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Generic Coverage Verification without Location
Information Using Dimension Reduction

Gaurav S. Kasbekar, Yigal Bejerano and Saswati Sarkar

Abstract—Wireless Sensor Networks (WSNs) have recently
emerged as a key sensing technology with diverse civilian and
military applications. In these networks, a large number of small
sensors or nodes perform distributed sensing of a target field.
Each node is capable of sensing events of interest within its
sensing range and communicating with neighboring nodes. The
target field is said to be k-covered if every point in it is within
the sensing range of at least k sensors, where k is any positive
integer. We present a comprehensive framework for verifying
k-coverage of a d-dimensional target field for arbitrary positive
integers k, d. Our framework uses a divide and conquer approach
based on the technique of dimension reduction, in which the k-
coverage verification problem in d-dimensions is reduced to a
number of coverage verification problems in (d-1) dimensions,
which are then recursively solved. Our framework leads to
a distributed polynomial-time coverage verification algorithm
that does not require knowledge of the locations of nodes or
directional information, which is difficult to obtain in WSNs.
Each node can execute the algorithm using only the distances
between adjacent nodes within its transmission range and their
sensing radii. We analytically prove that the scheme detects a
coverage hole if and only if the target field has a coverage hole.

I. INTRODUCTION

Recent advances in wireless communications and electron-
ics have enabled the development of low-cost sensor nodes [1].
Each sensor node is capable of sensing specific events in its
vicinity and of communicating with adjacent nodes. Thus, for
event sensing applications, a large number of sensor nodes
are deployed in a target field and they collaborate to form
an ad-hoc network, referred to as a wireless sensor network
(WSN). WSNs have the potential to become the dominant
sensing technology in many civilian and military applications,
such as intrusion detection, environmental monitoring, object
tracking, traffic control, and inventory management. In many
of these applications, WSNs need to monitor the target field
for detecting events of interest, e.g., entrance of an intruder in
an intrusion detection application.

Coverage of the target field is essential for reliable detection
of events of interest, and the quality of the coverage is
considered a measure of the quality of Service (QoS) delivered
by a WSN [2]. However, sensor nodes are prone to failures
that may cause coverage holes in the target field, which in
turn adversely affects event detection capabilities of the WSN.
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Thus, sensor nodes must execute simple and efficient coverage
hole detection mechanisms for ensuring network reliability and
providing the required QoS.

Coverage verification in sensor networks has received con-
siderable attention in the last few years. Nevertheless, research
is this area has mostly focused on WSNs where the sensors
are deployed in a straight line or a 2-dimensional plane (refer
to Section II for a review of related work). Several important
applications however require that the sensors be deployed in a
3-dimensional space. For example, in 3D underwater acoustic
sensor networks [24], sensors are suspended at different depths
in the water, which allows observation of phenomena that
cannot be adequately observed using a 2D sensor network
deployed on the ocean bottom. Also, sensors need to be
deployed in a 3-dimensional space in the atmosphere for
weather forecasting and climate monitoring [23]. Most of the
coverage verification schemes developed for 3-dimensional
sensor networks assume that the precise locations (i.e., coordi-
nates) of the sensors are known, which cannot be guaranteed
for WSNs (Section II).

In this paper, we consider k-coverage of a WSN where the
sensors are deployed in a d-dimensional space, and focus on
detecting coverage holes, which are regions in the target field
that are covered by k−1 or fewer sensors. Here, d, k can be any
positive integers. We describe the system model in Section III
and the detection problem in Section IV. We provide a generic
coverage verification algorithm that detects a coverage hole if
and only if one such is present. Our algorithm only requires
that each sensor knows its distances from its neighbors and
the distances between its neighbors that are also neighbors
of each other, and does not need any information on their
locations otherwise. The algorithm is distributed and requires
only simple computations.

Our coverage verification algorithm uses a divide and con-
quer approach based on a dimension reduction mechanism.
We first show that the coverage verification problem in d-
dimensions can be solved by reducing it to a number of
coverage verification problems in d − 1 dimensions (when
d > 1), and can therefore be recursively reduced to a number
of coverage verification problems in 1 dimension (Section V).
This dimension reduction is based on a projection process; we
provide the details for this projection process for d = 3 and
d = 2 in Section VI. Next, we show that it is straightforward to
verify coverage when all sensors are in 1-dimension, that is on
a straight line (Section VII), which completes the algorithm
description. In Section VIII, we analytically prove that our
scheme detects a coverage hole if and only if the target field
has one. Finally, in Section IX, we show using simulations
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how to improve the robustness of our scheme to errors in
measurements of distances between nodes.

II. RELATED WORK

Comprehensive surveys for coverage verification in WSNs
can be found in [3], [4]. In this section, we compare our
results with existing results that are closely related. A genre of
papers focus on sensor deployment, topology control, motion
control and routing for satisfying several quality of service
requirements such as maximizing coverage, maximizing net-
work lifetime, ensuring connectivity, minimizing the number
of sensors deployed etc. [5], [6], [17], [22], [23], [25], [26].
Specifically, Choudhury et al. [17] present an interesting
topology control heuristic that activates a subset of sensors
so as to maintain coverage and connectivity. This algorithm
however does not guarantee coverage in every circumstance
[17]. We focus on verifying coverage with guarantees on
detection performance when sensors are deployed in a d-
dimensional space.

Coverage verification has primarily focused on WSNs where
sensors are deployed on a 2-dimensional plane [2], [5], [6],
[8], [9], [10], [20]. Most of these papers assume knowledge
of either the locations of the sensors [2], [6], [8], [9], [10], or
the directions of neighboring sensors [5], which is difficult
to obtain in WSNs [11], [12]. The coverage verification
scheme presented by Bejerano [20] however attains proven
detection guarantees without using location information. But,
this scheme cannot be generalized for WSNs with sensor
deployment in a 3 or higher dimensional space.

The coverage verification problem for sensors deployed in
a 3-dimensional space has been addressed in [7], [13], [14],
[21], [22]. The algorithms proposed by So et al. [7] and Huang
et al. [21] require precise knowledge of sensor locations. We
now consider the existing coverage verification schemes for
3-dimensional deployment that are oblivious to the nodes’
locations, referred to as coordinate-free solutions. Ghrist et
al. [13] describe an innovative hole detection scheme based on
homology, which is however a centralized solution that cannot
be easily implemented in WSNs. Li et al. [14] introduced
distributed schemes for detecting large holes. To the best of
our knowledge, our scheme is the first distributed, coordinate-
free solution that is guaranteed to detect holes of any size
for sensors deployed in an arbitrary d-dimensional space. Our
scheme does not use directional information and relies only
on communication with neighbors.

III. NETWORK MODEL

We consider a wireless sensor network (WSN) consisting
of a set V of sensors that are also called nodes. The sensors
are distributed over a large d-dimensional target field, where
d ≥ 1. In practical WSNs, sensors are either deployed on a
plane (d = 2) or in three-dimensional space (d = 3). However,
our framework applies to an arbitrary positive integer d.

Each node u can sense events of interest in its sensing range
and communicate with nodes in its transmission range. We
assume that the sensing and transmission ranges of a node u
are open d-dimensional balls centered at u with radii ru and

Ru, respectively, where Ru > ru. We refer to ru and Ru as the
sensing radius and transmission radius of node u respectively.
Let r̂ = maxu∈V ru, and R̂ = minu∈V Ru.

We refer to the boundary of a d-dimensional ball as a
d-boundary-sphere. For example, a 3-boundary-sphere is a
sphere in the usual sense (boundary of a 3-dimensional ball),
a 2-boundary-sphere is a circle (boundary of a 2-dimensional
ball i.e., a disc) and a 1-boundary-sphere is a pair of points
(boundary of a 1-dimensional ball i.e., a line segment). The
boundary of the sensing range of any node u is a d-boundary-
sphere, which we refer to as the sensing border of node u.

Let du,v denote the Euclidean distance between nodes u and
v. Nodes u and v are termed adjacent or neighbors if they are
included in the transmission range of each other. Let Nu be
the set of neighbors of u. We make the natural assumption
that no two sensors are located at the same location. Also, we
assume that each sensor has a unique identification number.

We refer to the set of points of the target field that are at
a distance of at least r̂ from any boundary point of the target
field as the internal space of the target field. We distinguish
between internal nodes, which lie within the internal space,
versus the other nodes, referred to as periphery nodes. The
sensors are not aware of their locations. Yet, every sensor
knows whether it is a periphery or an internal node, possibly
using the mechanisms in [15], [16]. We assume that nodes only
have localized distance information. Specifically, each node u
knows (a) ru, (b) du,v and rv for each v ∈ Nu and (c) dv,w for
each pair v, w ∈ Nu such that v and w are neighbors of each
other. Thus, we assume that each node can estimate its sensing
radius, and its distances from its neighbors without learning
their orientations, and communicates this information to its
neighbors. Note that recent studies [18], [19] have introduced
accurate distance estimation techniques that are applicable for
wireless sensors.

We say that a point in the target field is k-covered if it is in
the interior of the sensing ranges of at least k nodes. Similarly,
any set of points in the target field is considered k-covered if
every point in the set is k-covered. In particular, we say that
a node u’s sensing border is k-covered if every point on it is
k-covered (by nodes other than node u). Note that since the
sensing range of a node is an open ball, no point on u’s sensing
border is covered by u itself. We define a k-coverage hole, or
simply coverage-hole, as a continuous area of the target field
comprised of points that are not k-covered. For instance, if
k = 1, then every point of the coverage hole is not monitored
by any sensor.

Finally, no coordinate-free coverage verification scheme can
guarantee the detection of every k-coverage hole, if R̂ < 2 · r̂
[20]. Thus, we assume that R̂ ≥ 2 · r̂.

A summary of the paper’s main notation is given in Table I.

IV. THE COVERAGE HOLE DETECTION PROBLEM

Our objective is to verify that a given d-dimensional target
field does not contain any k-coverage hole for arbitrary k ≥
1, d ≥ 1, using only localized distance information. We now
present a proposition which has been proved by Huang et al. in
[8], [21] and which we use in our solution.
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Symbol Semantics
V The set of sensors in the given WSN.
u The node that executes our scheme.
d The dimension of the target field.
k The coverage requirement.

du,v The Euclidean distance between nodes u and v.
Nu The set of neighbors of node u.
Ru The transmission radius of node u.
ru The sensing radius of node u.
R̂ minu∈V Ru.
r̂ maxu∈V ru.

AB The distance between two points A and B.
[A, B) The ray originating at A and passing through B.
∠ABC Angle between the rays [B, A) and [B, C) and its size.

Ns
u The set of nodes whose sensing range subsumes u’s

sensing border.
ku k − |Ns

u|.
Cu,v The set of intersection points of the sensing borders

of nodes u and v.
(uv)′ The virtual sensor at the center of Cu,v .

t′ The virtual sensor that is the projection of sensor t.

TABLE I
GENERAL NOTATION.

Proposition 1: Assume that no two nodes are located at the
same location. If the target field is k-covered, then the sensing
border of every internal node u ∈ V is k-covered. Also, if the
sensing border of every internal node u ∈ V is k-covered,
then the internal space of the target field is k-covered.

In the light of the above proposition, our objective can be
formulated as follows.

Problem Definition: (The d-dimensional k-Coverage Veri-
fication Problem): The d-dimensional k-coverage verification
problem is a decision problem whose goal is to determine
whether the sensing border of every internal node u is k-
covered, by using only localized distance information.

In the sequel, we provide a scheme that accurately verifies
whether the sensing border of every internal node u ∈ V is
k-covered. If the sensing border of some internal node is not
k-covered, then clearly there is a coverage hole. If the sensing
border of every internal node is k-covered, then it follows from
Proposition 1 that the internal space of the target field is k-
covered. Note that this approximates k-coverage of the target
field for a large target field, i.e., one with dimensions much
larger than r̂.

We distinguish between detecting the presence of coverage
holes and finding their exact locations. Since the sensors are
oblivious to their locations, they cannot report about the exact
location of a coverage hole when they detect one. We assume
that once a coverage hole has been detected, other means are
applied for inferring its location e.g., backtracking the paths
of the coverage-hole report messages or by using a coarse
positioning system that provides rough location estimations of
the nodes. We do not investigate the mechanisms for inferring
the hole locations.

V. THE COVERAGE VERIFICATION SCHEME

In this section, we present a framework for solving the d-
dimensional k-coverage verification problem in a distributed

manner, where k and d are arbitrary. Using a divide-and-
conquer approach, each sensor verifies that its sensing border
is k-covered by dividing the problem into simpler instances, in
which the coverage requirement k is reduced or the problem
dimension is reduced to d − 1. Whenever a node determines
that its sensing border is not k-covered, it reports the presence
of a hole. If the sensing borders of all nodes are k-covered, and
therefore the presence of hole is not reported, clearly there is
no hole (Proposition 1). In section VII, we propose a strategy
for verifying coverage in 1-dimension which concludes the
algorithm. In the following, we elaborate on the algorithm
executed by each individual sensor u.

A. Subsumption and Intersection

We now present two properties that can be easily used to
confirm or rule out k-coverage of the sensing border of a
sensor in some special cases. It is easy to check the correctness
of these properties.

Property 1 (Subsumption): The sensing border of sensor
u is entirely subsumed in the sensing range of sensor w if and
only if du,w + ru ≤ rw.

By using Property 1, a sensor u can easily verify if its
sensing border is entirely subsumed in the sensing range of
another sensor w. Suppose u’s sensing border is subsumed
in w’s sensing range. Then, since every point on u’s sensing
border is covered by sensor w, we can check (k−1)-coverage
of u’s sensing border by sensors other than sensor w. Let
Ns

u ⊆ Nu be the set of sensors such that u’s sensing border
is entirely subsumed in the sensing range of each sensor in
set Ns

u. Ns
u is found by using property 1. If |Ns

u| ≥ k, then
u’s sensing border is k-covered. Now, let |Ns

u| < k, and ku =
k−|Ns

u|. Clearly, in this case, u’s sensing border is k-covered
if and only if it is ku-covered by sensors in the set Nu\Ns

u.
To check whether the above condition holds, u needs to detect
intersecting sensing borders.

Property 2 (Intersection): The sensing border of sensor
v ∈ Nu\Ns

u intersects u’s sensing border (but is not tangent
to it) if and only if du,v < ru + rv and du,v + rv > ru.

The first condition in Property 2 states that there is overlap
between the sensing ranges of u and v and the second
condition states that v’s sensing border is not subsumed in
u’s sensing range. Now, if the sensing border of no sensor in
Nu\Ns

u intersects u’s sensing border, then u’s sensing border
is not ku-covered by sensors in the set Nu\Ns

u. This condition
can be verified using property 2.

Hence, in the next subsection, we assume that |Ns
u| < k

and that the sensing border of at least one sensor in Nu\Ns
u

intersects u’s sensing border, and focus on checking ku-
coverage of u’s sensing border by sensors in the set Nu\Ns

u.

B. Coverage verification through dimension reduction

A key step in our divide and conquer scheme is mapping a
given k-coverage verification instance in d-dimensions into a
number of ku-coverage problems in d− 1 dimensions.

Towards this end, we first show that when the sensing
borders of u and v intersect, the intersection constitutes a
(d − 1)-boundary-sphere, which we call Cu,v . To show this,



4

let, without loss of generality, node u lie at the origin and
node v lie at the point with x1 coordinate equal to du,v and
all other coordinates equal to 0. Then the equations of the
sensing borders of u and v are given by:

x2
1 + x2

2 + . . . + x2
d = r2

u (1)

(x1 − du,v)2 + x2
2 + . . . + x2

d = r2
v (2)

Subtracting (2) from (1) and rearranging, we get:

x1 =
d2

u,v + r2
u − r2

v

2du,v
(3)

Substituting this value of x1 from (3) into (1), we get:

x2
2 + . . . + x2

d = r2
u −

(
d2

u,v + r2
u − r2

v

2du,v

)2

(4)

Cu,v is the set of points that satisfy (3) and (4). This shows
that Cu,v is a (d − 1)-boundary-sphere, with radius equal to
the square root of the expression on the right-hand side in (4),
and center at

(
d2

u,v+r2
u−r2

v

2du,v
, 0, . . . , 0

)
.

The following proposition forms the basis of our divide and
conquer approach.

Proposition 2: Suppose |Ns
u| < k and that the sensing

border of at least one sensor in Nu\Ns
u intersects u’s sensing

border. u’s sensing border is ku-covered by sensors in the set
Nu\Ns

u if and only if for every sensor v such that the sensing
borders of u and v intersect, Cu,v is ku-covered by nodes in
Nu\(Ns

u ∪ v).
Proof: The necessity follows from the fact that Cu,v

lies on u’s sensing border. Let us prove sufficiency. Suppose
every (d−1)-boundary-sphere Cu,v is ku-covered by nodes in
Nu\(Ns

u ∪ v). We will show that an arbitrary point, say f , on
the sensing border of u is ku covered by sensors in Nu\Ns

u. If
f is on a (d−1)-boundary-sphere Cu,v, then by assumption, it
is ku-covered by nodes in the set Nu\(Ns

u ∪v). Now suppose
that f is not on any (d− 1)-boundary-sphere Cu,.. Then trace
a path from f along the sensing border of u so as to first
reach some (d−1)-boundary-sphere, say Cu,v , at some point,
say e. Since by assumption, there exists a (d − 1)-boundary-
sphere Cu,., it is possible to trace such a path. Since e lies
on a (d− 1)-boundary-sphere Cu,v , it is ku-covered by nodes
in Nu\(Ns

u ∪ v). Also, the path traced from f to e did not
cross the sensing border of any sensor because the path first
reached any (d− 1)-boundary-sphere Cu,. at e. So it follows
that f is in the interior of the sensing ranges of exactly the
same subset of sensors in Nu\(Ns

u ∪ v) as e is in 1. Since e
is ku-covered, it follows that f is ku-covered by sensors in
Nu\(Ns

u ∪ v). The result follows.
Note that results similar to Proposition 2 have been proved

in [21] and [22]. However, these papers use location infor-
mation for checking coverage. Our innovation is to show how
this proposition can be used to develop a coverage verification
algorithm that does not use location information.

In the light of Proposition 2, u needs to check whether Cu,v

is ku-covered by sensors in Nu \ (Ns
u ∪ v). To do this, u first

1Recall that the sensing range of each node is an open ball.

projects all sensors in the set Nu\(Ns
u ∪ v) onto the (d− 1)-

dimensional space in which Cu,v lies. Let w ∈ Nu\(Ns
u ∪ v)

be a sensor. We call the projection of w onto the (d − 1)-
dimensional space of Cu,v as virtual sensor w′. The (d− 1)-
boundary-sphere that constitutes the intersection of the sensing
border of (real) sensor w with the (d− 1) dimensional space
in which Cu,v lies is regarded as the sensing border of virtual
sensor w′. Similarly, we say that virtual sensor (uv)′ lies at
the center of Cu,v and we regard Cu,v as the sensing border
of virtual sensor (uv)′. The sensing range of a virtual sensor
is the interior of its sensing border in the (d− 1) dimensional
space in which Cu,v lies.

u,vC     Planew

w’

Fig. 1. Illustration of projection concepts for d = 3

Fig. 1 illustrates these concepts for the case d = 3. The
figure shows the sensing border of sensor w, which is a sphere,
and the plane in which circle Cu,v lies. The projection of w
on the Cu,v plane is virtual sensor w′. The darkened circle on
the Cu,v plane is the intersection of w’s sensing border with
the Cu,v plane, and is the sensing border of virtual sensor w′.
The shaded region within the darkened circle is the interior of
the sensing range of virtual sensor w′. Note that this shaded
region is within the interior of the sensing range of real sensor
w.

In general, a point in the (d−1)-dimensional space in which
Cu,v lies, is in the interior of the sensing range of a virtual
sensor that is the projection of a real sensor if and only if
it is in the interior of the sensing range of that real sensor.
From this fact and from the definition of virtual sensors and
their sensing ranges, it follows that Cu,v is ku-covered by real
sensors in the set Nu\(Ns

u ∪ v) if and only if the sensing
border of virtual sensor (uv)′ is ku-covered by virtual sensors
that are the projections of real sensors in the set Nu\(Ns

u∪v).
In the projection process, using the distances between pairs

of real sensors and the sensing radii of the real sensors,
u calculates the distances between pairs of virtual sensors
and the sensing radii of the virtual sensors (see Section VI).
Subsequently, it can check ku-coverage of the sensing bor-
der of virtual sensor (uv)′ by calculations in the (d − 1)
dimensional space in which Cu,v lies. In fact, doing this
is exactly identical to the problem of checking coverage of
the sensing border of a real sensor when real sensors are
deployed in (d − 1)-dimensions. Thus, we have reduced a
coverage verification problem in d dimensions to a number of
coverage verification problems in (d − 1) dimensions. These
problems can be recursively solved using the above steps.
Specifically, each coverage verification problem in (d − 1)
dimensions can again be reduced to a number of coverage
verification problems in (d−2) dimensions and so on until we
get problems in 1-dimension. We describe how such problems
can be solved in 1-dimension in Section VII. Note that neither
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the projection process, nor the coverage verification algorithm
for 1-dimension use location information.

C. Examples

(b) The spheres' projection on the C
u,v 

Plane

C
u,v

u v

w

t t'

w'

uv'

C
u,v 

PlaneC
u,v 

Plane

(a) The 3D location of the senssing spheres.

C
u,v

t

w

u v

w'

uv

t'

a

b

(d) The disks' projection on the C
u,v 

line.(c) The 2D location of the senssing disks.

C
u,v 

Line C
u,v 

Line

Fig. 2. Parts (a) and (b) show projection of sensors placed in three-
dimensions on the Cu,v plane. Parts (c) and (d) show projection of sensors
placed in two-dimensions on the Cu,v line.

Fig. 2 illustrates the procedure. Parts (a) and (b) show the
case d = 3. Part (a) shows some sensors and their sensing
borders which are spheres. The sensing borders of sensors
u and v intersect in circle Cu,v . Part (b) shows the virtual
sensors and their sensing borders obtained by projecting the
sensors onto the plane of circle Cu,v . In this figure, the sensing
border of virtual sensor (uv)′ is subsumed in the sensing range
of virtual sensor w′ and intersects with the sensing border of
virtual sensor t′.

Parts (c) and (d) show the case d = 2. Part (c) shows
some sensors and their sensing borders which are circles. The
sensing borders of sensors u and v intersect in the pair of
points a and b, which together form 1-boundary-sphere Cu,v .
Part (d) 2 shows the virtual sensors and their sensing borders
obtained by projecting the sensors onto the line of 1-boundary-
sphere Cu,v . In part (d), point a is in the interior of the sensing
range of virtual sensor t′ and point b is in the interior of the
sensing range of virtual sensor w′.

In Fig. 3, we summarize the computations executed by each
node u for determining k-coverage.

2In part(d), note that the sensing ranges of virtual sensors (uv)′, t′ and w′
lie on the same straight line, shown dotted. They are shown on different lines
so as not to clutter the figure.

Verify Coverage(u, Nu, k, d)

begin
/* This function checks whether the sensing border of node u is k-covered by sensors
in the set Nu when u and sensors in the set Nu lie in a d-dimensional target field.
*/
if d=1 then

Use the algorithm in Section VII to check k-coverage of u’s sensing border
else

Determine Ns
u using Property 1

if |Ns
u| ≥ k then

Return that u’s sensing border is k-covered
else

Set ku = k − |Ns
u|

for Every node v ∈ Nu\Ns
u do

Check, using Property 2, whether the sensing borders of u and v intersect
end for
if the sensing border of no sensor v ∈ Nu\Ns

u intersects u’s sensing border
then

Return that u’s sensing border is not k-covered
else

for Every node v such that u’s and v’s sensing borders intersect do
Project all sensors in the set Nu\(Ns

u∪v) onto the (d−1)-dimensional
space containing Cu,v

/*Virtual sensor (uv)′ is at the center of Cu,v and virtual sensors
in the set N(uv)′ are projections of sensors in the set Nu\(Ns

u ∪
v). Recursively check ku-coverage of Cu,v by sensors in the set
Nu\(Ns

u ∪ v).*/
Verify Coverage((uv)′, N(uv)′ , ku, d− 1)

end for
if for all nodes v such that u’s and v’s sensing border intersect, Cu,v is
ku-covered by sensors in the set Nu\(Ns

u ∪ v) then
Return that u’s sensing border is k-covered

else
Return that u’s sensing border is not k-covered

end if
end if

end if
end if

end

Fig. 3. The algorithm run by node u to check k-coverage of its sensing
border. The statements delimited by /* and */ are comments.

VI. PROJECTION FROM A HIGHER DIMENSION TO A
LOWER DIMENSION

We now describe how sensors in d-dimensions can be pro-
jected onto a (d−1)-dimensional space without any knowledge
of their coordinates. For concreteness, we describe in detail
the projection process for d = 3 (Sections VI-A to VI-D).
The projection process for arbitrary d is analogous. For d = 3,
we consider a sensor u that needs to determine ku-coverage of
Cu,v, the circle formed by the intersection of its sensing border
with that of another sensor v in its transmission range. Towards
that end, in the projection process, it determines information
about virtual sensor (uv)′, which is the center of circle Cu,v ,
and projected virtual sensors which are the projections of
sensors in Nu\(Ns

u ∪ v) onto the Cu,v plane. Specifically, it
calculates the distances between pairs of these virtual sensors
that are in transmission range of each other (sections VI-B
and VI-D) and the sensing radius of each of these virtual
sensors (sections VI-A and VI-C). In the projection process,
u uses the sensing radii of the sensors in its transmission
range, and the distances between pairs of sensors that are in
its transmission range and also in transmission range of each
other as inputs. Note that u does not use the coordinates of the
real sensors or calculate the coordinates of the virtual sensors.

After completing the above projection process from 3-
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dimensions to 2-dimensions, u needs to check ku-coverage
of the sensing border of (uv)′. To this end, after checking
for subsumption of the sensing border of (uv)′ in the sensing
ranges of other virtual sensors, u considers each virtual sensor
t′ in the Cu,v plane, whose sensing border intersects with that
of (uv)′. The intersection is a pair of points, say at′ and bt′ .
u needs to check coverage of at′ and bt′ , which can be done
by projecting virtual sensors in the set N(uv)′\(Ns

(uv)′ ∪ t′)
onto the line at′bt′ . In this projection from 2-dimensions to
1-dimension, u determines information about the resulting 1-
dimensional virtual sensors, which consist of (a) the mid-
point of the pair of points at′bt′ and (b) projected virtual
sensors which are the projections of the virtual sensors in
N(uv)′\(Ns

(uv)′ ∪ t′) onto the at′bt′ straight line. As in the
3-dimensions to 2-dimensional projection, u calculates the
distances between pairs of these 1-dimensional virtual sensors
that are in transmission range of each other and the sensing
radius of each of these virtual sensors. As before, u uses
as inputs, the sensing radii of the virtual sensors in the
transmission range of (uv)′, and the distances between pairs
of virtual sensors that are in the transmission range of (uv)′

and also in transmission range of each other. In Section VI-E,
we mention some salient points of the projection process from
2-dimensions to 1-dimension.

We now return to the calculations for projection from 3-
dimensions to 2-dimensions. We use the following notation
throughout the section. Let O be the center of circle Cu,v .
Thus, the virtual sensor (uv)′ is located at point O. If A and
B are two points, then the length of the segment AB is denoted
by simply AB.

A. Preliminary Calculations

We first find lengths Ou and Ov, which are needed through-
out this section. For the purpose of this calculation, let u be
the origin and let v be the point (du,v, 0, 0). As derived in
section V (see (3)), the x1 coordinate of every point on circle
Cu,v is the same, say x1,Cu,v and is given by:

x1,Cu,v =
d2

u,v + r2
u − r2

v

2du,v
. (5)

Since O is the center of the circle Cu,v , it is at (x1,Cu,v , 0, 0).
So, we get:

Ou = |x1,Cu,v | =
∣∣∣∣∣
d2

u,v + r2
u − r2

v

2du,v

∣∣∣∣∣ (6)

Ov = |du,v − x1,Cu,v | =
∣∣∣∣∣du,v −

d2
u,v + r2

u − r2
v

2du,v

∣∣∣∣∣ . (7)

Note that if either u or v is on the Cu,v plane, then it is at
point O. We can find whether this is the case from (6) and (7).
However, at least one of u and v is not on the Cu,v plane since
du,v > 0. In the following calculations, we assume, without
loss of generality, that u does not lie on the Cu,v plane.

Now, u calculates the sensing radius of virtual sensor (uv)′,
which is equal to rCu,v , the radius of circle Cu,v . As derived

in section V (see (4)), it is given by:

rCu,v
=

√
r2
u −

(
d2

u,v + r2
u − r2

v

2du,v

)2

(8)

B. Calculation of the Distance of a Projected Virtual Sensor
from (uv)′

Let t ∈ Nu\(Ns
u ∪ v) be any sensor. We assume henceforth

in this section that t’s sensing border intersects with both
u’s and v’s sensing border. (Otherwise, since Cu,v is the
intersection of the sensing borders of u and v, it follows that
no point on Cu,v can be in the interior of t’s sensing range. In
this case, sensor t can be ignored for the purposes of checking
coverage of circle Cu,v). We show that t is in the transmission
range of both u and v. Since the sensing borders of u and t
intersect, a point, say p, on u’s sensing border is in the interior
of the sensing range of t. Then by the triangle inequality and
the assumption that R̂ ≥ 2r̂, we get:

dt,u ≤ tp + pu < r̂ + r̂ ≤ R̂

So t and u are in the transmission range of each other.
Similarly, t and v are in the transmission range of each other.
So distances dt,u and dt,v are known to sensor u.

Let t′ be a projected virtual sensor that is the projection
of real sensor t on the Cu,v plane. We now show how u can
calculate Ot′, the distance between virtual sensors (uv)′ and
t′. See Part(a) of Fig. 4.

u,vC     Plane

rt
t+t−

Circle
    C−

Circle
   C0 Circle

   C+

(a) Projection of sensor

  
      t on the C      plane  u,v

vu

t

O

rt’

O

u,vC     Plane

v

Q t’

Plane P  − Plane P  +

P

(b) Possible locations of 
      sensor t

u
t’

Fig. 4. Part (a) shows projection of the sensor t on the Cu,v plane. Part(b)
shows possible locations of t for fixed distances Ot′ and tt′.

∠tuv is given by the cosine rule in 4tuv as:

∠tuv = cos−1
d2

t,u + d2
u,v − d2

t,v

2dt,udu,v
(9)

By two applications of the cosine rule in 4Otu, we get:

Ot =
√

Ou2 + d2
t,u − 2(Ou)(dt,u)cos∠tuv (10)

∠tOu = cos−1
Ot2 + Ou2 − d2

t,u

2(Ot)(Ou)
(11)

Now, if t and u lie on the same side of the Cu,v plane, as in
Part(a) of Fig. 4, then ∠tOt′ = 90◦−∠tOu. If t and u lie on
opposite sides of the Cu,v plane, then ∠tOt′ = ∠tOu− 90◦.
In either case:

∠tOt′ = |90◦ − ∠tOu| (12)
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Since t′ is t’s projection on the Cu,v plane, ∠tt′O is a right
angle. From ∠tOt′, we get:

Ot′ = Ot cos ∠tOt′ (13)

Thus, Ot′ can be determined from (6) and (9) to (13).

C. Calculation of the Sensing Radius of a Projected Virtual
Sensor

We show how u can calculate rt′ , the sensing radius of
virtual sensor t′. See Part(a) of Fig. 4. From Ot and ∠tOt′,
which were calculated in (10) and (12) respectively, we get:

tt′ = Ot sin ∠tOt′ (14)

Now, if rt ≤ tt′, then t’s sensing border does not intersect
with the Cu,v plane and virtual sensor t′ can be ignored for
the purpose of checking coverage of circle Cu,v . If rt > tt′,
then let P be a point where t’s sensing border intersects the
Cu,v plane. Since t′P equals rt′ , the radius of the circle formed
by the intersection of t’s sensing border with the Cu,v plane,
we get:

rt′ = t′P =
√

(tP )2 − (tt′)2 =
√

r2
t − (tt′)2 (15)

Thus, rt′ can be calculated from (14) and (15).

D. Calculating the Distance Between Two Projected Virtual
Sensors

We show how u can calculate the distance between two
projected virtual sensors s′ and t′ that are in transmission range
of each other. We define two virtual sensors s′ and t′ to be
in the transmission range of each other if and only if their
sensing ranges intersect. The motivation behind this definition
is that, the projection from 2-dimension to 1-dimension and
verification of coverage in 1-dimension uses the distances
between virtual sensors that are in transmission range of each
other as per the above notion.

Consider two sensors s, t ∈ Nu \ (Ns
u ∪ v). We now show

that the corresponding projected virtual sensors s′ and t′ are
in transmission range of each other only if the corresponding
real sensors s and t are in the transmission range of each other.
Suppose s and t are not in the transmission range of each other.
In this case, it can be easily shown, from the assumption that
R̂ ≥ 2r̂, that the sensing ranges of s and t do not intersect 3.
Since the sensing range of a projected virtual sensor is a subset
of the sensing range of the corresponding real sensor, it follows
that the sensing ranges of virtual sensors s′ and t′ do not
intersect as well. Thus, henceforth, we assume that s and t
are in the transmission range of each other, and compute s′t′.

First, assume that u can determine whether t and s are on
the Cu,v plane, and whether t lies on the same side of the
Cu,v plane as s (we show how, later). If both t and s are on
the Cu,v plane, then s′t′ = dt,s. Now, suppose at least one
of t and s is not on the Cu,v plane. Assume, without loss of
generality, that t is not on the Cu,v plane. If s is also not on
the Cu,v plane, node u checks whether s and t lie on the same

3The proof is similar to the proof at the beginning of Section VI-B of the
fact that t is in the transmission range of u.

side or opposite sides of the Cu,v plane. Parts (a) and (b) of
Fig. 5 show these cases. In both these figures, a perpendicular
is drawn from s to the line joining t and t′. Suppose it meets
the line at point H . We now consider these cases separately:

1) s is either on the Cu,v plane or on the same side of the
Cu,v plane as t: First, assume that ss′ ≤ tt′. We have:

tH = tt′ −Ht′ = tt′ − ss′

Similarly, when ss′ > tt′, tH = ss′ − tt′. Thus,

tH = |tt′ − ss′| (16)

tt′ and ss′ can be calculated as in (14).
2) s and t are on opposite sides of the Cu,v plane: We

have:
tH = tt′ + Ht′ = tt′ + ss′ (17)

In both the above cases, s′t′ can be calculated as follows:

s′t′ = sH =
√

d2
s,t − (tH)2 (18)

Thus, u can compute s′t′ using (16), (17) and (18).
Recall that we have assumed that sensor u does not lie on

the Cu,v plane. We now show how u can find whether a sensor
t is on the Cu,v plane, and if not whether t is on the same side
of the Cu,v plane as u. Using this procedure, u can determine
whether two sensors s and t are on the same side of the Cu,v

plane. If t is any sensor, ∠tOt′ can be calculated as in (12).
t lies on the Cu,v plane if and only if ∠tOt′ = 0.

Now suppose sensor t does not lie on the Cu,v plane.
Suppose distances Ot′ and tt′ have been calculated as in (13)
and (14). See Part (b) of Fig. 4. Let P− and P+ be the planes
parallel to the Cu,v plane at a distance equal to distance tt′

from the Cu,v plane, on the same side as u and on the opposite
side respectively. Let C0 be the circle on the Cu,v plane with
center O and radius equal to distance Ot′. For a fixed distance
Ot′, every point on circle C0 is a possible location for t′. Let
circles C− and C+ be the circles that are the projections of
circle C0 on planes P− and P+ respectively. Since t′ is the
projection of t on the Cu,v plane, t is the projection of t′ on
either plane P− or P+. So for fixed distances Ot′ and tt′,
every point on circle C+ and circle C− is a possible location
for t. For some candidate location of t′ on circle C0, let t− and
t+ be the corresponding candidate locations for t on circle C−

and C+ respectively. Note that t− and t+ lie on the normal
to the Cu,v plane passing through that particular candidate
location of t′ as shown in Part (b) of Fig. 4. Suppose the
normal from u to line t−t+ meets the line at point Q. Then,
uQ = Ot′ and Qt′ = Ou. Thus, t−Q = t−t′−Qt′ = tt′−Ou
and similarly, t+Q = tt′+Ou. So distances ut− and ut+ can
be calculated as follows:

ut− =
√

(tt′ −Ou)2 + (Ot′)2 (19)

ut+ =
√

(tt′ + Ou)2 + (Ot′)2 (20)

In the above expressions, tt′, Ot′ and Ou can be calculated
as in (14), (13) and (6) respectively. Note that every point on
circle C− (respectively, C+) is at distance ut− (respectively,
ut+) from u. If dt,u = ut−, then t lies on circle C−, hence,
on the same side of the Cu,v plane as u. Otherwise dt,u = ut+
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and then t lies on circle C+, hence, on the opposite side of
the Cu,v plane as u.

u,vC     Plane

(b) s and t lie on 
      opposite sides
       of the C     plane u,v

(a) s and t lie on the 
         same side of the 
     C     plane. u,v

u,vC     Plane

t t’

s’s

H

t’
t H

ss’

Fig. 5. Parts (a) and (b) shows the cases in which s and t are on the same
side and opposite sides of the Cu,v plane respectively

Remark 1: Note that when sensors are projected on a plane,
two or more virtual sensors may end up at the same location
even when no two real sensors are located at the same
position. So for the two-dimensional problem, the requirement
of Proposition 1 is not met. However, this is not a difficulty
because in the two-dimensional problem, we need only to
check whether the sensing border of virtual sensor (uv)′ is
ku-covered. We do not need to check ku-coverage of the target
field. So we do not apply Proposition 1.

E. Projection from Two Dimensions to One Dimension

We now comment on some salient aspects of the projection
from a plane to a line (2-dimensions to 1-dimension).

First, as for the virtual sensors obtained after projection onto
a plane, two 1-dimensional virtual sensors (i.e., those obtained
after projection onto a line) are said to be in the transmission
range of each other if and only if their sensing ranges intersect.

The same 2-dimension to 1-dimension projection scheme
applies both when the sensors on a plane are virtual sensors
obtained after projection from a 3-dimensional space, and also
when the sensors on a plane are real sensors.

VII. k-COVERAGE VERIFICATION ALGORITHM IN ONE
DIMENSION

In this section, we describe the k-coverage verification
algorithm for the case in which sensors are placed on a
straight line. The one-dimensional case may arise if real
sensors are placed on a straight line or if sensors are placed
in a higher dimension and we reduce the problem to several
one-dimensional coverage verification problems. Each sensor
knows the distances between adjacent sensors in its trans-
mission range and their sensing radii either from distance
measurements and exchanges (if sensors are real) or from
calculations in the projection process (if sensors are virtual).

Consider a sensor u, which may either be real or virtual, that
checks k-coverage of its sensing border. u sets up a coordinate
system in which u is the origin. The sensing border of u
consists of two points, say au and bu that are located at ru

and −ru respectively. An arbitrary sensor v can be at any one
of the points du,v and −du,v . Denote these points by v+ and

v− respectively. We now describe the algorithm that u uses
to check k-coverage of au and bu. u finds out whether each
sensor v in its transmission range contains at least one of the
points au and bu. This is the case if and only if v+au < rv ,
since v+au ≤ v+bu. (Recall that v+au denotes the distance
between points v+ and au). Note that v+au = |du,v − ru|.
u discards sensors which do not cover any of the points au

and bu. It then divides the remaining sensors into three sets
S+, S− and S0 such that sensors in the set S+ are on the
right of the origin (i.e., on the same side as au), sensors in
the set S− are on the left of the origin (on the opposite side
from au) and sensors in the set S0 are at the origin (we show
how, later). For each sensor s in the transmission range of u,
u knows the distance ds,u. Since, in addition, it determines
on which side of the origin it lies, it knows its coordinate.
Thus, the locations of all sensors in sets S+, S− and S0 and
the locations of au and bu are known. Using these, for each
sensor s ∈ S+ ∪ S− ∪ S0, u can find distances sau and sbu.
Now, au (bu, respectively) is in the interior of the sensing
range of s if and only if sau < rs (sbu < rs, respectively).
Thus, u can determine whether au and bu are k-covered.

It remains to show how u divides the sensors into sets S+,
S− and S0. The sensors v for which du,v = 0 are put into
set S0. Next, let t /∈ S0 be a sensor. For every other sensor
s /∈ S0, u finds out whether t and s lie on the same side or
opposite sides of the origin. This can be done as follows. If
t and s are in the transmission range of each other, u knows
the distance dt,s between them from the projection processes.
Note that dt+,s+ = |du,t− du,s| and dt+,s− = |du,t + du,s|. If
dt,s = dt+,s+ , then t and s lie on the same side of the origin,
else dt,s = dt+,s− and then t and s lie on opposite sides of
the origin. Suppose t and s are not in the transmission range
of each other, which implies that their sensing ranges do not
intersect. We show by contradiction that they are on opposite
sides of the origin. Suppose they are on the same side, say
on the right of the origin. Then, since they both contain at
least one of au and bu, it follows that they both contain the
same point (au). So their sensing ranges intersect, which is a
contradiction.

Now, assume that S+ (respectively, S−) consists of the
sensors that are on the same (respectively, opposite) side as
t. If it is actually the other way round, then by symmetry of
the points au and bu around the origin, the conclusion about
k-coverage of au and bu will not change. This is because we
are interested in whether or not both au and bu are k-covered.
Thus, u can divide the sensors into sets S+, S− and S0.

VIII. CORRECTNESS AND COMPLEXITY ANALYSIS

We prove the correctness of our scheme in Subsec-
tion VIII-A and analyze its running time in Subsection VIII-B.

A. Correctness

The following theorem establishes that the algorithm pre-
sented in Fig. 3 solves the coverage verification problem.

Theorem 1 (Correctness): When R̂ ≥ 2r̂, the coverage
verification algorithm in Fig. 3 correctly detects whether or
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not the sensing border of a node u is k-covered, and does not
use location information.

Proof: If |Ns
u| ≥ k, then the algorithm in Fig. 3 reports

that u’s sensing border is k-covered, which is true, as ex-
plained in the discussion after Property 1. If |Ns

u| < k, it
follows from Proposition 2 that in order to check k-coverage of
u’sensing border, it is sufficient to check ku-coverage of Cu,v

for each v ∈ Nu\Ns
u by sensors in the set Nu\(Ns

u∪v). Note
that Cu,v is ku-covered by real sensors in the set Nu\(Ns

u∪v)
if and only if it is ku-covered by virtual sensors that are
the projections of real sensors in the set Nu\(Ns

u ∪ v). The
coverage verification algorithm in Fig. 3 checks ku-coverage
of Cu,v for each v ∈ Nu\Ns

u by (a) projecting sensors in
the set Nu\(Ns

u ∪ v) onto the (d − 1)-dimensional space
containing Cu,v when d > 1 and recursing; and subsequently
(b) checking coverage in 1-dimension of the sensing borders
of virtual sensors projected in 1-dimension. In Section VI
(Section VII, respectively), we have presented the algorithms
that accomplish steps (a) (and (b), respectively), when R̂ ≥ 2r̂.
These algorithms do not use location information. The result
follows since we have shown that the algorithm in step (b)
correctly determines whether or not the sensing borders of
virtual sensors are j-covered for any j.

B. Complexity

We now derive the running time of the algorithm in Fig. 3.
1) One Dimension: Suppose real or virtual sensors are

located in one dimension. We now give the running time of the
algorithm described in Section VII. The following are constant
time operations:

1) Checking whether at least one of au and bu is in the
sensing range of a sensor v,

2) If t is a sensor not at the origin, checking for a sensor s
whether s and t are on the same side or opposite sides
of the origin,

3) Once sensors have been divided into sets S+, S− and
S0, checking whether au and bu are in the interior of
the sensing range of each sensor.

Hence, the total time taken by a node u for performing the
above operations for all nodes in Nu is O(|Nu|). So the
running time of the algorithm in Section VII is O(|Nu|).

2) Projection from d to d − 1 dimensions: Suppose real
or virtual sensors are located in d dimensions, where d ≥ 2.
We now find the time taken by node u to project sensors in
Nu\(Ns

u ∪ v) onto the (d − 1) dimensional space in which
Cu,v lies, using the algorithm in Section VI. Calculation of the
sensing radius of sensor (uv)′ takes constant time. Calculation
of the distance of a projected virtual sensor t′ from virtual
sensor (uv)′ and of the sensing radius of t′ are constant time
operations. So the total time for these two operations for all
projected virtual sensors t′ is O(|Nu|). Again, calculation
of the distance between two projected virtual sensors takes
constant time. There are O(|Nu|2) such pairs. So the total
time taken is O(|Nu|2).

Adding the above times, the total time for the projection is
O(|Nu|2).

3) d Dimensions, d ≥ 2: We show by induction that when
real or virtual sensors are located in d dimensions, where
d ≥ 2, then the time taken by a node u to run the algorithm
in Fig. 3 is O(|Nu|d+1). Suppose this claim is true for d− 1
dimensions. Now, suppose sensors are located in d dimensions.
Checking whether the sensing border of u is subsumed in
the sensing range of another sensor v is a constant time
operation (see Property 1). So the total time for all v ∈ Nu

is O(|Nu|). Now, suppose the sensing borders of u and v
intersect. Projection of sensors in Nu\(Ns

u∪v) onto the d−1
dimensional space of Cu,v takes O(|Nu|2) time as shown in
Subsection VIII-B2 above. Note that in the resulting problem
in d−1 dimensions, the number of neighbors of sensor (uv)′ is
O(|Nu|). By the induction hypothesis and Subsection VIII-B1,
checking coverage in this d − 1 dimensional problem takes
O(|Nu|d−1+1) = O(|Nu|d) time if d ≥ 3 and O(|Nu|) time
if d = 2. Hence, the total time for projection to the d − 1
dimensional space of Cu,v and checking coverage of (uv)′ is
O(|Nu|d). So the total time for these two operations for all
v ∈ Nu\Ns

u is O(|Nu|d+1).
Adding the computation times for subsumption and inter-

section, the total running time taken by sensor u for checking
k-coverage of its sensing border is O(|Nu|d+1).

4) Running Time for Coverage Verification: Suppose sen-
sors are located in d dimensions, where d ≥ 1. Let ∆ =
maxu∈V |Nu| be the maximum number of neighbors of any
node in the network. By Subsections VIII-B1 and VIII-B3,
when sensors are located in d dimensions, the time taken by
any sensor to check k-coverage of its sensing border is 4:

1) O(∆) if d = 1 and
2) O(∆d+1) if d > 1.

IX. SIMULATIONS

In this section, we empirically evaluate the performance
of our algorithm when the analytical assumptions do not
hold. We first demonstrate that the empirical evaluations are
consistent with the theoretical deductions when the analytical
assumptions do hold.

In all our simulations, we considered the case k = 1. First,
we simulated some simple test cases. We developed a simu-
lator that allows us to create a coverage hole of controllable
size at the center of a three-dimensional target field and to
place the nodes randomly around it, while ensuring that the
space around the coverage hole is fully covered. We ran a
large number of simulations with different sizes of the central
coverage hole. We observed that when the hole size was 0, no
node reported a hole and when the hole size was greater than
0, some nodes reported a hole. This experimentally confirms
the correctness of the scheme.

Now, in Section VIII-A, we analytically proved that our
scheme accurately verifies k-coverage of the target field when
the ratio R̂/r̂ ≥ 2. In our analysis, we assumed that the
distances between nodes are accurately known. However, in
practice, there may be errors in the distance measurements,
which in turn lead to errors in coverage detection. Using

4Note that in practice, d ≤ 3 and hence the algorithm is polynomial-time.
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simulations, we demonstrate how to make our scheme more
robust to errors.

There can be two types of errors in coverage detection: (a)
false alarm and (b) misdetection. A false alarm is the error that
there is actually no hole, but a hole is reported by the network.
A misdetection is the error that there is actually a hole, but it
is not reported by the network. We seek to minimize the risk,
which is the probability that there is an error. The risk is the
sum of the probabilities of false alarm and misdetection. We
measure the probability of false alarm (respectively, misdetec-
tion) as the fraction of the total simulated instances that are
false alarms (respectively, misdetections). In order to improve
the robustness of our scheme, we propose a threshold-type
policy in which a hole is reported by the network if and only
if the number of nodes who report that they border a hole is
greater than a threshold.

We consider a three-dimensional 50 × 50 × 50 units3

target field. Each sensor has a sensing radius of 10 units
and a transmission radius of 22 units. Each sensor is placed
uniformly at random in the target field. We chose the number
of nodes, |V |, so as to ensure that the probability that there
is a coverage hole is roughly 0.5. We found that |V | = 370
ensures this. We assume that the evaluated distance between
adjacent nodes u and v is given by:

Eval Distu,v = du,v · (1 + X · Error Index)

where, du,v is the actual distance between the nodes, X ∼
N(0, 1) is a normal random variable and Error Index is a
simulation parameter that controls the variance of the distance
measurement errors. We varied Error Index and ran 100
simulations for each value.

In the top figure of Fig. 6, we plot the probabilities of
false alarm and misdetection and the risk as a function of
threshold for Error Index = 2%. The plot shows that the
false alarm probability (respectively, misdetection probability)
decreases (respectively, increases) as a function of threshold.
This is because, for a higher value of the threshold, a hole
is reported by the network in fewer simulated instances. The
risk is minimized at a certain threshold value, which is the
optimal threshold. Observe that the the risk at the optimal
threshold is lower than the risk at a threshold of 0 by a large
margin (24.5%). In the bottom figure of Fig. 6, we plot as
a function of Error Index, the risks with (a) the optimal
threshold (b) a threshold of 0 and (c) a threshold equal to
twice the optimal threshold. It can be seen that the risk with
the optimal threshold is always lower than the risks with the
other two thresholds. Thus, a threshold-type policy can reduce
the risk if the threshold is chosen judiciously.

X. CONCLUSION

We presented an efficient, distributed, coordinate-free algo-
rithm for verifying k-coverage of a d-dimensional target field
for arbitrary integers k and d. We analytically proved that
the scheme detects a coverage hole if and only if there is a
coverage hole in the target field. Our simulation results show
how the robustness of the scheme to distance measurement
errors can be improved by using a threshold type policy.
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Fig. 6. In the top figure, we plot the false alarm probability, misdetection
probability and the risk as a function of threshold for Error Index = 2%.
In the bottom figure, we plot as a function of Error Index, the risks with
(a) the optimal threshold (b) a threshold of 0 and (c) a threshold equal to
twice the optimal threshold.

We believe that the methods developed in this study are
fundamental for wireless sensor network management and they
will affect the design of new network protocols.
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