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Abstract—We consider the problem of uplink/downlink system, the scheduling questions depend strongly on the-tra
scheduling in a multichannel wireless access point networkhere  mjssion mechanisms. Specifically, the scheduling comggai

channel states differ across channels as well as users, vamth  gitfer significantly based on whether the transmission bghea
time, and can be measured only infrequently. We demonstrate

that, unlike infrequent measurement of queue lengths, infequent usgr IS S'nglefChannel or multi-channel, and the manner_ In
measurement of channel states reduce the maximum attainabl Which power is allocated across channels. Our contribution
throughput. We then prove that in frequency division multiplexed in this paper is to develop optimal scheduling policies that
systems, a dynamic scheduling policy that depends on both ¢h address the above challenges.

channel rates (averaged over the measurement interval) and o first contribution is to demonstrate that infrequent
the queue lengths, is throughput optimal. We also generale .
the scheduling policy to solve the joint power allocation ad channel state measurements affect the system throughput in
scheduling problem. In addition, we provide simulation stuies @ fundamentally different way than infrequent measurement

that demonstrate the impact of the frequency of channel and of other state variables. Specifically, it is well-known ttha

queue state measurements on the average delay and attainedinfrequent measurements of queue lengths of users do not
throughput. alter the maximum attainable throughput region, as long as

Index Terms—Infrequent channel measurements, multi- the measurement intervals are upper bounded by a constant.
channel access point networks, throughput-optimal scheding. \We however show that infrequent measurement of channel
states does reduce the maximum attainable throughputregio
We further prove that a weighted queue-length based schedul
ing policy attains the maximum attainable throughput regio
under partial information about channel states. The wsight

Future wireless networks are likely to provide each usétust be chosen based on the average channel rates till the
access to multiple channels. The dynamic scheduling pmobl@ext measurement instant. We also investigate the steictur
at any given time in such networks is to determine (i) the set the optimal scheduling policy under specific scheduling
of users that can transmit/receive, and (i) the set of calsnnconstraints. We show that for single-channel transmisbipn
that a user can use. Our goal is to optimally determine th&ers, the throughput-optimal scheduling policy is a maxim
above so as to maximize the system throughput using omeighted matching between the users and the channels, and
line adaptive policies. The availability of multiple chass for multi-channel transmission by users, on the other htred,
gives rise to several unique challenges in attaining ther@bgscheduling policy corresponds to a maximum weigtgely-
goal. Channel characteristics at any given time will tyfjyjca matching. We then show how our results can be extended to
be different for different channels, and these charadiesis jointly optimize the scheduling and power allocation under
will also vary with time. In a system with a large number ofmulti-channel transmission. From a practical perspective
users and channels, an individual user could use only a sn@gorithms that we present in this paper can be used for
number of channels at any time. Therefore, measuring thplink/downlink scheduling and power assignment for mul-
channel quality perceived by each user for each channeldvotichannel wireless systems like 802.16 access point néswvor
require additional probe packets, which introduces a Bagrit
measurement overhead. Thus unlike single-channel neswork I
scheduling in multichannel networks must be done under
inaccurate channel state information, resulting fromegtrent ~ There is a rich body of literature on the subject of
channel measurements. Moreover, in a multichannel wieldgroughput-optimal scheduling in a wide variety of quegein

networks [1], [2], [6], [7], [15], [19], [20], [21], [22], (3],
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. RELATED WORK



to serve and determining the service rates of the selectbdy receive on different channels. However, the AP cannot
gueues by appropriately regulating the transmission powarccessfully receive data from multiple users over a single
levels [18]. They also assume that the scheduler always &noghannel. In this scenario, whether a user can simultangousl
the instantaneous states of the channels. Our main cotidribu transmit on multiple channels or not, depends on the specific
is to develop throughput optimal scheduling policies whesystem considered, and is discussed in Section IlI-B.
the scheduler knows the channel states only infrequentty. W We allow channel conditions to vary across channels as
also demonstrate that the impact of infrequent knowledge well as users. Channel conditions depend on various factors
channel states is substantially different from that ofénirent like fading and interference (from neighboring access poin
knowledge of queue lengths. While infrequent knowledgeetworks), which typically depend on the channel frequency
of queue lengths does not alter the maximum achievalds well as the user location. Therefore, the attainableomaiz
throughput region (as shown by several previous results dhannel may be different for different channels; moreotres,
different settings [1], [2], [20], [21], [22], [23], [24],25], attainable rate may also depend on the user using the channel
[26], [27]), we show in this paper that infrequent knowledgket «;; (0 < «;; < 1) denote the packet success probability
of service rates substantially reduces the maximum acbievawhen useri transmits a packet on channgl In the rest of
throughput region. the paper, we will therefore refer te;; as thechannel rate of
Several interesting medium access control protocols, e.gseri on channelj. Note that the channel rates are typically
[9], [14], [8], [16], [28], [32], have been proposed for sefunctions of time, since fading and interference levelsrat a
lecting channels in context of specific wireless techn@egi location can vary with time. These variations will be more
e.g., IEEE 802.11, which do not however guarantee througtronounced when the users are mobile.
put optimality. Our contribution lies in the development of We assume that time is slotted, and the slots are denoted
scheduling algorithms that provably maximize throughput by ¢ = 1,2,.... All packets have the same length, and the
presence of time variations, asymmetry in the rates of@iffe transmission time of a packet equals a slot length. We assume
channels, and infrequent measurements. that packet arrivals occur at the beginning of any time slot,
For the case where each user can transmit over multigled packet departures occur at the end of the time slot. At
channels simultaneously, there have been several receatgpaany given time slot, the number of packet arrivals for difer
that address a problem that is closely related to ours [bisers can be arbitrarily correlated. For usethe number of
[33], [10], [12]. The authors in [5], [33] have addressed tharrivals in any slot follows an i.i.d. process, with mean
question of how resources (like bandwidth and power) shoulét X = (M\i,© € N) denote the vector of average arrival
be allocated to users in an multi-channel transmissioresystrates. Note that while our results assume i.i.d. trafficvatri
to maximize system throughput. However, in these works, tipatterns, they can be extended to more general arrivalrpatte
resource allocation problem is not considered in a stothaatsing fluid flow techniques [4]. We assume that each channel
setting, and therefore the problem addressed in [5], [38te,a;;, evolves in time according to a finite-state Markov
is quite different from the stochastic dynamic optimizatiochain. At any given time, the different;;s can be arbitrarily
problem that we consider here. In [10], [12], the authomsorrelated. Finally, we state our assumptions on the sagpli
address the multi-channel transmission case of our problefchannel and queue states. Let the time slots be grouped
for two-state (on-off) channel models. In contrast, we ab&rs into intervals of time 7. Thus the(k + 1)th interval consists
channel models that are much more general (can have afislotskT, ..., (k+ 1)T — 1. Although the channel conditions
number of states) and address both the cases of singleehaand queue lengths can change in each slot, these are measured
and multi-channel transmission by users. More importantlynly at the beginning of each interval, i.e., at the begigroh
unlike our work, the results in [10], [12] assume that thelotkT, for k = 0,1, .... Thus the interval lengtii’ denotes the
instantaneous channel states are always known, and do dutation between successive sampling instances of thanehan
jointly optimize the channel and power allocations. conditions and queue lengths.

I1l. FORMULATION B. Scheduling Constraints

A. System Model and Assumptions Next, we describe the constraints on our scheduling policy.
Our system consists of a set of users sharing a set Atffthe beginning of each interval, for each channel, a user is
channels to communicate with an access point (AP). Lse¢lected to transmit on that channel during the intervateNo
M denote the set of channels, ad denote the set of that a channel cannot be assigned to multiple users in the
users. The access point network that we consider is a ceame interval. Under single-channel transmission, a user c
tralized network, where the scheduling decisions (botlinkpl transmit on only one channel at any given time. Therefore, in
and downlink) are taken by the AP. In the following, wehis case, the scheduling policy across channels correspon
focus most of our discussion on uplink scheduling, whete a matching [3] in a bipartite graph, where the users and
the users are transmitting data to the AP; the formulatidhe channels represent the two sets of vertices that neegl to b
and approach presented here can easily be extended tonfaéched. Under multi-channel transmission, however, a use
downlink case. We assume that the AP is equipped withcan transmit on multiple channels at the same time. Thus in
separate transceiver for each channel, and is thus caphbl¢hs case, a user can be matched to multiple channels, but
receiving data simultaneously from multiple users proglidenot vice versa. In this paper, we refer to such a one-to-many



users users . . - .
that belong to thenterior of the stability regionAr. In the

1 channels 1 channels next few sections, we present throughput-optimal scheduli
policies for the multichannel wireless system describeui/ab
1 1
5 2 IV. THROUGHPUFOPTIMAL SCHEDULING
Before we present our scheduling policy and argue about
2 2 its throughput-optimality, we discuss some propertieshef t
3 3 stability regionAr.

A. Characterization of the Stability Region

In the following lemma, we prove that the stability region
. _ _ _ _ ~ reduces with increase ifi. Let Int(Ar) represent the interior
B e e ane e % the Stabilty region . -
matching/poly-matching is represented by the bold edges.) Lemma 1. For anyT" > 1, Ayp C Ap V positive integers
1. If 1 > 1, there exists systems whelet(A;r) C Int(Ar).
Lemma 1 is proved in the appendix. Intuitively, Lemma 1
matching between the users and channels palyamatching.  states that the stability region “shrinks” as the measurgme
Figure 1 explains the difference between matchings and poigterval increases.
matchings. Note that in practice, some inference on the channel states
Note that there can be multiple matchings or poly-matchinggn be drawn from the success or failure of packets traresnitt
in the bipartite graph of users and channels (the total nuwfbe during an interval. However, in our definition ofr, we
matchings or poly-matchings is in fact, exponential in tlze s assume that such information is not used by the scheduling
of the user-channel graph), and different matchings ang-popolicy.
matchings will provide significantly different throughgut Let us now consider a scenario where the queue states are
A good choice of matching or poly-matching is critical toneasured only at the beginning of each interval {otime
attaining high system throughput. Therefore, the key engié slots), but the channel states are measured at the beginning
in the dynamic scheduling question considered here is xselof every time slot. LetAr denote the stability region in this
the right matching or poly-matching at any time slot, so as t@se. The following result can be easily shown, and has been
maximize the long-term system throughput. observed in the existing literature in different contex24][
[23], [24], [25], [26], [27]: X
C. Sability Region and Throughput-optimal Scheduling Observation 2: For a_nyT =1, Int(.A T). - Int(A)'.
i _ o The above observation (proof outline in appendix) statas th
The notion of throughput-optimal scheduling is based QR stability region remains the same if the queue measureme
the notion of a “stability region”; so we define the latter firs o ryal is increased, as long as the channel states araireeas
A system is said to betable for an arrival rate vector\ every time slot.
under a scheduling policy, if the expected lengths of all  E.51 the lemma and observation stated above, we can
queues in the system remain bounded over all time, when fig,cjyde that the shrinking of the stability region: with
packet arrival rate vector is and ¥ is used as the schedulingincreasingr, is a result of the reduction in the channel rate
policy. In such a case, scheduling poligyis said tostahilize  easurement frequency, and not due to the reduction in the
the system _for arrival rate vegtdr. The stability reg|on.of frequency of queue-length measurements. Increasing tagequ
the system is the set of all arrival rate vectors for which theeasyrement interval (while keeping the channel measure-
system can be stabilized sgme scheduling policy. Intuitively, ment interval fixed) does not affect the maximum achievable
the arrival rate vector belonging to the stability region ig,oughput; it usually results only in an increase in therage
“attainable”, since there exists a scheduling policy uvdeich 5 cet delay. Increasing the channel measurement inferval
the system is stable for that arrival rate vector. Moreoger, hopever, not only increases the average delay, but alss tead
rate vector_outsidg t_he stability region is not attainablece a reduction in the maximum achievable throughput. Thus the
all scheduling policies would lead to unbounded queues {gqyction in the frequency of measurement in the channesrat
the system for that arrival rate vector. As we argue later ifacts the system in a fundamentally different way thar tha
the paper, the stability region in our system depends on ¢ he queue-lengths. The optimal scheduling policy which
measurement intervdl. Let A denote the stability region of \ye siate in the next section provides more intuition behind

the system for interval lengthi. An analytical characterization iese results. We also substantiate these observatiansgthr
of the stability region of the system that we consider can R&,iation results in Section V.

found in the appendix (refer to (8)-(10)).
A scheduling policy is said to bghroughput-optimal if it ) )
stabilizes the system for all arrival rate vectors thatsaietly B Scheduling Policy
within the stability region. In other words, a throughput- We now describe our scheduling polic¥,, which is
optimal scheduling policy can “attain” all arrival rate Yers parameterized by the lengfhi of the measurement interval.

(a) Matching (b) Poly-matching



The scheduling policy consists of two components: (i) packe queue-lengths

queueing policy and (i) packet service policy. Both of thes users
can be executed in parallel. We will first describe the packet
queuing policy which assigns the service channel to each 2
packet of each user. Each user maintains a queue for each
of the channels (see Figure 2). A queue for channal user
1 contains packets afthat will be scheduled on channgl A 3
packet, on arrival, is stored in the queue with tsallest
gueue-length, amongst all queues for that user. Thus the
channel on which a packet will be scheduled is assigned on
packet arrival. Let);;(t) denote the length of the queue for
channel;j at user: at time slott. In computing@;;(t), the 2
packets that enter the corresponding queue at the begiohing
time slot¢ are also taken into account. In our packet queueing
policy, the arriving packets are routed to the correspandin
queue (i.e., are considered eligible for scheduling) onltha Fig- 2. Example: Scheduling for single-channel and muiti-channel transmis-
beginning of each interval. Thus, a packet of userriving gfo 5 |2nt3 'fhgage the Opt'nfal matching {¢1,1)(2.2}, with a total weight
] o _ T ptimal poly-matching i§(2,1),(2,2} with a total weight of
at a time slott, wheret satisfies(k — 1)T" < t < kT, will 11 "The number shown across each edge represénj¢kT), the average
enter a queue only at the beginning of time g§idt, i.e., at c?\annel rate until the next measurement instant, given uhert (observed)

i ; channel state. Note that the queue-length for channel 2 @lemthan that
the begmmng of the{k + 1)th interval. Moreover, the paCketfor channel 1, at all users; therefore, any packets arrigingny user before

will enter the queue for channglat useri, where; satisfies the next measurement instant will be stored in the queuesponding to
channel 2 at that user.

channels
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2
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J = arg min Qijr (kT). (1)

We now describe the packet service policy. Our packegrvice policies for the two cases.
service policy selects the matching (poly-matching) at the we now describe the intuition behind the design. For higher
beginning of the(k + 1)th interval, and uses it for the restsystem throughput, we would like to schedule useto
of that interval. Recall that the channel ratgjs are functions transmit on Channe'b' if the expected rate (|n the current
of time, and let;; () denote the corresponding values in timgnterval) of i on j, expressed byi;;, is high. In other words,
slot t. Now, for any usefi and channelj, definea;;(kT") as in selecting the user-channel pairs (edges) for scheduling

follows preference should be given to those with higher expected
1 (k+1)T—1 channel rates in the current interval. Moreover, for sigbil

&, (kT) = TE( Z a;;(t)|as; (kT)), (2) of the system, we would prefer to choose user-channel pairs

t=kT for which the corresponding queue-lengths are large. This

where E(-) denotes the expectation of a random variablituitively justifies the term@;; in the weight of edge, j). A
In other words,a;;(kT) denotes the average channel ratdS€ should transmit more packets on a chanpé which
until the next channel measurement instant, given the ourrd has higher channel rate. The queue len@t in such a
(observed) channel staie;; (k7). Note that since the channelchannel will be low due to frequent service of packets. This
rate a;; evolves accordihg to a finite-state Markov Chaid’ustifies the selection of the least loaded queue for each new
&;;(kT) can be computed from (2) using the multi-stepacket in the packet queueing policy.
transition probabilities of the Markov chain.

Now associate a weight of;;(kT)Q;;(kT) with each C. Optimality Result

‘edge” (i,j) in the user-channel bipartite graph (note that theqrem 2: The scheduling policyr stabilizes the system
an edge corresponds to a user-channel pair). Note thaty@ ) arrival rate vectorsh € Int(A7), for anyT > 1.

matching (poly-matching) can be viewed as a collection of the apove result (see the appendix for proof) states that our
edges. The weight of a matching (poly-matching) is the sugyicy stabilizes the system for all arrival rate vectorattare
of the weights of the edges belonging to the matching (POligrictly within the stability region. In other words, Theon 2
matching). Thus, the weight of a matching (poly-matchi®g) giates that our scheduling polic¥r, is throughput-optimal.
computed at timéT', is given by Note that the throughput-optimality of the maximum queue-
Z ai; (KT)Qu; (KT). ©) length r_natchmg based schedullng in input-queued switcres
shown in [15], follows as a special case of the above result,

] o ] by considering the casf = 1 andw;;(t) = 1 Vi, j, t.
Then the packet service policy is to assign channels to gsers '

that (3) is maximized. Thus the user-channel assignment for .

the single-channel transmission (multi-channel transiog D- Discussion

case corresponds to thmaximum weighted matching (poly- The design ofU also explains why the impact of infre-
matching) in the user-channel bipartite graph. Figure Zuent channel measurements is fundamentally differemh fro
provides a schematic diagram that explains our queueing ahdt of infrequent queue-length measurements. Note theat th

(i,5)e®



packet service policy fod depends on the products of theon that channel, irrespective of whether the user was se-

queue lengths and corresponding average channel ratég. Iflected by other channels or not. Thus during e+ 1)th

gueue lengths known by the scheduler differ from the actuaterval, a channelj will select user: satisfying i =

queue lengths by an amount that is upper bounded by a finite max; ey G ;(kT)Qs;(kT) for receiving traffic on chan-

constant that independent of the queue-lengths (whicheis thel j. Note that in this assignment, a user can be assigned

case as long as the measurement intervals are finite), th@mmultiple channels, but a channel can be assigned to at

the difference between the weights are also bounded simuest one user. The algorithm requirégmn) time under

the channel rates are upper bounded lbyThis difference sequential computation. However, note that the user setexct

constitutes a negligible fraction of the actual weightslémge across different channels are independent of each othdr, an

gueue lengths. However, when the channel rates are inaecurean be executed in parallel; in that case, the algorithm ean b

then the difference in the weights become arbitrarily lamge completed inO(n) time.

gueue lengths increase. This holds even when the inaccurac@ur scheduling policy can be somewhat generalized, with-

in the channel weights is small. Thus the performance ofit affecting throughput optimality. More specifically, ihe

the optimal strategy deteriorates primarily due to infregu weight computation procedure, the queue len@hy (kT)

channel measurements. could be replaced by;; (Q.; (kT)), wheref;; is some function
The design of¥' also demonstrates that using the currertf the queue-length. As long as the functiofys are strictly

gueue-lengths in the edge-weight computation is enoughit@reasing, and satisfy some additional (fairly genemteda,

ensure throughput-optimality. However, it can be showrt théhroughput optimality is achieved by our scheduling policy

the use of the current channel rate in the edge-weight campurhe choice of the function, however, affects the average

tion need not guarantee throughput-optimality; some nreaspacket delays of different users. This fact can be expldited

of the average channel rate till the next measurement instarovide delay differentiation to users. For example, if vee u

can be used instead, as in (2). linear functionsf;;(Q;;(kT)) = w;Q;;(kT), we can attain
Finally, the assumption that channel and queue state medalay differentiation by associating larger weights with

surements are made at the same time is mainly for the easggher priority users. We explore this issue further thioug

of exposition and analysis. Our results can be extendedeto gimulations in Section V.

case where the channel and queue state measurements occur

at different instants (and even different frequencies)loag

as the measurement intervals remain bounded. In that caseJoint Scheduling and Power Allocation under Multi-channel

the matching/poly-matching computation is done whenédwer tTransmission

channel states (channel rates) are measured. In the edgletwe

calculations, the last observed queue-lengths can be Tked.

calculation procedure of the average channel rate (see @1 , X ’
s simultaneously. In the uplink case, the user might have

remains the same. “ed bud | hich b i he dif
Wireless systems often transmit the same data (or interlejpl(e power budget per siot, which can be spiit across the dit-

coded data) across multiple frequency channels to achi tﬁéem chanr|1|els tj_sed. b%/hthe lfjs.‘f?r' Thte cr:1hann<|el rztles zke]&end on
frequency diversity. This variant of multi-channel trarission € power atlocation in these dilterent channels. AISo

can be incorporated into our throughput-optimality frarogw the optimal power gllocanon across Q|ﬁerent c.hannelseddp
| the poly-matching chosen. In this scenario, therefdre, t

as well, as discussed next. In this case, a valid chanf&]. . . .

assighment corresponds to a poly-matching, and it can timal scheduling and power allocation questions areetyos
shown that the optimal channel assignment correspondsC%J_pl_ed’ and_ bpth schedullr_lg_a_nd power allocation need to
finding a poly-matchingb that maximizes an expression sim-be jointly optimized for maximizing SVS‘e”? throughput. we
ilar to that given by (2)-(3). However, the only (althougirye next show how our schedul_mg pollcy _de_scrl_bed earh_er can be
signicant) difference is that the channel ratg in this case is extended so as to solve th|s Joint opt|m|zat|oq quespon.

a function of the poly-matching() itself (not justkT). Since €t P denote the maximum power at which usecan

ai; (@, k,T) (and therefored,; (®, k, 7)) will typically be a transmit (over all channels). Let;; Qenote t_he transmission
complex, non-linear function ob, optimizing the expression POWer used by usef on channel; in any time slot. Thus

in (3) may be a computationally difcult problem. Y jemPij < Pi. We assume that a usércan transmit on
any channel using only a finite number of power levels; let

_ (2; denote the set of these power levels. Thyse €2; Vj =
E. Computational Aspects 1,2,..., M. The constraints on the power allocatiops;, are

The maximum weighteq bipartite matching problem, also py € U, YjeM, VieN, (4)
popularly known as thessignment problem, can be solved ‘
efficiently using the well-knowrHungarian Method [13]. Let Z pij < P, VieN. (6)
m = |M| andn = |N|. Then the maximum weighted bipartite jeM
matching problem can be solved i(mn?) time if m < n, We assume that the channel rates are functions of the power
and inO(m?n) time if m > n. allocation of use§ on channej. Thusc;;(t), the channel rate
The maximum weighted poly-matching can be computexf useri on channelj at time¢, can be written asy;;(t) =
as follows: each channel greedily selects the “best” usér;(pi;,t). Typically, &;; is a concave function of;;.

In a multi-channel transmission system, as mentioned ear-
, data of a single user can be transmitted on multipleneha



The packet queuing policy remains the same as the one 400

described in Section IV-B. Lety;;(kT") denote the average iI; T T‘ ‘ ‘T —
channel quality in thek + 1)th interval, derived using (2), i I RV | ‘
while replacing;; (t) by é;;(pi;,t). Then our scheduling and w0 | L T8 |

power allocation policy for thgk + 1)th interval involves I \ ‘
finding the power allocationg;;s and the poly-matchin@
S0 as to maximize

Z @ij(pij, KT)Qi; (KT), (6) =

(i,§)€T r
wherep;;s must satisfy (4)-(5). We can show that the stability
result (Theorem 2) holds in this case as well; a proof outline
is provided in the appendix. It is worth noting, however,ttha o > 06 07 08 09
computing the optimal power allocations and poly-matching
that maximizes (6) is in general a difficult problem. Eff|d]en|:|g 3. Average packet delay va.(2-state channel)
computation of the optimal power allocations and the poly-
matching for cases where the user-channel graph is large,
remains an open question.

Average Delay
N
o
o

o
©

o
0
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V. SIMULATION STUDIES

In this section, we evaluate the performance of our schedul-
ing policy through simulations. More specifically, we demon
strate that our maximum weighted matching (poly-matching)
based scheduling policy attains maximum achievable throug
put when the channel/queue state measurement intefjal (
is set to unity. We also study the reduction of the attained
throughput, and the increase in the average delays, as the
measurement intervdl increases. Finally, we demonstrate that
the maximum achievable throughput remains unaltered when I T N A B
the queue state measurement interval increases, prowiged t tooT
channel states are measured every time slot. _

We consider downlink data transmission in an access poﬁﬁ?'
network with 6 users and 4 channels. We consider two channel

models. In the first model, each channel has two states
“good” and “bad”, and the channel rates associated with tAgiained per user) decreasesiamcreases, as expected from
two states are 1 and 0, respectively. In the second modegmma 1. This is also evident from Figure 4, which plots the
each channel has three states‘good”, “intermediate” and maximum supportable versusT, in a semi-log scale. Note
“bad”, and the rates associated with the three states ar8.6.9 that for 7" = 1, the maximum attainablé in this case can
and 0.1, respectively. The state of each channel for eaah 3@Sily be calculated a8/9) ~ 0.889. Figures 5-6 are similar
varies in time according to a Markov chain, with a symmetrit® Figures 3-4, but for the 3-state channel model. The trends
transition probability matrix. At any time slot, channehtgts observed in this case are also similar to the ones discussed
(rates) for different channels or different users are itielent above.
of each other. The packet arrival process for each user id-et us next explore how delay differentiation can be attdine
Bernoulli; packet arrival processes for different users aby associating different weights with different queues. In
independent of each other. The nature of the simulatiortsesuFigure 7 we plot the average delay vs.curves in the case
for both the single-channel and multi-channel transmissigvhere user 1 is associated with a higher weight than the fest o
cases are similar; therefore, we only present results fer the users. More specifically, in computing the matching/pol
single-channel transmission case. matching, user 1's queue-length in multiplied by a factor of
Figure 3 shows how the average packet delay varies with thewhile the weight calculations for the other users remain
arrival rate, for different values of the measurement irger unaltered. The average delay vscurve for the undifferen-
T, for the 2-state channel model. Note that we assume titi@ted case (where all users are associated with equal tyeigh
the channel and queue state measurements, as well asagh@ therefore treated uniformly) is also shown in the figure.
scheduling decisions, are made once every interval'(bine  Figure 7 shows that with this weight-based differentiatidwe
slots). The packet arrival rate for users2,3 is A per user, average delay of user 1 decreases, while that of the othes use
and that for users, 5,6 is \/2 per user. The figure showsincreases, compared to the undifferentiated case. However
that for a given arrival rate parametar the average delay note that the maximum attainableremains the same.
increases with an increase . Moreover, the maximumh Now, let us consider the case where the channel state
that can be supported (and therefore, the maximum throughmeasurement and scheduling decisions are made every time
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Fig. 6. Maximum attainable\ vs. Measurement interval (3-state channel) are made infrequently (3-state channel)

slot, but the queue measurement decisions are made only opewer levels and channel allocations. Figures 9-10 show a
everyT-slot interval. Figure 8 plots the average packet deldjend similar to the cases without power allocation disedss
versus\ in this scenario, for different values @f. The plots €arlier.
demonstrate that in this scenario, the maximum achievable
throughput does not change @sincreases, as discussed in
Section IV-A. The plots also demonstrate that our weighted We have presented a throughput-optimal uplink/downlink
matching based scheduling algorithm attains the maximu#gheduling policy in a multichannel wireless access point
achievable throughput, for every value Bfconsidered. network where the time-varying channel rates can be mea-
Finally we consider the joint scheduling and power allocsured only infrequently. We identified a fundamental diggar
tion problem:; figures 9-10 show the average delay and maRgtween the roles played by the queue and channel state

mum attainable. in this case, for 3 users and 2 channels. HerBleasurements: less frequent queue-length measurements do
the channel ratey;; is expressed as;; = Blog(1 + L) not affect the maximum throughput achieved, but a reduc-

KN
where B and x are constantsy,; represents the transﬁﬁssiontion .in the chennel rate measurement frequency reduces the
power allocated on channglby useri, andn;; is the noise maximum achievable throughput. F!n_ally, we have also shown
power on channel for useri. We assume that there are thre§OW our approach can be used for joint optimization of power
noise power level values 0.1, 0.5, 0.9, and the noise powe,allocatlon and scheduhng in a multi-channel transm|SS|_on
levels vary according to a Markov chain with a symmetrieYStém. Computationally efficient approaches of computing
transition probability matrix. The maximum powe#¥ is unity the qptlmal power allecatlons and schedules in this case
for each uset, and the transmission powgy; can be chosen "€Mains an open question.
from three different levels- 0, 0.5 and 1. We consider non-
uniform traffic, where the packet arrival rate for users 1 and
2 is \ per user, and that for user 3 Ag2. The optimal power PROOF OFLEMMA 1
and channel assignments (which maximize (6) subject to (Proof: Consider any positive integér Choose an)X € Air.
(5)) are computed by complete enumeration over all possibiléen there exists a scheduling policy, séy that achieves

VI. CONCLUDING REMARKS

APPENDIX



‘ ‘ ‘ ‘ ‘ ‘ not have a packet to transmit or both channels have (rate
S This policy can stabilize the system as long as the arrival
1 rate \ of the user is less thah— p2. Thus, the interior of the
stability regionA 7 is given by0 < X < 1—p?. Now, consider
measurement intervals of sizé, i.e., channel measurements
are done in alternate slots. Again, since the channels are
statistically identical and there is only one user, the ropti
policy is to select a channel that has rdtdén the slot in
which the channel is measured, and transmit packets in the
same channel during the interval while the user has a packet
to transmit. This policy can stabilize the system as longhas t
00007 Méﬁiﬁmmﬁ sl arrival rate) of the user is less than-(p?+p) /2. The interior
e ot 0z 03 04 05 0o o7 of the stability regiom\;7 is given by0 < X\ < 1—(p?+p)/2.
Clearly, this region is a proper subsetlok \ < 1—p?. Thus,

Fig. 9. Average packet delay va. (joint power allocation and scheduling) Int(AlT) C IntAr. [ |
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PROOFQUTLINE OF THEOREM 2

Preliminaries: First we introduce some notation which will
be used in the proof. Lefi(t) = (wi;(t),i € N,j € M)
denote the vector of channel rates at timelLet p; =
Pr (o?(t) 25), denote the stationary probabilities of the

Markov chain of the channel rate vectatt). Let © = {4 :
pg > 0}, and|O| be finite.

In the following, we use a vector representation of match-
ing (poly-matching)®, where ® is represented as & M-
dimensional vectouf with componentsp;;, where

Maximum Throughput

0.4
0

Bii = 1 if channelj is used by uset,
* 0 otherwise.

logT
Itis easy to see that(IT),! = 0, 1,. .. constitutes a positive
Fig. 10. Maximum attainable\ vs. Measurement intervdl’ (joint power racurrent Markov chain with Stationary probabiliti%e c o.
allocation and scheduling) i . .
Let Q(t) = (Qi;(),i € N,j € M) denote the vector of
gueue-lengths at time

stability for the arrival rate vectok, in a system where the L€t US consider the(/ + 1)th interval, i.e. the interval
measurement interval has lengt#, i.e., measurements arel/l: - (!l +1)T — 1], for any non-negative integer Define
made only at time slot&7" for which k is a multiple ofi. 0 = O‘(ZT) i.e., f is the vector of the channel rates at the
Now consider usingl in the system where the measurementeginning of the interval. Let®? = (v 700 eN,jeM),
interval has lengtT", i.e. measurements are made only at tim@enote the vector of expected throughputs in that inteif/al,
slots kT, for k = 0,1,.... In this case, our policy simply matching (poly-matchingy is chosen, and if all queues are
ignores the measurements made at time &lbt(and keeps contmuously backlogged durlng that interval. Defitig as the
using the previously computed matching/poly-matching}, uset 0f’y¢’ 9 for all possible whend is the vector of channel
lessk is a multiple ofl. Clearly, this policy will also achieve rates at the beginning of the chosen interval.
stability for the arrival rate vectoX, in the system where the Let D! pe a NM-dimensional vector representing the
measurement interval has length ThereforeX € Ar. Since  number of packet departures from the different queues in the
X was chosen arbitrarily from;r, we concludeA; C Ar. (I+1)th interval. Also, letA'+! be aN M-dimensional vector
We now provide an example scenario whére(A;r) C representing the number of arrivals entering the different
Int(A7). Consider a single-channel transmission system witiueues at the beginning of tkie+-2)th interval. (Recall that the
T = 1,1 = 2, 1 user and2 channels. In any slot, for both packets entering the queues at the beginning of(the2)th
channelg, a1 ; is a Bernoulli random variable with probabilityinterval are those that arrive during ttié+ 1)th interval.)
p of failure, i.e., aq; = 1 with probability 1 — p, and 0 Let a denote an upper bound on the number of arrivals, and
otherwise. Let0 < p < 1. Consider measurement intervalthe number of departures, in any interval. For simplicity of
of size T, i.e., when the channel rates and queue lengtbgposition, we prove Theorem 2 under an additional regirict
are measured every slot. Since the channels are statisticéR) on the scheduling policy: ifQ;;({T") < oT', then no
identical and there is only one user, it can be shown that packets of useris scheduled on channgduring the(l+1)th
each slot the optimal policy is to transmit a packet in anpterval. It should however be noted that the proof presknte
channel that has raté provided the user has a packet tdere can be extended to work even in the absence of restrictio
transmit. Thus, the user does not transmit only when it do&s



Let $(ZT) denote the matching (poly-matching) selected at Then,

the beginning of th¢/+1)th interval, i.e., the matching (poly-

matching) selected at timél'. Let J(IT) = {¢ : @J
0if Q;;(IT) < aT}. Then, for our scheduling policy
under restrictionR, we have

Fm) = arg_max (Gam))’ 759, @)
peJ(IT)

where we us€-)7 to denote the transpose of a vector, with

slight abuse of notation.

We now proceed with the proof of Theorem 2.

b o NT
+;E{(AJ+ _D.7+) (A-H' _DJ+)/
QuT).aGT) =7}

Since the number of arrivals and departures in any interval
is bounded (by:), there exists a constahf; such that for any

Proof: First we characterize the interior of the stability regiofi’

Ar. Arate vector\ € Int(Ar) if there exist non-negative real _*

numbersy;;s andﬁwﬂs such that

i = Z,Uij Vi, (8)
jEM
o= (T)Y pg Y Bags ©)
fco TEeHy
Y By < 1Vheo. (10)

JeH;

Note that in (9),Z = (u5,4 € N, j € M) denotes the vector

of the ;;s.

We defineV - -
© IV B - (Gw) " aw.

Let j be a non-negative integer. We will show that there exist

a positive integetk and a negative real numbéf such that
E (V ((j + k)T) — V(§T)/Q(T),&(T) = ﬁ) < K for all
7, whenever) € Int(A7), and||G(5T)|| is sufficiently large.

Let ¢ be the probability thai ((j + i)T') = 0 given that
G(T) = 7. Let

ko 5
i=197
€= max|2#—1|. (11)
drco  kpg
Let k£ be a large enough integer such that
e<1— max Z (12)

'yEH«

Clearly, there exists one suétsince) - yer; Bgg <1V 0 c

O (from (10)), |©] is finite, andpe,e € 0, is the stationary
distribution of the positive recurrent Markov chaiifiT’),l =
0,1,... Clearly,

Q((j+mT) =

k k
Cj(jT) + Z A+ _ ZD_)jJri.
1=1 =1

E { (A'jﬂ' _ [)’jJri)T (A’jJri _ D"j+i) /Cj(jT),o?(jT) _ g}

- < kTK;.
Thus,
E(V((J+k) — V(GT)/QUT),a(T) = 7)
k
< 2 CES (@ ) /éw,&(m—ﬁ}

=1

+kT K,

E{Z ATHQ(T), (jT)—ﬁ}
—2(@( )) E{ZDJ“/QJT) (jT)—ﬁ}

+ETK,. (13)

We can derive the following inequalities:

< k1 () Tﬁ+f1(k>, (14)
k
(Q(JT))T E {Z DET/Q(iT), a(jT) = V}
Y max (GUT)) 7= Ra). - (15)
=1 geo

where fi(k) = aT?k2*(aMN + S, ) and fo(k) =
aTMNEK? + 2a>T?kMN. Note that f(k) and fo(k) are
both positive terms. The derivations of (14) and (15) are
rather tedious, and can be found in [11]; these are omitted
here due to space constraints. Both (14) and (15) derived
using the fact that the arrivals/departures in any slot iseup
bounded bya. Furthermore, (14) is derived using the fact
that arrivals are routed to the queue with the smallest kengt
as in (1). On the other hand, (15) is derived using the fact
that our scheduling policy corresponds to maximum weight
matching/poly-matching, as in (3). Intuitively, the terfn(k)
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can be viewed as a “correction factor” needed due to the devi- PROOFOUTLINE OF OBSERVATION 2

ation of the expected arrival rate in thdntervals considered,
from the arrival rate vectok. Similarly, the termfz(k) can be
intuitively viewed as a “correction factor” needed due te th,
inaccuracy in the scheduling policy, resulting from infuegt
measurements/scheduling, and restrictian

From (14) and (9),

(@um)" {ZAt“/QJT) (jT)—ﬁ}

< ( ) > vg Y BagT + fi(k)
feo TEHy
. T
= EYpr Y A (GUT) T+ A
feco® YEH;
T
< kY pg Y By 12%}}( JT)) Y+ f1(k)
e TEHy
< max Z 5 Zpe max( ))T'?
v6H~ feco
+f1(k). (16)

From (15) and (11),
(Gum) {ZD ()/QUT), a(GT) = ﬁ}

> ZZQ~ mex (@ JT))T"V—fz(k)

i= 1eeo
- ZZqﬂ max( ]T))T”?—fz(k)
feo =1 el
k . T
= Z (Z qg’z> max (Q(]T)) ’7_ fz(k)
feo \i=l TeHy
> k1= Y pyx (QUT)) 7 - £, (@7
fco

From (13), (16) and (17), for any and sufficiently large
QG

E (V ((t+K)T) = V(GT)/QUT), &(T) = 7)

< —Qk(l—e—maXZﬁw ZpgmaX( ))TW

9€9 e, deo
+ET Ky + fi(k) + fa(k).

From the last inequality and (12), we see
E(V((j+RT) - V(T)/GUT),a(T) =7) < K
for some negative numbek, when ||G(;T)]| is sufficiently

Clearly, Ay = A. Thus, we only need to show that
Int(Ar) = Int(A) for all T > 1. Consider the policyl,
which is the same a$; except that it measures queue lengths
at the beginning of the first slot of each interval Bfslots,
and uses this measurement to compute the channel assignment
to be used over the entire interval. Consider the proof for
Theorem 2 withl” = 1. All the arguments in this proof, except
possible equation (15), hold fob - irrespective of the value
of T. Since Uy does not select the schedufethat attains

maxyep, Q(j) 4 in each slotj, it is not clear that (15)
holds. Nevertheless, as we argue next, (15) still holdsig th
case with a different value fof(k), which does not depend
on the queue lengths. Note that the proof holds as long as
fa(k) does not depend on the queue lengths, irrespective of
the exact value of, (k). Thus, the proof holds in this case as
well.

Note that U, selects the scheduley that attains
maxse gQ(j')Tﬁ in each slotj, wherej = |j/T|T is the
first slot of the queue length measurement interval contgini
3). Now, |Quy(j) — Quy(j — 1)| < a for any userr and
channely, since the number of arrivals and departures in any
slot is bounded by:. Sincej — 7 < T, |Quy(j) — Quy(5)| <
(j — 7)a < Ta, for eachz, y. Thus, maxse i, (Q(j)Tﬁ’) >

maxges, (Q(j)Tﬁ) — MNTa2. Thus, (15) now holds with
fa(k) = aMNkE? + 2akMN + MNTa?. We obtain this
expression forfy(k) by setting the “channel measurement
interval T” to 1 in the proof for Theorem 2, and augmenting
the resulting expression witd/ NTa? as per the above
discussions, wher€ is the queue length measurement interval
in this case. g

PROOFOUTLINE OF THEOREM 2 FOR JOINT SCHEDULING
AND POWERALLOCATION

The proof is similar to that for Theorem 2. The only differ-
ence is that nowy;; is used to denote the transmission power
used by use¥ on channe}j. If the pair (¢, j) is not selected
in the poly-matching, i.e.(i,j) ¢ T, then¢;; = 0. Thus,
¢;; also specifies the poly-matching. The constraints on the
transmission power determines the se&ﬁohat can be used in
any given slot. Now, as before®? = (% ,i€ N,jeM),
denotes the vector of expected throughputs in that inteifval
5 is chosen, and if all queues are continuously backlogged
during that interval, S|m|IarIy,H9 denotes the set 07¢ 7 for
all pOSSIb|e¢ when ¢ is the vector of channel rates at the
beginning of the chosen interval. The rest of the proof for
Theorem 2 can now be used as is. g
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