Simple Unification-based Type Inference forGADTS

Simon Peyton Jones
Microsoft Research, Cambridge

Abstract

Generalized algebraic data typesapTs), sometimes known as
“guarded recursive data types” or “first-class phantomgypere a
simple but powerful generalization of the data types of ledsind
ML. Recent works have given compelling examples of thetutili
of GADTS, although type inference is known to be difficult. Our
contribution is to show how to exploit programmer-suppligpe
annotations to make the type inference task almost emisangig
easy. Our main technical innovationvi®bbly typeswhich express
in a declarative way the uncertainty caused by the incremhent
nature of typical type-inference algorithms.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGE$ Language Constructs and Features—abstract data
types, polymorphism

General Terms Languages, Theory

Keywords generalized algebraic data types, type inference

1. Introduction

Generalized algebraic data typesapTs) are a simple but potent
generalization of the recursive data types that play a akntie

in ML and Haskell. In recent years they have appeared in the
programming language literature with a variety of namesu(ded
recursive data types [25], first-class phantom types [S]abty-
gualified types [18], and so on), although they have a mucgdon
history in the dependent types community. Any feature with s

Dimitrios Vytiniotis Stephanie Weirich
Geoffrey Washburn

University of Pennsylvania

ordinary programmers; argimpleenough to be implemented with-
out heroic efforts. We make the following specific contribos:

e We specify a programming language that suppar®Ts and
programmer-supplied type annotations (Section 4). Therkey
novation in the type system is the notion afvabbly typg(Sec-
tion 3), which models the places where an inference algarith
would “guess”. The idea is that type refinements induced by
GADTS never refine wobbly types, and hence type inference is
insensitive to the order in which the algorithm traversesah-
stract syntax tree.

¢ Like any system making heavy use of type annotations, we offe
support for lexically scoped type variables that can be Houn
by both polymorphic type sighatures and signatures onnpatte
(Section 4.5 and 5.5). There is no rocket science here, but we
think our design is particularly simple and easy to specify,
certainly compared to our earlier efforts.

¢ We explore a number of extensions to the basic system, includ
ing improved type checking rules for patterns and case expre
sion scrutinees, and nested patterns (Section 5).

e We prove that our type system is sound, and that it is a con-
servative extension of a standard Hindley-Milner type eyst
(Section 6). Moreover our language can express all programs
that an explicitly-typed language could express.

e We sketch a type inference algorithm for our type systemighat
a modest variant of the standard algorithm for Hindley-Miln
type inference. We prove that this algorithm is sound and-com

many names must be useful—and indeed these papers and others Pplete (Section 6.3).

give many compelling examples.

It is time to turnGADTS from a specialized hobby into a main-
stream programming technique, by incorporating them asna co
servative extension of Haskell (a similar design would wik
ML). The main challenge is integratirgaDTs withtype inference
a dominant feature of Haskell and ML.

Rather than seeking a super-sophisticated inferenceitiligor
an increasingly popular approach is to guide type inferersieg
programmer-supplied type annotations. With this in mind,cen-
tral focus is thiswe seek a declarative type system for a language
that includes botlGADTSs and programmer-supplied type annota-
tions, which has the property that type inference is strdaiwvard.
Our goal is a type system thatpsedictableenough to be used by

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’06 September 16—21, 2006, Portland, Oregon, USA.
Copyright(© 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

ICFP’06

Space restrictions prohibit a complete presentation citloen-
tributions. The details of the algorithm and related techhimate-
rial are given in a companion technical report [23]

We have implemented type inference ®&DTs, using wobbly
types, in the Glasgow Haskell Compil&{C). GHC's type checker
is already very large; not only does it support Haskell'stgfasses,
but also numerous extensions, such as functional depeiedenc
implicit parameters, arbitrary-rank types, and more teEsidAn
extension that required all this to be re-engineered woeld bon-
starter, and it is here that the simplicity of oGRADT inference
algorithm pays off. In particular, we have successfullyeexted
GHC to supportboth GADTs and impredicative polymorphism
(described in a companion paper in this volume [22]), withou
undesirable interactions with each other, or with exisfesures.

Our implementation has already received heavy use. The re-
leased implementation iBHC uses a more complicated scheme
than that described here, originally given in an earliesier of
this paper (see Section 7). We are in the midst of re-engimg#re
implementation to match what we describe in this revisedptar
version.

lyww.cis.upenn.edu/~dimitriv/dimitriv-inference.html

2006/12/15

2. Background

generic programming, modeling programming languagesnimai

By way of background, we use a standard example to remind the taining invariants in data structures (e.g. red-blacksyeexpress-

reader of the usefulness GRADTS. Here is a declaration of aerm
data type for a simply-typed language:

data Term a where

Lit : Int -> Term Int

Inc :: Term Int -> Term Int

IsZ :: Term Int -> Term Bool

If : Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Fst :: Term (a,b) -> Term a

Snd : Term (a,b) -> Term b

Term has a type parameterthat indicates the type of the term it
represents, and the declaration enumerates the conss,ugitong
each an explicit type signature. We note that the type pasaraés

a “dummy” parameter used only to indicate the kindretm, and
does not scope over the types of the constructors. All typabias
in the types of constructors are implicitly universally qtified.
We adopt this convention for the examples appearing in tsteofe
this paper. Equivalently one could write

data Term :: * -> * where ...

The type signatures of the constructors only allow
one to construct well-typed terms; for example, the term
(Inc (IsZ (Lit 0))) is rejected as ill-typed, because
(Isz (Lit 0)) has typeTerm Bool and that is incompatible
with the argument type dfnc.

An evaluator for terms is stunningly direct:

eval :: Term a -> a

eval (Lit i) =i

eval (Inc t) =eval t + 1

eval (IsZ t) = eval t ==

eval (If b t e) = if eval b then eval t else eval e
eval (Pair a b) = (eval a, eval b)

eval (Fst t) = fst (eval t)

eval (Snd t) = snd (eval t)

It is worth studying this definition. Note that the right hand
side of the first equation patently has typet, not a. But, if
the argument teval is alit, then the type parameter must
be Int (because theit constructor only produces terms of type
Term Int), and so the right hand side has typalso. Similarly,
the right hand side of the third equation has tge®1, but in a
context in whicha must beBool. And so on.

The key ideas of the semantics ferDTs are these:

e Ageneralized data type is declared by enumerating its noist
tors, giving an explicit type signature for each. In conieml
data types in Haskell or ML, the result type of a data construc
tor must be the type constructor applied to all of the type pa-
rameters of the data constructor. In a generalized data tiype
result type must still be an application of the type constmjc
but the argument types are arbitrary. For exanygle mentions

no type variablesPair has a result type with structuie,b),
andFst mentions some, but not all, of its universally-quantified
type variables.

The data constructors are functions with ordinary polyrharp
types. There is nothing special about how they are used to
construct terms, apart from their unusual types.

All the excitement lies in pattern matching. Matching agaim
constructor may inducetgpe refinemerin the case alternative.
For example, in th&it branch ofeval, we can refina to Int.

The dynamic semantics is unchanged. Pattern-matchingis do
on data constructors only and there is no run-time type pgssi

Theeval function is a somewhat specialized example, but earlier
papers have given many other applicationscefDTs, including

ICFP’06

ing constraints in domain-specific embedded languagesgecy-
rity constraints), and modeling objects [8, 25, 5, 18, 16, The
interested reader should consult these works; meanwbitehis
paper we simply take it for granted thatDTs are useful.

3. The keyidea

Our goal is to combine the flexibility of Hindley-Milner typefer-
ence with the expressivenessa{DTs, by using the programmer’s
annotations to guide type inference. Furthermore, we segktam
that gives as much freedom as possible to the inferenceitlgor
For example, we would like to retro-f@ADT inference to existing
compilers, as well as use it in new ones.

The difficulty with type inference focADTs is well illustrated
by the eval example of Section 2. In the absence of the type
signature foreval, a type inference engine would have to anti-
refine theInt result type for the first two equations, and g1
result type of the third (etc.), to guess that the overalliteghould
be of typea. Such a system would certainly lack principal types.
Furthermore, polymorphic recursion is required: for exeEmnthe
recursive call taeval in the second equation is at tyfiet, nota.
All of these problems go away when the programmer supplies th
type ofeval.

Furthermore, the complete type of a function that usesTs
is required, because, even if the return type is clear, tyfezeénce
may still be challenging. Here is another variant:

f x y = case x of
Lit i > 1 +y
other -> 0

There are at least two types one could attributef fonamely
Term a — Int — Int andTerm a — a — Int. The latter works
because type refinement induced by the pattern matehrefines
the type ofy. Alas, neither is more general than the other. Again, a
programmer-supplied type signature would solve the proble

Thus motivated, our main idea is the following:

Type refinement applies only to user-specified types.

In the case off, since there are no type annotations, no type
refinement will take placet must have typ&erm Int andy will

get typeInt. However, if the programmer adds a type annotation,
the situation is quite different:

f :: Term a -> a -> Int
f xy = case x of
Lit i => i +y
other -> 0
Now it is “obvious” thatx has typeTerm a andy has typea. Be-
cause the scrutinee of tkese has the user-specified tyfern a,
the case expression does type refinement, and in the branch the
type system knows that = Int. Because the type of is also
user-specified, this type refinement is applied whetcurs in the
right hand side.
To summarise, our general approach is this:

e Instead of “user-specified type”, we use the briefer teigid
typeto describe a type that is completely specified, in some
direct fashion, by a programmer-supplied type annotation.

e A wobbly types one that is not rigid. There is no such thing as
a partly-rigid type; if a type is not rigid, it is wobkly

e A variable is assigned a rigid type if it is cleat its binding
site precisely what its type should be.

21n an earlier version of this paper, types were allowed taeHaoth rigid
and wobbly components (Section 7).

2006/12/15

—Source language syntax—

Atoms ¢ = x| C
Terms t,u == c | \x.t|tu
| let x =u in t
| let x::sig = u in t
| case t of p >t
Patternsp = x|Cp|p::tau
Type annotationssig := forall a.tau
tau = tau— tau|a|T tau
Polytypes o va.t

Monotypes T,v == t—T|al|TT

—Meta language syntax—
EnvironmentsT, A | NeMmo|ha—s T

Modifiers m,n wlr
Refinementsd,{ := [a—1]
Triples K,L == (@, A, 0)
—Annotation translation—
[alr = TI'(a)
[tau; — tauz]r = [taui]r — [tauzlr
[T tau]r T [tau]r

[forall a.tau]r va.[taulrz=g afresh

—Refinement application—

0(o) | 0() = -

o O(fc:mo) = O(MN),c:™0™(0)
0(la—T) = 6(I"),a<— 0(1)

0" (0)
8" (o)

Figure 1: Syntax of source language and types

e A case expression performs type refinement in each of its

alternatives only if its scrutinee has a rigid type.

e The type of a variable occurrence is refined by the currerd typ
refinement only if the variable has a rigid type.

But exactly when is a type “completely specified by a type an-

notation”? After all, no type annotation decorates the isigd
for x in the definition off above, nor is thecase expression

adorned with a result type, and yet we argued above that both

should be rigid. Would it make any difference if we had writte
case (id x) of ..., whereid is the identity function?

To answer these questions, we need a precise and predictab

description of what it means for a type to be rigid, which isavh
our type system provides.

4. The type system
The syntax of a language withaDTs is shown in Figure 1, and is

entirely conventional. We useo represent a sequence of elements.

For examplep abbreviates the sequence of pattgrns. . p». We

assume that data types are declared by simply enumerating th

constructors and their types (as in Section 2), and thosegyp
are used to pre-populate the type environnienthelet binding
form is recursive. Pattern matching is performed only dage
expressions, but we will occasionally take the liberty ofting
\p.t instead of\x.case x of p—t.

The language of types is also entirely conventional, $iedlti
into polytypeso and quantifier-freemonotypest. We abbrevi-
ate polytypes that bind no type variablés) ast. We use a
different syntactic domain for programmer-supplied typaata-

tions, sig andtau. Such annotations appear in the syntax of the

source language in two places:lat definition may be anno-
tated with a polytype, or a pattern may be annotated with aomon
type. Haskell also allows an expression to be annotated aith

ICFP’06 3

[¢)

c'varer
—_— ATM
N-c:™ [a—vlt

rct:" 11—
r'cu™m

r-tu:m

m m
Fx:"tiHFt:"™ 1 ABS
Fr-\x.t:" 11 -1

APP

Lx:" 1t Fu™mT
a = ftv(ty) — ftv(I) Ix:"Vart Ft:™

N (let x=u in t):™ 12

2 eTw

[forall a.tau]r = Va.t; a#ftv(l)
x:"Vati,a>aktu:"7; Mx:'Vaui Ft:" 1

I (let x::foralla.tau=u in t):™ 1

LET-R

| It VO O 4
FrEp—t:memd o, o1

CASE
'k (case u of p->t):™ 1,

Ttor™

vitterl r-t:"«

SCR-VAR SCR-OTHER

Fr=v:t™ r=t:t1v

FEp—t:meme o

C'Va.ti—=»TT, el a#ftv(l,Tp, 1)
T =anftv() 6=[a—vl 6(T) ="
Cxwo(ty)Ft:™ 1

PCON-W
TECx—t:™™ T7, 1y

C'va.ti—=Tm el a#ﬁv(l“ﬁp,’ct)
0 € fmgu(t, =72)
O(Mx:"t1) Ft:™ 0™ (1¢)

PCON-R
rECx—t:"™ TT, 514

Figure 2: Typing rules and case alternatives

type, thus(e: : sig). We interpret this form as syntactic sugar for
(let x::sig = e in x). We often use the terrtype signature
for a programmer-supplied type annotation.

The type environment' is more unusual. Each variable (or
constructor) binding :™ o is annotated with a modifiem, which
indicates whether the type is rigid)(or wobbly (). Types of
constructors are always closed and rigid. Furthermore ype t
environment mapkexically scoped type variables, to rigid types,
as we discuss in Section 4.5. This last binding form allows$ous
translate a (possibly open) type annotatidrg to an internal type
o, which we write adsig]r = 0. We writel'(a) = T whenever
a—Tel.

A type refinementd, is simply a substitution mapping type
variables to monotypes. (One can also represent the typenedint
as a set of constraints, an alternative that we discuss im8et3.)
The operatior® (I") applies the type refinemefitto the context’,
and is also defined in Figure 1. The key thing to note is thay onl
the rigid bindings irT" are affected. We writdom (0) for the finite

2006/12/15

set of type variables for whicB is not the identity. Concretely,
we represent a substitution by listing the non-identity piags
[a 7/, and use: for the identity-everywhere substitution.

We useftv(t) to denote the free type variables of the type
Abusing the notation we writétv(T) to denote the union of the
sets of free variables of evenyin T. Additionally, we writeftv(T")
for the free type variables appearing in the environnigrgither
in the types that lexical variables bind, or in the types tieam
variables bind. We writelom(I") to refer to the collection of all
lexical and term variables boundiin

4.1 Typing rules: overview

The typing rules for the language are syntax-directed aadjigen
in Figure 2. The main judgement has the fofim- t :™ 7. The
unusual feature is the modifiet, which indicates whether the type
T is rigid. In algorithmic terms[" - t :" © checks that has typet
when we know completely in advangevheread™ - t :*¥ T checks
thatt has typet without that assumption-=may be partially or
entirely unknown.

The modifierm propagates information about type rigidity. For
example, in rule.ET-R we see that d#ype-annotated.et binding
causes the right hand sideto be type-checked in a rigid context
(... = u " 7). (The notationa#ftv(I") means that the type
variablesa do not appear i'.) Furthermore, when typechecking
u, the environment is extended with a rigid binding fot, giving
its specified, polymorphic type, thereby permitting polyptdic
recursion, which is very often necessaryGaDT programs (e.g.
eval in Section 2).

Then, in ruleABS we see that to type check an abstractiant
we extend the environmeftwith a binding forx that is rigid if the
context is rigid, and vice versa. For example, considergha t

let f::(foralla.Terma—a—a) = \x.\y.u in t

The bodyu of the abstraction will be type checked in an environ-
ment that has rigid bindings for bothandy (as well asf).

The APP rule always typechecks both function and argument
in a wobbly context: even if the result type is entirely knowime
function and argument types are not. One might wonder whethe
the function might provide a rigid context for its argumeat,
vice versa, bunpPp does not attempt such sophistication (but see
Section 5.1).

Rule ATM does not use the modifier of the variable (or con-
structor) type in the environment. It merely checks thattype of
the variable (or constructor) in the environment can beaimtsated
to the type given by the judgement.

The really interesting rule is, of course, that éarse, which we
discuss next. For the moment we restrict ourselves to flae e,
of form C X, leaving nested patterns for Section 5.4.

4.2 Pattern matching

A case expression only performs type refinement if the scrutinee
has a rigid type. The auxiliary judgement- t : T 1™, defined
in Figure 2, determines whether the scrutinee is rigid. &atian
pushing the modifier inwards as the main judgement doa¥gits
the modifier. The judgement has just one interesting caseortle
for variables. RulescR-VAR returns the modifier found for the
variable inT'; otherwise the judgement conservatively returns a
wobbly modifierw (SCrR-0THER)®. We will extend this judgement
later, in Section 5.1.

Rule casefirst uses this new judgement to typecheck the scru-

rigidity of the scrutineem,,, and the rigidity of the result type,
M.

The case-alternative rules are also given in Figure 2. There are
two cases to consider. RukeonN-w is used when the scrutinee has
a wobbly type. In that case, we use ordinary Hindley-Milngret
checking. We look up the construct@rin the type environment,
a-rename its quantified type variables to avoid ones thatrare i
use, and then find a substitutiénthat makes the result type of
the constructofl T, match the type of the patterh T,. Finally,
we extend” with wobbly bindings for the variables (obtained by
instantiating the constructor’s type), and type check itletthand
side of the alternativet,

One subtle point is that the constructor may kénéstentiatype
variables. For example, suppagkT :: Vab.a — (a —>b) = T b.
Then the type variables is existentially bound by a pattern for
MkT, becausea does not appear in the result typeb. Clearly,
we must not substitute fout; for example, this term is ill-typed,
if x : MkT Bool:

case x of MKkT r s —-> r+l

We must form the substitutiofb — Bool] to make the result type
of the constructor match that af but a is simply a fresh skolem
constant. That is whyconw first computesi., the subset of’s
quantified variables that appear in its result type, and jteronly
these variables in the domain ®&f

Rulepconw gives a wobbly type tall the bound variables,
which is safe but pessimistic; for example abovesould have a
rigid type. We return to this question in Section 5.3.

4.3 Type refinement

Now we consider rul@con-R, which is used when the scrutinee of
thecase has arigid type. In that case we compute a type refinement
with the judgemen®é € fmgu(T, = T,). We return to the details
of this judgement in Section 4.4—for now let us only assunae th
the returned is a substitution thatinifiesthe type of the pattern,
T 7T,, and the result type of the constructdrt,.

Unlike rulepcon-w, 6 can contain in its domain type variables
mentioned in the type of the pattefhT,, as well as type variables
mentioned in the return type of the constructér,t,. Now we
apply the type refinement to the environment, and to the tresul
type, before type-checking the right hand side of the brawden
applying the refinement to the environment, we only refinerig
bindings (see Figure 1), and similarly we only refine the ltesu
type T if it is rigid (hence®™ (t¢)). We do not need to apply the
refinement to the term: if the term contains open type aniooisit
the scoped type variables of these annotations must be hotimel
environment, in which we do apply the refinement.

If unification fails to compute a type refinement, then tage
alternative cannot possibly match, and the type systenstesfhe
program. Another possible design choice is to accept stbtic
inaccessible alternatives without even type-checkingitire hand
side (since it can never be reached). However, we think teadne
more likely to help programmers by rejecting such progranas t
by silently accepting them.

The appearance of unification is slightly unusual for a deela
tive type system, although not without precedent [9]. Th&t bey
to think about it is that a successful pattern match impliesttuth
of an equality constraint of formi T, = T T, and the case al-
ternative should be checked under that constraint. We sgjhgés
idea by solving the constraint to get its most general unied ap-
plying the unifier to the entire judgement (modulo the rigidbbly

tineeu and then typechecks each alternative, passing in both the gistinctions).

3To be truly syntax-directedsCR-OTHERwould need a side condition to
exclude the variable case.

ICFP’06 4

Most other authors choose to deal with the constraint sets ex
plicitly, using a judgement of forn€,T" - t : T, whereC is a set
of constraints, and type equality is taken modulo thesetcaings

2006/12/15

[25, 5, 19, 15]. That approach is more general, but it is less ¢
venient in our context, because by the time that type equislit
invoked, the provenance of the types (and in particular dredr
not they are rigid) has been lost. For example, we do not west t
judgement to hold:

a = Int,xs:" [a] I (3:xs): [Int]

It should not hold becauses has a wobbly type. But the type
equality arises from instantiating the call to cofs), and by
that time the fact that its second argument had a wobbly tgse h
been lost. A solution would be to embody wobbliness in thesyp
themselves, as an earlier version of this paper did, butgheach
we give here is significantly simpler.

4.4 Fresh “most general” unifiers

What unifiers should be used in rideon-R for refinement? First,
will any unifier ® do? No: we must not make up any substitution
beyond those justified by the constraints. For example,identhe
program

f :: forall a. (a,b) -> Int
f = \x. case x of (p,q) -> p+1

It would obviously be wrong to substituteat for a in the case
alternative! Nor, just as in ruleconw, can we refine the types of
existential variable$.

Hence, choosing to be a most general unifiem(gu), guaran-
teed not to introduce any spurious equalities, seems rabkoio
ensure sound type inference. Alas, sometimes two typesaan h
more than onengu and the choice among thesegus can de-
termine whether the program typechecks. Consider thewoilp
example:

data Eq a b where Refl :: Eq c ¢

f ::
fxyz

forall a b. Eg a b -> (a->Int) -> b -> Int
(\w. case x of Refl > y w) z

First, note thatv enters the environment with theobbly type b
(rules ApP and ABs). Now, when checking the pattern, we are
faced with the problem of computing é&asuch thatd(Eqcc) =
0(Eqab). There are three most general unifidtsi— a,c — al,
[a+— b,c— b],or[a— c,b+— c|. Becauser's type is wobbly,

it will not be refined by the pattern match, by (rigid) type will
be. Hence, the body of thease will typecheckonly if we choose
the second of the three substitutions. (If the case altematas

y z instead ofy w, it would typecheck with anyngu, because
z's binding is rigid.) So if the rules specify is somemgu, there
certainly is anmgu that makes the program typecheck—but it is
hard to see how aalgorithmcould know which of the threevgus

to choose.

Since type inference is hard for this case, the thing to do is t
reject this program. But how can we do so? Our solution is &aus
modified form ofmgu, calledfmgu: whenever we have to unify
two variables from the context type, we do not unify themctise
instead, we make up a fresh variable and map both variabtée to
new one. In our example, the substitution— d,b — d, c — d]
(whered is a fresh type variable) isfangu of Eq ¢ ¢ andEq a b.
The device of choosing a fresh type variable ensures thabalywo
binding (such as’s) will neverbe compatible with the refined type,
rather than being compatible under some unifiers but not®tite
fmgu is technically not a most general unifier, because the latter
never involves variables that do not appear in the argunypeist
but its definition is very similar to that ahigu:

4There is also a dual question: mtbe a unifier at all? The answer
here is more nuanced: “no” for soundness, but “yes” for catepless: see
Section 6.4.

ICFP’06

DEFINITION 4.1 (fmgu). An idempotent substitutiohis a fresh

most general unifier of; and t,, written® € fmgu(t; = 12),

iff

(i) 0 is a unifier oft; andt,, thatis,0(t1) = 0(12).

(i) For any idempotent unified of t; andt, there exists a sub-
stitution such thatb(a) = P(0(a)) forall a € ftv(ti,12).

(iii) For everya,b € ftv(t), witha # b, 6(a) # b. For every
a,b € ftv(tz2), witha #b,0(a) #b.

(iv) dom(0) C ftv(t1,T2) and all type variables inrange(0)
are either inftv(ty,T2) or are fresh (disjoint from variables
introduced by the typing judgment that u$gs

Conditions (i) and (ii) resemble the corresponding prapsrof
most general unifiers Condition (iii) is the distinctive feature of
fmgu: it guarantees that no two variables from the context type or
the constructor type are directly equated to each otheéeadsthis
can only happen through a third fresh variable. Finally ol

(iv) ensures tha® does not include any extra spurious equalities
for variables that appear free elsewhere in the typing dtom.

To simplify the exposition, we state this freshness coaditnfor-
mally here and only make it precise in the companion technica
report [23].

It is not hard to come up with a procedure to calculate such
fresh most general unifiers. Figure 3 gives one implementati
fmgu, with the property that iffmgu(ty = 72) = 0 then® €
fmgu(ti = T2). The fmgu procedure in turn calls the auxiliary
procedurefmgu™, and then restricts the domain of the unifier it
returns to ensure that it is containediv(t; , T2) — the restriction
is written|¢, (1, ¢, iN Figure 3. In a call of the fornimgu™ (&, B)
the set€ represents type equalities that must be satisfied, of the
form t; = 7,. The setB is used to determine which variables
must not be unified to each other: 4figu* (€, B8) = 6 then no
two variables from3 are directly equated through and no two
variables fromftv(£) — B (which were not introduced as fresh
by the algorithm) are directly equated throughA subtle point
in this algorithm is that the séf also adds “directionality” to the
unifier, namely that variables froii are preferred in the domain
of the returned substitution. THeagu procedure is initialized with
B = ftv(t2), hence preferring variables of in the domain of the
returned substitution, for reasons that we describe in@e4t6.

4.5 Lexically scoped type variables

Any polymorphic language that exploits user type annotati@s
we do here, must support lexically scoped type variableghatoa
type signature can mention type variables that are bourtihdu
out”. This feature is curiously absent from Haskell 98, atdl i
absence is often awkward. For example:

forall a. a -> [[al] -> [[a]]
let xcons :: [a] -> [a]

Xcons ys = x : ys
in map xcons yss

prefix ::
prefix x yss

This program is rejected by Haskell, because the type signébr
xcons is implicitly quantified to meava.[al — [a]. What we
want here is ailmpentype signature fokcons that mentions a type
variable bound by the definition ptrefix.

51f @ is anmgu of Ty andT,, then for any other unifier of; and,,
¢, there exists a substitutioth such thatd(a) = P(0(a)) for all a.
The difference here is that condition (ii) requires eqyatinly for a in
the free type variables of; and ;. This allows “fresh” type variables to
appear in the domains df, 8 and. Moreover we work with the lattice of
idempotent substitutions, as it is technically more traletabut condition
(ii) could be recast in terms of arbitrary unifiers.

2006/12/15

‘fmgu(’fl =T2) = 9‘ fmgu(T) = T2) = fmgu” ({11 = T2}, ftv(12)) lfev(cy,ra)
fmgu*(E,B)=0| &=-|(T1 =T12)UE
1. fmgu* (0, B) = €
2. fmgu*(a =aU¢&,B) = fmgu* (&, B)
3. fmgu*(a =bUE,B) = fmgu*([a— blE,B) - [a—Db] aeB,b¢B
4. fmgu*(b =aU¢&,B) = fmgu*([a— blJE,B) - [a—Db] aeB,b¢B
5. fmgu*(a =bUE, B) = fmgu*(l[a— c,b—clE,B) - [a—c, b]
where(a,b ¢ BV a,b € B) andc fresh
6. fmgu*(a =TtUE,B) = fmgu*([la — T]€,B) - [a— 1] wherea ¢ ftv(t) andt #b
7. fmgu*(t =aUE&,B) = fmgu*([la — 1]€,B) - [a— 1] wherea ¢ ftv(t) andt # b
8. fmgu*((TT =T7T2)UE,B) = fmgu*(T) =T2 UE,B)
9. fmgu*((t1 2 T2 =713 2 14)UE,B) = fmgu*({t1 =713, 12 =14} UE, B)

Figure 3: An implementation ofmgu

In our small language, we therefore allow the programmer to type variablesso now a type variable may be bound to an arbitrary

annotate aet definition with a polymorphic typeforall a.tau.
The type variables that are lexically in scope are those dbyrihe
environment” (see the syntax in Figure 1); in a full-blown system,
the environment would also record their kinds. Ruker-R first
uses the bindings of scoped type variables in the envirohihem
translate the typing annotation to an internal type, with jtidge-
ment [forall a.tau]r = Va.r. It also requires thafi#ftv(T),
and extends the environment with the new bindirgsS> a, to

bringz in scope. The right-hand side is checked under this extended

environment.

The idea that the quantified type variables of a type sigeatur
should scope over the right hand side of its definition is ret:n
it is used in Mondrian [12] and Chameleon [20]. It seems &elitt
peculiar, and we resisted it for a long time, but it is extrgnaérect
and convenient, and we now regard it as the Right Thing.

The job is not done, though. We still need a way to name
existentially-boundtype variables. For example, consider this
(slightly contrived) example:

data T where MKT ::
f::T -> Int
= \x. case x of
MkT ys g -> let y::7?7 = head ys
in gy

[al] -> (a->Int) > T

What type can we attribute tpin the innerlet binding? We
need a name for the existential type variable that is bounthéy
pattern(MkT ys g). Pattern annotations provide such functional-
ity. For example:

f::T -> Int
= \x. case x of
MkT (ys::[al) g -> let y::a = head ys
ingy
The pattern(ys:: [a]l) brings the type variable into scope
so that it can be used in thet binding fory. In general, a type-
annotated patterfip: :tau) brings into scope the type variables

type. For that reason, bindingsiirtake the forma < 7).

In a real programming language, such as Haskell, quantdicat
is often implicit. For example, theférall a” quantification in a
let binding might be determined by calculating the type vagabl
that are mentioned in the type, but are not already in scaope. (
deed, we adopt this convention for many of the types we wnite i
this paper.) However, for our formal material we assumedban-
tification is explicit.

4.6 Type inference

Itis very straightforward to perform type inference for aystem.
One algorithm that we have worked out in detail is based on the
standard approach for Hindley-Milner systems [4, 13]. Tifer
ence engine maintains an ever-growing substitution mapmieta
type variables to monotypes. Whenever the inference emgieds

to guess a type (for example in rud@s) it allocates a fresh meta
type variable; whenever it must equate two types (such aarH)

it unifies the types and extends the substitution.

Modifying the type inference algorithm for Hindley-Milnsys-
tems to suppor6ADTS is simple. Bindings in the type environment
I' carry a boolean rigid/wobbly flag, as does the result type Th
implementation of pattern-matching can be read directiynfrules
PCON-R andPCON-W.

There is one subtlety, which lies in the implementation of
fmgu. Consider the possible type derivations for

x:" (a,b) - (case x of (p,q) ->p):" a
The pair constructor has typéed.c — d — (c, d), the unification
problem inPCON-R is to compute amgu for (a,b) = (c,d).
There are severdimgus of this constraint, and not all of them are
useful. For example, the substitutifm+— c, b — d] will not type
this program because the typepowill be ¢ which does not match
the result typen. Alternatively, thefmgu [c — a, b+ d] succeeds.
The key idea is that, given a choi¢bg unifier should eliminate the

of tau that are not yet bound in the environment. These variables freshly-bound type variables this case andd.

then scope ovetau, p, all patterns to the right of the binding site,
and the right hand side of the case alternative. The typiles rof
Figure 2 only deal with simple flat patterns; we formalizeeyp
annotated patterns when we discuss nested patterns iniS8cti
Lexically-scoped type variables are always bound to tygoé
ables and hence entétwith a binding of form(a < a) (SeeLET-
R). However, in a type-refining case alternative, we applyrthe
finement to the type environmeimgcluding the bindings for scoped

ICFP’06 6

Our inference engine therefore uses a “biaséni’gu algo-
rithm, based on Figure 3, that preferentially eliminatessify-
bound type variables. To achieve this we simply require that
procedurefmgu™ of Figure 3 is called with an initiaB that con-
tains the required freshly-introduced type variablesule PCcON
R, these variables are the free type variableggftherefore the
implementation makes a call fimgu(T, = 7T,), which results in
passing theétv(T,) asB.

2006/12/15

We have proven that if a program type checks with &mgu
then it typechecks with the biased implementation. Theesfee
have complete type inference without searching for an gpjate
fmgu (see Section 6.3). Additionally, the biased implementatio
has the property thatmgu(TT=T b) [b — t], when the
lengths ofT andb are the same. This property ensures that our
system conservatively extends Haskell (Section 6.6).

5. Variations on the theme

The type system we have described embodies a number of some

whatad hocdesign choices, which aim to balance expressiveness
with predictability and ease of type inference. In this gecive
explore the design space a bit further, explaining sevendtions

on the basic design that we have found useful in practice.

5.1 Smart application

The rules we have presented will type many programs, bug ter
still some unexpected failures. Here is an exafhfdd. [3]):

data Equal a b where

Eq :: Equal a a
data Rep a where

RI :: Rep Int

RP :: Rep a -> Rep b -> Rep (a,b)
test :: Rep a -> Rep b -> Maybe (Equal a b)
test RI RI = Just Eq

test (RP s1 t1) (RP s2 t2)
case (test sl s2) of
Nothing -> Nothing
Just Eq -> case (test tl1 t2) of
Nothing -> Nothing
Just Eq -> Eq

A non-bottom valueq of typeEqual a b is a witness that the
typesa andb are the same; that is why the constructor has type
Va.Equal a a. Consider the outetase expression irtest. The
programmer reasons that since the typesbfand s2 are rigid,
then so is the type oftest s1 s2), and hence thease should
perform type refinement; and indeegst will only pass the type
checker if both itxase expressions perform type refinement.

The difficulty is that the scrutinee-typing rules of Figure 2
conservatively assume that an application has a wobbly, type
neithercase expression will perform type refinement. We could
solve the problem by adding type annotations, but that isisiu

test :: Rep a -> Rep b -> Maybe (Equal a b)
test RI RI Just Eq
test (RP (sl::Rep al) (tl::Rep bl))
(RP (s2::Rep a2) (t2::Rep b2))
let r1 :: Maybe (Equal al a2)
r2 :: Maybe (Equal bl b2)
in case rl of
Nothing -> Nothing
Just Eq -> case r2 of
Nothing -> Nothing
Just Eq -> Eq

test al a2
test bl b2

(However, note the importance of pattern-binding the tyqoév
ablesal, a2 etc, so that they can be used to attribute a type to
s1, t1 etc.) To avoid this clumsiness, we need a way to encode
the programmer’s intuition that fest’s argument types are rigid,
then so is its result type. More precisely, if all of the tyeiables
in test’s resultappear in arargumenttype that is rigid, then the
result type should be rigid. Here is the rule, which extehesstru-

6We take the liberty of using pattern matching on the leftehaide and
separate type signatures, but they are just syntactic.sugar

ICFP’06

tinee typing rules of Figure 2:

c:'"va.T—=1 €Tl ' w: [@a—=olt ™
ar ={a€a|Fiaeftv(ti) Amy =1}
o { rif ftv(t,) C ar

~]| w otherwise

FFcu: [a—=volt 1™
The rule gives special treatment to applicatieng of an atomc
to zero or more arguments, wherec has a rigid type irf". In that
case,SCR-APP recursively uses the scrutinee typing judgement to
infer the rigidity m; of each argumentt;. Then it computes the
subsetn, of v's quantified type variables that appear in at least one
rigid argument. We can deduce (rigidly) how these variablesild
be instantiated. Hence, if all the type variables free inrdsailt type
of ¢ are ina. then the result type of the call is also known rigidly.

One could easily imagine adding further scrutinee-typings.

Notably, if the language supported type annotations on germ

(t::sig), then one would definitely also want to add a scrutinee-
typing rule to exploit such annotations:

[taulr =7 THt:' 71

MF(t::tau):71"
Now, in any place where @se expression has a wobbly scrutinee,
the programmer can make it rigid by adding an annotatiors:thu
(case (t::tau) of ...). Beyond that, we believe that there is
little to be gained by adding further rules to the scrutihgsng
rules.

5.2 Smart let

Consider these two terms, whete x) is determined to be rigid
by SCR-APP:

SCR-APP

SCR-SIG

let s = f x
in case s of
MKT a b -> ...

case f x of
MKT a b —> ..

With the rules so far, the left-hanthse would do refinement, but
the right hanctase would not, because would get a wobbly type.
This is easily fixed by re-using the scrutinee judgementtferright
hand side of det:
Tx:YThu:tl"
a = ftv(t) — ftv(T) Hx"Vartkt:™r

- (let x=u in t):™ 7

This change means that introducindLet does not gratuitously
lose rigidity information. An interesting property is thatLET-w
infers a rigid type for, thenx is monomorphic and is empty:

THEOREMS5.1. If THw: 11" thenftv(t) C ftv(T).

Why is this true? Because the only waycould get a rigid type is
by extracting it fromr".

LET-W

5.3 Smart patterns

Consider ruleecoN-w in Figure 2, used when the scrutinee has a
wobbly type. It gives a wobbly type tall the variables bound by
the pattern. However, if some of the fields of the construbtore
purely existential types, then these types are definitgigrand it
is over-conservative to say they are wobbly.

This observation motivates the following variantraf ON-W

C'Va.ti =TT el a#ftv(l,Tp, T¢)
ac = aﬁf’[\l(fz) 0 =[a.—v| e(fz) =Tp
r if ftv(Ti)#ac
mi = { w otherwise

Lxmif(ty) Ht:™ T

rECcx:™m™ 17, 51

PCON-W

2006/12/15

bindings(A) =@
bindings(-) =0
bindings(A,a < a) = {a}Ubindings(A)
bindings(A,x:™ o) = bindings(A)

r }—p—>t:<m1"m‘> Tp — Tt

L@ -, O Fp:™ 1, » (a, A, 0)
ftv(T, Tp, Te)#a bindings(A) Ca
OTUA)Ft:™t 9™t (1y)

PAT
TEp—ot:meme oy
K, }—p:meKz‘
x ¢ dom(A)
PVAR

N(a, A 0)Fx:" 1w (a Ax:"1, 0)

be = b N ftv(T) T3 = P(T2)
w otherwise

VP = [be—v]
my :{
fotd pi ™ P(Tii) » K

C"Vvb.T1;oTT el b#a
T ftv(T1)#oc
I (ab, A, 6)
n@a 0rFCp:" T »K

PCON-W

C"Vb.Ti»TT el b#a
0(t)=T7; Ve fmgu(T: =72)
N(@b, A - 0) " prr e K

(@A 0)FCp:"trK

PCON-R

b = ftv(tau) — dom(l, A)
b distinct b#bindings(A) b#dom(0)
[[tau]]F,A,tr—)—b =T, 0(1s) =0"(1)
I(a (AAb—=b), 0)Fp:"ts» K

I (a A, 0)F (p::tau):™ T» K

PANN

I Ky }—fOLd pi ™ot > Ky

T3 F-BASE

NKE -» K

LKy Fp T Ky
[K2 }—fOld PimiT K3
fold m

Ky = (p:

F-REC
T),pi ;™ 1 » K3

Figure 4: Source language pattern typing

Here we attribute a rigid type to; if x;’s type does not mention
any of the type variables. that are contaminated by appearing in
the result type of the constructor; that i, is rigid if its type is
purely existential.

To be honest, this elaboration BEON-W is motivated more by
the fact that it is easy to describe and implement, and its1ssiny
with SCR-APP, rather than because we know of useful programs
that would require more annotation without it.

5.4 Nested patterns

In Section 4 we treated only flat patterns, and we did not fand|
pattern type signatures (introduced in Section 4.5). Hagdlested

ICFP’06 8

patterns introduces no new technical or conceptual diffis)lbut
the rules look substantially more intimidating, which is ywve
have left them until now. The rules for nested patterns arergin
Figure 4. The main new judgement typechecks a nested pattern

RK] (o P e Kz
HereK is atriple(a, A, 6), with three components (Figure 1):

e T is the set of type variables bound by the pattern. We need
to collect these variables so that we are sure to choose dinuse
variables when instantiating a constructor, and so thatave c
ensure that none of the existential variables escape.

e A gives the typings of term variables bound by the pattern,
and the lexically-scoped type variables brought into sdope
pattern type signatures; we udeo extend” before typing the
body of the case alternative.

e 0 is the type refinement induced by the pattern.

This triple K is threaded through the judgement; gives the
bindings from patterns to the left qf, and K, is the result of
augmenting<; with the bindings fronp.

With that in mind, rulePAT is easy to read (compare it with
PCON-R from Figure 2): it invokes the pattern-checking judgement,
starting with an empt, checks that none of the existential type
variables escape, and typechecks the biodfjthe case alternative
after extending the type environment withand applying the type
refinementd. The premisebindings(A) C a specifies that the
scoped type variables introducedAnmay only bind internal vari-
ables introduced by this particular pattetrigdings is defined in
Figure 4). The premise maintains the invariant that scoped type
variables can only be introducetbseto their quantification sites,
an issue to which we return in Section 5.5.

Rule PVAR is also straightforward; the test¢ dom(A) pre-
vents a single variable from being used more than once inghesin
pattern match.

The constructor ruleBCON-w andPCON-R are similar to those
in Figure 2, with the following differences. First, the spatterns

are checked using an auxiliary judgeméﬁfld, which simply
threads th& triple through a vector of patterns. Secondpiton
R the incoming substitutio® is composedvith the unifier,, to
obtain(y - 8). In PcONnw, however, the instantiatio has only
the fresh variable®. in its domain, so there is no need to extend
the global type refinemet

There is one tricky point. Consider the following example:

data T where C :: Repa ->a > T

data Rep a where RI :: Rep Int
RB :: Rep Bool

f :: T -> Bool

f (C RB True) = False

f (C RI 0) = False

f other = True

Should this program typecheck? The constructtrinds an exis-
tential variablea. The patterrRB induces a type refinement that
refinesa to Bool; and hence, in our system, the patt&true type-
checks, and the program is accepted. There is a left-ta-oigter
implied here, and our system would reject the definitionéf dinder

of arguments t@ were reversed. Furthermore, accepting the pro-
gram requires that the operational order of pattern magchiost
also be left-to-right. In a lazy language like Haskell, teration
considerations force this order anyhow, so no new compiiaton-

7Notice that in Figure 4 there is no case for bindings of thenfar —
T; the reason is that we never apply the refinement to the emmieot
during checking the same pattern, therefore lexical viggabnly bind type
variables at the point of the call toindings(A) in rule PAT.

2006/12/15

straints are added by our decision. In a strict language ehexy
one might argue for greater freedom for the compiler, anc:éen
less type refinement.

This left-to-right ordering shows up in the way that the type
refinement is threaded through the sub-patterns of a catstru

by Hot it also requires one subtlety mCON-R. Notice that the
conclusion ofPCON-R does not sayC p : T T3, as iNPCON-W;
instead, the conclusion says simflyp : T, with (1) = T T3 as

a premise. The reason is apparent from the above examplea Whe

typechecking the patterfrue, we must establish the judgement
I (a,-, l[a—Bool]) F True: a » (a,-,[a+— Bool])

That is, we must check that the patt@tue has typea (notBool).
Hence the need to apply the current substitution (cominghfro
patterns to the left) before requiring the pattern type tobthe
formT T5.

5.5 Pattern type signatures

Figure 4 also enhances the type checking of patterns to accom
modate pattern type signatures, which we introduced ird¢ignin
Section 4.5. First, it is worth articulating our main desamices:

e At its binding site, a scoped type variable stands for a
type variable, not a type. For example, given the constructo
Lit :: Int -> Term Int,the patteriit (x::a) isillega
becausex must bind toInt. Of course, after type refinement a
scoped type variable may be bound to a type, but it seems odd
to allow this at its binding site.

Furthermore, at its binding site, a scoped type variabletmus
stand for a type variable that is not already in scope. Fomexa
ple, givenMkT :: forall a. a -> a -> T a, the pattern
MkT (x::b) (y::c) would be illegal because andy must
have the same type. Again, after type refinement two scoped
type variables may indeed stand for the same type (variable)
Lastly, at all times a scoped type variable stands figid type,

so that we may regard type annotations as rigid. For example,
we reject the patterdust (x::a) when the scrutinee has
wobbly typeMaybe Int because the type variabke would

be bound to the guessed typet, and any type annotation
containinga would not be rigid.

With that in mind, let us look at ruleanN, which deals with type
signatures in patterns, in the following stages:

* Firstwe identify the lexical variables that the pattermys into
scopeb, by removing from the free variables of the annotation
those that are already boundrinu A.

Next, we “guess” distinct type variablego create the bindings

b — b. We require that these variables be disjoint from the
bindings of A to avoid binding the same type variable twice.
We need not requir@ to be disjoint from the bindings of
because ruleaT requires that the bindings df (which include

b) are subset of the variables introduced by the pattern—and
the latter must not appear Ih Additionally we require thab

have not yet been refined By with the conditionb#dom(8),

an issue which is related to type inference completeness and
that we explain below.

Using the new bindingsh <— b, we translate the annotation
typetau to the internal types. Then, we check that the type

of the pattern and the signaturgare identical when the current
type refinement is applied. Since type signatures are always
translated to rigid types, we always apply the refinementéo t
signature. However, we conditionally apply the refinement t
depending on its rigidity flag.

¢ Finally, we check the pattern against the annotation type

ICFP’06

We do not allow scoped type variables to be bound after they
have been refined (the conditib#dom (6) above) to ensure that
our algorithm is complete. The following example illusegawhy.

data T c¢ where MKT ::
data Y where MKY ::
f (y::Y) = case y of

MkY MKT (z::b) -> True

T Int
Ta->a->Y

In this example, thémgu refinesa to Int. Algorithmically we
determine what variabhe should bind to by examining(a). The
implementation would then fail, sinaewould have to get bound
to atype Int. However without the conditio#dom(0), the
specification allow® to map toa and succeeds.

By changing our first two design decisions, we could remove
this restriction. If lexical variables were allowed to maprigid
types, including other in-scope type variables, we wouldhave
to rule out the above example. However, we think that thigagho
leads to confusing behavior if lexical type variables cameaigid
but not wobbly types. For example, we would reject the patter
Just (x::a) when the scrutinee has a wobbly typeybe Int
but accept it when the scrutinee has a rigid type.

We could then also change our third design decision, by allow
ing lexical type variables to nanweobblytypes, and refining them
selectively just as we do term variable bindings. The typstesy
remains tractable, but becomes noticeably more compticéte-
cause we must now infer the rigidity of both scoped type s
(or, rather, of the types they stand for), and of type anrwiat

The choice among these designs is a matter of taste. We have

found the current design to be simplest to specify and reabont.

6. Properties of our system

We have proven that our system enjoys the usual desirabfe pro
erties: it is sound (Section 6.1); it can express anythireg #n
explicitly-typed language can (Section 6.2); we have a damd
complete type inference algorithm (Section 6.3); and itésmaser-
vative extension of the standard Hindley-Milner type sys{&ec-
tion 6.6). Although these properties are standard, theyeasdly
lost, as we elaborate in this section. All of the results ia #ection
hold for the most elaborate version of the rules we have ptede
including all of the extensions in Section 5.

6.1 Soundness

We prove soundness by augmenting our typing rules with atype
directed translation to the predicative fragment of Systermx-
tended withGADTS. As usual, type abstractions and applications
are explicit, and every binder is annotated with its typeaddition,

in support of GADTS, we annotate eactase expression with its
result type. This intermediate language is equipped witallahy-
name semantics and is type safe.

We augment each source-language typing judgement with a
translation into the target language; for example the maimt
judgement becomeB - t :™ 1 ~ t’, wheret’ is the translation
of t. For example, here is therm rule, whose translation makes
explicit the type application that is implicit in the souremguage:

c:"VaTer

ATM
F-c:™M[@=vlt~cv

The semantics of the source language is defined by this atéos!
The soundness theorem then states that if a program isypeltHin
our system then its translation is well-typed in our exteh8gstem
F, and hence its execution cannot “go wrong”.

THEOREMG6.1 (Type safety)lf -t :™ T~ t’ thenF" t’: .

2006/12/15

6.2 Expressiveness

Programmer-supplied annotations are expressimgprogram that
can be expressed by the explicitly-typed System-F-stytierime-
diate language can also be expressed in the source langivage.
show this result with a systematic translation from the rimie
diate language into the source language, such that anytigpea
intermediate-language program translates to a typeahleceso
language program. The translation is straightforwarde typplica-
tions are merely erased, type abstractions are replacédawito-
tations that bring into scope the abstraction’s quantifyge tvari-
ables, every binder is annotated with a signature, and atioos
are added to everyase expression.

6.3 Soundness and completeness of inference

We have a sound and complete type inference algorithm for our

system, as outlined in Section 4.6. We only give a short Sketce.
The algorithm uses notatiam, 3 for unification variables. Uni-

fiers, that is, idempotent substitutions from unificatioriafles to

monotypes, are denoted with An identity-everywhere unifier is

denoted withe. The algorithm also makes use of infinite sets of

fresh names, which we denote with, and callsymbol supplies
The main inference algorithm can be presented as a detstiini
relation: (60, Ao) =T Ft:™ > (81,.41). The judgement should
be read as: “given an initial unifidr, and an initial symbol sup-
ply Ao, check thatt has the typer with the modifierm underT,
returning an extended unifiér and the rest of the symbol supply
A.”. Everything is an input except; and.4; which are results. A
precondition of the algorithm is that whenewer = r thent con-
tains no unification variables, that fsis fully known. This way we
enforce a clean separation between refinement and unific&tow
example, consider the algorithmic rule for application:

(Ao,60)>r|—tlw [5—)T2>(A1,61)
(A1, 01)>=THuw:™ B> (A, 02)

(AoB,80)=THtu:™ 12~ (Az,62)

The function and the argument types contain the unificatami v
able and therefore should be checked with the wobbly modifier.

The algorithm issound that is, if a term is shown to be well-
typed by the algorithm, there should exist a typing derdratn the
specification that witnesses this fact.

AAPP

THEOREMG6.2 (Type inference soundnesget. Ao be a supply of
fresh symbols. If Ay, €) = F t:™ a = (A1, 8) thenk t ¥ §(«).
If (Ao, e)=Ft:" > (A7,8) andt does not contain unification
variables, then- t ;" .

Since unification variables live only in wobbly parts of aged
ment, Theorem 6.2 relies on the following substitution ety

LEMMA 6.3 (Substitution)If dom(¢) is disjoint from the vari-
ables appearing in the rigid parts of the judgemérnt t :™ T then
O[T Ft:™ ¢(7), whered[I'] means the application a@f in both
rigid and wobbly parts of .

The other important property of the algorithmcsmpleteness
that is for all the possible types that the type system caitate to
aterm, the algorithm can infer (i.e. check against a frestcation
variable) one such that all others are instances of that type

THEOREM6.4 (Type inference completeneskpet A, be a sup-
ply of fresh symbols. K t :" Tthen(Ap,€) =+ t:" 7> (A1, d).
If -t T, and« is a fresh unification variable thefA,, €) >~
Ft:" a=(Ar,0)and3é, such that,6(a) = T.

THEOREM®6.5 (Principal types)If - t :™ T then there exists a
principal typet, such that- t :*¥ t,,, and for everyr; such that
Ft:" 1, itis the case that; = §(t,) for some substitution.

A principal types property for the rigid judgement is uniegting
as rigid types are always known from user type annotations.

6.4 Pre-unifiers and completeness

We remarked in Section 4.4 that RrCON-R it would be unsound
to use just any unifier fof, as® could introduce type equalities
that have no justification. But must tieebe a unifier at all? What
about refinements that introduce fewer equalities thagu? For
example, even though these expressiortoulddo refinement, no
refinement isiecessaryo typecheck this function:

-> Int

i

0

That motivates the following definition:

f :: Term
f (Lit i)
f other

nmn e

DEFINITION 6.6 (Pre-unifier) A substitution® is a pre-unifier of
typest; and T, iff for every unifienp of T; andt,, there exists a
substitutiond’ s.t.p =0’ - 0.

That is, a pre-unifier is a substitution that can be extendelet
any unifier. For example, the empty substitution is a préiemof
any two types. A most-general unifier is precisely char&serby
being both (a) a unifier and (b) a pre-unifier. In our exphetyped
internal language (Section 6.1), it is sound for rateoON-R to use
any pre-unifier, rather than a most-general unifier.

Likewise, we can modifffmgu (Definition 4.1) so that it does
not require the refinement to be a unifier. To our surprise gvew
this flexibility in the source language precludes a comptepe
inference algorithm. To see why consider this program:

data T a where C :: T Int
g:: Ta->a->a
gxy=1lt v=(casexof C->y) inv
With our current specification, this program would be ilpégd: v

would getInt, due to the refinement afs type inside thecase
expression, and the tyfat does not match the return typeof g.

But suppose that the specification was allowed to choose the

emptypre-unifier for thecase expression (thereby performing no
refinement). Therw would get the types, and the definition of
would typecheck. There would be nothing unsound about doing
this, but it is difficult to design a type inference algorithtmat
will succeed on the above program. In short, completeneggef
inference becomes much harder to achieve.

This was a surprise to us. Our initial system used a pre-unifie
instead of a most-general unifier FCON-R, on the grounds that
unifiers over-specify the system, and we discovered theeabgv
ample only through attempting a (failed) completeness fpf@o
our inference algorithm. The same phenomenon has beenrencou
tered by others, albeit in a very different guise [15, secH®3,6].
Our solution is to use fresh most general unifiers in the §ipation
as well as the implementation.

6.5 Wobbliness and completeness

Our initial intuition was that if a term typechecks in a wopbl
context thena fortiori, it would typecheck in a rigid context. But
not so. Suppose :: T Int. Then the following holds:

x:'Tay:"akcase x of C >y Ma

However, if we made the binding for rigid, then the type ofy

Soundness and completeness, along with determinacy of thewould be refined tdnt, and the judgement would not hold any

algorithm, give us a principal types property.

ICFP’06 10

more. (It can be made to hold again by making the return tygd ri

2006/12/15

as well.) This implies that there may be some programs tieatrhe
untypable when (correct!) type annotations are added, twisic
clearly undesirable. Again this unexpected behavior isumique
to our system [15, section 5.3], and we believe that the elesnp
that demonstrate this situation are rather contrived.

What this means is that our specification must be careful to
specify exactlywhen a type is wobbly and when it is rigid. We
cannot leave any freedom in the specification about whices e
rigid and which are wobbly. If we did, then again inferenceuldo
become much harder and, by the same token, it would be hander f
the programmer to predict whether the program would typeiche

Since our system is (with one small exception) determiisti
it already has the required precision. The exception is sade-
OTHER N Figure 2, which overlaps witBCR-VAR. This is easily
fixed by adding toSCR-OTHER a side condition that is not an
atomc.

6.6 Relationship to Hindley-Milner

Our type system is a conservative extension of the conweaitio
Hindley-Milner type system (augmented with existentigiesy).

THEOREMG6.7 (Conservative extension of HMyay I' contains
only conventional data constructors (i.e. constructorshwipes
of the formvab.® — T @). If I - t :™ v thenl +"™ t: 1.
Conversely, if F"'™ t: tthenl" + t :™ T for anym.

To prove this theorem, we first use the versiorraoN-R that
uses a biased implementationfefigu (Section 4.6). As mentioned
in Section 4.6, any program that is typeable with the origggatem
is typeable in the system with the biased implementatiorthén
latter system, it follows that, under the Hindley-Milnestections,
the pattern judgement will return a substitution that ordfires
freshly-introduced type variables, because each equggiterated
will be of form T, = a, wherea is a fresh type variable:

LEMMA 6.8 (Shapes of refinements under HM restrictiomsl-
gebraic datatypes are conventional, the biased implentientas
used,and’ +p:™ 1t » (@, A, 0),thendom(0) C a.

For the proof of Theorem 6.7 we additionally rely on the faetttif
we apply the refinement returned by the pattern typing jucem
to the extra part of the environment that the pattern intcedu
we get back the part of the environment that the Hindley-bftiln
system would introduce. The “conservativity” part is prdvesing
the intermediate system that uses biasedyus and the fact that
this system is equivalent to the original that uses arhjitfatgus.

7. Related work

In the dependent types communityADTS have played a central
role for over a decade, under the namductive families of data
typeq7]. Coquand in his work on dependently typed pattern match-
ing [6] also uses a unification based mechanism for implement
ing the refinement of knowledge gained through pattern match
ing. These ideas were incorporated in the ALF proof edit®],[1
and have evolved into dependently-typed programming lagesi
such as Cayenne [1] and Epigram [11]. In the form presentes] he

call first class phantom typefs, 8]. Sheard and Pasalic use a
similar design they calequality-qualified typesn the language
Qmega [18]. All of these works employ sets of (equality) con-
straints to describe the type system. We use unificatiordastfor
reasons we discussed in Section 4.3.

Jay’spattern calculug9] also provides the same kind of type
refinement via pattern matching as ours does, and it inspived
use of unification as part of the declarative type-systencipa-
tion. The pattern calculus aims at a different design sgzaeours,
choosing to lump all all data type constructors into a sirggdel.
This allows Jay to relax his rule for typing constructors.oAs in-
tended target is Haskell, where for historical and efficyere@asons
constructors for different datatypes can have overlapppgesen-
tations in memory, we cannot make this same design choice.

Most of this work concerns typeheckingor GADTS. Much less
has been done on typeference An unpublished earlier version
of this paper originally proposed the idea of wobbly typest b
in a more complicated form than that described here [14]h&t t
work, the wobbly/rigid annotations were part of the synthkypes
whereas, in this paper, a type is either entirely rigid orirelyt
wobbly. For example, in the present systemse (x,y) of ...
will do no type refinement if eithex or y has a wobbly type,
whereas before the rigidity of either or y would lead to type
refinement of the corresponding sub-pattern. However, fthes
grain attribution of wobbliness gave rise to significant iiddal
complexity (such as “wobbly unification”), which is not nesary
here, and we believe that the gain is simply not worth the .pain
Furthermore, every program in the language of the earligit @
typeable in the current system—perhaps with the additicnfefv
more type annotations.

Inspired by the wobbly-type idea, Pottier and Régis-Géana
found a way to factor the complexity into three partssteape-
inferencephase that propagates rigid type information through-
out the program (introducing type annotations), a stréigivard
constraint generatiophase that turns annotated program text into
a set of constraints, followed by @nstraint-solvingphase [15].
They call this processtratified type inferenceThe novelty is in
shape inference; constraint generation and solving fonantated
language is well established. The shape inference algorittey
use is more aggressive about propagating rigid types thatype
system—as a result their system can infer types for someams
that our system would reject. Here is an example, taken frain t
paper, of a program that they accept but we reject. (Thisrarmg
uses th&ep type defined in Section 5.4):

double :: Rep a -> [a] -> [a]
= \r xs. map (\x. case r of RI -> x+x) xs

In our system,xx would be given a wobbly type, and hence
the case on r does not refine its type, so the program would be
rejected. To fix the problem is easy: annotate the binding.of
The price to be paid is that their system is more complicated t
the one we present here; for example, it is non-trivial torigout
whether the annotation anis required. In contrast, we think that
wobbly types make it easier to determine whether type inébion
is available forcaDTS, and that the extra annotations required are

GADTS can be regarded as a special case of dependent typing, inbarely noticeable. However, we need more experience toree su

which the separation of types from values is maintained it
the advantages and disadvantages that this phase separatigs.
The idea ofGADTS in practical programming languages dates
back to Zenger's system of indexed types [27], buteXial were
perhaps the first to suggest includiggDTs in an ML-like pro-
gramming language [25]. (In fact, an earlier unpublishedkway
Augustsson and Petersson proposed the same idea [2].)ukFs s
sequent work adopts more ideas from the dependent-typed worl

Another subtle difference between our system and stratifjezl
inference is the treatment of refinements that create dmsabie-
tween type variables. In our systefimgu ensures that arbitrary
choices between variables do not determine whether a progra
type checks. Alternatively, Pottier and Régis-Gianisddtice a to-
tal ordering between variables. When a choice betweenblesa
must be made, they choose the smaller one. We do not find this so
lution satisfying as resolving ambiguity based on variaistgering

[26, 24]. Cheney and Hinze examine numerous uses of what theymeans that inference is sensitive to the order in which fresh

ICFP’06 11

2006/12/15

ables are chosen during skolemization. Specifying thisrosdems
a bit much for the specification of a type system. To be faig th
issue affects a small minority of programs that @geTs, so the
difference is not that significant. In fact, since rigid typ®paga-
tion is more aggressive in their system, such ambiguitise aven
less frequently than in ours.

Stuckey and Sulzmann also tackle the problem of type inéeren
for GADTs [19]. They generate constraints and then solve them, but
unlike Pottieret al, they do not require a shape inference phase
to precisely describe necessary type annotations. Insteeid in-
ference algorithm, which also attacks polymorphic reaursis in-
complete. To assist users whose code does not type chegk, the
develop a set of heuristics to identify where more type aatimis
are required. As a result, their compiler will accept progsawith
fewer type annotations than our system (or stratified tyfarémce)
requires, but these programs must be developed with thet@asse
of their compiler.

8. Conclusions and further work

We believe that expressive languages will shift incredgirg-
wards type systems that exploit and propagate programnmer-an
tations. Polymorphic recursion and higher-rank types axeds-
tablished examples, angADTs is another. We need tools to de-
scribe such systems, and the wobbly types we introduce bera s
to offer a nice balance of expressiveness with predictahiitl sim-
plicity of type inference. Furthermore, the idea of distirghing
programmer-specified types from inferred ones may well lséulis
in applications beyondADTs. The main shortcoming of our imple-
mentation inGHC is that the interaction betweesaDTs and type
classes is not dealt with properly. We plan to address tliegahe
lines proposed by Sulzmann [21].

Acknowledgements We thank Francois Pottier for his particularly
detailed and insightful feedback on our draft. Yann Ré&gjianas
provided us with clarifications on stratified type inferendé also
thank Martin Sulzmann for many fruitful conversations olated
topics as well as comments on this paper. Matthew Fluet gave
us helpful comments on an early draft. This work was paytiall
supported by National Science Foundation grant CCF-031728

References

[1] Lennart Augustsson. Cayenne — a language with depertdees. In
ACM SIGPLAN International Conference on Functional Pragraing
(ICFP'98), volume 34(1) ofACM SIGPLAN Noticepages 239-250,
Baltimore, 1998. ACM.

[2] Lennart Augustsson and Kent Petersson. Silly type fasil
Available ashttp://www.cs.pdx.edu/~ sheard/papers/silly.
pdf, 1994.

[3] Arthur L Baars and S. Doaitse Swierstra. Typing dynamgjng. In
ACM SIGPLAN International Conference on Functional Pragraing
(ICFP'02), pages 157-166, Pittsburgh, September 2002. ACM.

[4] Luca Cardelli. Basic polymorphic typecheckinBolymorphism2(1),
January 1985.

[5] James Cheney and Ralf Hinze. First-class phantom ty@as$CIS
TR2003-1901, Cornell University, 2003.

[6] Thierry Coquand. Pattern matching with dependent typds
Proceedings of the Workshop on Types for Proofs and Programs
pages 66-79, Baastad, Sweden, June 1992.

[7] Peter Dybjer. Inductive Sets and Families in MartinfsdType
Theory. In Gérard Huet and Gordon Plotkin, editotsgical
Frameworks Cambridge University Press, 1991.

[8] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons @sde
de Moor, editorsThe fun of programmingpages 245-262. Palgrave,
2003.

[9] Barry Jay. The pattern calculu&\CM Transactions on Programming
Languages and Systen26:911-937, November 2004.

ICFP’06 12

[10] Lena MagnussonThe implementation of ALF - a proof editor based
on Martin-Lof's monomorphic type theory with explicit stitution
PhD thesis, Chalmers University, 1994.

[11] Conor McBride and James McKinna. The view from the Ig&urnal
of Functional Programmingl4(1):69-111, 2004.

[12] Erik Meijer and Koen Claessen. The design and impleatant of
Mondrian. In John Launchbury, edit¢faskell workshopAmsterdam,
Netherlands, 1997.

[13] Simon Peyton Jone3he Implementation of Functional Programming
LanguagesPrentice Hall, 1987.

[14] Simon Peyton Jones, Geoffrey Washburn, and Stephaeieici/
Wobbly types: type inference for generalised algebrai@ dgpes.
Microsoft Research, 2004.

[15] Frangois Pottier and Yann Régis-Gianas. Stratifigettinference for
generalized algebraic data types. AGM Symposium on Principles
of Programming Languages (POPL'Q8}harleston, January 2006.
ACM.

[16] Tim Sheard. Languages of the future. ACM Conference on
Object Oriented Programming Systems, Languages and Agpipliys
(OOPSLA'04)2004.

[17] Tim Sheard. Putting Curry-Howard to work. Proceedings of
ACM Workshop on Haskell, Tallinppages 74-85, Tallinn, Estonia,
September 2005. ACM.

[18] Tim Sheard and Emir Pasalic. Meta-programming witHtbnitype
equality. InProceedings of the Fourth International Workshop on
Logical Frameworks and Meta-languages (LFM’'04), Cailly 2004.

[19] Peter Stuckey and Martin Sulzmann. Type inference faarded
recursive data types. Technical report, National Universi
Singapore, 2005.

[20] Martin Sulzmann. A Haskell programmer’s guide to Chéoe.
Available athttp://www.comp.nus.edu.sg/~sulzmann/
chameleon/download/haskell.html, 2003.

[21] Martin Sulzmann, Jeremy Wazny, and Peter Stuckey. séwsork for
extended algebraic data types. Technical report, Nationalersity
of Singapore, 2005.

[22] Dimitrios Vytiniotis, Stephanie Weirich, and SimonyRen Jones.
Boxy type: Inference for higher-rank types and impredidti In
ACM SIGPLAN International Conference on Functional Pragraing
(ICFP’06), Portland, Oregon, 2006. ACM Press.

[23] Dimitrios Vytiniotis, Stephanie Weirich, and Simony®en Jones.
Simple unification-based type inference for GADTs, TecAhisp-
pendix. Technical Report MS-CIS-05-22, University of Pgylmania,
April 2006.

[24] Hongwei Xi. Applied type system. IRroceedings of TYPES 2003
volume 3085 olecture Notes in Computer Sciengages 394—-408.
Springer Verlag, 2004.

[25] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded reeirsi
datatype constructors. IRroceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langugogses
224-235. ACM Press, 2003.

[26] Hongwei Xi and Frank Pfenning. Dependent types in pcatt
programming. Ir6th ACM Symposium on Principles of Programming
Languages (POPL'99)pages 214-227, San Antonio, January 1999.
ACM.

[27] Christoph Zenger. Indexed typed.heoretical Computer Science
pages 147-165, 1997.

2006/12/15

