT
kEX; v=t+1
t+71 5
= D P - Y A ) — A 7 51T
kEX; v=t+1
. totmax
if 7> .

Now, from (1), the packet queue of every session-link will
almost surely become empty infinitely often. Also,

Bjsl=> P{Bj;>r} < 0.
T=1

Theorem 4 follows from Lemmas 5 and 6.
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