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It is well known that natural numbers can be encoded as lambda terms using Church encoding [2] or Scott
encoding (reported in [4]). So operations such as plus, multiplication can be performed by beta-reduction
on lambda terms. Other inductive data structures such as trees, lists, etc. ([1], chapter 11 in [6]) can also
be represented in a similar fashion.

Church-encoded data can be typed in system F [5]. But this approach is rarely adopted in dependent
type systems. As summarized by Werner [8], it is inefficient to define certain operation on Church-encoded
data, e.g. the predecessor function; the induction principle is not derivable and 0 6= 1 cannot be proved.
Thus we are led to the consideration of extending the Calculus of Construction(CoC ) [3] with inductive
datatypes [7].

In CoC à la Curry, we define Nat := ∀X.(X → X) → X → X. One can obtain a notion of indexed
iterator by defining It := λx.λf.λa.xfa and It : ∀X.Πx : Nat.(X → X) → X → X. Thus we have
It n̄ =β λf.λa.n̄ f a =β λf.λa. f(f(f...(f︸ ︷︷ ︸

n

a)...)).

An indexed iterator is nice, but one may want to know if we can obtain a finer version, namely, the
induction principle Id such that:

Id : ∀P : Nat→ ∗.Πx : Nat.(Πy : Nat.(Py → P (Sy)))→ P 0̄→ P x
Let us try to construct such an Id. First observe the following beta equalities:

Id 0̄ =β λf.λa.a
Id n̄ =β λf.λa. f n− 1(...f 1̄ (f︸ ︷︷ ︸

n>0

0̄ a)).

with f : Πy : Nat.(Py → P (Sy)), a : P 0̄.
So the above equalities suggest Id := λx.λf.λa.x f a, with a different notion of lambda numerals, i.e.

0̄ := λs.λz.z
n̄ := λs.λz.s n− 1 (n− 1 s z).

Now let us try to type these lambda numerals. It is reasonable to assign s : Πy : Nat.(P y → P (S y)) and
z : P 0̄. Thus we have the following typing relation:

0̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 0̄
1̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P 1̄
n̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄

So we are led to define
Nat := Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄ for any n̄.

Two problems arise with this scheme of encoding. The first problem involves mutual recursion. The definiens
of Nat contains Nat and S, 0̄, while the type of S is Nat → Nat and the type of 0̄ is Nat. This problem can
be addressed by adopting mutually recursive definitions. The second problem is about quantification. We
want to define a type Nat for any n̄, but right now what we really have is one Nat for each numerals n̄. We
aims to solve this problem by introducing a new type construct ιx.T called self type. The idea is that the
ιx.T allows T to refer, via bound variable x, to the term which the self type is typing. Thus we define
Nat := ιx.Πy : Nat.(P y → P (S y))→ P 0̄→ P x. The self type can only be instantiated/generalized by its
own subject, so we add the following two rules and the judgement:

Γ ` t : [t/x]T

Γ ` t : ιx.T
SelfGen

Γ ` t : ιx.T
Γ ` t : [t/x]T

SelfInst
n̄ : Πy : Nat.(P y → P (S y))→ P 0̄→ P n̄

n̄ : ιx.Πy : Nat.(P y → P (S y))→ P 0̄→ P x

In this talk, we will introduce a type system called Selfstar with mutually recursive definitions, self types,
and ∗ : ∗. We will see how standard Church- and Scott-encoded datatype can be presented in Selfstar .
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