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Throughput-optimal Scheduling in Multichannel Access Point

Networks under Infrequent Channel Measurements

Koushik Kar, Xiang Luo and Saswati Sarkar

Abstract

We consider the problem of uplink/downlink scheduling in a multichannel wireless access point network where

channel states differ across channels as well as users, vary with time, and can be measured only infrequently. We

demonstrate that, unlike infrequent measurement of queue lengths, infrequent measurement of channel states reduce

the maximum attainable throughput. We then prove that in frequency division multiplexed systems, a dynamic

scheduling policy that depends on both the channel rates (averaged over the measurement interval) and the queue

lengths, attains the maximum possible throughput. We also generalize the scheduling policy to solve the joint power

allocation and scheduling problem in orthogonal frequency division multiplexed systems. In addition, we provide

simulation studies that demonstrate the impact of the frequency of channel and queue state measurements on the

average delay and attained throughput.

Index Terms

Throughput-optimal scheduling, Multichannel access point networks, Infrequent channel measurements.

I. INTRODUCTION

Future wireless networks are likely to provide each user access to multiple channels. The dynamic

scheduling problem at any given time in such networks is to determine (i) the set of users that can

transmit/receive, and (ii) the set of channels that a user can use. Our goal is to optimally determine the

above so as to maximize the system throughput using on-line adaptive policies. The availability of multiple

channels gives rise to several unique challenges in attaining the above goal. Channel characteristics at any

given time will typically be different for different channels, and these characteristics will also vary with
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time. In a system with a large number of users and channels, an individual user could use only a small

number of channels at any time. Therefore, measuring the channel quality perceived by each user for each

channel would require additional probe packets, which introduces a significant measurement overhead.

Thus unlike single-channel networks, scheduling in multichannel networks must be done under inaccurate

channel state information, resulting from infrequent channel measurements. Moreover, in a multichannel

wireless system, the scheduling questions depend strongly on the transmission mechanisms. Specifically,

the scheduling constraints differ significantly based on whether simple (pure) or orthogonal frequency

division multiplexing (FDM) is used, and the manner in which power is allocated across channels. Our

contribution in this paper is to develop optimal scheduling policies that address the above challenges.

Our first contribution is to demonstrate that infrequent channel state measurements affect the system

throughput in a fundamentally different way than infrequent measurements of other state variables.

Specifically, it is well-known that infrequent measurements of queue lengths of users do not alter the

maximum attainable throughput region, as long as the measurement intervals are upper bounded by a

constant. We however show that infrequent measurement of channel states does reduce the maximum

attainable throughput region. We further prove that a weighted queue-length based scheduling policy

attains the maximum attainable throughput region under partial information about channel states. The

weights must be chosen based on the average channel rates till the next measurement instant. We also

investigate the structure of the optimal scheduling policy under specific scheduling constraints. We show

that for the pure FDM system, the throughput-optimal scheduling policy is a maximum weighted matching

between the users and the channels, and for the orthogonal FDM (OFDM) system, on the other hand, the

scheduling policy corresponds to a maximum weighted poly-matching. We then show how our results can

be extended to jointly optimize the scheduling and power allocation in OFDM systems. From a practical

perspective, the algorithms that we present in this paper can be used for uplink/downlink scheduling and

power assignment for multichannel wireless systems like 802.16 access point networks.

II. RELATED WORK

There is a rich body of literature on the subject of throughput-optimal scheduling in a wide variety of

queueing networks [1], [2], [6], [7], [15], [19], [20], [21], [22], [23], [24], [25], [26], [29], [31], [30].

These papers either assume that the service rates of the queues do not vary with time, or if the service rates

vary, the schedulers know the service rates of the queues before each scheduling decision. The equivalent
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assumption in our context is that the schedulers know the instantaneous channel states. Recently, Neely at

al. have addressed the problem of jointly selecting the queues to serve and determining the service rates of

the selected queues by appropriately regulating the transmission power levels [18]. They also assume that

the scheduler always knows the instantaneous states of the channels. Our main contribution is to develop

throughput optimal scheduling policies when the scheduler knows the channel states only infrequently. We

also demonstrate that the impact of infrequent knowledge of channel states is substantially different from

that of infrequent knowledge of queue lengths. While infrequent knowledge of queue lengths does not

alter the maximum achievable throughput region (as shown by several previous results in different settings

[1], [2], [20], [21], [22], [23], [24], [25], [26], [27]), we show in this paper that infrequent knowledge of

service rates substantially reduces the maximum achievable throughput region.

Several interesting medium access control protocols, e.g., [9], [14], [8], [16], [28], [32], have been

proposed for selecting channels in context of specific wireless technologies, e.g., IEEE 802.11, which

do not however guarantee throughput optimality. Our contribution lies in the development of scheduling

algorithms that provably maximize throughput in presence of time variations, asymmetry in the rates of

different channels, and infrequent measurements.

For the OFDM case, there have been several recent papers that address a problem that is closely related

to ours [5], [33], [10], [12]. The authors in [5], [33] have addressed the question of how resources (like

bandwidth and power) should be allocated to users in an OFDM multichannel system to maximize system

throughput. However, in these works, the resource allocation problem is not considered in a stochastic

setting, and therefore the problem addressed in [5], [33] is quite different from the stochastic dynamic

optimization problem that we consider here. In [10], [12], the authors address the OFDM case of our

problem for two-state (on-off) channel models. In contrast, we consider channel models that are much

more general (can have any number of states) and address both the cases of pure FDM and OFDM. More

importantly, unlike our work, the results in [10], [12] assume that the instantaneous channel states are

always known, and do not jointly optimize the channel and power allocations.

III. FORMULATION

A. System Model and Assumptions

Our system consists of a set of users sharing a set of channels to communicate with an access point

(AP). Let M denote the set of channels, and N denote the set of users. In the following, we focus most of
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our discussion on uplink scheduling, where the users are transmitting data to the AP; the formulation and

approach presented here can easily be extended to the downlink case. We assume that the AP is equipped

with a separate transceiver for each channel, and is thus capable of receiving data simultaneously from

multiple users provided they receive on different channels. However, the AP cannot successfully receive

data from multiple users over a single channel. In this scenario, whether a user can simultaneously transmit

on multiple channels or not, depends on the specific system considered, and is discussed in Section III-B.

We allow channel conditions to vary across channels as well as users. Channel conditions depend on

various factors like fading and interference (from neighboring access point networks), which typically

depend on the channel frequency, as well as the user location. Therefore, the attainable rate on a channel

may be different for different channels; moreover, the attainable rate may also depend on the user using

the channel. Let αij (0 ≤ αij ≤ 1) denote the packet success probability when user i transmits a packet on

channel j. For simplicity of exposition, we will assume that all channels have unit capacity; our analysis

and results can however be extended to the case where capacities of different channels may be different.

In the rest of the paper, we will therefore refer to αij as the channel rate of user i on channel j. Note

that the channel rates are typically functions of time, since fading and interference levels at any location

can vary with time. These variations are expected to be more pronounced when the users are mobile.

We assume that time is slotted, and the slots are denoted by t = 1, 2, .... All packets have the same

length, and the transmission time of a packet equals a slot length. We assume that packet arrivals occur

at the beginning of any time slot, and packet departures occur at the end of the time slot. At any given

time slot, the number of packet arrivals for different users can be arbitrarily correlated. For user i, the

number of arrivals in any slot follows an i.i.d. process, with mean λi. Let ~λ = (λi, i ∈ N) denote the

vector of average arrival rates. Note that while our results assume i.i.d. traffic arrival patterns, they can

be extended to more general arrival patterns using fluid flow techniques [4].

We assume that each channel rate, αij , evolves in time according to a finite-state Markov chain. At any

given time, the different αijs can be arbitrarily correlated.

Finally, we state our assumptions on the sampling of channel and queue states. Let the time slots

be grouped into intervals of time T . Thus the (k + 1)th interval consists of slots kT, ..., (k + 1)T − 1.

Although the channel conditions and queue lengths can change in each slot, these are measured only at

the beginning of each interval, i.e., at the beginning of slot kT , for k = 0, 1, .... Thus the interval length T
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Fig. 1. Matching vs. poly-matching: The figure shows one possible matching and one possible poly-matching for 3 users and 2 channels.
(Note that the matching/poly-matching is represented by the bold edges.)

denotes the duration between successive sampling instances of the channel conditions and queue lengths.

B. Scheduling Constraints

Next, we describe the constraints on our scheduling policy. At the beginning of each interval, for each

channel, a user is selected to transmit on that channel during the interval. Note that a channel cannot be

assigned to multiple users in the same interval. In pure FDM, a user can transmit on only one channel at

any given time. Therefore, in this case, the scheduling policy across channels corresponds to a matching

[3] in a bipartite graph, where the users and the channels represent the two sets of vertices that need to

be matched. In orthogonal FDM (OFDM), however, a user can transmit on multiple channels at the same

time. Thus in this case, a user can be matched to multiple channels, but not vice versa. In this paper,

we refer to such a one-to-many matching between the users and channels as a poly-matching. Figure 1

explains the difference between matchings and poly-matchings.

Note that there can be multiple matchings or poly-matchings in the bipartite graph of users and channels

(the total number of matchings or poly-matchings is in fact, exponential in the size of the user-channel

graph), and different matchings and poly-matchings will provide significantly different throughputs. A

good choice of matching or poly-matching is critical to attaining high system throughput. Therefore,

the key challenge in the dynamic scheduling question considered here is to select the right matching or

poly-matching at any time slot, so as to maximize the long-term system throughput.
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C. Stability Region and Throughput-optimal Scheduling

The notion of throughput-optimal scheduling is based on the notion of a “stability region”; so we define

the latter first. A system is said to be stable for an arrival rate vector ~λ under a scheduling policy Ψ, if the

expected lengths of all queues in the system remain bounded over all time, when the packet arrival rate

vector is ~λ and Ψ is used as the scheduling policy. In such a case, scheduling policy Ψ is said to stabilize

the system for arrival rate vector ~λ. The stability region of the system is the set of all arrival rate vectors for

which the system can be stabilized by some scheduling policy. Intuitively, the arrival rate vector belonging

to the stability region is “attainable”, since there exists a scheduling policy under which the system is

stable for that arrival rate vector. Moreover, a rate vector outside the stability region is not attainable,

since all scheduling policies would lead to unbounded queues in the system for that arrival rate vector.

As we argue later in the paper, the stability region in our system depends on the measurement interval

T . Let ΛT denote the stability region of the system for interval length T . An analytical characterization

of the stability region of the system that we consider in this paper can be found in the appendix (refer to

(8)-(10)).

A scheduling policy is said to be throughput-optimal if it stabilizes the system for all arrival rate vectors

that are strictly within the stability region. In other words, a throughput-optimal scheduling policy can

“attain” all arrival rate vectors that belong to the interior of the stability region ΛT . In the next few sections,

we present throughput-optimal scheduling policies for the multichannel wireless system described above.

IV. THROUGHPUT-OPTIMAL SCHEDULING

Before we present our scheduling policy and argue about its throughput-optimality, we discuss some

properties of the stability region ΛT .

A. Characterization of the Stability Region

In the following lemma, we prove that the stability region reduces with increase in T. Let Int(ΛT )

represent the interior of the stability region, ΛT .

Lemma 1: For any T ≥ 1, ΛlT ⊆ ΛT ∀ positive integers l. If l > 1, there exists systems where

Int(ΛlT ) ⊂ Int(ΛT ).

Lemma 1 is proved in the appendix. Intuitively, Lemma 1 states that the stability region “shrinks” as

the measurement interval increases.
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Note that in practice, some inference on the channel states can be drawn from the success or failure of

packets transmitted during an interval. However, in our definition of ΛT , we assume that such information

is not used by the scheduling policy.

Let us now consider a scenario where the queue states are measured only at the beginning of each

interval (of T time slots), but the channel states are measured at the beginning of every time slot. Let Λ̂T

denote the stability region in this case. The following result can be easily shown, and has been observed

in the existing literature in different contexts [21], [23], [24], [25], [26], [27]:

Observation 2: For any T ≥ 1, Int(Λ̂T ) = Int(Λ).

The above observation states that the stability region remains the same if the queue measurement interval

is increased, as long as the channel states are measured every time slot.

From the lemma and observation stated above, we can conclude that the shrinking of the stability region

ΛT with increasing T , is a result of the reduction in the channel rate measurement frequency, and not

due to the reduction in the frequency of queue-length measurements. Increasing the queue measurement

interval (while keeping the channel measurement interval fixed) does not affect the maximum achievable

throughput; it usually results only in an increase in the average packet delay. Increasing the channel

measurement interval, however, not only increases the average delay, but also leads to a reduction in the

maximum achievable throughput. Thus the reduction in the frequency of measurement in the channel

rates affects the system in a fundamentally different way than that of the queue-lengths. The optimal

scheduling policy which we state in the next section provides more intuition behind these results. We also

substantiate these observations through simulation results in Section V.

B. Scheduling Policy

We now describe our scheduling policy ΨT , which is parameterized by the length T of the measurement

interval. The scheduling policy consists of two components: (i) packet queueing policy and (ii) packet

service policy. Both of these can be executed in parallel. We will first describe the packet queuing policy

which assigns the service channel to each packet of each user. Each user maintains a queue for each of

the channels (see Figure 2). A queue for channel j at user i contains packets of i that will be scheduled

on channel j. A packet, on arrival, is stored in the queue with the smallest queue-length, amongst all

queues for that user. Thus the channel on which a packet will be scheduled is assigned on packet arrival.

Let Qij(t) denote the length of the queue for channel j at user i at time slot t. In computing Qij(t), the
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packets that enter the corresponding queue at the beginning of time slot t are also taken into account. In

our packet queueing policy, the arriving packets are routed to the corresponding queue (i.e., are considered

eligible for scheduling) only at the beginning of each interval. Thus, a packet of user i arriving at a time

slot t, where t satisfies (k− 1)T ≤ t < kT , will enter a queue only at the beginning of time slot kT , i.e.,

at the beginning of the (k + 1)th interval. Moreover, the packet will enter the queue for channel j at user

i, where j satisfies

j = arg min
j′∈M

Qij′(kT ). (1)

We now describe the packet service policy. Our packet service policy selects the matching (poly-

matching) at the beginning of the (k + 1)th interval, and uses it for the rest of that interval. Recall that

the channel rates αij are functions of time, and let αij(t) denote the corresponding values in time slot t.

Now, for any user i and channel j, define α̃ij(kT ) as follows

α̃ij(kT ) =
1

T
E(

(k+1)T−1∑

t=kT

αij(t)|αij(kT )), (2)

where E(·) denotes the expectation of a random variable. In other words, α̃ij(kT ) denotes the average

channel rate until the next channel measurement instant, given the current (observed) channel state,

αij(kT ). Note that since the channel rate αij evolves according to a finite-state Markov chain, α̃ij(kT )

can be computed from (2) using the multi-step transition probabilities of the Markov chain.

Now associate a weight of α̃ij(kT )Qij(kT ) with each “edge” (i, j) in the user-channel bipartite graph

(note that an edge corresponds to a user-channel pair). Note that a matching (poly-matching) can be

viewed as a collection of edges. The weight of a matching (poly-matching) is the sum of the weights of

the edges belonging to the matching (poly-matching). Thus, the weight of a matching (poly-matching) Φ,

computed at time kT , is given by
∑

(i,j)∈Φ

α̃ij(kT )Qij(kT ). (3)

Then the packet service policy for the pure FDM (OFDM) case is to assign channels to users so that (3)

is maximized. Thus the user-channel assignment corresponds to the maximum weighted matching (poly-

matching) in the user-channel bipartite graph. Figure 2 provides a schematic diagram that explains our

queueing and service policies for pure and orthogonal FDM.

We now describe the intuition behind the design. For higher system throughput, we would like to
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Fig. 2. Example: Scheduling for pure and orthogonal FDM: In this case the optimal matching is {(1,1),(2,2)}, with a total weight of 9
4

,
and the optimal poly-matching is {(2,1),(2,2)} with a total weight of 11

4
. The number shown across each edge represents, α̃ij(kT ), the

average channel rate until the next measurement instant, given the current (observed) channel state. Note that the queue-length for channel 2
is smaller than that for channel 1, at all users; therefore, any packets arriving at any user before the next measurement instant will be stored
in the queue corresponding to channel 2 at that user.

schedule user i to transmit on channel j if the expected rate (in the current interval) of i on j, expressed

by α̃ij , is high. In other words, in selecting the user-channel pairs (edges) for scheduling, preference

should be given to those with higher expected channel rates in the current interval. Moreover, for stability

of the system, we would prefer to choose user-channel pairs for which the corresponding queue-lengths

are large. This intuitively justifies the term Qij in the weight of edge (i, j). A user i should transmit more

packets on a channel j in which it has higher channel rate. The queue length Qij in such a channel will

be low due to frequent service of packets. This justifies the selection of the least loaded queue for each

new packet in the packet queueing policy.

C. Optimality Result

Theorem 2: The scheduling policy ΨT stabilizes the system for all arrival rate vectors ~λ ∈ Int(ΛT ),

for any T ≥ 1.

The above result (see the appendix for proof) states that our policy stabilizes the system for all arrival rate

vectors that are strictly within the stability region. In other words, Theorem 2 states that our scheduling

policy, ΨT , is throughput-optimal. Note that the throughput-optimality of the maximum queue-length

matching based scheduling in input-queued switches, as shown in [15], follows as a special case of the

above result, by considering the case T = 1 and αij(t) = 1 ∀i, j, t.
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D. Discussion

The design of ΨT also explains why the impact of infrequent channel measurements is fundamentally

different from that of infrequent queue-length measurements. Note that the packet service policy for ΨT

depends on the products of the queue lengths and corresponding average channel rates. If the queue

lengths known by the scheduler differ from the actual queue lengths by a constant amount (which is the

case as long as the measurement intervals are finite), then the weights also differ by a constant since

the channel rates are upper bounded by 1. This difference constitutes a negligible fraction of the actual

weights for large queue lengths. However, when the channel rates are inaccurate, then the difference in

the weights become arbitrarily large as queue lengths increase. This holds even when the inaccuracy in

the channel weights is small. Thus the performance of the optimal strategy deteriorates primarily due to

infrequent channel measurements.

The design of ΨT also demonstrates that using the current queue-lengths in the edge-weight computation

is enough to ensure throughput-optimality. However, it can be shown that the use of the current channel rate

in the edge-weight computation need not guarantee throughput-optimality; some measure of the average

channel rate till the next measurement instant can be used instead, as in (2).

Finally, the assumption that channel and queue state measurements are made at the same time is mainly

for the ease of exposition and analysis. Our results can be extended to the case where the channel and queue

state measurements occur at different instants (and even different frequencies), as long as the measurement

intervals remain bounded. In that case, the matching/poly-matching computation is done whenever the

channel states (channel rates) are measured. In the edge-weight calculations, the last observed queue-

lengths can be used. The calculation procedure of the average channel rate, as stated in (2), remains the

same.

E. Computational Aspects

The maximum weighted bipartite matching problem, also popularly known as the assignment problem,

can be solved efficiently using the well-known Hungarian Method [13]. Let m = |M | and n = |N |.
Then the maximum weighted bipartite matching problem can be solved in O(mn2) time if m ≤ n, and

in O(m2n) time if m > n.

The maximum weighted poly-matching can be computed as follows: each channel greedily selects the

“best” user on that channel, irrespective of whether the user was selected by other channels or not. Thus
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during the (k+1)th interval, a channel j will select user i satisfying i = arg maxi′∈N α̃i′j(kT )Qi′j(kT ) for

receiving traffic on channel j. Note that in this assignment, a user can be assigned to multiple channels,

but a channel can be assigned to at most one user. The algorithm requires O(mn) time under sequential

computation. However, note that the user selections across different channels are independent of each

other, and can be executed in parallel; in that case, the algorithm can be completed in O(n) time.

Our scheduling policy can be somewhat generalized, without affecting throughput optimality. More

specifically, in the weight computation procedure, the queue length Qij(kT ) could be replaced by fij(Qij(kT )),

where fij is some function of the queue-length. As long as the functions fij are strictly increasing,

and satisfy some additional (fairly general) criteria, throughput optimality is achieved by our scheduling

policy. The choice of the function, however, affects the average packet delays of different users. This

fact can be exploited to provide delay differentiation to users. For example, if we use linear functions

fij(Qij(kT )) = wiQij(kT ), we can attain delay differentiation by associating larger weights wi with

higher priority users. We explore this issue further through simulations in Section V.

F. Joint Scheduling and Power Allocation in OFDM

In an OFDM system, as mentioned earlier, data of a single user can be transmitted on multiple channels

simultaneously. In the uplink case, the user might have fixed power budget per slot, which can be split

across the different channels used by the user. The channel rates depend on the power allocation in these

different channels. Also note that the optimal power allocation across different channels depends on the

poly-matching chosen. In this scenario, therefore, the optimal scheduling and power allocation questions

are closely coupled, and both scheduling and power allocation need to be jointly optimized for maximizing

system throughput. We next show how our scheduling policy described earlier can be extended so as to

solve this joint optimization question.

Let Pi denote the maximum power at which user i can transmit (over all channels). Let pij denote the

transmission power used by user i on channel j in any time slot. Thus
∑

j∈M pij ≤ Pi. We assume that

a user i can transmit on any channel using only a finite number of power levels; let Ωi denote the set of

these power levels. Thus pij ∈ Ωi ∀j = 1, 2, ..., M . The constraints on the power allocations, pij , can be
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summarized as

pij ∈ Ωi, ∀j ∈ M, ∀i ∈ N, (4)
∑
j∈M

pij ≤ Pi, ∀i ∈ N. (5)

We assume that the channel rates are functions of the power allocation of user i on channel j. Thus αij(t),

the channel rate of user i on channel j at time t, can be written as αij(t) = α̂ij(pij, t). Typically, α̂ij is

a concave function of pij .

The packet queuing policy remains the same as the one described in Section IV-B. Let ᾱij(kT ) denote

the average channel quality in the (k+1)th interval, derived using (2), while replacing αij(t) by α̂ij(pij, t).

Then our scheduling and power allocation policy for the (k + 1)th interval involves finding the power

allocations pijs and the poly-matching Φ so as to maximize

∑

(i,j)∈Φ

ᾱij(pij, kT )Qij(kT ), (6)

where pijs must satisfy (4)-(5). We can show that the stability result (Theorem 2) holds in this case as

well. It is worth noting, however, that computing the optimal power allocations and poly-matching that

maximizes (6) is in general a difficult problem. Efficient computation of the optimal power allocations

and the poly-matching for cases where the user-channel graph is large, remains an open question.

V. SIMULATION STUDIES

In this section, we evaluate the performance of our scheduling policy through simulations. More

specifically, we demonstrate that our maximum weighted matching (poly-matching) based scheduling

policy attains maximum achievable throughput when the channel/queue state measurement interval (T )

is set to unity. We also study the reduction of the attained throughput, and the increase in the average

delays, as the measurement interval T increases. Finally, we demonstrate that the maximum achievable

throughput remains unaltered when the queue state measurement interval increases, provided the channel

states are measured every time slot.

We consider downlink data transmission in an access point network with 6 users and 4 channels. We

consider two channel models. In the first model, each channel has two states − “good” and “bad”, and the

channel rates associated with the two states are 1 and 0, respectively. In the second model, each channel
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has three states − “good”, “intermediate” and “bad”, and the rates associated with the three states are 0.9,

0.5 and 0.1, respectively. The state of each channel for each user varies in time according to a Markov

chain, with a symmetric transition probability matrix. At any time slot, channel states (rates) for different

channels or different users are independent of each other. The packet arrival process for each user is

Bernoulli; packet arrival processes for different users are independent of each other. The nature of the

simulation results for both the pure and orthogonal FDM cases are similar; therefore, we only present

results for the pure FDM case.

Figure 3 shows how the average packet delay varies with the arrival rate, for different values of the

measurement interval T , for the 2-state channel model. Note that we assume that the channel and queue

state measurements, as well as the scheduling decisions, are made once every interval (of T time slots). The

figure shows that for a given arrival rate, the average delay increases with an increase in T . Moreover,

the maximum throughput attained per user (the maximum arrival rate per user that can be supported)

decreases as T increases, as expected from Lemma 1. This is also evident from Figure 4, which plots the

maximum throughput attained versus T , in a semi-log scale. Note that for T = 1, the maximum attained

throughput per user is about 0.667, as expected (since there are 6 users and 4 channels, the maximum

achievable throughput in the stability region Λ is (4/6) ≈ 0.667).

Figures 5-6 are similar to Figures 3-4, but for non-uniform traffic. Here, the packet arrival rate for users

1, 2, 3 is λ per user, and that for users 4, 5, 6 is λ/2 per user. The maximum achievable λ in this case

can easily be calculated as (8/9) ≈ 0.889. The observations made from Figures 5-6 are similar to those

made in the uniform traffic case, as discussed above.
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Fig. 5. Average packet delay vs. Arrival rate per user (non-uniform
traffic, 2-state channel)
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Fig. 6. Maximum throughput attained vs. Measurement interval T
(non-uniform traffic, 2-state channel)
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Fig. 7. Average packet delay vs. Arrival rate per user (non-uniform
traffic, 3-state channel)
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Fig. 8. Maximum throughput attained vs. Measurement interval T
(non-uniform traffic, 3-state channel)

Figures 7-8 are similar to Figures 5-6, but for the 3-state channel model. The trends observed in this

case are also similar to the ones discussed above.

Let us next explore how delay differentiation can be attained by associating different weights with

different queues. In Figure 9 we plot the average delay vs. arrival rate curves in the case where user

1 is associated with a higher weight than the rest of the users. More specifically, in computing the

matching/poly-matching, user 1’s queue-length in multiplied by a factor of 4, while the weight calculations

for the other users remain unaltered. The average delay vs. arrival rate curve for the undifferentiated case

(where all users are associated with equal weight, and therefore treated uniformly) is also shown in the

figure. Figure 9 shows that with this weight-based differentiation, the average delay of user 1 decreases,

while that of the other users increases, compared to the undifferentiated case. However, note that the

maximum attained throughput remains the same.
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Fig. 9. Delay differentiation (non-uniform traffic, 3-state channel)
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Fig. 10. Average packet delay vs. Arrival rate per user, when only
queue state measurements are made infrequently (non-uniform traffic,
3-state channel)

Now, let us consider the case where the channel state measurement and scheduling decisions are made

every time slot, but the queue measurement decisions are made only once every T -slot interval. Figure 10

plot the average packet delay versus the packet arrival rate per user in this scenario, for different values

of T . The plots demonstrate that in this scenario, the maximum achievable throughput does not change as

T increases, as discussed in Section IV-A. The plots also demonstrate that our weighted matching based

scheduling algorithm attains the maximum achievable throughput in Λ, for each of the different values of

T considered.

Finally we consider the joint scheduling and power allocation problem; figures 11-12 show the average

delay and attained throughput in this case, for 3 users and 2 channels. Here, the channel rate αij is

expressed as αij = B log(1 + κ
pij

nij
), where B and κ are constants, pij represents the transmission power

allocated on channel j by user i, and nij is the noise power on channel j for user i. We assume that there

are three noise power level values − 0.1, 0.5, 0.9, and the noise power levels vary according to a Markov

chain with a symmetric transition probability matrix. The maximum power Pi is unity for each user i,

and the transmission power pij can be chosen from three different levels − 0, 0.5 and 1. We consider

non-uniform traffic, where the packet arrival rate for users 1 and 2 is λ per user, and that for user 3 is

λ/2. The optimal power and channel assignments (which maximize (6) subject to (4)-(5)) are computed

by complete enumeration over all possible power levels and channel allocations. From Figures 11-12, we

observe that the simulation results show a trend similar to the cases without power allocation discussed

earlier.
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Fig. 11. Average packet delay vs. Arrival rate per user (non-uniform
traffic, joint power allocation)
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Fig. 12. Maximum throughput attained vs. Measurement interval T
(non-uniform traffic (non-uniform traffic, joint power allocation)

VI. CONCLUDING REMARKS

We have presented a throughput-optimal uplink/downlink scheduling policy in a multichannel wireless

access point network where the time-varying channel rates can be measured only infrequently. We

identified a fundamental disparity between the roles played by the queue and channel state measurements:

less frequent queue-length measurements do not affect the maximum throughput achieved, but a reduction

in the channel rate measurement frequency reduces the maximum achievable throughput. Finally, we have

also shown how our approach can be used for joint optimization of power allocation and scheduling in

an OFDM system. Computationally efficient approaches of computing the optimal power allocations and

schedules in this case remains an open question.

APPENDIX I

PROOF OF LEMMA 1

Proof:

Consider any positive integer l. Choose any ~λ ∈ ΛlT . Then there exists a scheduling policy, say Ψ̂,

that achieves stability for the arrival rate vector ~λ, in a system where the measurement interval has length

lT , i.e., measurements are made only at time slots kT for which k is a multiple of l. Now consider using

Ψ̂ in the system where the measurement interval has length T , i.e. measurements are made only at time

slots kT , for k = 0, 1, . . .. In this case, our policy simply ignores the measurements made at time slot kT

(and keeps using the previously computed matching/poly-matching), unless k is a multiple of l. Clearly,

this policy will also achieve stability for the arrival rate vector ~λ, in the system where the measurement
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interval has length T . Therefore ~λ ∈ ΛT . Since ~λ was chosen arbitrarily from ΛlT , we conclude ΛlT ⊆ ΛT .

We now provide an example scenario where Int(ΛlT ) ⊂ Int(ΛT ). Consider a pure FDM system with

T = 1, l = 2, 1 user and 2 channels. In any slot, for both channels j, α1j is a Bernoulli random variable

with probability p of failure, i.e., α1j = 1 with probability 1−p, and 0 otherwise. Let 0 < p < 1. Consider

measurement intervals of size T , i.e., when the channel rates and queue lengths are measured every slot.

Since the channels are statistically identical and there is only one user, it can be shown that in each slot

the optimal policy is to transmit a packet in any channel that has rate 1 provided the user has a packet

to transmit. Thus, the user does not transmit only when it does not have a packet to transmit or both

channels have rate 0. This policy can stabilize the system as long as the arrival rate λ of the user is less

than 1 − p2. Thus, the interior of the stability region ΛT is given by 0 < λ < 1 − p2. Now, consider

measurement intervals of size lT , i.e., channel measurements are done in alternate slots. Again, since the

channels are statistically identical and there is only one user, the optimal policy is to select a channel that

has rate 1 in the slot in which the channel is measured, and transmit packets in the same channel during

the interval while the user has a packet to transmit. This policy can stabilize the system as long as the

arrival rate λ of the user is less than 1− (p2 + p)/2. The interior of the stability region ΛlT is given by

0 < λ < 1−(p2 +p)/2. Clearly, this region is a proper subset of 0 < λ < 1−p2. Thus, Int(ΛlT ) ⊂ IntΛT .

APPENDIX II

PROOF OUTLINE OF THEOREM 2

Preliminaries

First we introduce some notation which will be used in the proof. Let ~α(t) = (αij(t), i ∈ N, j ∈ M)

denote the vector of channel rates at time t. Let p~θ = Pr
(
~α(t) = ~θ

)
, denote the stationary probabilities

of the Markov chain of the channel rate vector ~α(t). Let Θ = {~θ : p~θ > 0}, and |Θ| be finite.

In the following, we use a vector representation of matching (poly-matching) Φ, where Φ is represented

as a NM -dimensional vector ~φ with components φij , where

φij =





1 if channel j is used by user i,

0 otherwise.
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It is easy to see that ~α(lT ), l = 0, 1, . . . constitutes a positive recurrent Markov chain with stationary

probabilities p~θ, θ ∈ Θ. Let ~Q(t) = (Qij(t), i ∈ N, j ∈ M) denote the vector of queue-lengths at time t.

Let us consider the (l + 1)th interval, i.e. the interval [lT, ..., (l + 1)T − 1], for any non-negative

integer l. Define ~θ = ~α(lT ), i.e., ~θ is the vector of the channel rates at the beginning of the interval.

Let γ
~φ,~θ = (γ

~φ,~θ
ij , i ∈ N, j ∈ M), denote the vector of expected throughputs in that interval, if matching

(poly-matching) ~φ is chosen, and if all queues are continuously backlogged during that interval.

Now, H~θ is the set of ~γ
~φ,~θ for all possible ~φ when ~θ is the vector of channel rates at the beginning of

the chosen interval.

Let ~Dl+1 be a NM -dimensional vector representing the number of packet departures from the different

queues in the (l + 1)th interval. Also, let ~Al+1 be a NM -dimensional vector representing the number of

arrivals entering the different queues at the beginning of the (l + 2)th interval. (Recall that the packets

entering the queues at the beginning of the (l + 2)th interval are those that arrive during the (l + 1)th

interval.)

Let a denote an upper bound on the number of arrivals, and the number of departures, in any interval.

For simplicity of exposition, we prove Theorem 2 under an additional restriction (R) on the scheduling

policy: if Qij(lT ) < aT , then no packets of user i is scheduled on channel j during the (l +1)th interval.

It should however be noted that the proof presented here can be extended to work even in the absence of

restriction R.

Let ~φ(lT ) denote the matching (poly-matching) selected at the beginning of the (l + 1)th interval, i.e.,

the matching (poly-matching) selected at time lT . Let J(lT ) = {~φ : ~φij = 0 if Qij(lT ) < aT}. Then, for

our scheduling policy ΨT under restriction R, we have

~φ(lT ) = arg max
~φ∈J(lT )

(
~Q(lT )

)T

~γ
~φ,~α(lT ), (7)

where we use (·)T to denote the transpose of a vector, with slight abuse of notation.

We now proceed with the proof of Theorem 2.

Proof:

First we characterize the interior of the stability region ΛT . A rate vector ~λ ∈ Int(ΛT ) if there exist
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non-negative real numbers µijs and β~γ~θs such that

λi =
∑
j∈M

µij ∀i, (8)

~µ = (1/T )
∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β~γ~θ~γ, (9)

∑

~γ∈H~θ

β~γ~θ < 1 ∀ ~θ ∈ Θ. (10)

Note that in (9), ~µ = (µij, i ∈ N, j ∈ M) denotes the vector of the µijs.

We define V (t) as

V (t) =
(

~Q(t)
)T

~Q(t).

Let j be a non-negative integer. We will show that there exist a positive integer k and a negative

real number K such that E
(
V ((j + k)T )− V (jT )/ ~Q(jT ), ~α(jT ) = ~ν

)
< K for all ~ν, whenever ~λ ∈

Int(ΛT ), and || ~Q(jT )|| is sufficiently large.

Let q~ν,i
~θ

be the probability that ~α ((j + i)T ) = ~θ given that ~α(jT ) = ~ν.

Let

ε = max
~θ,~ν∈Θ

|
∑k

i=1 q~ν,i
~θ

kp~θ

− 1|. (11)

Let k be a large enough integer such that

ε < 1−max
~θ∈Θ

∑

~γ∈H~θ

β~γ~θ. (12)

Clearly, there exists one such k since
∑

~γ∈H~θ
β~γ~θ < 1 ∀ ~θ ∈ Θ (from (10)), |Θ| is finite, and p~θ,

~θ ∈ Θ,

is the stationary distribution of the positive recurrent Markov chain ~α(lT ), l = 0, 1, . . . Clearly,

~Q ((j + k)T ) = ~Q(jT ) +
k∑

i=1

~Aj+i −
k∑

i=1

~Dj+i.
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Then

E
(
V ((j + k)T )− V (jT )/ ~Q(jT ), ~α(jT ) = ~ν

)

= 2
k∑

i=1

E

{(
~Q(jT )

)T (
~Aj+i − ~Dj+i

)
/ ~Q(jT ), ~α(jT ) = ~ν

}

+
k∑

i=1

E

{(
~Aj+i − ~Dj+i

)T (
~Aj+i − ~Dj+i

)
/ ~Q(jT ), ~α(jT ) = ~ν

}
.

Since the number of arrivals and departures in any interval is bounded (by a), there exists a constant

K1 such that for any ~ν,

k∑
i=1

E

{(
~Aj+i − ~Dj+i

)T (
~Aj+i − ~Dj+i

)
/ ~Q(jT ), ~α(jT ) = ~ν

}
< kTK1.

Thus,

E
(
V ((j + k)T )− V (jT )/ ~Q(jT ), ~α(jT ) = ~ν

)

< 2
(

~Q(jT )
)T

E

{
k∑

i=1

(
~Aj+i − ~Dj+i

)
/ ~Q(jT ), ~α(jT ) = ~ν

}
+ kTK1

= 2
(

~Q(jT )
)T

E

{
k∑

i=1

~Aj+i/ ~Q(jT ), ~α(jT ) = ~ν

}

−2
(

~Q(jT )
)T

E

{
k∑

i=1

~Dj+i/ ~Q(jT ), ~α(jT ) = ~ν

}
+ kTK1. (13)

We can derive the following inequalities:

(
~Q(jT )

)T

E

{
k∑

i=1

~Aj+i/ ~Q(jT ), ~α(jT ) = ~ν

}
≤ kT

(
~Q(jT )

)T

~µ + f1(k), (14)

(
~Q(jT )

)T

E

{
k∑

i=1

~D(j+i)/ ~Q(jT ), ~α(jT ) = ~ν

}
≥

k∑
i=1

∑

~θ∈Θ

q~ν,i
~θ

max
~γ∈H~θ

(
~Q(jT )

)T

~γ − f2(k), (15)

where f1(k) = aT 2k2(aMN +
∑N

l=1 λl) and f2(k) = aTMNk2 +2a2T 2kMN. Note that f1(k) and f2(k)

are both positive terms. The derivations of (14) and (15) are rather tedious, and can be found in [11];

these are omitted here due to space constraints. Intuitively, the term f1(k) can be viewed as a “correction

factor” needed due to the deviation of the expected arrival rate in the k intervals considered, from the

arrival rate vector ~λ. Similarly, the term f2(k) can be intuitively viewed as a “correction factor” needed

due to the inaccuracy in the scheduling policy, resulting from infrequent measurements/scheduling, and
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restriction R.

From (14) and (9), we obtain

(
~Q(jT )

)T

E

{
k∑

i=1

~At+i/ ~Q(jT ), ~α(jT ) = ~ν

}

≤ k
(

~Q(jT )
)T ∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β~γ~θ~γ + f1(k)

= k
∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β~γ~θ

(
~Q(jT )

)T

~γ + f1(k)

≤ k
∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β~γ~θ max
~γ∈H~θ

(
~Q(jT )

)T

~γ + f1(k)

≤ k


max

~θ∈Θ

∑

~γ∈H~θ

β~γ~θ


 ∑

~θ∈Θ

p~θ max
~γ∈H~θ

(
~Q(jT )

)T

~γ + f1(k). (16)

From (15) and (11), we obtain

(
~Q(jT )

)T

E

{
k∑

i=1

~D(j+i)/ ~Q(jT ), ~α(jT ) = ~ν

}

≥
k∑

i=1

∑

~θ∈Θ

q~ν,i
~θ

max
~γ∈H~θ

(
~Q(jT )

)T

~γ − f2(k)

=
∑

~θ∈Θ

k∑
i=1

q~ν,i
~θ

max
~γ∈H~θ

(
~Q(jT )

)T

~γ − f2(k)

=
∑

~θ∈Θ

(
k∑

i=1

q~ν,i
~θ

)
max
~γ∈H~θ

(
~Q(jT )

)T

~γ − f2(k)

≥ k(1− ε)
∑

~θ∈Θ

p~θ max
~γ∈H~θ

(
~Q(jT )

)T

~γ − f2(k). (17)

From (13), (16) and (17), for any ~ν and sufficiently large || ~Q(jT )||,

E
(
V ((t + k)T )− V (jT )/ ~Q(jT ), ~α(jT ) = ~ν

)

< −2k(1− ε−max
~θ∈Θ

∑

~γ∈H~θ

β~γ~θ)×
∑

~θ∈Θ

p~θ max
~γ∈H~θ

(
~Q(jT )

)T

~γ + kTK1 + f1(k) + f2(k).

From the last inequality and (12), we see that E
(
V ((j + k)T )− V (jT )/ ~Q(jT ), ~α(jT ) = ~ν

)
< K

for some negative number K, when || ~Q(jT )|| is sufficiently large. From standard results in stochastic

stability (see pages 330-331 of [17]), it now follows that the expected queue-lengths are bounded.



22

REFERENCES

[1] M. Armony, N. Bambos, Queueing Networks with Interacting Service Resources, Proceedings of the 37th Annual Allerton Conference

on Communication, Control, and Computing, pp. 42-51, Allerton Park, Monticello, IL, September, 1999.

[2] M. Armony, N. Bambos, Queueing Dynamics and Maximal Throughput Scheduling in Switched Processing Systems, Queueing Systems,

44, 209-252, 2003.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd Ed., MIT Press, 2001.

[4] JG Dai, B. Prabhakar, “The throughput of data switches with and without speedup”, Proceedings of the IEEE INFOCOM 2000, Tel

Aviv, Israel, March 2000.

[5] Mustafa Ergen, Sinem Coleri, and Pravin Varaiya, “QoS Aware Adaptive Resource Allocation Techniques for Fair Scheduling in

OFDMA Based Broadband Wireless Access Systems”, IEEE Trans on Broadcasting 94(4): 362-370, Dec. 2003.

[6] A. Eryilmaz and R. Srikant, “Fair Resource Allocation in Wireless Networks using Queue-length based scheduling and Congestion

Control”, Proceedings of INFOCOM 2005, Miami, March 2005.

[7] B. Hajek and G. Sasaki, “Link Scheduling in Polynomial Time”, IEEE Transactions on Information Theory, vol. 34, no. 5, 1988, pp.

910-917.

[8] W.-C. Hung and K.L. Eddie Law, A. Leon-Garcia, “A Dynamic Multi-Channel MAC for Ad-Hoc LAN”, 21st Biennial Symposium on

Communications, Kingston, Canada, Jun 2002.

[9] N. Jain and S. R. Das and A. Nasipuri, “A Multichannel MAC Protocol with Receiver-Based Channel Selection for Multihop Wireless

Networks”, 9th Int. Conf. on Computer Communications and Networks (IC3N), Phoenix, Oct 2001.

[10] T. Javidi, ”Rate Stable Resource Allocation in OFDM Systems: From Waterfilling to Queue-Balancing,” Allerton Conference on

communication, Control and Computing, September 2004.

[11] K. Kar, X. Luo and S. Sarkar, “Throughput-optimal Scheduling in Multichannel Access Point Networks under Time-Varying Channel

Rates”, Technical Report, Rensselaer Polytechnic Institute, March 2005. http://www.ecse.rpi.edu/∼koushik/thruput-opt.pdf.

[12] S. Kittipiyakul and T. Javidi, ”Subcarrier allocation in OFDMA, systems: beyond water-filling”, Asilomar Conference on Signals,

Systems and Computers, November 2004.

[13] H. W. Kuhn, “The Hungarian Method for the assignment problem”, Naval Research Logistic Quarterly, 2 (1955), pp. 83-97.

[14] P. Kyasanur and N. H. Vaidya, “Routing and interface assignment in multi-channel multi-interface wireless network”, Proceedings of

IEEE WCNC 2005.

[15] N. McKeown, V. Anantharam and J. Walrand, “Achieving 100% Throughput in an Input-Queued Switch”, Proceedings of IEEE Infocom

’96, San Francisco, Mar 1996.

[16] A. Muir and J.J. Garcia-Luna-Aceves, “Channel-Hopping Multiple Access”, International Conference on Communications (ICC), Jun

2000.

[17] S. Meyn and R. Tweedie. Markov Chains and Stochastic Stability. Springer Verlag, 1994.

[18] M. J. Neely, E. Modiano, and C. E. Rohrs, ”Dynamic Power Allocation and Routing for Time Varying Wireless Networks,” IEEE

Journal on Selected Areas in Communications, Special Issue on Wireless Ad-Hoc Networks, vol. 23, no. 1, pp. 89-103, Jan. 2005.

[19] M. Neely and E. Modiano and C. Li, “Fairness and Optimal Stochastic Control for Heterogeneous Networks”, Proceedings of IEEE

INFOCOM 2005, Miami, March 2005.

[20] K. Ross and N. Bambos, “Dynamic Quality of Service Control in Packet Switch Scheduling”, Proceedings of IEEE International

Conference on Communications 2005, Seoul, Korea, May 2005.



23

[21] K. Ross and N. Bambos, “Packet Scheduling Across Networks of Switches”, Proceedings of IEEE International Conference on

Communications 2005, Seoul, Korea, May 2005.

[22] K. Ross and N. Bambos, “Optimizing Quality of Service in Prioritized Packet Switch Scheduling”, Proceedings of IEEE International

Conference on Communications 2004, Paris, France, June 2004.

[23] K. Ross and N. Bambos, “Local Search Scheduling Algorithms for Maximal Throughput in Packet Switches Optimizing”, Proceedings

of IEEE INFOCOM 2004, Hong Kong, China, March 2004.

[24] K. Ross, N. Bambos, K. Kumaran, I. Saniee, I. Wadjaja, “Scheduling Bursts in Time-Domain Wavelength Interleaved Networks”, IEEE

Journal on Selected Areas in Communications; Optical Communications and Networking Series, November 2003.

[25] K. Ross and N. Bambos, “Dynamic Scheduling of Optical Data Bursts in Time-Domain Wavelength Interleaved Networks”, Proceedings

of IEEE Symposium on High Performance Interconnects 2003, August, 2003.

[26] K. Ross and N. Bambos, “Projective Cone Schedules in Queueing Structures; Geometry of Packet Scheduling in Communication

Network Switches”, Proceedings of Allerton Conference on Communication, Control and Computing, Allerton Park, Monticello, IL,

October, 2002.

[27] S. Sarkar and L. Tassiulas, “A Framework for Routing and Congestion Control for Multicast Information Flows”, IEEE Transactions

on Information Theory, vol. 48, no. 10, 2002, pp. 2690-2708.

[28] J. So and N. H. Vaidya, “Multi-channel mac for ad hoc networks: Handling multi-channel hidden terminals using a single tranceiver”,

Proceedings of ACM MOBIHOC 2004.

[29] A. Stolyar and S. Shakkottai and R. Srikant, “Pathwise optimality of the exponential scheduling rule for wireless channels”, Advances

in Applied Probability, vol. 36, no. 4, 2004, pp. 1021-1045.

[30] L. Tassiulas, “Adaptive back-pressure congestion control based on local information”, IEEE Transactions on Automatic Control, vol.

40, no. 2, 1995.

[31] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and scheduling for maximum throughput in

multihop radio networks”, IEEE Transactions on Automatic Control, vol. 37, no. 12, 1992, pp. 1936-1949.

[32] A. Tzamaloukas and J. J. Garcia-Luna-Aceves, “A Receiver-Initiated Collision-Avoidance Protocol for Multi-channel Networks”,

Proceedings of IEEE INFOCOM 2001.

[33] Ian C. Wong, Zukang Shen, Brian L. Evans, and Jeffrey G. Andrews, “A Low Complexity Algorithm for Proportional Resource

Allocation in OFDMA Systems”, IEEE Workshop on Signal Processing Systems (SIPS04), October 13-15, 2004.


