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Abstract

Higher-order abstract syntax is a simple technique for implementing languages with func-
tional programming. Object variables and binders are implemented by variables and
binders in the host language. By using this technique, one can avoid implementing com-
mon and tricky routines dealing with variables, such as capture-avoiding substitution.
However, despite the advantages this technique provides, it is not commonly used because
it is difficult to write sound elimination forms (such as folds or catamorphisms) for higher-
order abstract syntax. To fold over such a datatype, one must either simultaneously define
an inverse operation (which may not exist) or show that all functions embedded in the
datatype are parametric.

In this paper, we show how first-class polymorphism can be used to guarantee the para-
metricity of functions embedded in higher-order abstract syntax. With this restriction,
we implement a library of iteration operators over data-structures containing functionals.
From this implementation, we derive “fusion laws” that functional programmers may use
to reason about the iteration operator. Finally, we show how this use of parametric poly-
morphism corresponds to the Schürmann, Despeyroux and Pfenning method of enforcing
parametricity through modal types. We do so by using this library to give a sound and
complete encoding of their calculus into System Fω. This encoding can serve as a starting
point for reasoning about higher-order structures in polymorphic languages.

1 Introduction

Higher-order abstract syntax (hoas) is an old and seductively simple technique
for implementing a language with functional programming.1 The main idea is ele-
gant: instead of representing object variables explicitly, we use metalanguage vari-
ables. For example, we might represent the object calculus term (λx.x) with the
Haskell expression lam (\x -> x). Doing so eliminates the need to implement a
number of tricky routines dealing with object language variables. For example,

∗ This is an extended version of the paper that appeared in The th acm sigplan International
Conference on Functional Programming (Washburn & Weirich, 2003).

1 While the name comes from Pfenning and Elliott (1988), the idea itself goes back to
Church. (1940).
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capture-avoiding substitution is merely function application in the metalanguage.
However, outside of a few specialized domains, such as theorem proving, partial
evaluation (Sumii & Kobayashi, 2001), logical frameworks (Pfenning & Schürmann,
1999) and intensional type analysis (Trifonov et al., 2000; Weirich, 2006), higher-
order abstract syntax has found limited use as an implementation technique.

One obstacle preventing the widespread use of this technique is the difficulty in us-
ing elimination forms, such as catamorphisms,2 for datatypes containing functions.
The general form of catamorphism for these datatypes requires that an inverse be
simultaneously defined for every iteration (Meijer & Hutton, 1995). Unfortunately,
many operations that we would like to define with catamorphisms require inverses
that do not exist or are expensive to compute.

However, if we know that the embedded functions in a datatype are parametric,
we can use a version of the catamorphism that does not require an inverse (Fegaras
& Sheard, 1996; Schürmann et al., 2001). A parametric function may not examine
its argument; it may only use it abstractly or “push it around”. Only allowing
parametric embedded functions works well with hoas because the terms with non-
parametric embedded functions are exactly those that have no correspondence to
any λ-calculus term (Schürmann et al., 2001). In this paper, we use the term iterator
to refer to a catamorphism restricted to arguments with parametric functions.

A type system can separate parametric functions from those that are not. For
example, Fegaras and Sheard (1996) add tags to mark the types of datatypes whose
embedded functions are not parametric, prohibiting iteration over those datatypes.
Alternatively, Schürmann, Despeyroux and Pfenning (2001) and Despeyroux and
LeLeu (2001) use the necessity modality (“box”) to mark those terms that allow
iteration.

However, many modern typed languages already have a mechanism to enforce
that an argument be used abstractly—parametric polymorphism. It seems desirable
to find a way to use this mechanism instead of adding a separate facility to the type
system. In this paper, we show how to encode datatypes with parametric function
spaces in the polymorphic λ-calculus, including iteration operators over them.

Our specific contributions are the following:

• For functional programmers, we provide an informal description of how re-
stricting datatypes to parametric function spaces can be enforced in the
Haskell language using first-class polymorphism (Peyton Jones et al., 2005).
We provide a safe and easy implementation of a library for iteration over
higher-order abstract syntax. This Haskell library allows the natural expres-
sion of many algorithms over the object language; to illustrate its use, we
provide a number of examples including Danvy and Filinski’s optimizing one-
pass cps conversion algorithm (Danvy & Filinski, 1992).

2 Catamorphisms (also called folds) are sometimes represented with the bananas (| · |) nota-
tion (Meijer et al., 1991).
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• Since we encode our iteration operator within the polymorphic λ-calculus, we
also derive “fusion laws” about the iteration operator that functional pro-
grammers may use to reason about their programs.

• To show the generality of our technique, we use this implementation to show
a formal translation from the Schürmann, Despeyroux and Pfenning modal
calculus (2001) (called here the SDP calculus) to System Fω. This encoding
has an added benefit to language designers who wish to incorporate reasoning
about parametric function spaces. It demonstrates how systems based on the
polymorphic λ-calculus may be extended with reasoning about higher-order
structure.

We do not claim that our encoding will solve all of the problems with program-
ming using higher-order abstract syntax. In particular, algorithms that require the
explicit manipulation of the names of bound variables remain outside the scope of
this implementation technique.

The remainder of this paper is as follows. Section 2 starts with background ma-
terial on catamorphisms for hoas, including those developed by Meijer and Hut-
ton (1995) and Fegaras and Sheard (1996). In Section 2.2 we show how to use
first-class polymorphism and abstract types to provide an interface for Fegaras and
Sheard’s implementation that enforces the parametricity of embedded functions.
Using this interface, we show some examples of iteration including cps conversion
(Section 2.3). In Section 3, we describe an implementation of that interface within
the part of Haskell that corresponds to System Fω, and describe properties of that
implementation in Section 3.1. Section 4 describes the SDP calculus and Section 5
presents an encoding of that calculus into Fω, using the implementation that we
developed in Section 3. Section 8 presents future work, Section 9 presents related
work, and Section 10 concludes.

2 Catamorphisms for datatypes with embedded functions

2.1 Examples of catamorphisms

The following recursive data type represents the untyped λ-calculus using hoas.3

data Exp = Lam (Exp -> Exp) | App Exp Exp

The data constructor Lam represents λ-expressions. However, instead of explicitly
representing bound λ-calculus variables, Haskell functions are used to implement
binding and Haskell variables are used to represent variables. For example, we might
represent the identity function (λx.x) as Lam (\x -> x) or the diverging expression
(λx.(xx))(λx.(xx)) as App (Lam (\x -> App x x)) (Lam (\x -> App x x)).

3 All of the following examples are in the syntax of the Haskell language (Peyton Jones, 2003).
While some of the later examples require an extension of the Haskell type system—first-class
polymorphism—this extension is supported by the Haskell implementations ghc and Hugs.
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Using this data type, we can implement an interpreter for the λ-calculus. To do
so, we must also provide a representation of values (also using hoas).

data Value = Fn (Value -> Value)

unFn (Fn x) = x

It is tricky to define recursive operations, such as call-by-value evaluation, over
this implementation of expressions. The argument, x, to Lam below is a func-
tion of type Exp -> Exp. To evaluate it, we must convert x to a function of type
Value -> Value. Therefore, we must also simultaneously define a right inverse to
evaluation, called uneval, such that eval . uneval = \x -> x. This inverse is
used to convert the argument of x from a Value to an Exp, in the evaluation of
Lam x.

eval :: Exp -> Value

eval (Lam x) = Fn (eval . x . uneval)

eval (App y z) = unFn (eval y) (eval z)

uneval :: Value -> Exp

uneval (Fn x) = Lam (uneval . x . eval)

Consider the evaluation of the encoding of (λx.x)(λy.y). First eval replaces App
with unFn and pushes evaluation down to the two subcomponents of the application.
Next, each Lam is replaced by Fn, and the argument is composed with eval and
uneval. The unFn cancels the first Fn, and the identity functions can be removed
from the compositions. As uneval is right inverse to eval, we can replace each
(eval . uneval) with the identity function.

eval (App (Lam (\x -> x)) (Lam (\y -> y)))

= unFn (eval (Lam (\x -> x))) (eval (Lam (\y -> y)))

= unFn (Fn (eval . \x -> x . uneval)) (Fn (eval . \y -> y . uneval))

= (eval . uneval) (Fn (eval . uneval))

= (\x -> x) (Fn (\y -> y))

= Fn (\y -> y)

Many functions defined over Exp will follow this same pattern of recursion, re-
quiring an inverse for Lam and calling themselves recursively for the subcomponents
of App. Catamorphisms capture the general pattern of recursion for functions de-
fined over recursive datatypes. For example, foldr is a catamorphism for the list
datatype and can implement many list operations. For lists of type [a], foldr re-
places [] with a base case of type b and (:) with a function of type a -> b -> b.

Meijer and Hutton (1995) showed how to define catamorphisms for datatypes
with embedded functions, such as Exp. The catamorphism for Exp systematically
replaces Lam with a function of type (a -> a) -> a and App with a function of type
a -> a -> a. However, just as we defined eval simultaneously with uneval, the
catamorphism for Exp must be simultaneously defined with an anamorphism. The
catamorphism provides a way to consume members of type Exp and the anamor-
phism provides a way to generate them.
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newtype Rec a = Roll (a (Rec a))

data ExpF a = Lam (a -> a) | App a a

type Exp = Rec ExpF

lam :: (Exp -> Exp) -> Exp

lam x = Roll (Lam x)

app :: Exp -> Exp -> Exp

app x y = Roll (App x y)

xmapExpF :: (a -> b, b -> a) -> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of Lam x -> Lam (f . x . g)

App y z -> App (f y) (f z),

\x -> case x of Lam x -> Lam (g . x . f)

App y z -> App (g y) (g z))

cata :: (ExpF a -> a) -> (a -> ExpF a) -> Rec ExpF -> a

cata f g (Roll x) = f ((fst (xmapExpF (cata f g, ana f g))) x)

ana :: (ExpF a -> a) -> (a -> ExpF a) -> a -> Rec ExpF

ana f g x = Roll (snd (xmapExpF (cata f g, ana f g)) (g x))

Fig. 1. Meijer/Hutton catamorphism

In order to easily specify this anamorphism, we use a slightly more compli-
cated version of the Exp datatype, shown at the top of Figure 1. This version
makes the recursion in the datatype explicit. The newtype Rec computes the
fixed point of type constructors (functions from types to types). The type Exp

is the fixed point of the type constructor ExpF, where the recursive occurrences of
Exp have been replaced with the type parameter a. The first argument to cata

is of type ExpF a -> a (combining the two functions mentioned above, of type
(a -> a) -> a and a -> a -> a). The first argument to ana has the inverse type
a -> ExpF a.

The functions cata and ana are defined in terms of xmapExpF, a generalized ver-
sion of a mapping function for the type constructor ExpF. Because of the function
argument to Lam, xmapExpF maps two functions, one of type a -> b and the other
of type b -> a. The definition of xmapExpF is completely determined by the defi-
nition of ExpF. With Generic Haskell (Clarke et al., 2001), we can define xmap and
automatically generate xmapExpF from ExpF (see Figure 2).4 That way, we can eas-
ily generalize this catamorphism to other datatypes. Unlike map, which is defined
only for covariant type constructors, xmap is defined for type constructors that
have both positive and negative occurrences of the bound variable. The only type
constructors of Fω for which xmap is not defined are those whose bodies contain
first-class polymorphism. For example, λα : ?.∀β : ?.α → β.

4 Meijer and Hutton’s version of xmapExpF only created the first component of the pair. In ana
where the second component is needed, they swap the arguments. This is valid because fst
(xmap (f,g)) = snd(xmap (g,f)). However, while the version that we use here is a little more
complicated, it can be defined with Generic Haskell.
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type XMap {[*]} t1 t2 = (t1 -> t2, t2 -> t1)

type XMap {[k -> l]} t1 t2 = forall u1 u2.

XMap {[k]} u1 u2 -> XMap {[l]}(t1 u1)(t2 u2)

xmap {| t :: k |} :: XMap {[k]} t t

xmap {| Unit |} = (id,id)

xmap {| :+: |} (xmapA1,xmapA2) (xmapB1,xmapB2) =

(\x -> case x of (Inl a) -> Inl (xmapA1 a) (Inr b) -> Inr (xmapB1 b),

\x -> case x of (Inl a) -> Inl (xmapA2 a) (Inr b) -> Inr (xmapB2 b))

xmap {| :*: |} (xmapA1,xmapA2) (xmapB1,xmapB2) =

(\(a :*: b) -> (xmapA1 a) :*: (xmapB1 b),

\(a :*: b) -> (xmapA2 a) :*: (xmapB2 b))

xmap {| (->) |} (xmapA1,xmapA2) (xmapB1,xmapB2) =

(\f -> xmapB1 . f . xmapA2, \f -> xmapB2 . f . xmapA1)

xmap {| Int |} = (id, id)

xmap {| Bool |} = (id, id)

xmap {| IO |} (xmapA1,xmapA2) = (fmap xmapA1, fmap xmapA2)

xmap {| [] |} (xmapA1,xmapA2) = (map xmapA1, map xmapA2)

Fig. 2. Generic Haskell implementation of xmap

We can use cata to implement eval. To do so we must describe one step of
turning an expression into a value (the function evalAux) and one step of turning
a value into an expression (the function unevalAux).

evalAux :: ExpF Value -> Value

evalAux (Lam f) = Fn f

evalAux (App x y) = (unFn x) y

unevalAux :: Value -> ExpF Value

unevalAux (Fn f) = Lam f

eval :: Exp -> Value

eval x = cata evalAux unevalAux x

Using cata to implement operations such as eval is convenient because the
pattern of recursion is already specified. None of eval, evalAux or unevalAux are
recursively defined. However, for some operations, there is no obvious (or efficient)
inverse. For example, to using cata to print out expressions also requires writing
a parser. Fegaras and Sheard (1996) noted that the catamorphism often undoes
with f what it has just done with g. This situation occurs when the argument to
cata contains only parametric functions. A parametric function is one that does
not analyze its argument with case or cata.
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data Rec a b = Roll (a (Rec a b)) | Place b

data ExpF a = Lam (a -> a) | App a a

type Exp a = Rec ExpF a

lam :: (Exp a -> Exp a) -> Exp a

lam x = Roll (Lam x)

app :: Exp a -> Exp a -> Exp a

app x y = Roll (App x y)

xmapExpF :: (a -> b, b -> a) -> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of Lam x -> Lam (f . x . g)

App y z -> App (f y) (f z),

\x -> case x of Lam x -> Lam (g . x . f)

App y z -> App (g y) (g z))

cata :: (ExpF a -> a) -> Exp a -> a

cata f (Roll x) = f ((fst (xmapExpF (cata f, Place))) x)

cata f (Place x) = x

Fig. 3. Fegaras/Sheard catamorphism

When the argument to cata is parametric, Fegaras and Sheard showed how to
implement cata without ana. The basic idea is that for parametric functions, any
use of ana during the computation of a catamorphism will always be annihilated
by cata in the final result. Therefore, instead of computing the anamorphism, they
use a place holder to store the original argument. When cata reaches that place
holder, it returns the stored argument.

To implement Fegaras and Sheard’s catamorphism, we must redefine Rec. In
Figure 3, we extend it with an extra constructor (called Place) that is the place
holder. Because Place can contain any type of value, Rec (and consequently Exp)
must be parameterized with the type of the argument to Place. This type is the
result of the catamorphism over the expression. In the implementation of cata,
Place is the second argument to xmapExpF instead of ana f. It is a right inverse to
cata f by definition.

For example, to count the number of occurrences of bound variables in an ex-
pression, we might use the following code.

countvarAux :: ExpF Int -> Int

countvarAux (App x y) = x + y

countvarAux (Lam f) = f 1

countvar :: Exp Int -> Int

countvar = cata countvarAux

The function countvarAux describes what to do in one step. The number of
variables in an application expression is the sum of the number of variables in x

and the number of variables in y. In the case of a λ-expression, f is a function from
the number of variables in a variable expression (i.e. one) to the number of variables
in the body of the lam.
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Counting the number of variables in (λx. x x) will evaluate as follows:

countvar (lam (\x -> app x x))

= (countvar . (\x -> x + x) . Place) 1

= (\x -> (countvar (Place x)) + (countvar (Place x))) 1

= (countvar (Place 1)) + (countvar (Place 1))

= 2

This definition of cata may sometimes return a meaningless result. For example,
say we define the following term:

badplace :: Exp Int

badplace = lam (\x -> Place 3)

Then countvar badplace = 3, even though it contains no bound variables.
We can approximate when cata will be meaningful by separating expressions into

two classes. Sound expressions do not use Place and furthermore, do not contain
any non-parametric function spaces (see below). All other expressions are unsound.

There are two ways for function-space parametricity to fail, corresponding to the
two destructors for the type Exp a. A function is not parametric if it uses cata or
case to examine its argument, as below:

badcata :: Exp Int

badcata = lam (\x -> if (countvar x == 1) then app x x else x)

badcase :: Exp a

badcase = lam (\x -> case x of Roll (App v w) -> app x x

Roll (Lam f) -> x

Place v -> x)

The distinction between sound and unsound terms is important for representing
the untyped λ-calculus because with higher-order abstract syntax, because some
unsound terms may not correspond to any untyped λ-calculus expressions. However,
all λ-calculus expressions may be encoded by sound terms.5

Fegaras and Sheard designed a type system to distinguish between sound and
unsound expressions. Datatypes such as Exp were annotated with flags to indicate
whether they had been examined with either case or cata, and if so, they were
prevented from appearing inside of non-flagged datatypes. Furthermore, their lan-
guage prevented the user from accessing Place by automatically generating cata

from the definition of the user’s datatype.

5 It is also important to distinguish between sound and unsound members of datatypes that have
meaningful non-parametric representations. For these datatypes, the behavior of the Fegaras
and Sheard catamorphism on unsound arguments does not correspond to the Meijer and Hutton
version.
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2.2 Enforcing term parametricity with type parametricity

The terms badplace, badcata, and badcase are exotic terms, values in the meta-
language that do not correspond to any members of the object language. In other
words, our encoding of untyped λ-calculus expressions as Haskell terms of type
Exp t, for some t, is not adequate—there are some terms in this type that are not
equivalent to the encoding of any object language term. If our encoding were ade-
quate, there would be no exotic terms. The distinction between sound and unsound
expressions approximates the distinction between non-exotic and exotic terms—
sound expressions are guaranteed to be non-exotic (i.e. correspond to some object
language term).

The reason that our encoding is not adequate can be seen from the type of
badplace and badcata. The type parameter of Exp is constrained to be Int, so we
can only use cata on this expression to produce an Int. Whenever we use cata

or Place inside an expression, this parameter will be constrained. Therefore, to
eliminate unsound terms containing cata or Place we can use higher-rank poly-
morphism to ensure that the type parameter of Exp is always abstract. Instead of
considering terms of type Exp t, for some t, we will only consider terms of type
forall a. Exp a.

We can then define a version of cata, called iter0 that may only be applied
to expressions of type forall a. Exp a, below. The implementation of cata uses
the argument at the specific type Exp a, so it is safe for iter0 to require that its
argument has the more general type forall a. Exp a.

iter0 :: (ExpF b -> b) -> (forall a. Exp a) -> b

iter0 = cata

Consequently, we will not be able to use badplace and badcata with iter0.
However, our encoding of untyped λ-terms as expressions of type forall a. Exp a

is not yet quite adequate. It does not prevent terms like badcase. We can prevent
such case analysis inside lam expressions by ruling out case analysis for all terms
of type Exp t. If the user cannot use case, then they cannot write badcase. While
this restriction means that some operations cannot be naturally defined in this cal-
culus, cata alone can define a large number of operations, as we demonstrate below
and in Section 2.3.

There are two ways to prohibit case analysis. The first way is to re-implement
Exp in such a way that cata is the only possible operation (in other words without
using a Haskell datatype). We discuss this alternative in Section 3.

The second way to prohibit case analysis is to make Rec an abstract type con-
structor. If the definition of Rec is hidden by some module boundary, such as with
the interface in Figure 4, then the only way to destruct an expression of type Exp t

is with cata. Because Roll and Place are datatype constructors of Rec, and cata

pattern matches these constructors, they must all be defined in the same module as
Rec. However, because we only need to prohibit case analysis, we can export Roll
and Place as the functions roll and place. With roll we can define the terms
app and lam anywhere.
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type Rec a b -- abstract

data ExpF a = Lam (a -> a) | App a a

type Exp a = Rec ExpF a

roll :: ExpF (Exp a) -> Exp a

place :: a -> Exp a

cata :: (ExpF a -> a) -> Exp a -> a

Fig. 4. Iteration library interface

We can also make good use of place. The type forall a. Exp a enforces that
all embedded functions are parametric, but it can only represent closed expres-
sions. What if we would like to examine expressions with free variables? In hoas,
an expression with one free variable has type Exp t -> Exp t. To compute the
catamorphism for the expression, we use place to provide the value for the free
variable.

openiter1 :: (ExpF b -> b) -> (Exp b -> Exp b) -> (b -> b)

openiter1 f x = \y -> cata f (x (place y))

If we would like to make sure that the expression is sound, we must quantify over
the parameter type and require that the expression have type forall a. Exp a ->

Exp a.

iter1 :: (ExpF b -> b) -> (forall a. Exp a -> Exp a) -> (b -> b)

iter1 = openiter1

With iter1 we can determine if that one free variable occurs in an expression.

freevarused :: (forall a. Exp a -> Exp a) -> Bool

freevarused e = iter1 (\x -> case x of App x y -> x || y

Lam f -> f False) e True

An app expression uses the free variable if either the function or the argument uses
it. The occurrence of the bound variable of a lam is not an occurrence of the free
variable, so False is the argument to f, but the expression does use the free variable
if it appears somewhere in the body of the abstraction. Finally, the program works
by feeding in True for the value of the free variable. If the result is True then
it must have appeared somewhere in the expression. There is no reason to stop
with one free variable. There are an infinite number of related iteration operators,
each indexed by the type inside the forall. The types of several such iterators are
shown below. For example, the third one, iterList, may analyze expressions with
arbitrary numbers of free variables.

iter2 :: (ExpF b -> b) -> (forall a. Exp a -> Exp a -> Exp a)

-> (b -> b -> b)

iterFun :: (ExpF b -> b) -> (forall a. (Exp a -> Exp a) -> Exp a)

-> ((b -> b) -> b)

iterList :: (ExpF b -> b) -> (forall a. ([Exp a] -> Exp a))

-> ([b] -> b)
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Each of these iterators is defined by using xmap to map (cata f) and place. Thus
we can easily implement them by defining the appropriate version of xmap. However,
because xmap is a polytypic function, we should be able to automatically generate
all of these iterators using Generic Haskell. The following code implements these
operations. Below, the notation xmap{|g|} generates the instance of xmap for the
type constructor g.

openiter{| g :: * -> * |} :: (ExpF a -> a) -> g (Exp a) -> g a

openiter{|g|} f = fst (xmap{|g|} (cata f, place))

iter{| g :: * -> * |} :: (ExpF a -> a) -> (forall b. g (Exp b)) -> g a

iter{|g|} = openiter{|g|}

Unfortunately, the above Generic Haskell code cannot automatically generate
all the iterators that we want, such as iter1, iterFun and iterList. Because of
type inference, g can only be a type constructor that is a constant or a constant
applied to type constructors (Jones, 1995). In particular, we cannot represent the
type constructor (λα : ?.α → α) in Haskell, so we cannot automatically generate
the instance

iter1 :: (f b -> b) -> (forall a. (Exp a) -> (Exp a)) -> b -> b

Fortunately, using a different extension of Haskell, called functional dependen-
cies (Jones, 2000), we can generate these versions of openiter. For each version of
iter that we want, we still need to redefine the generated openiter with the more
restrictive type.

iter1 :: (ExpF a -> a) -> (forall b. Exp b -> Exp b) -> a -> a

iter1 = openiter

The Iterable class defines openiter simultaneously with its inverse. The parame-
ters m and n should be g(Exp a) and g a, where each instance specifies g. (The type
a is a parameter of the type class so that m and n may refer to it.) Also necessary
are the functional dependencies that state that m determines both a and n. These
dependencies rule out ambiguities during type inference.

class Iterable a m n | m -> a, m -> n where

openiter :: (ExpF a -> a) -> m -> n

uniter :: (ExpF a -> a) -> n -> m

If g is the identity type constructor, then m and n are Exp a and a respectively.

instance Iterable a (Exp a) a where

openiter = cata

uniter f = place

Using the instances for the subcomponents, we can define instances for types that
contain ->.

instance (Iterable a m1 n1, Iterable a m2 n2)

=> Iterable a (m1 -> m2) (n1 -> n2) where

openiter f x = openiter f . x . uniter f

uniter f x = uniter f . x . openiter f

With these instances, we have a definition for openiter{| \a.a -> a |}. It is not
difficult to add instances for other type constructors, such as lists and tuples.
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2.3 Examples of iteration

We next present several additional examples of the expressiveness of iter0 for argu-
ments of type forall a. Exp a. The purpose of these examples is to demonstrate
how to implement some of the common operations for λ-calculus terms without
case analysis.

For example, we can use iter0 to convert expressions to strings. So that we
have different names for each nested binding occurrence, we must parameterize this
iteration with a list of variable names. A Haskell list comprehension provides us
with an infinite supply of strings.

vars :: [String]

vars = [ [i] | i <- [’a’..’z’] ] ++

[ i : show j | j <- [1..], i <- [’a’..’z’] ]

showAux :: ExpF ([String] -> String) -> ([String] -> String)

showAux (App x y) vars =

"(" ++ (x vars) ++ " " ++ (y vars) ++ ")"

showAux (Lam z) (v:vars) =

"(fn " ++ v ++ ". " ++ (z (const v) vars) ++ ")"

show :: (forall a. Exp a) -> String

show e = iter0 showAux e vars

Applying show to an expression produces a readable form of the expression.

show (lam (\x -> lam (\y -> app x y))) = (fn a. (fn b. (a b)))

Another operation we might wish to perform for a λ-calculus expression is to
reduce it to a simpler form. As an example, we next implement parallel reduction
for a λ-calculus expression.6 Parallel reduction differs from full reduction in that
it does not reduce any newly created redexes. Therefore, it terminates even for
expressions with no β-normal form. Parallel reduction may be specified by the
following inductive definition.

x ⇒ x

M ⇒ M ′

λx.M ⇒ λx.M ′
M ⇒ M ′ N ⇒ N ′

MN ⇒ M ′N ′
M ⇒ M ′ N ⇒ N ′

(λx.M)N ⇒ M ′{N ′/x}

We use iter0 to implement parallel reduction below. The tricky part is the case
for applications. We must determine whether the first component of an application
is a lam expression, and if so, perform the reduction. However, we cannot do a case
analysis on expressions, as the type Exp a is abstract. Therefore, we implement
parallel reduction with a “pairing” trick7. As we iterate over the term we produce
two results, stored in the following record:

data PAR a = PAR { par :: Exp a, apply :: Exp a -> Exp a }

6 This example is from Schürmann et. al (2001).
7 Pairing was first used to implement the predecessor operation for Church numerals. The iteration

simultaneously computes the desired result with auxiliary operations.
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The first component, par, is the actual result we want—the parallel reduction of
the term. The second component, apply, is a function that we build up for the
application case. In the case of a lam expression, apply performs the substitution
in the reduced term. Otherwise, apply creates an app expression with its argument
and the reduced term.8

parAux :: ExpF (PAR a) -> PAR a

parAux (Lam f) = PAR { par = lam (par . f . var),

apply = par . f . var }

where

var :: Exp a -> PAR a

var x = PAR { par = x, apply = app x }

parAux (App x y) = PAR { par = apply x (par y),

apply = app (apply x (par y)) }

parallel :: (forall v. Exp v) -> (forall v. Exp v)

parallel x = par (iter0 parAux x)

For example:

show (parallel (app (lam (\x -> app x x)) (lam (\y -> y))))

= "((fn a. a) (fn a. a))"

While we could not write the most natural form of parallel reduction with iter0,
other operations may be expressed in a very natural manner. For example, we can
implement the one-pass call-by-value cps-conversion of Danvy and Filinski (1992).
This sophisticated algorithm performs “administrative” redexes at the meta-level
so that the result term has no more redexes than the original expression. The
algorithm is based on two mutually recursive operations: cpsmeta performs closure
conversion given a meta-level continuation (a term of type Exp a -> Exp a), and
cpsobj does the same with an object-level continuation (a term of type Exp a).

data CPS a = CPS { cpsmeta :: (Exp a -> Exp a) -> Exp a,

cpsobj :: Exp a -> Exp a }

If we are given a value (i.e. a λ-expression or a variable) the function value below
describes its cps conversion. Given a meta-continuation k, we apply k to the value.
Otherwise, given an object continuation c, we create an object application of c to
the value.

value :: Exp a -> CPS a

value x = CPS { cpsmeta = \k -> k x, cpsobj = \c -> app c x }

8 In Haskell, the notation apply x projects the apply component from the record x.
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The operation cpsAux takes an expression whose subcomponents have already
been cps converted and cps converts it. For application, translation is the same in
both cases except that the meta-case converts the meta-continuation into an object
continuation with lam.

cpsAux :: ExpF (CPS a) -> CPS a

cpsAux (App e1 e2) = CPS { cpsmeta = \k -> appexp (lam k),

cpsobj = appexp }

where appexp c =

(cpsmeta e1) (\y1 ->

(cpsmeta e2) (\y2 ->

app (app y1 y2) c))

For functions, we use value, but we must transform the function to bind both the
original and continuation arguments and transform the body of the function to use
this object continuation. The outer lam binds the original argument. We use value

for this argument in f and cpsobj yields a body expecting an object continuation
that the inner lam converts to an expression.

cpsAux (Lam f) = value (lam (lam . cpsobj . f . value))

Finally, we start cps with iter0 by abstracting an arbitrary dynamic context a

and transforming the argument with respect to that context.

cps :: (forall a. Exp a) -> (forall a. Exp a)

cps x = lam (\a -> cpsmeta (iter0 cpsAux x) (\m -> app a m))

show (cps (lam (\x -> app x x)))

= "(fn a. (a (fn b. (fn c. ((b b) c)))))"

Above, a is the initial continuation, b is the argument x, and c is the continuation
for the function.

3 Encoding iteration in Fω

In the previous section, we implemented iter as a recursive function and used a
recursive type, Rec, to define Exp. To prevent case analysis, we hid this definition of
Rec behind a module boundary. However, this module abstraction is not the only
way to prevent case analysis. Furthermore, term and type recursion is not necessary
to implement this data type. We may define iter and Rec in the fragment of Haskell
that corresponds to Fω (Girard, 1971) so that iteration is the only elimination form
for Rec. This implementation appears in Figure 5.

The encoding is similar to the encoding of covariant data types in the polymorphic
λ-calculus (Böhm & Berarducci, 1985) or to the encoding of Church numerals. We
encode an expression of type Exp a as its elimination form. For example, something
of type Exp a should take an elimination function of type (ExpF a -> a) and
return an a. To implement cata we apply the expression to the elimination function.
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type Rec f a = (f a -> a) -> a

data ExpF a = Lam (a -> a) | App a a

type Exp a = Rec ExpF a

roll :: ExpF (Exp a) -> Exp a

roll x = \f -> f (fst (xmapExpF (cata f, place)) x)

place :: a -> Exp a

place x = \f -> x

lam :: (Exp a -> Exp a) -> Exp a

lam x = roll (Lam x)

app :: Exp a -> Exp a -> Exp a

app y z = roll (App y z)

xmapExpF :: (a -> b, b -> a) -> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of Lam x -> Lam (f . x . g)

App y z -> App (f y) (f z),

\x -> case x of Lam x -> Lam (g . x . f)

App y z -> App (g y) (g z))

cata :: (ExpF a -> a) -> Exp a -> a

cata f x = x f

iter0 :: (ExpF a -> a) -> (forall b. Exp b) -> a

iter0 = cata

Fig. 5. Catamorphism in the Fω fragment of Haskell

To create an expression, roll must encode this elimination. Therefore, roll

returns a function that applies its argument f (the elimination function) to the
result of iterating over x. Again, to use xmap we need a right inverse for cata f. The
term place in Figure 5 is an expression that when analyzed returns its argument.
We can show that place is a right inverse by expanding the above definitions:

cata f . place = (\x -> cata f (place x))

= (\x -> (place x) f)

= (\x -> ((\y -> x) f))

= (\x -> x)

3.1 Reasoning about iteration

There are powerful tools for reasoning about programs written in the polymorphic
λ-calculus. For example, we know that all programs that are written in Fω will
terminate. Therefore, we can argue that the examples of the previous section are
total on all inputs that may be expressed in the polymorphic λ-calculus, such as
app (lam (\x -> app x x))(lam (\x -> app x x)). Unfortunately, we cannot
argue that these examples are total for arbitrary Haskell terms. For example, call-
ing any of these routines on lam (let f x = f x in f) will certainly diverge.
Furthermore, even if the arguments to iteration are written in Fω, if the operation
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itself uses type or term recursion, then it could still diverge. For example, using the
recursive datatype Value from Section 2, we can implement the untyped λ-calculus
evaluator with iter0.

Parametricity is another way to reason about programs written in Fω (Reynolds,
1983). As awkward as they may be, one of the advantages to programming with
catamorphisms instead of general recursion is that we may reason about our pro-
grams using algebraic laws that follow from parametricity. While the following laws
only hold for Fω, we may be able to prove some form of them for Haskell using
techniques developed by Johann (2002).

Using parametricity, we can derive what are know as free theorem (Wadler, 1989)
about expressions. They are “free” in the sense that we do not actually need to
know anything about the implementation of the expression, they just are available
merely as consequence of the expression type-checking. For example, any expression
x of type forall a. (b a -> a) -> a, we know that the following free theorem
holds

(f . f’ = id ∧ f . g = h . fst (xmap{|b|}(f,f’))) ⇒ f (x g) = x h.

In particular, we know it holds for expressions of type forall a. Exp a by sub-
stituting ExpF for b. This is not entirely obvious because Exp is defined in terms
of other constructors: forall a. Exp a is the same as forall a. (Rec ExpF a),
which in turn is equal to forall a. (ExpF a -> a) -> a.

The equivalence = in this theorem is equivalence in some parametric model of Fω,
such as the term model with βη-equivalence. Using the free theorem, we can prove
a number of properties about iteration. First, we can show that iterating roll is
an identity function.

Theorem 3.1
iter0 roll = id.

Proof
By the definitions of iter0 and cata we know that for iter0 roll = id to be true,
it must be the case that x roll = x, for all x. If we instantiate the free theorem
such that f is iter0 h, f’ is place, and g is roll we have that

(iter0 h . place = id ∧

iter0 h . roll = h . fst (xmap{|ExpF|}(iter0 h, place))) ⇒
iter0 h (x roll) = x h.

Then by unfolding the definitions of iter0 and place

iter0 h . place = (\x -> x h) . (\y -> \f -> y)

= \x -> (\y -> \f . y) x h

= \x -> (\f -> x) h

= \x -> x

we can see that we have the first equality required by the implication. Next we need
to prove that it is the case that

iter0 h . roll = h . fst (xmap{|ExpF|}(iter0 h, place)).
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By extensionality we can conclude this equality will only be true if for any x,

iter0 h (roll x) = h (fst (xmap{|ExpF|}(iter0 h, place))) x.

Here we can note that on the right-hand side of the equation,

h (fst (xmap{|ExpF|}(iter0 h, place))) x,

is just the expansion of roll x h. Dually, the left-hand side of the equation,
iter0 h (roll x), reduces to roll x h. Therefore, we have our second premise.

Our free theorem then gives us iter0 h (x roll) = x h, which is the same
as x roll h = x h by reducing iter0. Finally, we can conclude x roll = x by
extensionality.

Using this result we can show the uniqueness property for iter, which describes
when a function is equal to an application of iter. It resembles an “induction
principle” for iter0.

Theorem 3.2 (Uniqueness)

∃f’.f . f’ = id ∧ f . roll = h . fst (xmap{|ExpF|}(f,f’))⇔
f = iter0 h.

Proof
The reverse direction of the biconditional follows directly from the definitions of
iter0 and roll. The forward direction of the biconditional follows from the free
theorem.

For the forward direction we need to show that

(f . f’ ∧ f . roll = h . fst (xmap{|ExpF|}(f,f’))) ⇒ f = iter0 h.

Therefore, we assume f . f’ and f . roll = h . fst (xmap{|ExpF|}(f,f’)).
By our free theorem we know that

(f . f’ ∧ f . roll = h . fst (xmap{|ExpF|}(f,f’))) ⇒ f (x roll) = x h.

So by our assumptions we know that f (x roll) = x h. From our previous result,
we know that iter0 roll = id, which is the same as x roll = x by extension-
ality and reduction. Given x roll = x, it is the case that f x = x h holds. By
definition iter0 h x = x h which implies f x = iter0 h x which in turn implies
f = iter0 h by extensionality.

For the other direction, assume that f = iter 0 h. Next we need to show
there exists a f’ such that the equalities f . f’ = id and f . roll = h . fst

(xmap{|ExpF|}(f, f’)) are true. We guess that place would be a good choice
for f’, because we know iter0 h . place = id from Theorem 3.1. Therefore
choosing place for f’ provides us with the first equality. Next we want to prove
that f . roll = h . fst(xmap{|ExpF|}(f, place)). This equality holds if
iter0 h . roll = h . fst(xmap{|ExpF|}(iter 0 h, place)) does. However,
we have already shown that both sides of this equation are equal to roll x h as
part of Theorem 3.1, so the proof is complete.
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Finally, the fusion law can be used to combine the composition of a function f

and an iteration into one iteration. This law follows directly from the free theorem.

Theorem 3.3 (Fusion)

(f . f’ = id ∧ f . g = h . fst(xmap{|ExpF|}(f,f’)))⇒
f . iter0 g = iter0 h.

Proof
By using the free theorem, we know

(f . f’ ∧ f . roll = h . fst (xmap{|ExpF|}(f,f’))) ⇒ f (x roll) = x h.

Then begin by assuming f . f’ = id and f . g = h . fst(xmap{|ExpF|}(f,f’))

to obtain f (x g) = x h. From f (x g) = x h we want to prove f . iter0 g =

iter0 h. This holds if f (x g) = x h does, which we know is true from the defi-
nition of iter0.

4 Enforcing parametricity with modal types

In the next section, we formally describe the connection between the interface we
have provided for iteration over higher-order abstract syntax and the modal calculus
of Schürmann, Despeyroux and Pfenning (SDP) (2001). We do so by using this
library to give a sound and complete embedding of the SDP calculus into Fω. First,
we provide a brief overview of the static and dynamic semantics of this calculus.
The syntax of the SDP calculus is shown in Figure 6.

The static semantics of the SDP calculus in shown in Figure 8. The SDP type
system is defined in terms of a judgment Ω; Υ `sdp

M : A which is read as “term M

has type A with respect to the valid environment Ω and the local environment Υ”.
A separate typing judgment Ω; Υ `sdp

Θ : A〈Σ〉 is used to mean “the replacement
Θ maps constants in Σ to their well-typed terms iterated with type A with respect
to the valid environment Ω and the local environment Υ”. Iteration types are
defined in Figure 7, and will be explained in more detail shortly. In addition to
well-formed terms, the SDP static semantics also defines what it means for a term
to be atomic or in canonical form. This is indicated with the judgments Ψ `sdp

M ↓ B

and Ψ `sdp
M ⇑ B respectively. Canonical forms in SDP are β-normal, η-long terms.

The dynamic semantics of the SDP calculus in described in Figure 9 and 10.
The dynamic semantics consist of two judgments and a rewrite system: The first
judgment is Ψ `sdp

M ↪→ V : A, read as “term M evaluates to value V with type
A”, and the second judgment is Ψ `sdp

M ⇑ V : B, which is read as “term M is
canonicalized to value V with type B”. Replacements are evaluated using a rewrite
system called elimination, written as 〈A,Ψ,Θ〉(V) and read as “value V is eliminated
with respect to the pure context Ψ and the type A”. Elimination always rewrites
to another value, and is analogous to the application of a catamorphism.
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(Pure Types) B ::= b | 1 | B1 → B2 | B1 × B2

(Types) A ::= B | A1 → A2 | A1 ×A2 | �A

(Terms) M ::= x | c | 〈〉 | λx : A.M | M1M2 | boxM

| let box x : A = M1 inM2 | 〈M1, M2〉 | fstM | sndM

| iter [A1, A2][Θ] M

(Term Replacement) Θ ::= ∅ | Θ ] {c 7→ M}

(Pure Environment) Ψ ::= ∅ | Ψ ] {x : B}

(Valid Environment) Ω ::= ∅ | Ω ] {x : A}

(Local Environment) Υ ::= ∅ | Υ ] {x : A}

(Signatures) Σ ::= ∅ | Σ ] {c : B → b}

Fig. 6. Syntax of SDP calculus

The SDP calculus enforces the parametricity of function spaces with modal types.
Modal necessity in logic is used to indicate those propositions that are true in all
worlds. Consequently, these propositions can make use of only those assumptions
that are also true in all worlds. In Pfenning and Davies’s (2001) interpretation of
modal necessity, necessarily true propositions correspond to those formulae that
can be shown to be valid. Validity is defined as derivable with respect to only
assumptions that themselves are valid assumptions. As such, the typing judgments
have two environments (also called contexts), one for valid assumptions, Ω, and
one for “local” assumptions, Υ. The terms corresponding to the introduction and
elimination forms for modal necessity are box and let box. We give them the
following typing rules:

Ω; ∅ `sdp
M : A

Ω; Υ `sdp boxM : �A
tp box

Ω; Υ `sdp
M1 : �A1 Ω ] {x : A1}; Υ `sdp

M2 : A2

Ω; Υ `sdp let box x : A1 = M1 inM2 : A2
tp letb

A boxed term, M, has type �A only if it has type A with respect to the valid
assumptions in Ω, and no assumptions in local environment. The let box elimina-
tion construct allows for the introduction of valid assumptions into Ω, binding the
contents of the boxed term M1 in the body M2. This binding is allowed because
the contents of boxed terms are well-typed themselves with only valid assump-
tions. Another way to think about modal necessity is that terms with boxed type
are “closed” and do not contain any free variables, except those that are bound to
closed terms themselves.

Operationally, boxed terms behave like suspensions, while let box substitutes
the contents of a boxed term for the bound variable. Because the operational
semantics is defined simultaneously with conversion to canonical forms, it is pa-
rameterized by the environment Ψ that describes the types of free local variables
appearing in the expression.

Ψ `sdp
M1 ↪→ boxM ′

1 : �A1 Ψ `sdp
M2{M ′

1/x} ↪→ V : A2

Ψ `sdp let box x : A1 = M1 inM2 ↪→ V : A2
ev letb
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A〈b〉 , A

A〈1〉 , 1

A〈B1 → B2〉 , A〈B1〉 → A〈B2〉
A〈B1 × B2〉 , A〈B1〉 ×A〈B2〉

Fig. 7. Iteration types

To enforce the separation between the iterative and parametric function spaces, the
SDP calculus defines those types, B, that do not contain a � type to be “pure”.
Objects in the calculus with type �B, boxed pure types, can be examined intension-
ally using an iteration operator, while objects of arbitrary impure type, A, cannot.
This forces functions of pure type, λx : B1.M : B1 → B2, to be parametric. This is
because the input, x, to such a function does not have a boxed pure type, and there
is no way to convert it to one — x will not be free inside of a boxed expression in M.
Consequently, the functions of pure type may only treat their inputs extensionally,
making them parametric.

The language is parameterized by a constant type b and a signature, Σ, of data
constructor constants, c, for that base type. Each of the constructors in this sig-
nature must be of type B → b. Because B is a pure type, these constructors may
only take parametric functions as arguments. In the original presentation of SDP
multiple base types were allowed, however this required keeping track of the sub-
ordination relationship which characterizes the dependencies between constants in
the signature. We felt that the added complication did not add anything to our
results.

Consider a signature describing the untyped λ-calculus, Σ = {app : b × b →
b, lam : (b → b) → b}, where the constant type b corresponds to Exp. Using this
signature, we can write a function to count the number of bound variables in an
expression, as we did in Section 2.9

countvar , λx : �b.iter[�b, int][{app 7→ λy : int.λz : int.y + z,

lam 7→ λf : int → int.f 1}] x

The term iter intensionally examines the structure of the argument x and replaces
each occurrence of app and lam with λy : int.λz : int.y + z and λf : int → int.f 1

respectively.
The argument to iteration, M, must have a pure closed type to be analyzable.

Analysis proceeds via walking over M and using the replacement Θ, a finite map
from constants to terms, to substitute for the constants in the term M. The type A

is the type that will replace the base type b in the result of iteration. The notation
A〈B〉, defined in Figure 7, substitutes A for the constant b in the pure type B.
Each term in the range of the replacements must also agree with replacing b with
A. We verify this fact with the judgment Ω; Υ `sdp

Θ : A〈Σ〉, which requires that if
Θ(c) = Mc and Σ(c) = Bc, then Mc must have type A〈Bc〉.

9 For simplicity, our formal presentation of SDP (in Figure 6) does not include integers. However,
it is straightforward to extend the language with integer types distinct from pure types.
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Ψ `sdp
M ↓ B Atomic terms

Ψ(x) = B

Ψ `sdp
x ↓ B

at var
Σ(c) = B → b

Ψ `sdp
c ↓ B → b

at cons

Ψ `sdp
V1 ↓ B2 → B1 Ψ `sdp

V2 ⇑ B2

Ψ `sdp
V1V2 ↓ B1

at app
Ψ `sdp

V ↓ B1 × B2

Ψ `sdp
fstV ↓ B1

at fst

Ψ `sdp
V ↓ B1 × B2

Ψ `sdp
sndV ↓ B2

at snd

Ψ `sdp
M ⇑ B Canonical terms

Ψ `sdp
V ↓ b

Ψ `sdp
V ⇑ b

can at
Ψ ] {x : B1} `sdp

V ⇑ B2

Ψ `sdp
λx : B1.V ⇑ B1 → B2

can lam

Ψ `sdp
V1 ⇑ B1 Ψ `sdp

V2 ⇑ B2

Ψ `sdp 〈V1, V2〉 ⇑ B1 × B2

can prod

Ω; Υ `sdp
Θ : A〈Σ〉 Replacement typing rules

∀ci ∈ dom(Σ) dom(Θ) = dom(Σ) Σ(ci) = Bi Ω; Υ `sdp
Θ(ci) : A〈Bi〉

Ω; Υ `sdp
Θ : A〈Σ〉

tp rep

Ω; Υ `sdp
M : A Term typing rules

x 6∈ dom(Ω) Υ(x) = A

Ω; Υ `sdp
x : A

tp var
x 6∈ dom(Υ) Ω(x) = A

Ω; Υ `sdp
x : A

tp bvar

Ω; Υ `sdp 〈〉 : 1
tp unit

Σ(c) = B → b

Ω; Υ `sdp
c : B → b

tp con

Ω; Υ ] {x : A1} `sdp
M : A2

Ω; Υ `sdp
λx : A1.M : A1 → A2

tp abs

Ω; Υ `sdp
M1 : A1 → A2 Ω; Υ `sdp

M2 : A1

Ω; Υ `sdp
M1M1 : A2

tp app

Ω; Υ `sdp
M1 : �A1 Ω ] {x : A1}; Υ `sdp

M2 : A2

Ω; Υ `sdp
let box x : A1 = M1 inM2 : A2

tp letb
Ω; ∅ `sdp

M : A

Ω; Υ `sdp
boxM : �A

tp box

Ω; Υ `sdp
M1 : A1 Ω; Υ `sdp

M2 : A2

Ω; Υ `sdp 〈M1, M2〉 : A1 ×A2

tp pair
Ω; Υ `sdp

M : A1 ×A2

Ω; Υ `sdp
fstM : A1

tp fst

Ω; Υ `sdp
M : A1 ×A2

Ω; Υ `sdp
sndM : A2

tp snd
Ω; Υ `sdp

M : �B Ω; Υ `sdp
Θ : A〈Σ〉

Ω; Υ `sdp
iter [�B, A][Θ] M : A〈B〉

tp iter

Fig. 8. SDP static semantics
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Ψ `sdp
M ⇑ V : B Canonicalization

Ψ `sdp
M ↪→ V : b

Ψ `sdp
M ⇑ V : b

ec at
Ψ ] {x : B1} `sdp

Mx ⇑ V : B2

Ψ `sdp
M ⇑ λx : B1.V : B1 → B2

ec arr

Ψ `sdp
fstM ⇑ V1 : B1 Ψ `sdp

sndM ⇑ V2 : B2

Ψ `sdp
M ⇑ 〈V1, V2〉 : B1 × B2

ec pair
Ψ `sdp

M ⇑ 〈〉 : 1
ec unit

Ψ `sdp
M ↪→ V : A Evaluation

Ψ `sdp
x ↪→ x : B

ev var
Ψ `sdp

c ↪→ c : B → b
ev const

Ψ `sdp 〈〉 ↪→ 〈〉 : 1
ev unit

∅; Ψ ] {x : A2} `sdp
M : A2

Ψ `sdp
λx : A1.M ↪→ λx : A1.M : A1 → A2

ev lam

Ψ `sdp
M1 ↪→ λx : A2.M ′

1 : A2 → A1

Ψ `sdp
M2 ↪→ V2 : A2

Ψ `sdp
M ′

1{V2/x} ↪→ V : A1

Ψ `sdp
M1M2 ↪→ V : A1

ev app

Ψ `sdp
M1 ↪→ V1 : B2 → B1

Ψ `sdp
V1 ↓ B2 → B1

Ψ `sdp
M2 ⇑ V2 : B2

Ψ `sdp
M1M2 ↪→ V1V2 : B1

ev at

∅; Ψ `sdp
M1 : B1 ∅; Ψ `sdp

M2 : B2

Ψ `sdp 〈M1, M2〉 ↪→ 〈M1, M2〉 : B1 × B2

ev pair

Ψ `sdp
M ↪→ 〈M1, M2〉 : A1 ×A2 Ψ `sdp

M1 ↪→ V : A1

Ψ `sdp
fstM ↪→ V : A1

ev fst

Ψ `sdp
M ⇑ 〈V1, V2〉 : B1 × B2

Ψ `sdp
fstM ↪→ V1 : B1

ev fst at

Ψ `sdp
M ↪→ 〈M1, M2〉 : A1 ×A2 Ψ `sdp

M2 ↪→ V : A2

Ψ `sdp
sndM ↪→ V : A2

ev snd

Ψ `sdp
M ⇑ 〈V1, V2〉 : B1 × B2

Ψ `sdp
sndM ↪→ V2 : B2

ev snd at
∅; ∅ `sdp

M : A

Ψ `sdp
boxM ↪→ boxM : �A

ev box

Ψ `sdp
M1 ↪→ boxM ′

1 : �A1 Ψ `sdp
M2{M ′

1/x} ↪→ V : A2

Ψ `sdp
let box x : A1 = M1 inM2 ↪→ V : A2

ev letb

Ψ `sdp
M ↪→ boxM ′ : �B

∅ `sdp
M ′ ⇑ V ′ : B

Ψ `sdp 〈A, ∅, Θ〉(V ′) ↪→ V : A〈B〉
Ψ `sdp

iter [�B, A][Θ] M ↪→ V : A〈B〉
ev it

Fig. 9. SDP evaluation rules
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〈A, Ψ, Θ〉(M) Elimination

〈A, Ψ, Θ〉(x) , Θ(x)
el var

〈A, Ψ, Θ〉(c) , Θ(c)
el const

〈A, Ψ ] {x : B}, Θ〉(V) , M

〈A, Ψ, Θ〉(λx : B.V) , λx : A〈B〉.M
el lam

〈A, Ψ, Θ〉(V1) , M1 〈A, Ψ, Θ〉(V2) , M2

〈A, Ψ, Θ〉(V1V2) , M1M2

el app
〈A, Ψ, Θ〉(V) , M

〈A, Ψ, Θ〉(fstV) , fstM
el fst

〈A, Ψ, Θ〉(V) , M

〈A, Ψ, Θ〉(sndV) , sndM
el snd

〈A, Ψ, Θ〉(V1) , M1 〈A, Ψ, Θ〉(V2) , M2

〈A, Ψ, Θ〉(〈V1, V2〉) , 〈M1, M2〉
el prod

〈A, Ψ, Θ〉(〈〉) , 〈〉
el unit

Fig. 10. SDP elimination rules

Operationally, iteration in the SDP calculus works in the following fashion.

Ψ `sdp
M ↪→ boxM ′ : �B

∅ `sdp
M ′ ⇑ V ′ : B

Ψ `sdp 〈A,Ψ,Θ〉(V ′) ↪→ V : A〈B〉
Ψ `sdp iter [�B, A][Θ] M ↪→ V : A〈B〉 ev it

First, the argument to iteration M is evaluated, Ψ `sdp
M ↪→ boxM ′ : �B, producing

a boxed object M ′. M ′ is then evaluated to η-long canonical form via ∅ `sdp
M ′ ⇑

V ′ : B. Next we perform elimination of that canonical form, 〈A,Ψ,Θ〉(V ′), walking
over V ′ and using Θ to replace the occurrences of constants. Finally, we evaluate
that result, Ψ `sdp 〈A,Ψ,Θ〉(V ′) ↪→ V : A〈B〉.

Elimination, described in Figure 10, is used to describe the structure of a term
after iteration. The only interesting cases to elimination are those for variables,
constants, and abstractions. When elimination encounters an abstraction, it chooses
a fresh variable and adds it to the mapping Θ. It then eliminates recursively on the
body M of the abstraction, wrapping the result with an abstraction of the correct
type, one where b is replaced by A. The variable and the constant cases use the
mappings in the replacement Θ.

In order to simplify the presentation of the encoding, we have made a few changes
to the SDP calculus. First, while the language presented in this paper has only one
pure base type b, the SDP calculus allows the signature Σ to contain arbitrarily
many base types. However, the extension of the encoding to several base types is
straightforward. Also, in order to make the constants of the pure language more
closely resemble datatype constructors, we have forced them all to be of the form
B → b instead of any arbitrary pure type B. To facilitate this restriction, we add
unit and pairing to the pure fragment of the calculus so that constructors may take
any number of arguments.
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(Kinds) κ ::= ? | κ1 → κ2

(Types) τ ::= 1 | 0 | α | τ1 → τ2 | ∀α :κ.τ | τ1 × τ2 | 〈l1 : τ1, . . . , ln : τn〉
| λα : κ.τ | τ1τ2

(Terms) e ::= x | 〈〉 | λx : τ.e | e1e2 | Λα :κ.e | e[τ] | 〈e1, e2〉 | fst e | snd e

| injl eof τ | case eof injl1
x1 in e1 . . . injln

xn in en

(Type Environment) ∆ ::= ∅ | ∆ ] {α : κ}

(Term Environment) Γ ::= ∅ | Γ ] {x : τ}

Fig. 11. Syntax of Fω with unit, void, products, and variants

∆ `Fω τ : κ Well-formed types

∆(α) = κ

∆ `Fω α : κ
wf tvar

∆ `Fω τ1 : ? ∆ `Fω τ2 : ?

∆ `Fω τ1 → τ2 : ?
wf arrow

∆ ] {α : κ} `Fω τ : ?

∆ `Fω ∀α : κ.τ : ?
wf forall

∆ `Fω 1 : ? → ?
wf unit

∆ `Fω 0 : ?
wf void

∆ `Fω τ1 : ? ∆ `Fω τ2 : ?

∆ `Fω τ1 × τ2 : ?
wf times

∆ `Fω τ1 : ? . . . ∆ `Fω τn : ?

∆ `Fω 〈l1 : τ1, . . . , ln : τn〉 : ?
wf variant

∆ ] {α : κ1} `Fω τ : κ2

∆ `Fω λα : κ1.τ : κ1 → κ2

wf abs

∆ `Fω τ1 : κ1 → κ2 ∆ `Fω τ2 : κ1

∆ `Fω τ1τ2 : κ2

wf app

∆ ` Γ Well-formed environments

∀x : τ ∈ Γ ∆ `Fω τ : ?

∆ `Fω Γ
wf env

Fig. 12. Well-formedness of types and environments for Fω

5 Encoding SDP in Fω

The terms that we defined in Section 3, roll and iter, correspond very closely
to the constructors and iteration primitive of the SDP calculus. In this section, we
strengthen this observation by showing how to encode all programs written in the
SDP calculus into Fω using a variation of these terms.

There are two key ideas behind our encoding:

• We use type abstraction to ensure that the encoding of boxed objects obeys
the closure property of the source language, and prevents variables from the
local environment from appearing inside these terms. To do so, we parameter-
ize our encoding by a type that represents the current world and maintain the
invariant that all variables in the local environment mention the current world
in their types. Because a term enclosed within a box must be well-typed in
any world, when we encode a boxed term we use a fresh type variable to cre-
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∆; Γ `Fω e : τ

∆ ` Γ Γ(x) = τ

∆; Γ `Fω x : τ
tp var

∆; Γ `Fω e : τ ∆ `Fω τ ≡βη τ ′ : ?

∆; Γ `Fω e : τ ′
tp eq

∆ `Fω τ1 : ? ∆; Γ ] {x : τ1} `Fω e : τ2

∆; Γ `Fω λx : τ1.e : τ1 → τ2

tp abs

∆; Γ `Fω e1 : τ1 → τ2 ∆; Γ `Fω e2 : τ1

∆; Γ `Fω e1e2 : τ2

tp app ∆ ` Γ

∆; Γ `Fω 〈〉 : ∀α : ?.1(α)
tp unit

∆ ] {α : κ}; Γ `Fω e : τ

∆; Γ `Fω Λα :κ.e : ∀α :κ.τ
tp tabs

∆ `Fω τ ′ : κ ∆; Γ `Fω e : ∀α :κ.τ

∆; Γ `Fω e[τ ′] : τ{τ ′/α}
tp tapp

∆; Γ `Fω e1 : τ1 ∆; Γ `Fω e2 : τ2

∆; Γ `Fω 〈e1, e2〉 : τ1 × τ2

tp pair
∆; Γ `Fω e : τ1 × τ2

∆; Γ `Fω fst e : τ1

tp fst

∆; Γ `Fω e : τ1 × τ2

∆; Γ `Fω snd e : τ2

tp snd

∆ `Fω τ1 : ? . . . ∆; Γ `Fω e : τi . . . ∆ `Fω τn : ?

∆; Γ `Fω injli
eof 〈l1 : τ1, . . . , li : τi, . . . , ln : τn〉 :

〈l1 : τ1, . . . , li : τi, . . . , ln : τn〉

tp variant

∆; Γ `Fω e : 〈l1 : τ1, . . . , ln : τn〉
∆; Γ ] {x1 : τ1} `Fω e1 : τ . . . ∆; Γ ] {xn : τn} `Fω en : τ

∆; Γ `Fω case eof injl1
x1 in e1 . . . injln

xn in en : τ
tp case

Fig. 13. Typing rules for Fω

ate an arbitrary world. We then encode the enclosed term with that new world
and wrap the result with a type abstraction. As a consequence, the encoding
of a data-structure within a box cannot contain free local variables because
their types would mention that fresh type variable outside of the scope of the
type abstraction. The essence of this encoding was also used by Honsell and
Miculan in formalizing dynamic logic within a logical framework (Honsell &
Miculan, 1995).

• We encode constants in the source language as their elimination form with
roll. Furthermore, we restrict the result of elimination to be of the type that
is the world in which the term was encoded. However, the encoding of boxed
expressions quantifies over that world, allowing the resulting computations to
be of arbitrary type.

The encoding of the SDP calculus can be broken into four primary pieces: the
encodings for signatures, types, terms, and replacements. To simplify our presen-
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∆ `Fω τ1 ≡βη τ2 : κ

∆ `Fω τ : κ

∆ `Fω τ ≡βη τ : κ
tp eq refl

∆ `Fω τ1 ≡βη τ2 : κ

∆ `Fω τ2 ≡βη τ1 : κ
tp eq sym

∆ `Fω τ1 ≡βη τ2 : κ ∆ `Fω τ2 ≡βη τ3 : κ

∆ `Fω τ1 ≡βη τ3 : κ
tp eq trans

∆(α) = κ

∆ `Fω α ≡βη α : κ
tp eq var

∆ `Fω (λα : κ1.τ)τ ′ : κ or ∆ `Fω τ{τ ′/α} : κ

∆ `Fω (λα : κ1.τ)τ ′ ≡βη τ{τ ′/α} : κ
tp eq abs beta

∆ `Fω (λα : κ1.τα) : κ1 → κ2 or ∆ `Fω τ : κ1 → κ2 α 6∈ FTV(τ)

∆ `Fω (λα : τ1.τα) ≡βη τ : κ1 → κ2

tp eq abs eta

∆ ] {α : κ1} `Fω τ1 ≡βη τ2 : κ2

∆ `Fω λα : κ1.τ1 ≡βη λα : κ1.τ2 : κ1 → κ2

tp eq abs

∆ `Fω τ1 ≡βη τ3 : κ1 → κ2 ∆ `Fω τ2 ≡βη τ4 : κ1

∆ `Fω τ1τ2 ≡βη τ3τ4 : κ2

tp eq app

∆ `Fω 1 ≡βη 1 : ? → ?
tp eq unit

∆ `Fω 0 ≡βη 0 : ?
tp eq void

∆ ] {α : κ} `Fω τ1 ≡βη τ2 : ?

∆ `Fω ∀α : κ.τ1 ≡βη ∀α : κ.τ2 : ?
tp eq forall

∆ `Fω τ1 ≡βη τ3 : ? ∆ `Fω τ2 ≡βη τ4 : ?

∆ `Fω τ1 → τ2 ≡βη τ3 → τ4 : ?
tp eq arrow

∆ `Fω τ1 ≡βη τ3 : ? ∆ `Fω τ2 ≡βη τ4 : ?

∆ `Fω τ1 × τ2 ≡βη τ3 × τ4 : ?
tp eq times

∆ `Fω τ1 ≡βη τ ′
1 : ? . . . ∆ `Fω τn ≡βη τ ′

n : ?

∆ `Fω 〈l1 : τ1, . . . , ln : τn〉 ≡βη 〈l1 : τ ′
1, . . . , ln : τ ′

n〉 : ?
tp eq variant

Fig. 14. Type congruences for Fω

tation, we extend the target language with unit, void, products, and variants. The
syntax of these terms appears in Figure 11. In the remainder of this section, we
present the details of the encoding and describe the most interesting cases.

Signatures. The encoding of signatures in the SDP calculus, notated τ〈Σ〉, cor-
responds to generating the type constructor whose fixed point defines the recursive
datatype. (For example, ExpF in Section 2.) The argument of the encoding, a spec-
ified world τ, corresponds to the argument of the type constructor.

For this encoding, we assume the aid of an injective function L that maps data
constructors in the source language to distinct labels in the target language. We also
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∆; Γ `Fω e1 ≡βη e2 : τ

∆; Γ `Fω e : τ

∆; Γ `Fω e ≡βη e : τ
eq refl

∆; Γ `Fω e1 ≡βη e2 : τ

∆; Γ `Fω e2 ≡βη e1 : τ
eq sym

∆; Γ `Fω e1 ≡βη e2 : τ ∆; Γ `Fω e2 ≡βη e3 : τ

∆; Γ `Fω e1 ≡βη e3 : τ
eq trans

∆; Γ `Fω e ≡βη e ′ : τ ∆ `Fω τ ≡βη τ ′ : ?

∆; Γ `Fω e ≡βη e ′ : τ ′
eq tp eq

∆; Γ `Fω e : 1(τ)

∆; Γ `Fω e ≡βη 〈〉[τ] : 1τ
eq unit

∆ `Fω Γ Γ(x) = τ

∆; Γ `Fω x ≡βη x : τ
eq var

∆; Γ `Fω (λx : τ1.e)e ′ : τ or ∆; Γ `Fω e{e ′/x} : τ

∆; Γ `Fω (λx : τ1.e)e ′ ≡βη e{e ′/x} : τ
eq abs beta

∆; Γ `Fω (λx : τ1.ex) : τ1 → τ2 or ∆; Γ `Fω e : τ1 → τ2 x 6∈ FV(e)

∆; Γ `Fω (λx : τ1.ex) ≡βη e : τ1 → τ2

eq abs eta

∆; Γ `Fω (Λα : κ.e)[τ] : τ ′ or ∆; Γ `Fω e{τ/α} : τ ′

∆; Γ `Fω (Λα : κ.e)[τ] ≡βη e{τ/α} : τ ′
eq tabs beta

∆; Γ `Fω Λα : κ.e[α] : ∀α : κ.τ or ∆; Γ `Fω e : ∀α : κ.τ α 6∈ FTV(e)

∆; Γ `Fω (Λα : κ.e[α]) ≡βη e : ∀α : κ.τ
eq tabs eta

∆; Γ `Fω 〈e1, e2〉 : τ1 × τ2

∆; Γ `Fω fst 〈e1, e2〉 ≡βη e1 : τ1

eq pair beta1

∆; Γ `Fω 〈e1, e2〉 : τ1 × τ2

∆; Γ `Fω snd 〈e1, e2〉 ≡βη e2 : τ2

eq pair beta2

∆; Γ `Fω e : τ1 × τ2

∆; Γ `Fω 〈fst e, snd e〉 ≡βη e : τ1 × τ2

eq pair eta

∆; Γ ] {x : τ1} `Fω e1 ≡βη e2 : τ3 ∆ `Fω τ1 ≡βη τ2 : κ

∆; Γ `Fω λx : τ1.e1 ≡βη λx : τ2.e2 : τ1 → τ3

eq abs

∆; Γ `Fω e1 ≡βη e3 : τ1 → τ2 ∆; Γ `Fω e2 ≡βη e4 : τ1

∆; Γ `Fω e1e2 ≡βη e3e4 : τ2

eq app

∆ ] {α : κ}; Γ `Fω e1 ≡βη e2 : τ

∆; Γ `Fω Λα : κ.e1 ≡βη Λα : κ.e2 : ∀α : κ.τ
eq tabs

Fig. 15. Term congruences for Fω (part one)
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∆; Γ `Fω e1 ≡βη e2 : τ

∆; Γ `Fω e1 ≡βη e2 : ∀α : κ.τ ∆ `Fω τ1 ≡βη τ2 : κ

∆; Γ `Fω e1[τ1] ≡βη e2[τ2] : τ{τ1/α}
eq tapp

∆; Γ `Fω e1 ≡βη e3 : τ1 ∆; Γ `Fω e2 ≡βη e4 : τ2

∆; Γ `Fω 〈e1, e2〉 ≡βη 〈e3, e4〉 : τ1 × τ2

eq pair

∆; Γ `Fω e1 ≡βη e2 : τ1 × τ2

∆; Γ `Fω fst e1 ≡βη fst e2 : τ1

eq fst
∆; Γ `Fω e1 ≡βη e2 : τ1 × τ2

∆; Γ `Fω snd e1 ≡βη snd e2 : τ2

eq snd

∆; Γ `Fω e1 ≡βη e2 : τ1 ∆ `Fω τ1 ≡βη τ2 : κ

∆; Γ `Fω injl e1 of τ1 ≡βη injl e2 of τ2 : 〈. . . , l : τ1, . . .〉
eq inj

∆; Γ `Fω e1 ≡βη e2 : 〈l1 : τ1, . . . , ln : τn〉
∆; Γ ] {y1 : τ1} `Fω e ′

1 ≡βη e ′′
1 : τ ′ . . . ∆; Γ ] {yn : τn} `Fω e ′

n ≡βη e ′′
n : τ ′

∆; Γ `Fω case e1 of injl1
y1 in e ′

1

. . .

injln
yn in e ′

n

≡βη case e2 of injl1
y1 in e ′′

1

. . .

injln
yn in e ′′

n

: τ2

eq case

∆; Γ ] {y1 : τ1} `Fω e1 : τ ′ . . . ∆; Γ ] {yn : τn} `Fω en : τ ′

∆; Γ `Fω case (injli
eof )〈l1 : τ1, . . . , ln : τn〉of

injl1
y1 in e1

. . .

injln
yn in en

≡βη ei{e/yi} : τ2

eq case beta

Fig. 16. Term congruences for Fω (part two)

need an operation called parameterization, notated τ〈B〉 and defined in Figure 18.
This operation parameterizes pure types in the source calculus with respect to a
given world in the target language, and produces a type in the target language.
Essentially, τ〈B〉 “substitutes” the type τ for the base type, b, in B.

We encode a signature as a variant. Each field corresponds to a constant ci in the
signature, with a label according to L, and a type that is the result of parameterizing
the argument type of ci with the provided type.

∀ci ∈ dom(Σ) Σ(ci) = Bi → b

τ〈Σ〉 , 〈L(c1) : τ〈B1〉, . . . ,L(cn) : τ〈Bn〉〉
en sig

We often use parameterization and the signature translation to build type con-
structors in the target language, so we define the following two abbreviations:

B∗ , λα : ?.α〈B〉 Σ∗ , λα : ?.α〈Σ〉

If were to start from the version of SDP that includes multiple base types, each
disjoint base type in the signature would be translated to a different variant type.
If there was a mutually recursive dependency between two or more base types, we
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τ1〈Σ〉 , τ2 Signatures

∀ci ∈ dom(Σ) Σ(ci) = Bi → b

τ〈Σ〉 , 〈L(c1) : τ〈B1〉, . . . ,L(cn) : τ〈Bn〉〉
en sig

∆ ` A Bτ1 τ2 Types

∆ ` b Bτ Rec Σ∗ τ
en tp b

α 6∈ ∆ ∆ ] {α : ? → ?} ` A Bατ τ ′

∆ ` �A Bτ ∀α :? → ?.τ ′ en tp box

∆ ` 1 Bτ 1(τ)
en tp unit

∆ ` A1 Bτ τ1 ∆ ` A2 Bτ τ2

∆ ` A1 → A2 Bτ τ1 → τ2

en tp arrow

∆ ` A1 Bτ τ1 ∆ ` A2 Bτ τ2

∆ ` A1 ×A2 Bτ τ1 × τ2
en tp prod

∆; Ξ ` M Bτ e Terms

x 6∈ Ξ

∆; Ξ ` x Bτ x
en var

x ∈ Ξ

∆; Ξ ` x Bτ x[λα : ?.τ]
en bvar

α 6∈ ∆ ∆ ] {α : ? → ?}; Ξ ` M Bατ e

∆; Ξ ` boxM Bτ Λα :? → ?.e
en box

∆; Ξ ` 〈〉Bτ 〈〉[τ]
en unit

Σ(c) = B → b ∆ ` B Bτ τB

∆; Ξ ` c Bτ λx : τB.roll[τ](injL(c) xof Σ∗(Rec Σ∗ τ))
en con

∆; Ξ ` M Bτ e ∆ ` A1 Bτ τ1

∆; Ξ ` λx : A1.M Bτ λx : τ1.e
en abs

∆; Ξ ` M1 Bτ e1 ∆; Ξ ` M2 Bτ e2

∆; Ξ ` M1M2 Bτ e1e2

en app

∆ ` �A1 Bτ τ1

∆; Ξ ` M1 Bτ e1 ∆; Ξ ] {x} ` M2 Bτ e2

∆; Ξ ` let box x : A1 = M1 inM2 Bτ (λx : τ1.e2)e1
en letb

∆; Ξ ` M1 Bτ e1 ∆; Ξ ` M2 Bτ e2

∆; Ξ ` 〈M1, M2〉Bτ 〈e1, e2〉
en pair

∆; Ξ ` M Bτ e

∆; Ξ ` fstM Bτ fst e
tr fst

∆; Ξ ` M Bτ e

∆; Ξ ` sndM Bτ snd e
en snd

∆ ` A Bτ τA ∆; Ξ ` Θ BτA
τ eΘ ∆; Ξ ` M Bτ eM

∆; Ξ ` iter [�B, A][Θ] M Bτ iter{|B∗|}[τ][τA] eΘ eM
en iter

∆; Ξ ` Θ Bτ1
τ2

e Replacements

∀ci ∈ dom(Θ) ∆; Ξ ` Θ(ci) Bτ ei

∆; Ξ ` Θ BτA
τ λx : Σ∗τA.case xof injL(c1) y1 in (e1y1)

. . .

injL(cn) yn in (enyn)

en rep

Fig. 17. Full encoding of SDP
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τ〈b〉 , τ

τ〈1〉 , 1(τ)

τ〈B1 → B2〉 , τ〈B1〉 → τ〈B2〉
τ〈B1 × B2〉 , τ〈B1〉 × τ〈B2〉

Fig. 18. Parameterization

would need to combine them into a single base type using a technique like the
Bekić-Leszczy lowski Theorem, and then encode that new type as a single variant
in Fω (1984; 2005).

Types. As with the encoding of signatures, the encoding of types is parame-
terized by the worlds in which they occur. We write the judgment for encoding
a type A in the source calculus in world τ as ∆ ` A Bτ τ ′. The environment ∆

tracks type variables allocated during the translation and allows us to choose vari-
ables that are not in scope. The two interesting cases for encoding types from the
source calculus are those for the base type and for boxed types. The case for b

corresponds to Rec ExpF a from Section 3. Therefore, we define the abbreviation
Rec Σ∗ α , (Σ∗α → α) → α, intuitively a fixed point of Σ∗, to the same idea of
encoding a datatype as its elimination form.

∆ ` b Bτ Rec Σ∗ τ
en tp b

The rule for boxed types uses type abstraction to ensure the result is parametric
with respect to its world. Näıvely, we might expect to use a fresh type variable
as the new world and then encode the contents of the boxed type with that type
variable. This encoding ensures that the type is parametric with respect to its world
and then quantifies over the result.

α 6∈ ∆ ∆ ] {α : ?} ` A Bα τ ′

∆ ` �A Bτ ∀α :?.τ ′
en tp box wrong

However, with this encoding we violate the invariant that the types of all free local
variables mention the current world, because the encoding does not involve τ. In-
stead, we use the fresh type variable to create a new world from the current world
and consider α as a “world transformer”. During the translation, a term will be
encoded with a stack of world transformers, somewhat akin to stack of environ-
ments in the implicit formulation of modal types by Pfenning and Davies (Davies
& Pfenning, 2001). Their type system is inspired by the semantic interpretation of
S4 modal logic in terms of Kripke models (Kripke, 1959).

α 6∈ ∆ ∆ ] {α : ? → ?} ` A Bατ τ ′

∆ ` �A Bτ ∀α :? → ?.τ ′
en tp box

The näıve translation of the unit type also forgets the current world. For this
reason, we add a non-standard unit to Fω that is parameterized by the current
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world. In other words, the unit type 1 is of kind ? → ? and the unit term 〈〉 has
type ∀α :?.1(α).

Our type translation instantiates this type with the current world.

∆ ` 1 Bτ 1(τ)
en tp unit

This unconventional definition for unit is not a semantic problem, as it is derivable
from a more standard unit, with term unit of type Unit, as follows:

1 , λα:: ? .α → Unit

〈〉 , Λα:: ? .λx:α.unit

The semantics of our 1 and 〈〉, including the η-rule eq unit in Figure 15, are fully
derivable from the standard semantics for unit and Unit.

The remaining types in the SDP language are encoded recursively in a straight-
forward manner. The complete rules can be found in Figure 17.

Terms and replacements. We encode the source term, M, with the judgment
∆; Ξ ` M Bτ e. In addition to the current world, τ, and the set of allocated type
variables, ∆, the encoding of terms is also parameterized by a set of term variables,
Ξ. This set of variables allows the encoding to distinguish between variables that
were bound with λ and those bound with let box. We will elaborate on why this
set is necessary shortly.

Our encoding of boxed terms follows immediately from the encoding of boxed
types. Here we encode the argument term with respect to a fresh world transformer
applied to the present world and then wrap the result with a type abstraction.

α 6∈ ∆ ∆ ] {α : ? → ?}; Ξ ` M Bατ e

∆; Ξ ` boxM Bτ Λα :? → ?.e
en box

We encode let box by converting it to an abstraction and application in the target
language. However, one might note the discrepancy between the type of the variable
we bind in the abstraction and the type we might näıvely expect.

∆ ` �A1 Bτ τ1

∆; Ξ ` M1 Bτ e1 ∆; Ξ ] {x} ` M2 Bτ e2

∆; Ξ ` let box x : A1 = M1 inM2 Bτ (λx : τ1.e2)e1
en letb

The type of x is A1 and so one might assume that the type of x in the target should
be the encoding of A1 in the world τ. However, let box allows us to bind variables
that are accessible in any world and using A1 encoded against τ would allow the
result to be used only in the present world. Because the encoding of M1 will evaluate
to a type abstraction, a term parametric in its world, we do not immediately unpack
it by instantiating it with the current world. Instead we pass it as x and then, when
x appears we instantiate it with the current world. Consequently, we use Ξ to keep
track of variables bound by let box. When encoding variables, we check whether
x occurs in Ξ and perform instantiations as necessary.

x 6∈ Ξ

∆; Ξ ` x Bτ x
en var

x ∈ Ξ

∆; Ξ ` x Bτ x[λα : ?.τ]
en bvar
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cata : ∀α :?.(Σ∗α → α) → (Rec Σ∗ α) → α

cata , Λα :?..λf : (Σ∗α → α).λy : (Rec Σ∗ α).yf

place : ∀α :?.α → Rec Σ∗ α

place , Λα :?.λx : α.λf : (Σ∗α → α).x

xmap{|τ : ? → ?|} : ∀α :?.∀β :?.(α → β× β → α) → (τα → τβ× τβ → τα)

openiter{|τ : ? → ?|} : ∀α :?.(Σ∗α → α) → τ(Rec Σ∗ α) → τα

openiter{|τ : ? → ?|} , Λα :?.λf : Σ∗α → α.

fst (xmap{|τ|}[Rec Σ∗ α][α]〈cata[α]f,place[α]〉)

iter{|τ : ? → ?|} : ∀γ :?.∀α :?.(Σ∗α → α) → (∀β :? → ?.τ(Rec Σ∗ (βγ)) → τα

iter{|τ : ? → ?|} , Λγ :?.Λα :?.λf : Σ∗α → α.

λx : (∀β : ? → ?.τ(Rec Σ∗ (βγ))).openiter{|τ|}[α]f(x[λδ : ?.α])

roll : ∀α :?.Σ∗(Rec Σ∗ α) → Rec Σ∗ α

roll , Λα :?.λx : Σ∗(Rec Σ∗ α).λf : Σ∗α → α.f(openiter{|Σ∗|}[α] f x)

Fig. 19. Library routines

If the variable is in Ξ, then it is applied to a world transformer that ignores its
argument, and returns the present world. This essentially replaces the bottom of
the world transformer stack captured by the type abstraction substituted for x with
the world τ. Doing so ensures that if we substitute the encoding of a boxed term
into the encoding of another boxed term, the type correctness of the embedding is
maintained by correctly propagating the enclosing world.

Figure 19 shows the types and definitions of the library routines used by the
encoding. The only difference between it and Figure 5 is that iter abstracts the
current world and requires that its argument be valid in any transformation of the
current world. Again, we make use of the polytypic function xmap to lift cata to
arbitrary type constructors. Because xmap is defined by the structure of a type
constructor τ, we cannot directly define it as a term in Fω. Instead, we will think
of xmap{|τ|} as macro that expands to the mapping function for the type construc-
tor τ. (We use the notation {|·|} to distinguish between polytypic instantiation and
parametric type instantiation.) This expansion is done according to the definition
in Figure 2. We do not cover the implementation here, see Hinze (2002) for details.

Encoding constants in the source calculus makes straightforward use of the library
routine roll. We simply translate the constant into an abstraction that accepts a
term that is the encoding of the argument of the constant, and then uses roll to
transform the injection into the encoding of the base type, Rec Σ∗ τ.

Σ(c) = B → b ∆ ` B Bτ τB

∆; Ξ ` c Bτ λx : τB.roll[τ](injL(c) x of Σ∗(Rec Σ∗ τ))
en con

The encoding of iteration is similarly straightforward. We instantiate our polytypic
function iter with a type constructor created from parameterizing B, and then
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apply it to the current world and the encodings of the intended result type A, the
replacement term Θ and argument term M.

∆ ` A Bτ τA ∆; Ξ ` Θ BτA
τ eΘ ∆; Ξ ` M Bτ eM

∆; Ξ ` iter [�B, A][Θ] M Bτ iter{|B∗|}[τ][τA] eΘ eM
en iter

The encoding of replacements Θ is uncomplicated and analogous to the encoding
of signatures. We construct an abstraction that consumes an instance of an en-
coded signature, dispatching the variant using a case expression. In each branch,
the encoding of the corresponding replacement is applied to the argument of the
injection.

∀ci ∈ dom(Θ) ∆; Ξ ` Θ(Ci) Bτ ei

∆; Ξ ` Θ BτA
τ λx : Σ∗τA.case xof injL(c1) y1 in (e1y1)

. . .

injL(cn) yn in (enyn)

en rep

The encodings for the other terms in the source language are straightforward and
appear in Figure 17. Now that we have defined all of our encoding for any closed
term M in the SDP calculus, we put everything together to construct a term e in
our target calculus using the initial judgment ∅; ∅ ` MB0 e. We use the void type
as the initial world to enforce the parametricity of unboxed constants.

6 Static correctness

Our notion of static correctness is that encoding is type preserving. If we encode a
well-typed term M, the resulting term will be well-typed under the appropriately
translated environment. Furthermore, the converse is also true. If the encoding of a
term M is well-typed in the target language, then M must have been well-typed in
the source. This means that the target language preserves the abstractions of the
source language.

However, because we allow for the encoding of open terms, before we can begin
to reason about static correctness and other properties, we must first define a
relationship between source and target language environments.

Definition 6.1 (Encoding typing environments)
We write ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 to mean that

∀x.x : A ∈ Υ ⇔ x : τA ∈ Γ1 where ∆ `Fω τ : ? and ∆ ` A Bτ τA

∀x.x : A ∈ Ω ⇔ x : τA ∈ Γ2 where there exists some ∆ `Fω τ ′ : ? such that
∆ ` �A Bτ ′ τA

The relation for valid environments above is not parameterized by the current
world. A single valid environment may be encoded at many different target envi-
ronments, depending on what worlds are chosen for each type in the environment.
However, in a sense the encodings are equivalent. If the translation of M type checks
with one encoding of Ω, it will type check with any other encoding of Ω.
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The following theorem proves our primary static correctness result, supported by
a number of lemmas that appear after the proof.

Theorem 6.2 (Static correctness)

1. If ∆; dom(Ω) ` M Bτ e then
if ∆ ` Υ Bτ Γ1

and ∆ ` Ω B Γ2

and ∆ ` A Bτ τA

then Ω; Υ `sdp
M : A ⇔ ∆; Γ1 ] Γ2 `Fω e : τA.

2. If ∆; dom(Ω) ` Θ BτA
τ eΘ then

if ∆ ` Υ Bτ Γ1

and ∆ ` Ω B Γ2

and ∆ ` A Bτ τA

then Ω; Υ `sdp
Θ : A〈Σ〉 ⇔ ∆; Γ1 ] Γ2 `Fω eΘ : Σ∗τA → τA.

Proof
By mutual induction over the structure of ∆; dom(Ω) ` M Bτ e and
∆; dom(Ω) ` Θ BτA

τ eΘ.
Most cases make use of Definition 6.1 (environment encoding), Lemma A.12

(environment encoding well-formedness), and Lemma A.3 (inversion). Additionally
many cases involving explicitly typed terms make use of Lemma A.7 (uniqueness of
type encoding), Lemma A.2 (well-formedness of type encoding), Lemma A.6 (type
encodings is total and decidable), and Lemma 6.6 (type encoding with congruent
results). The last, we cover in more detail later.

• The case for en bvar requires Lemma A.9 (world substitution on type encod-
ing), Lemma A.8 (encoding under congruent worlds), and Lemma 6.6 (typing
encoding with congruent results).

• The case for en box requires the most difficult lemma, Lemma 6.3 (local
strengthening) which we cover in more detail later.

• The case for en con requires Lemma A.10 (commutativity of parameterization
and type encoding).

• Finally, the case for en iter makes use of Lemma A.10 (commutativity of
parameterization and type encoding) and Lemma A.11 (commutativity of
iteration types and type encoding).

An important lemma is required for boxed terms in the backward direction. To
show that the boxed term is well-typed in the source language, we need to show
that the local environment is empty.

We use the following lemma to do so, which guarantees that if the term is encoded
with respect to some world containing a type variable α, if the local environment
is encoded with respect to a world that does not contain the type variable α, then
those bindings must be unnecessary for the typing derivation.
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Lemma 6.3 (Local strengthening)
• Assume ∆ ] {α : ? → ?} ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 and α 6∈ FTV(τ).
• If ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e

and ∆ ] {α : ? → ?}; Γ1 ] Γ2 `sdp
e : τ ′

where ∆ ] {α : ? → ?} ` A Bατ τ ′

then ∆ ] {α : ? → ?}; Γ1 `Fω e : τ ′

Proof
We cannot prove this lemma directly, but must instead generalize the induction
hypothesis, yielding the next Lemma 6.4 (superfluous context elimination). It then
follows by instantiating Lemma 6.4 with Υi ∈ {Υ} and Υ = ∅.

Lemma 6.4 (Superfluous context elimination)

1. If ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e

and ∆ ` Υi Bτi
Γi

and α 6∈ FTV(Γi)

and ∆ ] {α : ? → ?} ` Ω B Γ

and ∆ ] {α : ? → ?} ` Υ ′ Bατ Γ ′

and ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ ′ `Fω e : τ ′

where ∆ ] {α : ? → ?} ` A Bατ τ ′

then ∆ ] {α : ? → ?}; Γ ] Γ ′ `Fω e : τ ′.
2. If ∆ ] {α : ? → ?}; dom(Ω) ` Θ BτA

ατ eΘ

and ∆ ` Υi Bτi
Γi

and α 6∈ FTV(Γi)

and ∆ ] {α : ? → ?} ` Ω B Γ

and ∆ ] {α : ? → ?} ` Υ ′ Bατ Γ ′

and∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ ′ `Fω eΘ : Σ∗τA → τA

where ∆ ] {α : ? → ?} ` A Bατ τA

then ∆ ] {α : ? → ?}; Γ ] Γ ′ `Fω eΘ : Σ∗τA → τA.

Proof
By mutual induction over the structure of ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e and
∆ ] {α : ? → ?}; dom(Ω) ` Θ BτA

ατ eΘ.
Most cases only require Definition 6.1 (environment encoding), Lemma A.3 (in-

version for typing derivations), and Lemma A.3 (inversion for type encoding). Ad-
ditionally, the case for en var uses Lemma A.13 (type containment) and the case
for en rep uses Lemma A.10 (commutativity for iteration types).

Since System Fω treats types identical up the equivalence relation ∆ `Fω τ1 ≡βη

τ2 : κ, inversion lemmas that rely on the structure of types, such as inversion on
typing derivations, type congruences, and type encoding do not follow trivially by
inspection. However, it is possible to strengthen some of these inversion lemmas by
recognizing that type encoding always produces types in Fω that are in weak head
normal form. We use the judgment ∆ `Fω τ � κ to indicate that type τ with kind κ

is in weak head normal form with respect to ∆. See Figure 20 for the definition.
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∆(α) = κ

∆ `Fω α � κ
whnf var

∆ `Fω τ1 : ? ∆ `Fω τ2 : ?

∆ `Fω τ1 → τ2 � ?
whnf arrow

∆ ] {α : κ} `Fω τ : ?

∆ `Fω ∀α : κ.τ � ?
whnf forall

∆ `Fω 1 � ? → ?
whnf unit

∆ `Fω 0 � ?
whnf void

∆ `Fω τ1 : ? ∆ `Fω τ2 : ?

∆ `Fω τ1 × τ2 � ?
whnf times

∆ `Fω τ1 : ? . . . ∆ `Fω τ2 : ?

∆ `Fω 〈l1 : τ1, . . . , ln : τn〉 � ?
whnf variant

∆ `Fω τ1 � κ1 → κ2 ∆ `Fω τ2 : κ1

∆ `Fω τ1τ2 � κ2

whnf app

Fig. 20. Definition of weak-head normal types for Fω

Lemma 6.5 (Type encodings are weak head normal forms)

If ∆ `Fω τ : ? and ∆ ` A Bτ τA then ∆ `Fω τA � ?.

Proof

By straightforward induction over the structure of ∆ ` A Bτ τA.

Another difficulty that arises in the backward direction of the static correctness
proof is showing that two types, known only to be congruent, are the result of
encoding the same source language type. It is possible to further strengthen the
conclusion of the following lemma to also state that τ1 and τ2 must also be syn-
tactically in addition to semantically equivalent using Lemma A.6, but it is not
necessary for the proofs.

Lemma 6.6 (Type encoding with congruent results)

If ∆ `Fω τ : ? and ∆ ` A1 Bτ τ1 and ∆ ` A2 Bτ τ2 where ∆ `Fω τ1 ≡βη τ2 : ?

then A1 = A2.

Proof

By induction over the structure of ∆ ` A1 Bτ τ1 using inversion
on ∆ ` A2 Bτ τ2.

7 Dynamic correctness

We prove the dynamic correctness of our encoding with respect to the equivalence
relation ∆; Γ `Fω e ≡βη e ′ : τ between target terms of type τ. This congruence
relation includes the standard β and η-equivalences for functions, products and
unit. The complete definition can be found in Figures 14, 15, and 16. We will use
the equals symbol, =, when we intend syntactic equality.
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Theorem 7.1 (Dynamic Correctness)
If ∅; Ψ `sdp

M : A and ∅; ∅ ` M Bτ e and ∅; ∅ ` V Bτ e ′ and ∅ ` A Bτ τA and
∅ ` Ψ Bτ Γ and

1. if Ψ `sdp
M ↪→ V : A ⇔ ∅; Γ `Fω e ≡βη e ′ : τA.

2. if Ψ `sdp
M ⇑ V : A ⇔ ∅; Γ `Fω e ≡βη e ′ : τA.

Proof
The backward direction follows from the forward direction and from the fact that
evaluation in the SDP calculus is deterministic and total(Schürmann et al., 2001).

The forward direction follows by mutual induction over the structure of Ψ `sdp

M ↪→ V : A and Ψ `sdp
M ⇑ V : A. The cases for Ψ `sdp

M ⇑ V : A are uncom-
plicated. For Ψ `sdp

M ↪→ V : A, only ev app, ev letb, and ev it are nontrivial. All
these cases make use of Lemma B.7 (term encoding is total and decidable), type
preservation (Schürmann et al., 2001), and β-equivalence.

Additionally,

• The case for ev app makes use of Lemma A.6 (type encoding total and decid-
able), Lemma A.7 (uniqueness of type encoding), and Lemma B.6 (substitu-
tion for encoding regular term variables).

• The case for ev letb makes use of Lemma B.9 (substitution for the encoding
of modal variables).

• Finally, the case for ev it requires the properties of evaluation results (Schürmann
et al., 2001), Lemma A.6 (type encoding total and decidable), Lemma A.2
(well-formedness of encoding), Lemma B.8 (world substitution for terms),
Lemma B.3 (replacements are well-formed dynamic replacements), Lemma B.10
(elimination typing). The proof of ev it requires Lemma 7.6 (dynamic correct-
ness of elimination) which we will cover in greater detail later.

Most of the lemmas for the proof of Theorem 7.1 are straightforward, but proving
Lemma 7.6 (dynamic correctness of elimination) requires a considerable amount of
technical machinery which is established in the remainder of this section.

In order to aid in reasoning about the operational behavior of iteration, we first
define an inverse to openiter, called uniter, constructed from the second compo-
nent of xmap.

Definition 7.2 (uniter)

uniter{|τ : ? → ?|} : ∀α : ?.(Σ∗α → α) → τα → τ(Rec Σ∗ α)

uniter{|τ : ? → ?|} =

Λα : ?.λf : Σ∗α → α.snd (xmap{|τ|}[Rec Σ∗ α][α]〈cata[α]f,place[α]〉)

Statically the source language only allows for replacements for constants, but
during iteration mappings for free variables are added to replacements. Therefore,
in order to reason about the dynamic correctness of iteration, we need to have some
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notion of well-formedness for replacements that contain variable mappings. Further-
more, it is useful to define the notation xΘy to indicate a replacement restricting
to constants, or more formally xΘy = {ci 7→ Mi | ∀ci 7→ Mi ∈ Θ}.

Definition 7.3 (Well-formed dynamic replacements)

∀ci ∈ dom(Σ) Σ(ci) = Bi Ω; Υ `sdp
Θ(ci) : A〈Bi〉

∀xi ∈ dom(Ψ) Ψ(xi) = B ′
i Ω; Υ `sdp

Θ(xi) : A〈B ′
i〉

Ω; Υ `sdp
Θ : A〈Ψ:Σ〉

tp rep vars

Because the operational semantics of the SDP calculus depends on the definition
of elimination 〈A,Ψ,Θ〉(V) we must define an encoding from an elimination form
to a term in the target calculus so that we may prove dynamic correctness of the
encoding. The first step is to define a substitution for all of the free variables in
V . We will replace each variable with an uniter term that will hold its mapping
from Θ. For these derived encodings we will use a black triangle, I, rather than an
a white one, B, to help distinguish between them and the standard encodings. We
create a substitution (notated ∆; Ψ; Θ; eΘ IτA

τ S) as follows:

Definition 7.4 (Elimination Substitution)

∆; ∅; Θ; eΘ IτA
τ {}

sub empty

∆; Ψ; Θ; eΘ IτA
τ S ∆; ∅ ` Θ(x) Bτ e ′

∆; Ψ ] {x : B}; Θ; eΘ IτA
τ S · {(uniter{|B∗|}[τA] eΘ e ′)/x}

sub cons

Then given an elimination, we may encode it with openiter as follows:

Definition 7.5 (Encoding of elimination)

Ψ `sdp
V ⇑ B ∆ ` A Bτ τA

∆; Ξ ` xΘy BτA
τ eΘ ∆; ∅ ` V BτA

e ′ ∆; Ψ; Θ; eΘ IτA
τ S

∆; Ξ ` 〈A,Ψ,Θ〉(V) Iτ openiter{|B∗|}[τA] eΘ S(e ′)
en elim

The next lemma states that the encoding of an elimination is β, η-equivalent to
the encoding of the result of elimination over M in the source calculus.

Lemma 7.6 (Dynamic correctness of elimination)
If Ω; Υ `sdp

Θ : A〈Ψ:Σ〉
and 〈A,Ψ,Θ〉(V) = M

and ∆; dom(Ω) ` 〈A,Ψ,Θ〉(V) IτA
τ e

and ∆; dom(Ω) ` M Bτ e ′

and ∆ ` Ω B Γ1

and ∆ ` Υ Bτ Γ2

then ∆; Γ1 ] Γ2 `Fω e ≡βη e ′ : B∗τA.
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Proof
By induction on 〈A,Ψ,Θ〉(V). All cases make use of inversion, Lemma B.2 (prop-
erties of iter, and the definition of congruence.

• The case for el var requires the proof typing of atomic and canonical
forms (Schürmann et al., 2001), Lemma B.11 (elimination substitution appli-
cation), Lemma B.10 (typing for elimination), Lemma A.11 (commutativity
of encoding on iteration types), and Theorem 6.2 (static correctness, forward
direction).

• The case for el const needs Lemma B.4 (well-formed dynamic replacements
are well-typed replacements) and Theorem 6.2 (static correctness, forward
direction).

• The most complicated case is el app which requires a Lemma 7.7 (iteration
on atomic applications) which we will discuss in detail later.

• The case for el lam makes use of Lemma A.11 (commutativity of encoding on
iteration types), Lemma A.7 (uniqueness of type encoding), as well as Defini-
tion 7.3 (well-formed dynamic replacements) and Definition 6.1 (environment
encoding).

For the case where V = V1V2 in the above proof we require the following lemma
about how iteration interacts with application:

Lemma 7.7 (Iteration and atomic applications)
If Ω; Υ `sdp

Θ : A〈Ψ:Σ〉
and ∆ ` Ω B Γ1

and ∆ ` Υ Bτ Γ2

and Ψ `sdp
V1V2 ↓ B2

and Ψ `sdp
V1 ↓ B1 → B2

and Ψ `sdp
V2 ⇑ B1

and ∆; ∅ ` V1 BτA
e1

and ∆; ∅ ` V2 BτA
e2

and ∆; Ψ; Θ; eΘ IτA
τ S

then
∆; Γ1 ] Γ2 `Fω
openiter{|B∗2|}[τA] eΘ S(e1 e2) ≡βη

(openiter{|(B1 → B2)∗|}[τA] eΘ S(e1))(openiter{|B∗1|}[τA] eΘ S(e2)) : B∗τA

Proof
We cannot prove this lemma directly, but it follows from the more general Lemma
7.17 (Iteration and atomic forms).

To generalize the induction hypothesis of Lemma 7.7 sufficiently requires the in-
troduction of formal machinery we will call iteration contexts. Iteration contexts
provide convenient a formalism to reason about the dynamic behavior of itera-
tion over atomic terms. Our iteration contexts are similar in flavor to evaluation
contexts, as they describe a computation that needs a term to proceed. However,
iteration contexts describe the computation from the inside out, instead of the
outside in.
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Definition 7.8 (Iteration contexts)

(Iteration Contexts) E ::= • | E{{• e}} | E{{fst •}} | E{{snd •}}
(Pure Context Types) D ::= • | B → D | D× B | B×D

(Context Types) C ::= • | A → C | C×A | A× C

Because of our universal usage of the asterisk type constructor notation, B∗, for
pure source language types, it proves convenient to describe iteration contexts types
in terms of source language types, despite the fact that the contexts themselves are
defined in terms of the target language. Furthermore, because iteration does not
necessarily yield pure types in the source language, we also must make a distinction
between normal and pure context types. In addition we define a notation of iterated
contexts types, analogous to iterated types in the source language.

Definition 7.9 (Iteration context algebra)

•{{e}} , e

E{{fst •}}{{e}} , E{{fst e}}

E{{snd •}}{{e}} , E{{snd e}}

E{{• e ′}}{{e}} , E{{ee ′}}

Definition 7.10 (Context type algebra)

•{{A}} , A

(C×A ′){{A}} , C{{A}}×A ′

(A ′ × C){{A}} , A ′ × C{{A}}

(A ′ → C){{A}} , A ′ → C{{A}}

Definition 7.11 (Iterated context types)

A〈•〉 , •
A〈B → D〉 , A〈B〉 → A〈D〉
A〈D× B〉 , A〈D〉 ×A〈B〉
A〈B×D〉 , A〈B〉 ×A〈D〉

Definition 7.12 (Context typing rules)

∆; Γ `τ • : • ctp bullet
∆; Γ `τ E : C

∆; Γ `τ E{{fst •}} : C×A
ctp fst

∆; Γ `τ E : C

∆; Γ `τ E{{snd •}} : A× C
ctp snd

∆; Γ `τ E : C ∆ ` A Bτ τA ∆; Γ `Fω e : τA

∆; Γ `τ E{{• e}} : A → C
ctp app
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Finally, we define a formalism to describe the result of iteration over an iteration
context.

Definition 7.13 (Iterated contexts)

∆; Γ `Fω eΘ : Σ∗τ → τ

∆; Γ ` • Iτ
eΘ

• itc bullet
∆; Γ ` E Iτ

eΘ
E ′

∆; Γ ` E{{fst •}} Iτ
eΘ

E ′{{fst •}} itc fst

∆; Γ ` E Iτ
eΘ

E ′

∆; Γ ` E{{snd •}} Iτ
eΘ

E ′{{snd •}} itc snd

∆; Γ ` E Iτ
eΘ

E ′ ∆; Γ `Fω e : B∗(Rec Σ∗ τ)

∆; Γ ` E{{• e}} Iτ
eΘ

E ′{{• (openiter{|B∗|}[τ] eΘ e)}}
itc app

The following two lemmas lift congruence to iteration contexts.

Lemma 7.14 (Congruence under iteration contexts)
If ∆; Γ `τ ′ E : C and ∆; Γ `Fω e1 ≡βη e2 : C{{B}}∗τ then ∆; Γ `Fω E{{e1}} ≡βη E{{e2}} :

B∗τ.

Proof
By induction over the structure of ∆; Γ `τ E : C.

Lemma 7.15 (Congruence under iterated contexts)
If ∆; Γ `τ E : A〈D〉

and ∆; Γ `Fω e1 ≡βη e2 : D{{B}}∗τA

and ∆ ` A Bτ τA

then ∆; Γ `Fω E{{e1}} ≡βη E{{e2}} : B∗τA.

Proof
By induction over the structure of ∆; Γ `τ E : A〈B〉.

One more lemma is required to prove our generalization of Lemma 7.7 (itera-
tion and atomic applications) to all atomic forms. Because variables are one of
the possible atomic forms, and elimination substitutions are used to replace them
with an occurrence of uniter, it is necessary to prove that openiter will cancel
with uniter. For simple terms, Lemma B.2 (properties of iteration, part 1) suffices.
However, this is not sufficient if openiter and uniter are separated by an inter-
vening sequence of projections and applications, as is the case when considering
terms embedded in iteration contexts. Therefore, we lift the right inverse property
to apply to this situation.

Lemma 7.16 (Lifting right inverse property to iteration contexts)
If ∆; Γ `Fω eΘ : Σ∗τA → τA

and ∆; Γ `τ E : D

then for all ∆; Γ `Fω e ′ : D{{B}}∗τA,
∆; Γ `Fω openiter{|B∗|}[τA] eΘ(E{{uniter{|D{{B}}∗|}[τA] eΘ e ′}}) ≡βη

E ′{{e ′}} : B∗τA

where ∆; Γ ` E IτA
eΘ

E ′.
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Proof
By induction over the context typing derivation, ∆; Γ `τ E : D.

All cases begin by assuming an arbitrary ∆; Γ `Fω e ′ : D{{B}}∗τA, and then make
use of Lemma B.2 (properties of iteration) and Lemma B.1 (substitution for con-
gruences, part two). Additionally the cases for ctp fst, ctp snd, and ctp app all use
Lemma 7.14 (congruence for iteration contexts). Finally, the case for ctp app re-
quires Lemma A.10 (commutativity for parameterization and type encoding).

Lemma 7.17 (Iteration and atomic forms)
If Ψ `sdp

V ↓ B2

and ∆ ` Ω B Γ1

and ∆ ` Υ Bτ Γ2

and ∆ ` A Bτ τA

and ∆; Γ1 ] Γ2 `Fω eΘ : Σ∗τA → τA

and Ω; Υ `sdp
Θ : A〈Ψ:Σ〉

and ∆; ∅ ` V BτA
e

and ∆; Ψ; Θ; eΘ IτA
τ S

then for all ∆; Γ1 ] Γ2 `τ E : D

where B2 = D{{B}},
and ∆; Γ1 ] Γ2 `Fω openiter{|B∗|}[τA] eΘ E{{S(e)}} ≡βη

E ′{{openiter{|D{{B}}∗|}[τA] eΘ S(e)}} : B∗τA

where ∆; Γ1 ] Γ2 ` E IτA
eΘ

E ′.

Proof
By induction on Ψ `sdp

V ↓ B2.
All cases begin by assuming an arbitrary ∆; Γ1 ] Γ2 `τ E : D where B2 = D{{B}},

and then proceed by uses of inversion and congruence.

• The case for at var is quite involved and requires Lemma B.11 (substitu-
tion elimination), Lemma B.10 (typing for elimination) Lemma A.6 (type
encoding total and decidable), Lemma A.10 (commutativity for parameteri-
zation and type encoding) Theorem 6.2 (static correctness, forward direction),
Lemma 7.16 (lifting right inverse), Lemma B.5 (iterated context typing),
Lemma B.2 (properties of iteration), Lemma B.1 (substitution for congru-
ences, part two), and Lemma 7.15 (congruence under iterated contexts).

• The case for at cons makes use of Lemma A.10 (commutativity for param-
eterization and type encoding), Lemma B.2 (properties of iteration), and
Lemma B.1 (substitution for congruences, part two).

• The case for at app requires the proof of typing of atomic and canonical
forms (Schürmann et al., 2001), Lemma A.6 (type encoding total and de-
cidable), Lemma B.12 (static correctness with substitution), Lemma A.10
(commutativity for parameterization and type encoding) Lemma B.5 (iter-
ated context typing), and Lemma 7.14 (congruence under iteration contexts).

• The cases for at fst and at snd need Lemma B.5 (iterated context typing),
Lemma B.2 (properties of iteration), and Lemma 7.14 (congruence of iterated
contexts).
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8 Future work

Although we have shown a very close connection between SDP and its encoding
in Fω, we have not shown that this encoding is adequate. We would like to show
that if τ is the image of an SDP type, then all Fω terms of type τ are equivalent to
the encoding of some SDP term. In other words, there is no extra “junk” of type
τ. One of the primary difficulties in such a proof would be that there are clearly
terms in Fω inhabiting τ that have no equivalent in SDP. For example, any term
that contains type abstraction and type application. Therefore, it is not possible to
prove a theorem as strong as “all Fω terms of type τ are equivalent to the encoding
of some SDP term”. We believe that constraining the theorem to “all Fω terms
of type τ are βη-equivalent to a canonical form that is the encoding of some SDP
term”. From there, we expect the proof would follow by induction on canonical
terms of type τ.

Additionally it would be worthwhile to show the adequacy of encoding of the
untyped λ-calculus we presented informally in the first part of the paper. That
encoding uses first-order quantification and discards the current world. This simpler
representation allows the encoding of some terms that are rejected by the SDP
calculus to type check (for example, λx : �b. box x), but we conjecture that it is
still an adequate encoding of the untyped λ-calculus. Again, the proof of adequacy
would need to be defined in terms of Haskell or Fω canonical forms.

One important extension of this work is the case operator. Because there are
limitations to what may be defined with iter, the SDP calculus also includes a
construct for case analysis of closed terms. However, we have not yet found an
obvious correspondence for case in our encoding.

Another further area of investigation is into the dual operation to iter, the
anamorphism over data types with embedded functions. An implementation of this
operation, called coiter, is below. The coiter term is an anamorphism—it gener-
ates a recursive data structure from an initial seed.

data Dia f a = In (f (Dia f a), a)

coroll :: Dia f a -> f (Dia f a)

coroll (In x) = fst x

coplace :: Dia f a -> a

coplace (In x) = snd x

coiter0 :: (a -> f a) -> a -> (exists a. Dia f a)

coiter0 g b =

In (snd (xmap (coplace, coiter0 g) (g b)), b)

Instead of embedding the recursive type in a sum, we embed it in a product. The
two selectors from this product have the dual types to roll and place. In the
definition of coiter0 we use coplace as the inverse where we would have used cata

in the definition of ana. A term of type (exists a. Dia b a) corresponds to the
possibility type (3b) in a modal calculus. However, while a general anamorphism is
an inverse of a catamorphism, coiter is not an inverse to iter. In fact, iter cannot
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consume what coiter produces, giving doubts to its practical use. (On the other
hand, ana itself has seen little practical use for data types with embedded functions.)
From a logical point of view, this restriction makes sense. Combining anamorphisms
and catamorphisms (even for data types without embedded functions) leads to
general recursion.

9 Related work

The technique we present, using polymorphism to enforce parametricity, has ap-
peared under various guises in the literature. For example, Shao et al. (2000) use
this technique, at the type instead of term level, to implement type-level inten-
sional analysis of recursive types. They use higher-order abstract syntax to the rep-
resent recursive types and remark that the kind of this type constructor requires
a parametric function as its argument. However, they do not make a connection
with modal type systems, nor do they extend their type-level iteration operator to
higher kinds. Xi et al. (2003) remark on the correspondence between hoas terms
with the place operator (which they call HOASvar) and closed terms of Mini-ML�

e

but do not investigate the relationship or any form of iteration.
While higher-order abstract syntax has an attractive simplicity, the difficulties

programming and reasoning about structures encoded with this technique have
motivated research into language extensions for working with higher-order abstract
syntax or alternative approaches altogether.

One popular alternative to hoas is what is called weak higher-order abstract
syntax. The idea behind weak hoas, is to abstract over names rather than terms
of the object language. As a consequence of abstracting over names, weak hoas

requires an explicit constructor for representing variables, and substitution must
be implemented as a metalanguage function. The simplest version of weak hoas

uses an explicit type for names. In such a case, representing the untyped λ-calculus
in Haskell using weak hoas might be done using the following data type.

type Name = String

data Exp = Var Name

| Lam (Name -> Exp)

| App Exp Exp

However, this version of weak hoas still suffers from the problem of exotic terms
because the embedded function may not be parametric in names. Consider the
following example

badexp :: Exp

badexp = Lam (\x -> if (x == "y") then

App (Var x) (Var x)

else

Var x)
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If the type of names is kept abstract it is possible to prevent this particular
exotic term. This is the approach taken by Honsell, Miculan, and Scagnetto in
their Theory of Contexts (2001), and Despeyroux, Felty, and Hirshowitz in their
study of encoding higher-order abstract in Coq (1995).

However, if there is no way to compare names programming becomes cumbersome
in practice. Therefore it becomes necessary for the Exp data type to be packaged
with functions for substituting for abstract names, calculating free variables, etc.
However, at that point it becomes straightforward to write exotic terms again:

e1 :: Exp -- Some other expressions

e2 :: Exp

badexp’ :: Exp

badexp’ = Lam (\x -> if (freevar x e1) then e1 else e2)

Despeyroux, Felty, and Hirshowitz resolve this problem by introducing an additional
validity predicate for their expressions.

The benefit of is using weak hoas is that it is much easier to developing reason-
ing principles because there is no need for negative occurrences of the data type.
In some cases weak hoas is an ideal choice. For example, in languages like the
π-calculus, there is no abstraction over terms of the object language, just names.
Consequently, Despeyroux was able to use weak hoas to provide an elegant me-
chanical formalization of the π-calculus (Despeyroux, 2000).

A weakness of our approach and the SDP calculus is that it is not possible
explicitly reason about variables in the object-language. There has been a significant
amount of research on manipulating “open” terms of an object-language. Dale
Miller developed a small language called MLλ (Miller, 1990) that introduces a type
constructor for terms formed by abstracting out a parameter. These types can be
thought of as function types that can be intensionally analyzed through pattern
matching.

Pitts and Gabbay built on the theory of fm-sets to design a language called
FreshML (Pitts & Gabbay, 2000) that allows for the manipulation and abstraction
of fresh “names”. Nanevski (2002) combines fresh names with modal necessity to
allow for the construction of more efficient residual terms, while still retaining the
ability to evaluate them at runtime.

Similar to fresh names as developed by Pitts and Gabbay, and name generation
in the π-calculus, Miller and Tiu have recently developed a logic, FOλ∆∇ (Miller
& Tiu, 2005), with a built in abstraction operator ∇. The ∇ quantifier abstracts
over variables that are guaranteed to be distinct, even from universally quantified
terms. Gabbay and Cheney noted that the ∇ quantifier, like the Nof fresh logic, is
self-dual and commutes with propositional connectives, but that it does not satisfy
the same tautologies (Gabbay & Cheney, 2004). Regardless, they were able show
that FOλ∇ can be soundly embedded into fresh logic.

The Delphin Project (Schürmann et al., 2002) by Schürmann et al. is aimed at
developing a functional language for manipulating data types that are terms in the
lf logical framework. Because higher-order abstract syntax is the primary represen-
tation technique in lf, Delphin provides operations for matching over higher-order
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lf terms in regular worlds. The latest core-calculus proposed for Delphin is the ∇-
calculus (Schürmann et al., 2004). Despite seeming similarities with the ∇ of Miller
and Tiu, the ∇ quantifier in this language is used to indicate a non-deterministic
matching of a free variable in the environment. The ∇-calculus also makes use of
a separate operator for introducing new parameters and a modal type system to
ensure variables are restricted to appropriate scopes.

The Hybrid (Ambler et al., 2002) logical framework provides induction over
higher-order abstract syntax by evaluation to de Bruijn terms, which provide
straightforward induction.

There is a long history of encoding modality in logic, for example, Honsell and
Miculan’s formalization of dynamic logic within a logical framework (Honsell &
Miculan, 1995). Only recently has the encoding of modal type systems been ex-
plored. Acar et al. (2002) use modal types in a functional language that provides
control over the use of memoization, and implement it as a library in Standard
ml. Because sml does not have modal types or first-class polymorphism, they use
run-time checks to enforce the correct use of modality. Davies and Pfenning (2001)
presented, in passing, a simple encoding of the modal λ-calculus into the simply-
typed λ-calculus that preserves only the dynamic semantics. Washburn expanded
upon this encoding, showing that it bisimulates the source calculus (Washburn,
2001).

10 Conclusion

While other approaches to defining an induction operator over higher-order ab-
stract syntax require type system extensions to ensure the parametricity of em-
bedded function spaces, the approach that we present in this paper requires only
type polymorphism. Because of this encoding, we are able to implement iteration
operators for datatypes with embedded parametric functions directly in the Haskell
language.

However, despite its simplicity, our approach is equivalent to previous work on
induction operators for hoas. We demonstrate this generality by showing how the
modal calculus of Schüermann, Despeyroux and Pfenning may be embedded into
Fω using this technique. In fact, the analogy of representing boxed terms with poly-
morphic terms makes semantic sense: a proposition with a boxed type is valid in
all reachable worlds and polymorphism over world transformers makes that quan-
tification explicit.
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A Static correctness

Lemma A.1 (Weak head types are well-formed types)
If ∆ `Fω τ � ? then ∆ `Fω τ : ?.

Proof
By trivial induction over the structure of ∆ `Fω τ � ?.

Lemma A.2 (Well-formedness of type encoding)
If ∆ `Fω τ : ? and ∆ ` A Bτ τA then ∆ `Fω τA : ?.

Proof
Follows directly from Lemma 6.5 and Lemma A.1.

Lemma A.3 (Inversion on typing derivations)

1. If ∆; Γ `Fω x : τ then Γ(x) = τ ′ where ∆ `Fω τ ≡βη τ ′ : ?.
2. If ∆; Γ `Fω e1e2 : τ then ∆; Γ `Fω e1 : τ1 → τ2 and ∆; Γ `Fω e2 : τ1 where

∆ `Fω τ ≡βη τ2 : ?.
3. If ∆; Γ `Fω λx : τ1.e : τ then ∆; Γ ] {x : τ1} `Fω e : τ ′ where

∆ `Fω τ ≡βη τ1 → τ ′ : ?.
4. If ∆; Γ `Fω 〈〉 : τ then ∆ `Fω τ ≡βη ∀α : ?.1(α) : ?.
5. If ∆; Γ `Fω Λα : κ.e : τ then ∆ ] {α : κ}; Γ `Fω e : τ ′ where

∆ `Fω τ ≡βη ∀α : κ.τ ′ : ?.
6. If ∆; Γ `Fω e[τ1] : τ then ∆; Γ `Fω e : ∀α : κ.τ ′ where ∆ `Fω τ1 : κ and

∆ `Fω τ ≡βη τ ′{τ ′1/α} : ? and ∆ `Fω τ1 ≡βη τ ′1 : κ.
7. If ∆; Γ `Fω case eof injl1

x1 in e1 . . . injln
xn in en : τ then

∆; Γ `Fω e : 〈l1 : τ1, . . . , ln : τn〉 and ∆; Γ ] {xi : τi} `Fω ei : τ ′ for each ei where
∆ `Fω τ ≡βη τ ′ : ?.

Proof
By straightforward induction over the number of uses of tp eq used before the final
derivation step.
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Lemma A.4 (Inversion for type congruences)

1. If ∆ `Fω 1(τ) ≡βη τ ′ : ? and ∆ `Fω τ ′ � ? then τ ′ = 1(τ ′′) where
∆ `Fω τ ≡βη τ ′′ : ?.

2. If ∆ `Fω Rec Σ∗ τ ≡βη τ ′ : ? and ∆ `Fω τ ′ � ? then τ ′ = τ1 → τ2 where
∆ `Fω Σ∗τ → τ ≡βη τ1 : ? and ∆ `Fω τ ≡βη τ2 : ?.

3. If ∆ `Fω τ1 → τ2 ≡βη τ ′ : ? and ∆ `Fω τ ′ � ? then τ ′ = τ ′1 → τ ′2 where
∆ `Fω τ1 ≡βη τ ′1 : ? and ∆ `Fω τ2 ≡βη τ ′2 : ?.

4. If ∆ `Fω τ1 × τ2 ≡βη τ ′ : ? and ∆ `Fω τ ′ � ? then τ ′ = τ ′1 × τ ′2 where
∆ `Fω τ1 ≡βη τ ′1 : ? and ∆ `Fω τ2 ≡βη τ ′2 : ?.

5. If ∆ `Fω ∀α : ? → ?.τ ≡βη τ ′ : ? and ∆ `Fω τ ′ � ? then τ ′ = ∀α : ? → ?.τ ′′

where ∆ ] {α : ? → ?} `Fω τ ≡βη τ ′′ : ?.

Proof
By induction over the structure of the type congruences.

Lemma A.5 (Inversion for type encoding)

1. If ∆ ` A Bτ τA and ∆ `Fω τA ≡βη Rec Σ∗ τ : ? then A = b.
2. If ∆ ` A Bτ τA and ∆ ` A1 Bτ τ1 and ∆ `Fω τA ≡βη τ1 → τ2 : ? then

∆ ` A ′
1 Bτ τ ′1 and ∆ ` A2 Bτ τ ′2 where A = A ′

1 → A2 and τA = τ ′1 → τ ′2.
3. If ∆ ` A Bτ τA and ∆ `Fω τA ≡βη ∀α : ? → ?.τ ′A : ? then

∆ ] {α : ? → ?} ` A ′ Bατ τ ′′A where ∆ ] {α : ? → ?} `Fω τ ′A ≡βη τ ′′A : ? and
A = �A ′ and τA = ∀α : ? → ?.τ ′′A.

4. If ∆ ` A Bτ τA and ∆ `Fω τA ≡βη 1(τ ′) : ? then A = 1.
5. If ∆ ` A Bτ τA and ∆ `Fω τA ≡βη τ1 × τ2 : ? then ∆ ` A1 Bτ τ ′1 where

∆ ` A2 Bτ τ ′2 where A = A1 ×A2 and τA = τ ′1 × τ ′2.

Proof
By inversion over the structure of the type congruence. For Part 1:

• By Lemma 6.5 (type encodings are weak head normal) on ∆ ` A Bτ τA we
know that ∆ `Fω τA � ?. Using Lemma A.4 (inversion) on ∆ `Fω τA ≡βη

Rec Σ∗ τ : ? we know that τA = τ1 → τ2 where ∆ `Fω τ1 ≡βη Σ∗τ → τ : ?.
Given that ∆ ` ABττ1 → τ2, either A = b or A = A1 → A2 for some A1, A2.

• Assume that A = A1 → A2. Then by inversion on ∆ ` A1 → A2 Bτ τ1 → τ2

we have that ∆ ` A1 Bτ τ1. Using Lemma 6.5 again on ∆ ` A1 Bτ τ1 we know
that ∆ `Fω τ1 � ?. Again by Lemma A.4 on ∆ `Fω τ1 ≡βη Σ∗τ → τ : ? we have
that τ1 = τ ′1 → τ ′′1 where ∆ `Fω τ ′1 ≡βη Σ∗τ : ? and ∆ `Fω τ ′′1 ≡βη τ : ?. As
before A1 = b or A1 = A ′

1 → A ′′
1 for some A ′

1, A ′′
1 .

• Assume A1 = b. Then τ ′1 = Σ∗τ → τ. However, ∆ `Fω τ ′1 ≡βη Σ∗τ : ?. Σ∗τ → τ

and Σ∗τ have different head normal forms therefore it cannot be the case that
A1 = b.
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• Therefore A1 = A ′
1 → A ′′

1 . By inversion on ∆ ` A ′
1 → A ′′

1 Bττ ′1 → τ ′′1 we have
that ∆ ` A ′

1 Bτ τ ′1. However, we know that ∆ `Fω τ ′1 ≡βη Σ∗τ : ?. There are no
types in the image of the encoding where the head constructor is equivalent
to a variant. So our assumption that A = A1 → A2 must be false, and A = b.

For Part 2:

• By Lemma 6.5 (type encodings are weak head normal) on ∆ ` A Bτ τA we
know that ∆ `Fω τA � ?. Using Lemma A.4 (inversion) on ∆ `Fω τA ≡βη τ1 →
τ2 : we know that τA = τ ′1 → τ ′2 where ∆ `Fω τ1 ≡βη τ ′1 : ?. Given that
∆ ` A Bτ τ ′1 → τ ′2, either A = b or A = A ′

1 → A ′
2 for some A ′

1, A ′
2.

• Assume A = b. Then τ ′1 = Σ∗τ → τ. However, ∆ ` A1 Bτ τ1 and ∆ `Fω
τ1 ≡βη τ ′1 : ?. There are no types in the image of the encoding where the
head constructor is equivalent to a variant. So our assumption that A = b

must false.
• Therefore, A = A ′

1 → A ′
2 for some A ′

1, A ′
2. By inversion on ∆ ` A ′

1 → A ′
2 Bτ

τ ′1 → τ ′2 we can conclude that ∆ ` A ′
1 Bτ τ ′1 and ∆ ` A ′

2 Bτ τ ′2.

Lemma A.6 (Type encoding is total and decidable)
Given a type, A, in the source calculus and a τ in Fω we can construct ∆ ` ABττA.

Proof
By straightforward induction over the structure of A.

Lemma A.7 (Uniqueness of type encoding)

1. If ∆ ` A Bτ τA and ∆ ` A Bτ τ ′A then τA = τ ′A.
2. If ∆ ` A Bτ τ and ∆ ` A ′ Bτ τ then A = A ′.

Proof
Both properties follow by straightforward simultaneous induction on the type en-
coding derivations.

Lemma A.8 (Type encoding under congruent worlds)
If ∆ ` A Bτ1

τA and ∆ ` A Bτ2
τ ′A where ∆ `Fω τ1 ≡βη τ2 : ? then

∆ `Fω τA ≡βη τ ′A : ?

Proof
By straightforward simultaneous induction on the type encoding derivations.

Lemma A.9 (World substitution for type encoding)
If ∆ ] {α : ? → ?} ` A Bατ ′ τA and ∆ `Fω τ : ? → ? then ∆ ` A Bττ ′ τA{τ/α}.

Proof
By straightforward induction over the structure of ∆ ] {α : ? → ?} ` A Bατ ′ τA.
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Lemma A.10 (Commutativity for parameterization and type encoding)
If ∆ ` B Bτ τB then τB = (Rec Σ∗ τ)〈B〉 and ∆ `Fω τB ≡βη B∗(Rec Σ∗ τ) : ?.

Proof
By straightforward induction over the structure of ∆ ` B Bτ τB.

Lemma A.11 (Commutativity for iteration types and type encoding)
If ∆ ` A Bτ τA then ∆ ` A〈B〉Bτ τA〈B〉

Proof
By straightforward induction over the structure of A〈B〉.

Lemma A.12 (Encoding produces well-formed environments)
Assume ∆ `Fω τ : ?.

1. If ∆ ` Υ Bτ Γ1 then ∆ `Fω Γ1.
2. If ∆ ` Ω B Γ2 then ∆ `Fω Γ2.

Proof
Straightforward from the definitions and Lemma A.2.

Lemma A.13 (Type containment)
Given a derivation ∆ ` A Bτ τA we know that FTV(τ) = FTV(τA).

Proof
By straightforward induction over the structure of ∆ ` A Bτ τA.

B Dynamic correctness

Lemma B.1 (Substitution for congruences)
1. If ∆; Γ `Fω e1 ≡βη e2 : τ ′ and ∆; Γ ] {x : τ ′} `Fω e3 ≡βη e4 : τ then

∆; Γ `Fω e3{e1/x} ≡βη e4{e2/x} : τ.
2. If ∆ `Fω τ1 ≡βη τ2 : κ ′ and ∆ ] {α : κ ′} `Fω τ3 ≡βη τ4 : κ then

∆ `Fω τ3{τ1/α} ≡βη τ4{τ2/α} : κ

Proof
By straightforward induction over the structure of ∆; Γ ] {x : τ ′} `Fω e3 ≡βη e4 : τ

and ∆ ] {α : κ ′} `Fω τ3 ≡βη τ4 : κ respectively.

Lemma B.2 (Properties of openiter and uniter)
Assuming ∆ `Fω τ : ? → ? and ∆ `Fω τ ′ : ?.

1. ∆; {f : Σ∗τ ′ → τ ′} `Fω (openiter{|τ|}[τ ′] f) ◦ (uniter{|τ|}[τ ′] f) ≡βη λx : ττ ′.x :

ττ ′ → ττ ′

2. ∆; {f : Σ∗τ ′ → τ ′, e : b∗(Rec Σ∗ τ ′)} `Fω openiter{|b∗|}[τ ′] f e ≡βη ef : τ ′

3. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 → B2)∗(Rec Σ∗ τ ′)} `Fω
openiter{|(B1 → B2)∗|}[τ ′] f e ≡βη

(openiter{|B∗2|}[τ ′] f) ◦ e ◦ (uniter{|B∗1|}[τ ′] f) : (B1 → B2)∗τ ′

4. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 → B2)∗τ ′} `Fω
uniter{|(B1 → B2)∗|}[τ ′] f e ≡βη

(uniter{|B∗2|}[τ ′] f) ◦ e ◦ (openiter{|B∗1|}[τ ′] f) : (B1 → B2)∗(Rec Σ∗
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5. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 × B2)∗(Rec Σ∗ τ ′)} `Fω
openiter{|(B1 × B2)∗|}[τ ′] f e ≡βη

〈openiter{|B∗1|}[τ ′] f (fst e),openiter{|B∗2|}[τ ′] f (snd e)〉 : (B1 × B2)∗τ ′

6. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 × B2)∗τ ′} `Fω
uniter{|(B1 × B2)∗|}[τ ′] f e ≡βη

〈uniter{|B∗1|}[τ ′] f (fst e),uniter{|B∗2|}[τ ′] f (snd e)〉 : (B1 × B2)∗(Rec Σ∗ τ ′)

7. ∆; {f : Σ∗τ ′ → τ ′, e : B∗i (Rec Σ∗ τ ′)} `Fω
openiter{|Σ∗|}[τ ′] f (injli

eof Σ∗(Rec Σ∗ τ ′)) ≡βη

injli
(openiter{|B∗i |}[τ

′] f e)of Σ∗τ ′ : Σ∗τ ′

8. ∆; {f : Σ∗τ ′ → τ ′} `Fω
openiter{|(Bi → b)∗|}[τ ′] f (λx : τBi

.roll[τ](injL(ci) xof Σ∗(Rec Σ∗ τ ′))) ≡βη

λx : B∗iτ
′.f(injL(ci) xof Σ∗τ ′) : (Bi → b)∗τ ′

Proof
Property 1 is by straightforward induction on the structure B. The proofs of prop-
erties 2, 3, 4, 5, 6, 7, and 8 follow directly from the rules term of congruence and
the definitions of openiter, xmap and uniter.

Lemma B.3 (Well-typed replacements are well-formed dynamic replacements)
If Ω; Υ `sdp

Θ : A〈Σ〉 then Ω; Υ `sdp
Θ : A〈∅:Σ〉.

Proof
Follows trivially from the definitions.

Lemma B.4 (Restricted dynamic replacements are Well-typed replacements)
If Ω; Υ `sdp

Θ : A〈Ψ:Σ〉 then Ω; Υ `sdp xΘy : A〈Σ〉.

Proof
Follows trivially from the definitions.

Lemma B.5 (Iterated context typing)
If ∆; Γ `τ E : D and ∆ ` A Bτ τA and ∆; Γ ` E IτA

eΘ
E ′ then ∆; Γ `τ E ′ : A〈D〉.

Proof
By induction over the structure ∆; Γ `τ E : D.

Lemma B.6 (Substitution for encoding of regular term variables)
If ∆; Ξ ` M1 Bτ e1 and ∆; Ξ ` M2 Bτ e2 and ∆; Ξ ` M2{M1/x} Bτ e where x 6∈ Ξ

then e = e2{e1/x}.

Proof
By straightforward induction over the structure of ∆; Ξ ` M2 Bτ e2.

Lemma B.7 (Replacement and term encoding are total and decidable)

1. If Ω; Υ `sdp
M : A and ∆ `Fω τ : ? we can construct ∆; dom(Ω) ` M Bτ e.

2. If Ω; Υ `sdp
Θ : A〈Σ〉 and ∆ `Fω τ : ? we can construct ∆; dom(Ω) ` Θ BτA

τ eΘ.
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Proof
By mutual induction over the structure of Ω; Υ `sdp

M : A and Ω; Υ `sdp
Θ : A〈Σ〉,

and use of Lemma A.6 (type encoding is total and decidable).

Lemma B.8 (World substitution for term encoding)
If ∆ ] {α : ? → ?}; Ξ ` M Bατ ′ e then ∆; Ξ ` M Bτ e{λβ : ?.τ/α}.

Proof
Follows by straightforward induction over the structure of ∆ ] {α : ? → ?}; Ξ `
M Bατ ′ e and Lemma A.9 (world substitution for type encoding).

Lemma B.9 (Substitution of for encoding modal variables)
If ∆ ` Υ Bτ Γ1

and ∆ ` Ω B Γ2

and ∆ ` A1 Bτ τA1

and Ω ] {x : A2}; Υ `sdp
M1 : A1

and ∆; dom(Ω) ] {x} ` M1 Bτ e1

and Ω; Υ `sdp
M2 : A2

and ∆ ] {α : ? → ?}; dom(Ω) ` M2 Bατ ′ e2 then
then ∆; dom(Ω) ` M1{M2/x} Bτ e ′1 where

∆; Γ1 ] Γ2 `Fω e ′1 ≡βη e1{Λα : ? → ?.e2/x} : τA1
.

Proof
By induction over the structure of ∆; dom(Ω) ] {x} ` M1Bτe1. The only interesting
case is for en bvar which uses Lemma B.8 (world substitution for term encodings).

Lemma B.10 (Typing for elimination)

1. If Ψ `sdp
V ⇑ B and Ω; Υ `sdp

Θ : A〈Ψ:Σ〉 then Ω; Υ `sdp 〈A,Ψ,Θ〉(V) : A〈B〉.
2. If Ψ `sdp

V ↓ B and Ω; Υ `sdp
Θ : A〈Ψ:Σ〉 then Ω; Υ `sdp 〈A,Ψ,Θ〉(V) : A〈B〉.

3. If Ψ `sdp
x ↓ B and Ω; Υ `sdp

Θ : A〈Ψ:Σ〉 then Ω; Υ `sdp
Θ(x) : A〈B〉.

4. If Ψ `sdp
c ↓ B → b and Ω; Υ `sdp

Θ : A〈Ψ:Σ〉 then Ω; Υ `sdp
Θ(c) : A〈B → b〉.

Proof
Parts 1 and 2 follow by mutual induction over the structure of Ψ `sdp

V ⇑ B and
Ψ `sdp

V ↓ B. Parts 3 and 4 follow as corollaries.

Lemma B.11 (Substitution application)
If ∆; Ψ; Θ; eΘ IτA

τ S and Ψ(x) = B then S(x) = uniter{|B∗|}[τA] eΘ e ′ where
∆; ∅ ` Θ(x) Bτ e ′.

Proof
Straightforward induction on the structure of ∆; Ψ; Θ; eΘ IτA

τ S.

Lemma B.12 (Static correctness with substitution)
If ∆; ∅ ` V BτA

e and Ψ `sdp
V ⇑ B and ∆ ` B BτA

τB and ∆; Ψ; Θ; eΘ IτA
τ S then

∆; ∅ `sdp
S(e) : τB.
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Proof
Follows from Theorem 6.2 (static correctness, forward direction), Definition 6.1
(environment encoding), Lemma B.11 (substitution application), and Lemma B.10
(elimination typing).

Lemma B.13 (Equivalences between replacements and their restrictions)

1. Θ(ci) = xΘy(ci).
2. ∆; dom(Ω) ` Θ BτA

τ eΘ ⇔ ∆; dom(Ω) ` xΘy BτA
τ eΘ.

Proof
Both parts follow trivially from the definition.


