
Dependently Typed Programming with Singletons

Richard A. Eisenberg
University of Pennsylvania

Philadelphia, PA, USA
eir@cis.upenn.edu

Stephanie Weirich
University of Pennsylvania

Philadelphia, PA, USA
sweirich@cis.upenn.edu

Abstract
Haskell programmers have been experimenting with dependent
types for at least a decade, using clever encodings that push the
limits of the Haskell type system. However, the cleverness of these
encodings is also their main drawback. Although the ideas are in-
spired by dependently typed programs, the code looks significantly
different. As a result, GHC implementors have responded with ex-
tensions to Haskell’s type system, such as GADTs, type families,
and datatype promotion. However, there remains a significant dif-
ference between programming in Haskell and in full-spectrum de-
pendently typed languages. Haskell enforces a phase separation be-
tween runtime values and compile-time types. Therefore, singleton
types are necessary to express the dependency between values and
types. These singleton types introduce overhead and redundancy
for the programmer.

This paper presents the singletons library, which generates the
boilerplate code necessary for dependently typed programming
using GHC. To compare with full-spectrum languages, we present
an extended example based on an Agda interface for safe database
access. The paper concludes with a detailed discussion on the
current capabilities of GHC for dependently typed programming
and suggestions for future extensions to better support this style of
programming.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; D.3.2 [Programming Languages]: Language Classifications—
Haskell; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Type structure

Keywords Haskell; dependently typed programming; singletons;
GADTs

1. Introduction
Haskell programmers have been experimenting with rich inter-
faces inspired by dependently typed programming for more than a
decade. The goal of these rich interfaces is both to extend the reach
of Hindley-Milner type inference (e.g., for generic programming,
type-safe printf , n-ary zips, heterogeneous lists) and to enhance
the lightweight verification capabilities of the Haskell type checker
(e.g., for length-indexed lists, well-typed abstract syntax). The
techniques used in these examples are astoundingly diverse: from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’12, September 13, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1574-6/12/09. . . $10.00

phantom types [Leijen and Meijer 1999], to nested datatypes [Bird
and Paterson 1999; Okasaki 1999], to a higher-order polymorphism
encoding of Leibniz equality [Baars and Swierstra 2002; Cheney
and Hinze 2002; Weirich 2004], to overlapping type classes [Kise-
lyov et al. 2004], to a tagless algebra [Carette et al. 2009], to func-
tional dependencies [Guillemette and Monnier 2008a; McBride
2002]. The flexibility of the Haskell type system and the ingenu-
ity of Haskell programmers have been demonstrated beyond doubt.

However, the cleverness of these encodings is also their draw-
back. Although the ideas behind the encodings are inspired
by dependently typed programs, the code does not look like
code in any full-spectrum dependently typed language, such as
Cayenne [Augustsson 1998], Coq [Coq development team 2004],
Epigram [McBride 2004], or Agda [Norell 2007]. As a result,
several authors [Guillemette and Monnier 2008b; McBride 2002;
Neubauer and Thiemann 2002] have pushed for more direct mech-
anisms, and GHC implementors have responded with General-
ized Algebraic Datatypes (GADTs) [Cheney and Hinze 2002; Pey-
ton Jones et al. 2006; Schrijvers et al. 2009; Xi et al. 2003], type-
level functions [Chakravarty et al. 2005], and type-level datatypes
with kind polymorphism [Yorgey et al. 2012]. These additions
provide native support for constrained data (replacing the use of
phantom types, nested datatypes, and type equality encodings) and
type-level computation (replacing the use of logic programming
with type classes and functional dependencies).

1.1 An example of singletons
A natural number datatype

data Nat where
Zero :: Nat
Succ :: Nat→ Nat

can now automatically be used at the type level to indicate the
length of a vector represented by a GADT.

data Vec ::∗→ Nat→∗where
VNil :: Vec a ’Zero
VCons :: a→ Vec a n→ Vec a (’Succ n)

(The single quotes in front of the data constructor names indicate
that they were promoted from the expression language.)

Furthermore, type families can express functions on this type-
level data, such as one that computes whether one natural number
is less than another.

type family (m :: Nat) :< (n :: Nat) :: Bool
type instance m :< ’Zero = ’False
type instance ’Zero :< (’Succ n) = ’True
type instance (’Succ m) :< (’Succ n) = m :<n

However, there is still at least one significant difference between
programming in Haskell and in full-spectrum dependently typed
languages. Haskell enforces a phase separation between runtime

117

���������	
�

���

������	
�

���
���������

���

��������	
� ��������������

�����
��������	
��

��������	
����
�

�����

�����

Figure 1. Singleton generation of Succ Zero

values and compile-time types. Consequently, to express the depen-
dency between the value of one runtime argument and the compile-
time type of another requires the definition and use of singleton
types—types with only one non-⊥ value.

For example, consider the safe indexing operation for vectors
below, called nth. This operation ensures that the index m is less
than the length of the vector n with the constraint (m :<n) ∼ True.
However, because nth requires the index at runtime, this index
cannot only be a type. We must also include a runtime witness for
this index, called a singleton, that can be used for computation.
The type of singleton values for natural numbers is SNat, a GADT
indexed by a type of kind Nat.

data SNat :: Nat→∗where
SZero :: SNat ’Zero
SSucc ::∀ (n :: Nat). SNat n→ SNat (’Succ n)

A graphical schematic of the relationship between the original
datatype, the promoted kind, and the derived singleton type can be
seen in Figure 1. Because the constructors of SNat mirror those of
the kind Nat, only one non-⊥ term exists in each fully-applied type
in the SNat family. Hence, these types are called singleton types. In
such types, the type variable indexing the type and the one non-⊥
term of that type are always isomorphic. Thus, singleton types can
be used to force term-level computation and type-level computation
to proceed in lock-step.

This singleton is the first runtime argument of the nth function
and determines the element of the vector that should be returned.

nth :: (m :<n) ∼ ’True⇒ SNat m→ Vec a n→ a
nth SZero (VCons a) = a
nth (SSucc sm’) (VCons as) = nth sm’ as

The nth code type checks in the second case because pattern
matching refines the type variables m and n to be headed by Succ .
Therefore, the constraint m :< n reduces to the simpler constraint
required by the recursive call to nth. Furthermore, GHC observes
that indexing must succeed. An attempt to add the following case
to the pattern match results in a compile-time error.

nth m VNil = error "index out of bounds"

1.2 The singletons library
Programming with singletons incurs programming overhead in
code when compared with programming in a full-spectrum lan-
guage. As in Figure 1, there are now three sorts of Nats, not just
one. Datatype promotion [Yorgey et al. 2012] automatically pro-
vides the kind level version, but not the corresponding singleton
SNat. This datatype must be declared separately, even though its
definition is straightforward. Furthermore, this overhead exists not
just for datatype definitions, but also for function definitions. For
example, the :< type family only applies to types. Two more defi-
nitions of < are required to compare term-level Nats and singleton
SNats.

Fortunately, this overhead is boilerplate. As previous work has
demonstrated, there is a mechanical derivation of singleton types

and functions (most notably by Monnier and Haguenauer [2010],
but also foreshadowed in earlier work [Bernardy et al. 2010; Crary
and Weirich 2000]).

This paper presents the singletons library1 that supports depen-
dently typed Haskell programming using the singletons design pat-
tern. All of the boilerplate code needed to marry values with types
is produced by the Template Haskell primitives provided by the
library. These primitives produce singleton types from datatypes,
along with type families and singleton functions from function def-
initions. The singletons library removes the tedium and possibil-
ity of errors from this duplication process. Any suitable (see Sec-
tion 3.2) function over original datatypes can be promoted to the
type level and translated to work with singletons.

While the singletons library automates the promotion and re-
finement of datatypes and functions, it does not hide the nature of
the encoding from the programmer. The plumbing remains visible,
so to speak. In our experience programming with using the single-
tons library, we have had to remain aware of the definitions made
in the library and how they interact with GHC’s type inference en-
gine in order for our code to compile. Nevertheless, the automation
provided by the library allowed us to focus our efforts on the harder
parts of a project instead of on the boilerplate necessary to declare
singleton types.

To focus the discussion of this paper, we present an extended
example of the use of the singletons library. In The Power of
Pi, Oury and Swierstra [2008] describe a dependently typed safe
database interface. They claim that the interface, written in Agda,
would not be possible in Haskell. However, using a translation
involving singletons, along with extensions to Haskell added after
Oury and Swierstra’s paper, this interface can indeed be written in
Haskell.

1.3 Contributions
The contributions of this paper include:

• A discussion and analysis of the current state of dependently
typed programming in Haskell, demonstrating how well recent
(and not so recent) extensions to GHC can be used for this
purpose.

• A library, singletons, to better support dependently typed pro-
gramming in Haskell. This library uses Template Haskell to
automatically generate singleton types, automatically lift func-
tions to the type level, and automatically refine functions with
rich types. The generated code is tied together using a uni-
form, kind-directed interface. In the context of the sophisticated
Haskell type system, there are a number of design variations in
this generation: we present the library in Section 2, explain its
implementation in Section 3, and discuss trade-offs in its the
design in Section 4.

• An extended example of a type-safe database interface, written
using the singletons library, based on an Agda implementation
by Oury and Swierstra [2008] (Section 5).

• Proposals for future additions to GHC to better support depen-
dently typed programming (Section 7).

Colors Three colors will be used throughout this paper to distin-
guish the origin of Haskell source code: code written as part of the
singletons library is blue; code generated through the use of the
library is red; and other code is black.

2. Programming with singletons
We begin by describing the important language features and ele-
ments of the singletons library that support dependently typed pro-

1 cabal install singletons

118

data family Sing (a :: κ)

class SingI (a :: κ)where
sing :: Sing a

class SingE (a :: κ)where
type Demote a ::∗
fromSing :: Sing a→Demote (Any :: κ)

class (SingI a,SingE a)⇒ SingRep a
instance (SingI a,SingE a)⇒ SingRep a

data SingInstance (a :: κ)where
SingInstance :: SingRep a⇒ SingInstance a

class (t ∼ Any)⇒ SingKind (t :: κ)where
singInstance ::∀ (a :: κ). Sing a→ SingInstance a

Figure 2. The definitions of the singletons library

gramming in GHC. As in the introduction, to maintain overall fa-
miliarity, we base our examples in this section on length-indexed
vectors. We have already seen that working with length-indexed
vectors requires indexed datatypes, type-level computation, and sin-
gleton types. Below, we briefly review how GHC (and singletons)
supports these features in more detail, before discussing additional
ingredients for dependently typed programming. A summary of the
singletons library definitions is in Figure 2.

2.1 Indexed datatypes
The definition of the datatype Vec requires GADTs because its
two data constructors VNil and VCons do not treat the second
type argument (of kind Nat) uniformly. In the first case, we know
that empty vectors have zero length, so this constructor produces
a vector of type Vec a ’Zero. Likewise, the VCons constructor
increments the statically-tracked length.

This non-uniform treatment means that pattern matching in-
creases the knowledge of the type system. For example, a safe head
function can require that it only be called on non-empty lists.

head :: Vec a (’Succ n)→ a
head (VCons h) = h

Because the type index to Vec is the successor of some number,
it is impossible for the head function to be called with VNil . Fur-
thermore, GHC can detect that the VNil case could never occur.
When checking such a pattern, the compiler would derive an equal-
ity Vec a (’Succ n) ∼ Vec a ’Zero, because the type of the pattern
must match the type of the argument. Such an equality can never
hold, so the case must be impossible. GHC issues a compile-time
error if this case were to be added.

2.2 Type-level computation
The :< type operator is an example of a type-level function. In the
nth example, we use this function in a constraint—indexing a vec-
tor is valid only when the index is in range. We can represent such
propositions equally as well using a multiparamter type class. How-
ever, there are situations where type-level computation is essential.
For example, to append two length-indexed vectors, we need to
compute the length of the result, and to do that we need to be able
to add.

The singletons library supports the automatic reuse of runtime
functions at the type-level, through function promotion. The fol-
lowing Template Haskell [Sheard and Peyton Jones 2002] splice
not only defines plus as a normal function,

$(promote [d |
plus :: Nat→ Nat→ Nat

plus Zero m = m
plus (Succ n) m = Succ (plus n m) |])

but also generates the following new definition (note that GHC
requires the type family name to be capitalized):

type family Plus (n :: Nat) (m :: Nat) :: Nat
type instance Plus ’Zero m = m
type instance Plus (’Succ n) m = ’Succ (Plus n m)

Above, the $(...) syntax is a Template Haskell splice—the contents
of the splice are evaluated at compile time. The result is a list
of Template Haskell declarations that is inserted into Haskell’s
abstract syntax tree at the splice point. This code also demonstrates
Template Haskell’s quoting syntax for declarations, [d | ... |]. Any
top-level declarations can appear in such a quote.

We can use Plus to describe the type of append:

append :: Vec a n→ Vec a m→ Vec a (Plus n m)
append VNil v2 = v2
append (VCons h t) v2 = VCons h (append t v2)

The length of the combined vector is simply the sum of the lengths
of the component vectors.

2.3 Singleton datatypes
The singletons library also automates the definition of singleton
types. The genSingletons function generates the singleton defini-
tions from datatypes already defined. For example, the following
line generates singleton types for Bool and Nat:

$(genSingletons [’’Bool , ’’Nat])

The double-quote syntax tells Template Haskell that what follows
is the name of a type. (A single quote followed by a capitalized
identifier would indicate a data constructor.)

The singletons library uses a kind-indexed data family, named
Sing , to provide a common name for all singleton types.

data family Sing (a :: κ)

A data family is a family of datatype definitions. Each instance
in the family has its own set of data constructors, but the family
shares one type constructor. The applicable data constructors for
a particular datatype are determined by the parameters to the data
family. Kind-indexed type and data families are a new addition to
GHC, introduced with datatype promotion [Yorgey et al. 2012]. A
kind-indexed type family can branch on the kind of its argument,
not just the type, and the constructors of a kind-indexed data family
are determined by the kind arguments as well as the type arguments
to the data constructor.

The call to genSingletons above generates the following decla-
rations (see below for a description of the class SingRep):

data instance Sing (a :: Bool)where
STrue :: Sing ’True
SFalse :: Sing ’False

data instance Sing (a :: Nat)where
SZero :: Sing ’Zero
SSucc :: SingRep n⇒ Sing n→ Sing (’Succ n)

Each constructor in an unrefined datatype produces a construc-
tor in the singleton type. The new constructor’s name is the original
constructor’s name, prepended with S .2

The singletons library also produces synonyms to Sing to en-
force the kind of a type argument. These synonyms are just the
original datatype names prepended with an S :

2 Symbolic names (operators) are prepended with :%. It is possible that the
new names introduced here and elsewhere will clash with other names. At
present, it is the library user’s responsibility to avoid such name clashes.

119

type SNat (a :: Nat) = Sing a
type SBool (a :: Bool) = Sing a

These synonyms can be used in type signatures when the kind of
the type parameter is known. Using the synonym instead of Sing
adds documentation and kind-checking at little cost.

2.4 Singleton functions
Functions can also have singleton types. In order to generate sin-
gleton versions of functions, they must be defined within a splice.

$(singletons [d |
isEven :: Nat→ Bool
isEven Zero = True
isEven (Succ Zero) = False
isEven (Succ (Succ n)) = isEven n

nextEven :: Nat→ Nat
nextEven n = if isEven n then n else Succ n |])

This code generates not just the promoted version of the func-
tion (as a type family) but also a runtime version of the function
that works with singleton types. The name of the new function is
the original function’s name, prepended with an s and with the next
letter capitalized.3 Note the use of sTrue instead of STrue in the
code below. These are smart constructors for the singleton types,
described in Section 3.1. The sIf construct, provided by the single-
tons library, branches on SBools.

sIsEven :: Sing n→ Sing (IsEven n)
sIsEven SZero = sTrue
sIsEven (SSucc SZero) = sFalse
sIsEven (SSucc (SSucc n)) = sIsEven n

sNextEven :: Sing n→ Sing (NextEven n)
sNextEven n = sIf (sIsEven n) n (sSucc n)

With these definitions, we can write a function to extend a vector
until it has an even length, duplicating the first element if necessary:

makeEven :: SNat n→ Vec a n→ Vec a (NextEven n)
makeEven n vec = case sIsEven n of

STrue → vec
SFalse→ case vec of

VCons h t→ VCons h (VCons h t)

To make this code type check, we must use the function sIsEven.
Pattern matching on the result of sIsEven brings information about
n into the context so that the cases in the pattern match have the
expected type.

Along with genSingletons and singletons , the singletons li-
brary provides genPromotions and promote, which convert term-
level declarations into type-level declarations only. Generating sin-
gletons requires promoting first, so most users will use only the
genSingletons and singletons functions. See Section 3.3 for more
details on singleton conversion for functions.

2.5 Forgetting static information
The overloaded operation fromSing eliminates a singleton term
and gives back a term of the unrefined datatype. It witnesses one
direction of the isomorphism between the members of a singleton
type family and the unrefined version of the type. For example,
suppose we have a function with the following type signature that
takes some number of elements from a vector and forms a list with
those elements:

vtake :: Nat→ Vec a n→ [a]

3 Symbolic function names are prepended with %:

To call vtake with a value of type SNat n, we need to convert to a
plain old Nat. The function fromSing does that.

vtake’ :: (m :6: n) ∼ ’True⇒ SNat m→ Vec a n→ [a]
vtake’ m vec = vtake (fromSing m) vec

The fromSing function is defined in the class SingE , repeated
here for convenience:

class SingE (a :: κ)where
type Demote a ::∗
fromSing :: Sing a→Demote (Any :: κ)

The Demote associated kind-indexed type family returns the type
from which a kind was promoted. The most interesting aspect of the
instances is the definition of Demote, which is a little subtle in the
case of a parameterized type. As examples, here are the instances
for Nat and Maybe:

instance SingE (a :: Nat)where
type Demote a = Nat
fromSing SZero = Zero
fromSing (SSucc n) = Succ (fromSing n)

instance SingE (a :: Maybe κ)where
type Demote a = Maybe (Demote (Any :: κ))
fromSing SNothing = Nothing
fromSing (SJust a) = Just (fromSing a)

Ideally, we would write Demote with only an explicit kind param-
eter. However, this feature is not yet supported in GHC. Instead,
Demote takes a type parameter a and its kind κ , and it branches
only on its kind parameter κ . To write the instance for Maybe,
we need to supply the recursive call to Demote with some type
of kind κ . We use the Any type, which is a primitive provided by
GHC that is an inhabitant of every kind.4 In the case of Demote,
it provides an exact solution to our problem: we simply use Any
with an explicit kind signature to get the recursive Demote call
to work as desired. Because recursive calls to Demote must use
Any , it is also necessary to use Any in the type signature for
fromSing ; otherwise the type checker tries to unify Demote (a ::κ)
with Demote (Any ::κ). Using the knowledge that the type param-
eter is irrelevant, we can see that these two types clearly unify, but
the compiler does not have that specialized knowledge and issues
an error.

2.6 Implicit arguments
Sometimes, runtime singleton arguments can be determined by
compile-time type inference. For example, here is a function that
creates a vector containing some repeated value:

replicate1 :: SNat n→ a→ Vec a n
replicate1 SZero = VNil
replicate1 (SSucc n) a = VCons a (replicate1 n a)

However, the compiler can often use type inference to calculate
the value of SNat n that is required in a call to this function. For
example, when we know (from unification) that a vector of length
two is required, then the only possible argument to this function is
SSucc (SSucc SZero). Therefore, the compiler should be able to
infer this argument and supply it automatically.

The singletons library supports such implicit arguments using
the SingI type class.

class SingI (a :: κ)where
sing :: Sing a

This class merely contains the singleton value in its dictionary,
which is available at runtime. (Because of the Sing data family,

4 Any is an analogue of ⊥ at the type level.

120

note that we need only have one class that contains many different
types of singleton values.)

To enable GHC to implicitly provide the singleton argument to
replicate, we rewrite it as follows:

replicate2 ::∀ n a. SingI n⇒ a→ Vec a n
replicate2 a = case (sing :: Sing n) of

SZero → VNil
SSucc → VCons a (replicate2 a)

In the first version, the SNat parameter is passed explicitly and
is used in a straightforward pattern match. In the second version,
the SNat parameter is passed implicitly via a dictionary for the
SingI type class. Because a pattern match is still necessary, we
have to produce the singleton term using the method sing . In
the recursive call to replicate2, we need an implicit SNat, not
an explicit one. This implicit parameter is satisfied by the class
constraint on the SSucc constructor.

Instances of the SingI class are automatically generated along
with the singleton type definitions. For example,

$(genSingletons [’’Nat])

generates the following instance declarations:

instance SingI ’Zero where
sing = SZero

instance SingRep n⇒ SingI (’Succ n)where
sing = SSucc sing

The SingRep class The SingI and SingE classes are kept sepa-
rate because while it is possible to define instances for SingE on a
datatype-by-datatype basis, the instances for SingI must be defined
per constructor. However, it is often convenient to combine these
two classes. The SingRep class is a essentially a synonym for the
combination of SingI and SingE .5 As such, it is unnecessary for
the singletons library to generate instances for it. All parameters to
singleton type constructors have a SingRep constraint, allowing a
programmer to use sing and fromSing after pattern matching with
these constructors.

class (SingI a,SingE a)⇒ SingRep a
instance (SingI a,SingE a)⇒ SingRep a

2.7 Explicitly providing implicit arguments
What if we are in a context where we have a value of type SNat n
but no dictionary for SingI n? Nevertheless, we would still like to
call the replicate2 function. What can we do?

On the surface, it might seem that we could simply call
replicate2 without fuss; after all, the compiler can ascertain that n
is of kind Nat and any type of kind Nat has an associated instance
of the class SingI . There are two fallacies in this line of reason-
ing. First, the dictionary for SingI n must be available at runtime,
and the value of n—a type—is erased at compile time. Second, the
compiler does not perform the induction necessary to be sure that
every type of kind Nat has an instance of SingI . If Haskell per-
mitted programmers to supply dictionaries explicitly, that construct
could solve this problem. This idea is explored further in Section 7.

The solution in the current version of Haskell is the SingKind
class, which is defined over a kind and can provide the necessary in-
stance of SingI . The intuition is that SingKind is the class of kinds
that have singletons associated with them. Ideally, the definition of
SingKind would start with

5 With the new ConstraintKinds extension, it is possible to make a true
synonym, using type, for a pair of class constraints. However, pairs of
constraints are not yet compatible with Template Haskell, so we are unable
to use this simplification.

class SingKind (κ ::�)where ...

where � is the sort of kinds and informs the compiler that κ is a
kind variable, not a type variable. At present, such a definition is
not valid Haskell. Instead, we use this definition as a workaround:

class (t ∼ Any)⇒ SingKind (t :: κ)where
singInstance ::∀ (a :: κ). Sing a→ SingInstance a

In this definition, Any is once again used to pin down the value of
the t type variable, indicating that only κ matters. The singInstance
method returns a term of type SingInstance, which stores the
dictionaries for SingI and SingE .

data SingInstance (a :: κ)where
SingInstance :: SingRep a⇒ SingInstance a

Here is the generated instance of SingKind for Nat:

instance SingKind (Any :: Nat)where
singInstance SZero = SingInstance
singInstance (SSucc) = SingInstance

For example, using SingKind , the programmer can satisfy the
SingI n constraint for replicate2 as follows:

mkTrueList :: SNat n→ Vec Bool n
mkTrueList n = case singInstance n of

SingInstance→ replicate2 True

3. Implementing the singletons library
In this section we go into more detail about the automatic genera-
tion of singleton types and functions, as well as the promotion of
term-level functions to the type level.

3.1 Generating singleton types
Given a promotable6 datatype definition of the form

data T a1 ...an = K t1 ... tm

the Template Haskell splice $(genSingletons [’’T]) produces the
the following instance of Sing :

data instance Sing (x :: T a1 ...an)where
SK ::∀ (b1 :: t1) ... (bm :: tm).

(SingKind (Any :: ai1), ...,SingKind (Any :: aip),
SingRep b1, ...,SingRep bm)⇒

Sing b1→ ...→ Sing bm→ Sing (’K b1 ...bm)

where i1, ..., ip are the indices of the kind variables a that appear
outside of any kind constructor in any of the t1, ...,tm.

The type of the singleton data constructor SK is created by
translating each parameter of the original data constructor K . Any
such parameter t i that is not an arrow type is converted to an
application of the Sing data family to a fresh type variable bi of
kind t i, having been promoted. (We discuss the special treatment
for arrow types below, in Section 3.3.) The result type of the data
constructor is the Sing data family applied to the promoted data
constructor applied to all of the generated type variables.

To allow for the use of functions with implicit parameters, the
the type also includes a SingRep constraint generated for each
parameter bi. (Section 4.3 discusses this design decision.) If the
original datatype T is a parameterized datatype, then it is also
necessary to add a SingKind constraint for any parameters used
in the arguments of the data constructor. Those that do not occur do
not require such a constraint, as explained shortly.

For example, the declaration generated for the Maybe type is:

6 See Yorgey et al. [2012] for an explanation of what types are promotable.

121

data instance Sing (b :: Maybe κ)where
SNothing :: Sing ’Nothing
SJust ::∀ (a :: κ). (SingKind (Any :: κ),SingRep a)⇒

Sing a→ Sing (’Just a)

Note that this definition includes two class constraints for SJust.
The first constraint SingKind (Any :: κ) is necessary for Maybe’s
instance for SingKind . In the SJust case below, we need to know
that the kind κ has an associated singleton.

instance SingKind (Any :: Maybe κ)where
singInstance SNothing = SingInstance
singInstance (SJust) = SingInstance

Kind parameters mentioned only within the context of a kind
constructor need not have the explicit SingKind constraint. Con-
sider a kind parameter κ that appears only in the kind Maybe κ .
There will be a type parameter (b :: Maybe κ) and a term pa-
rameter Sing b. Any code that eventually extracts a value of type
Sing (t :: κ) for some type t of kind κ would have to do so by
pattern-matching on a constructor of Sing (b :: Maybe κ) — in
other words, the SJust constructor. This pattern match would in-
clude the SingKind constraint written as part of the SJust construc-
tor, so we can be sure that the kind κ has an associated singleton
type, as desired. Thus, including the SingKind constraint on κ in
the translation above would be redundant.

The second constraint, SingRep a, ensures that the singleton
type for a is available implicitly and that this singleton can be
demoted to a raw type using fromSing .

Smart constructors The definition of the SJust constructor
above requires a caller to satisfy two constraints: one for SingKind
and one for SingRep. However, a dictionary for SingKind can al-
ways produce one for SingRep, so this is redundant. Listing both
constraints improves usability when pattern-matching, as both in-
stances are brought into the context—a programmer does not have
to use the singInstance method to get to the SingRep instance.
To ease the constraint burden when using a singleton constructor,
smart constructors are generated without the SingRep constraints:

sSucc :: Sing n→ Sing (’Succ n)
sSucc n = case singInstance n of SingInstance→ SSucc n

3.2 Promoting functions to the type level
The current version of GHC automatically promotes suitable
datatypes to become data kinds. However, there is no promotion
for functions. Instead, the promote and singletons functions of
the singletons library generate type families from function defini-
tions with explicit type signatures. The explicit type signatures are
necessary because the GHC does not currently infer the parameter
kinds or result kind of a type family (they default to ∗) and because
Template Haskell splices are processed before type inference.

Although the syntax of term-level functions and type-level func-
tions is quite different, these differences are not substantial. Term-
level constructs, such as conditionals and case statements, can be
accurately simulated by defining extra type-level functions to per-
form pattern matching. Figure 3 summarizes the current state of
the implementation, showing what Haskell constructs are supported
and what are not. The constructs in the second column are those that
we believe are relatively straightforward to add.7

The constructs in the last column are those that would require a
change in Haskell to implement fully. First, Iavor Diatchki is cur-
rently working to promote certain literals (currently, strings and

7 Promoting let and case would require generating a new type family to
perform the pattern match. A user would then need to specify the argument
type and return type of these statements for them to be promoted.

Implemented Not yet Problematic
variables
tuples
constructors
infix expressions
! / ∼ / patterns
aliased patterns
lists
(·) sections
(x ·) sections
undefined
deriving Eq

unboxed tuples
records
scoped type

variables
overlapping patterns
pattern guards
(·x) sections
case
let
list comprehensions

literals
λ -expressions
do
arithmetic

sequences

Figure 3. The current state of function promotion

natural numbers) to the type level and produce singleton types for
them.8 The interface to this extension will agree with the singletons
interface. Next, all uses of a type family must be fully saturated.
While it is conceivable to simulate a closure at the type level with
the current features of Haskell, the closure would have to be im-
mediately applied to arguments to satisfy the saturation constraint.
Such a restriction makes programming with λ -expressions imprac-
tical, so they are not supported. See Section 7 for more discussion
of this topic. Finally, do expressions and arithmetic sequences both
rely on type classes, which are currently not promotable.

3.3 Converting functions to work with singletons
As discussed in Section 2.4, any term function defined in the con-
text of a call to the singletons function is not only promoted to
the type level, but also redefined to work with singleton-typed
arguments. For example, the isEven function generates both the
type family IsEven and the term function sIsEven :: Sing b →
Sing (IsEven b). As discussed above, the function definition must
be explicitly annotated with its type for this translation to succeed.

The translation algorithm uses the explicit type of the function
to derive the desired kind of the generated type family declaration
and the type of the singleton version of the function. For exam-
ple, consider the function fmap, specialized to Maybe. The splice
(ignoring the body of the fmap function)

$(singletons [d |
fmap :: (a→ b)→Maybe a→Maybe b |])

produces the declarations:

type family Fmap (f :: κ1→ κ2) (m :: Maybe κ1)
:: Maybe κ2

sFmap ::∀ (f :: κ1→ κ2) (m :: Maybe κ1).
SingKind (Any :: κ2)⇒
(∀ (b :: κ1). Sing b→ Sing (f b))→
Sing m→ Sing (Fmap f m)

The kind of the type family is the promoted type of the function.
Because the fmap is polymorphic in two type variables, Fmap is
polymorphic in two kind variables κ1 and κ2.

However, the type of sFmap is both kind- and type-polymorphic.
The original function takes two arguments, of type (a→ b) and
Maybe a, so the refined version also takes two arguments. All non-
arrow types, such as Maybe a, are converted to an application of
Sing to a fresh type variable, such as Sing m. Arrows, such as
a→ b, on the other hand, are converted to polymorphic function
types over singletons.

This type translation is actually a well-known extension of sin-
gleton types to arrow kinds [Crary and Weirich 2000; Guillemette

8 See http://hackage.haskell.org/trac/ghc/wiki/TypeNats

122

and Monnier 2008a]. In general, for f of kind κ1→ κ2, the single-
ton type can be expressed by the following kind-indexed function
(writing the kind indices explicitly).

Singleton[[κ1→ κ2]] f =
∀(α : κ1).Singleton[[κ1]]α → Singleton[[κ2]](f α)

Singleton[[κ]]τ = Sing τ when κ is a base kind, like Nat

The intuition is that a higher-order function on singletons can take
only functions that operate on singletons as parameters. Any such
function must necessarily be polymorphic in its singleton type pa-
rameters. Thus, arrow types get translated to higher-rank polymor-
phic functions as above. However, because type-level functions
must be fully saturated in Haskell (see Section 7), there is currently
a limited use for such parameters. The type f can be instantiated
with only type and promoted data constructors.

In the type of sFmap, the SingKind constraint is necessary be-
cause this function must process a singleton value whose type index
is of kind κ2. In other words, the singleton type associated with κ2
appears in a negative context in the type of sFmap. Every singleton
type that appears in a negative context must have a kind that has
an associated singleton because terms of these types are passed to
the smart constructors defined for other singleton types. This fact
is trivially true whenever the outer-most kind constructor is fixed
(such as in Nat or Maybe κ), but it must be explicitly declared
when the kind is fully polymorphic, as here. The singletons library
detects polymorphic kinds whose singleton types are in a negative
context and adds the necessary SingKind constraints.

The translation of the bodies of the functions is straightforward.
Locally bound variables are translated to the variables generated
during translating variable patterns, other variables are translated
into the singleton versions of the variables of the same name (fmap
to sFmap, for example), conditional statements are translated to
use an sIf function defined to work with singleton Bool values,
and constructors are translated to the associated smart constructor.
For example, here is the body of the translated fmap function:

sFmap SNothing = SNothing
sFmap f (SJust a) = sJust (f a)

4. Design decisions
In designing the conversion algorithms, support classes and defini-
tions, there were a number of design choices. This section presents
some of those alternatives.

4.1 Singletons for parameterized types
The singletons library uses a novel translation for parameterized
datatypes, diverging from prior work. A more standard translation
would include an extra parameter for each parameter of the original
datatype. For example, under this scheme we would generate the
following singleton type for Maybe:

data SMaybe (s :: κ →∗) (m :: Maybe κ)where
SNothing :: SMaybe s ’Nothing
SJust ::∀ (a :: κ). (SingKind (Any :: κ),SingRep a)⇒

s a→ SMaybe s (’Just a)

This type definition is polymorphic over κ , the kind parame-
ter to Maybe. Therefore, to construct the singleton type for a,
of kind κ , this SMaybe type is also parameterized by s . With
this definition, we might create a singleton value for the type
(’Just (’Succ ’Zero)) of kind Maybe Nat, as below:

sJustOne :: SMaybe SNat (’Just (’Succ ’Zero))
sJustOne = SJust (SSucc SZero)

This parameter s is awkward. The definition SMaybe is not as
flexible as it appears. For every kind, there is only one singleton

type associated with that kind, so once κ has been instantiated,
there is only one possibility for s .

Fortunately, the presence of type and data families in GHC
improves the translation. Compare this definition to that in Sec-
tion 3.1. The key difference is the use of Sing to select the sin-
gleton type for the parameter a, using its kind κ , even though the
kind is abstract. That both simplifies and unifies the definition of
singletons for parameterized datatypes.

4.2 The Sing kind-indexed data family
The implementation presented in this paper uses a kind-indexed
data family for Sing . One may ask why it is better to make Sing
a data family instead of a type family. The problem with a Sing
type family involves type inference. Consider the following type
signature, using the SingTF type family instead of the Sing data
family:

sPlus :: SingTF n→ SingTF m→ SingTF (Plus n m)

If a programmer tries to write sPlus (SSucc SZero) SZero, the
compiler has no way to infer the values of n and m, as those type
variables are used only in the context of type family applications.
On the other hand, because all data families are necessarily injec-
tive, the Sing data family does not hinder type inference.

The drawback of using a data family is that we cannot de-
fine an instance for arrow kinds. As described previously, the sin-
gleton type for a type of kind κ1 → κ2 should be the polymor-
phic function type ∀ (b :: κ1). Sing b → Sing (a b), not a new
datatype. Therefore, there is no data instance of Sing for types of
these kinds. As a result, we cannot create a singleton for the type
Maybe (Nat → Nat), for example. However, given the saturation
requirement for type functions, such types would be of limited util-
ity. Alternatively, using a type family for Sing almost allows this
definition, but currently fails because the result of a type family
currently cannot be a quantified type. Type families also suffer the
limitations of type inference discussed above.

4.3 Implicit vs. explicit parameters
When defining a function in Haskell, a programmer has a choice
of making a singleton parameter implicit (using a class constraint
SingI) or explicit (using Sing directly).9 This choice makes a dif-
ference. An explicit parameter aids in type inference. A function f
of type (SingI a)⇒ If a Nat Bool → Bool cannot be called be-
cause there is no way to determine a through unification and thus
derive the implicit argument. In general, if a appears only as the ar-
guments to type functions, then an explicit Sing a parameter should
be used. Alternatively, when arguments can be inferred, it is sim-
pler to make them implicit. Furthermore, it is easy to convert an im-
plicit parameter to an explicit one (simply by using sing), whereas
the converse is not possible, in general.10 The singInstance method
provides access to a SingI constraint, but itself requires a SingKind
constraint.

In the singletons library, we have made sure that implicit param-
eters are always available. Each singleton data constructor includes
a SingRep constraint for each of its arguments. This creates some
redundancy, as a data constructor such as SSucc includes both im-
plicit and explicit arguments. Alternatively, we could have defined
SNat so that SSucc includes only the implicit arguments:

9 Lewis et al. have described an extension ImplicitParams to Haskell that
enables implicit parameters [Lewis et al. 2000]. The discussion here is
about class constraints considered as implicit parameters, and is not directly
related.
10 One way this symmetry could be remedied is by introducing the notion of
local instances into Haskell. This concept is discussed further in Section 7.

123

data instance Sing (a :: Nat)where
SZero :: Sing ’Zero
SSucc :: SingRep n⇒ Sing (’Succ n)

Because it is easy to convert implicit parameters to explicit ones,
storing only the implicit parameters would work for all applica-
tions. However, extracting an explicit form of an implicit argu-
ment would require an explicit type signature (as seen above in
replicate2) and would then require heavy use of ScopedTypeVari-
ables. Though this system is free from implicit/explicit redundancy,
the ease of use is impacted.

5. Example: A safe database interface
Oury and Swierstra [2008] present a dependently typed database
interface supporting an expressive and strongly typed relational al-
gebra, written in Agda. In their discussion of the system, the au-
thors note various constructs that Agda supports that are not present
in Haskell. Here, we present a translation of Oury and Swierstra’s
example using singletons. Notwithstanding the caveat that Haskell
admits ⊥, this translation preserves the typing guarantees of the
original and retains its simplicity. The complete code for the exam-
ple is online.11

The goal is to write a strongly typed interface to a database,
similar to HaskellDB [Bringert et al. 2004; Leijen and Meijer
1999]. That work uses phantom types provided in the client code
to control the types of values returned from database queries. The
interface is responsible for making sure that the data in the database
is compatible with the types provided.

The use of singletons in our version of the library removes a
significant amount of boilerplate code present in the HaskellDB
version. However, note that this section is not a proposal for a
new, production-ready database interface. Instead, this example is
included to contrast with dependently typed code written in Agda.

5.1 Universe of types
The interface must define a set of types used in the database.
Following Oury and Swierstra, we define the universe type U and
type-level function El as follows:

$(singletons [d |
data U = BOOL | STRING | NAT | VEC U Nat

deriving (Eq,Read ,Show) |])
type family El (u :: U) ::∗
type instance El BOOL = Bool

-- other instances
type instance El (VEC u n) = Vec (El u) n

The El type-level function connects a constructor for the U
datatype to the Haskell type of the database element.

Magalhães [2012] also treats the topic of universes in the con-
text of GHC’s recent capabilities; we refer the reader to his paper
for a more complete consideration of this encoding using promoted
datatypes.

5.2 Attributes, schemas, and tables
A database is composed of a set of tables, where each table is a set
of rows of a particular format. The format of a row (the columns of
a table) is called that row’s schema. In this interface, a schema is
an ordered list of attributes, where each attribute has an associated
name and type. The type of an attribute is denoted with an element
of U . Ideally, the name of an attribute would be a String ; however,

11 http://www.cis.upenn.edu/~eir/papers/2012/singletons/
code.tar.gz, requires GHC version > 7.5.20120529.

type-level Strings are not yet available.12 Nevertheless, the code
in this paper uses strings at the type level; please refer to the
version online to see the desugared version. Here are the relevant
definitions:

$(singletons [d |
data Attribute = Attr String U
data Schema = Sch [Attribute] |])

Note that we define the schema using the singletons function to
generate its associated singleton type.

We next define rows in our database:

data Row :: Schema→∗where
EmptyRow :: [Int]→ Row (Sch ’[])
ConsRow :: El u→ Row (Sch s)→

Row (Sch ((Attr name u) ’: s))

The Row datatype has two constructors. EmptyRow takes a list
of Ints to be used as the unique identifier for the row. (A list is
necessary because of the possibility of Cartesian products among
rows.) ConsRow takes two parameters: the first element and the
rest of the row. The types ensure that the schema indexing the row
has the right attribute for the added element.

A table is just a list of rows, all sharing a schema:

type Table s = [Row s]

For a very simple database containing student information, we
could define the following schema

$(singletons [d |
gradingSchema =

Sch [Attr "last" STRING ,
Attr "first" STRING ,
Attr "year" NAT ,
Attr "grade" NAT ,
Attr "major" BOOL] |])

and table (using (B) for ConsRow)

["Weirich" B"S"B12B3BFalseBEmptyRow [0],
"Eisenberg"B"R"B10B4BTrue BEmptyRow [1]]

:: Table GradingSchema

The explicit type signature is necessary because it is impossible
to infer the full details of the schema from this definition.

5.3 Interacting with the database
Client code interacts with the database through an element of the
type Handle:

data Handle :: Schema→∗where ...
We have elided the constructors for Handle here, as we are not
interested in the concrete implementation of the database access.

Client code connects to the database through the connect func-
tion, with the following type signature:

connect :: String → SSchema s → IO (Handle s)

This is the first use in this example of a singleton type. Recall that
the name SSchema is a synonym for the Sing kind-indexed data
family, where the kind of its argument is Schema. The first argu-
ment to connect is the database name, the second is the expected
schema, and the return value (in the IO monad) is the handle to the
database. The connect function accesses the database, checks that
the provided schema matches the expected schema, and, on suc-
cess, returns the handle to the database. Internally, the check against

12 Type-level Symbols (essentially, atomic Strings) are forthcoming in
Diatchki’s TypeNats library.

124

the database’s schema is performed using the fromSing function—
the schema loaded from the database will not be a singleton, so it
is necessary to convert the singleton SSchema s to a Schema to
perform the comparison.

In our strongly typed interface, this function is the one place
where a runtime type error can error, which happens when the
expected schema and actual schema do not match. In this case,
this function throws an error in the IO monad. Outside of this one
function, a client is guaranteed not to encounter type errors as it
reads from the database.

5.4 Relational algebra
Following Oury and Swierstra, we define the type RA (short for
relational algebra) as follows:

data RA :: Schema→∗where
Read :: Handle s→ RA s
Union :: RA s→ RA s→ RA s
Diff :: RA s→ RA s→ RA s
Product :: (Disjoint s s’ ∼ ’True,SingI s,SingI s’)⇒

RA s→ RA s’→ RA (Append s s’)
Project :: (SubsetC s’ s,SingI s)⇒

SSchema s’→ RA s→ RA s’
Select :: Expr s BOOL→ RA s→ RA s

The RA type is itself indexed by the schema over which it is
valid. The constructors represent different algebraic operations a
client might wish to perform. The first three allow a client to
consider all rows associated with a table, take the union of two
sets of rows, and take the difference between two sets of rows.
The Product constructor represents a Cartesian product, requiring
that the two schemas being combined are disjoint. The Project
constructor projects a set of columns (possibly reordered) from a
larger set; it requires the resulting schema to be a subset of the
original schema. The Select constructor uses a Boolean expression
to select certain rows. The Expr GADT (elided) uses its type
parameter to constrain of the result value of an expression.

The Product and Project constructors deserve attention, as
they each exhibit special features of our use of singleton types.

The Product constructor The constraint on the Product con-
structor uses the Disjoint type family to ensure that the two
schemas do not share attributes. The code below is written at the
term level and defined over the simple datatypes described above.
It uses common features, such as wildcard patterns and infix oper-
ators. These functions are promoted to the type families Append ,
AttrNotIn and Disjoint by singletons .

$(singletons [d |
-- append two schemas

append :: Schema→ Schema→ Schema
append (Sch s1) (Sch s2) = Sch (s1 ++ s2)

-- check that a schema is free of a certain attribute
attrNotIn :: Attribute→ Schema→ Bool
attrNotIn (Sch []) = True
attrNotIn (Attr name u) (Sch ((Attr name’) : t)) =
(name 6≡ name’) ∧ (attrNotIn (Attr name u) (Sch t))

-- check that two schemas are disjoint
disjoint :: Schema→ Schema→ Bool
disjoint (Sch []) = True
disjoint (Sch (h : t)) s =

(attrNotIn h s) ∧ (disjoint (Sch t) s) |])

The Project constructor The Project constructor encodes the
type constraints using type classes and GADTs instead of a type

family. (We compare the two approaches in Section 6.) It uses
the GADT SubsetProof , shown below, to encode the relation
that one schema is contained within another. This relation relies
on InProof , which holds when an attribute occurs in a schema.
The classes InC and SubsetC make these proofs inferrable by
the Haskell type-checker, so they need not be provided with each
use of Project. Note that there is one instance of each class per
constructor of the associated datatype.

data InProof :: Attribute→ Schema→∗where
InElt :: InProof attr (Sch (attr ’: schTail))
InTail :: InC name u (Sch attrs)⇒

InProof (Attr name u) (Sch (a ’: attrs))

class InC (name :: String) (u :: U) (sch :: Schema)where
inProof :: InProof (Attr name u) sch

instance InC name u (Sch ((Attr name u) ’:
schTail))where

inProof = InElt
instance InC name u (Sch attrs)⇒

InC name u (Sch (a ’: attrs))where
inProof = InTail

data SubsetProof :: Schema→ Schema→∗where
SubsetEmpty :: SubsetProof (Sch ’[]) s’
SubsetCons ::

(InC name u s’,SubsetC (Sch attrs) s’)⇒
SubsetProof (Sch ((Attr name u) ’: attrs)) s’

class SubsetC (s :: Schema) (s’ :: Schema)where
subset :: SubsetProof s s’

instance SubsetC (Sch ’[]) s’ where
subset = SubsetEmpty

instance (InC name u s’,SubsetC (Sch attrs) s’)⇒
SubsetC (Sch ((Attr name u) ’: attrs)) s’ where

subset = SubsetCons

Automatic inference of these classes requires the Overlapping-
Instances extension. In general, both instances of InC are applica-
ble for matching attributes, keeping in mind that GHC’s search for
an instance examines only the instance head, not the constraints.
However, the first instance above is always more specific than the
second, meaning it would take precedence. This preference for the
first instance gives the expected behavior—matching at the first
occurrence—in the event that two attributes in a schema share a
name. The alternative to OverlappingInstances is to require client
code to build the proof terms of type InProof and SubsetProof
explicitly.

5.5 Queries
Client code can retrieve rows from the database using the query
function with the following signature:

query ::∀ s. SingI s⇒ RA s→ IO [Row s]

For example, the following code lists the names of all students
earning a grade less than 90, by first selecting the students matching
the criteria (using constructors of the Expr GADT) and projecting
their first and last names.

$(singletons [d |
names = Sch [Attr "first" STRING ,

Attr "last" STRING] |])
main :: IO ()
main = do

h← connect "data/grades" sGradingSchema
notAStudents←

query $ Project sNames $

125

Select (LessThan (Element (sing :: Sing "grade"))
(LiteralNat 90)) (Read h)

putStrLn (show notAStudents)

Note that this code uses sGradingSchema, the singleton value that
corresponds to gradingSchema, defined above. To construct the
singleton string value we assume that String is in the SingI class.13

The most illustrative part of the implementation of query is the
handling of the Project constructor. We highlight a function that
extracts an element from a row:

extractElt ::∀ nm u sch. InC nm u sch⇒
Sing (Attr nm u)→ Row sch→ El u

extractElt attr r =
case inProof :: InProof (Attr nm u) sch of

InElt→ case r of
ConsRow h t→ h
-- EmptyRow → impossible
→ bugInGHC

InTail → case r of
ConsRow h t→ extractElt attr t
-- EmptyRow → impossible
→ bugInGHC

To extract the value of a certain element from a row, we must know
where that element appears. We could do a straightforward search
for the element, but in general, that search may fail. Instead, we
pattern-match on the proof, produced from InC , that the desired
element is in the schema that indexes the row. (To extract this proof,
using inProof , we need an explicit type signature.)

If the proof that an attribute with name name is in the schema s
is witnessed by InElt, we return the first element in the row. (The
InElt constructor indicates that the first element in the row is the
one that matches the desired name.) Thus, we pattern-match on row
to extract its head element. This head element must be present—the
case that row is EmptyRow can be statically shown impossible by
InElt.14 If the InProof is witnessed by InTail , we recur on the tail
of row , which also must exist.

5.6 Comparison with Agda
The translation of this example from Agda into Haskell shows the
expressiveness of dependently typed programming in Haskell with
singletons. In particular, compare the following Agda definitions,
taken verbatim from Oury and Swierstra’s work (the curly braces
{ } in the code below indicate implicit arguments and the !
notation declares an infix operator):

data RA : Schema→ Set where
Read :∀ {s }→ Handle s → RA s
Union :∀ {s }→ RA s→ RA s→ RA s
Diff :∀ {s }→ RA s→ RA s→ RA s
Product :∀ {s s’ }→ {So (disjoint s s’)}
→ RA s→ RA s’→ RA (append s s’)

Project :∀ {s }→ (s’ : Schema)
→{So (sub s’ s)}→ RA s→ RA s’

13 This is another instance of our simplified treatment of strings. The desug-
ared version can be with our posted code found online.
14 If we include the case for EmptyRow in the case statement, GHC rightly
issues an error that we have written inaccessible code. However, if we omit
this case and compile with warnings for incomplete patterns, GHC wrongly
warns us that the pattern match is incomplete. This infelicity is in the GHC
Trac database, ticket #3927. Until that bug is fixed, programmers should try
all alternatives and manually remove those ones that the compiler labels as
inaccessible code, as we have done in the code presented here. To suppress
the warning, we include the wildcard case seen above. The bugInGHC
function simply calls error with an appropriate message.

Select :∀ {s }→ Expr s BOOL
→ RA s→ RA s

Oury and Swierstra’s So proposition matches up with the com-
parison against ’True used in the Haskell code. Note that the
Haskell definitions are very similar to these definitions, gaining
no extra annotations or syntactic infelicities other than the use of
singletons . The Haskell version even preserves whether individual
parameters are implicit or explicit. This direct comparison shows
that writing Haskell code using singleton types can be a good ap-
proximation of Agda.

5.6.1 Constraining the schema
There is a weakness lurking beneath the surface in this example
compared to the Agda version. Oury and Swierstra also propose an
improvement to their definition of the Schema type, introducing
a constraint that each attribute in a schema is distinct from all
those that come after it. This improvement cannot be made to
the Haskell version because, no matter whether the constraint is
given implicitly (through a class constraint) or explicitly (through a
GADT parameter), the constrained Schema type would no longer
be promotable to the type level [Yorgey et al. 2012]. A more
complete discussion of this restriction appears in Section 7.

5.6.2 Functional vs. relational reasoning
A careful comparison will pick up one key change between the
two versions in the types of the Project constructors. In Agda,
the validity of the projection is guaranteed by So (sub s’ s); in
Haskell, it is guaranteed by SubsetC s’ s . This subtle change makes
a large difference in the implementation of the query function, as
we describe below.

Using the sub function The Agda Project constructor uses the
function sub to guarantee that the schema s’ is a subset of the
schema s . (The So primitive asserts that the result of this function is
’True.) To understand how this works, we consider a Haskell defi-
nition of sub, promoted to the type function Sub (which requires a
standard lookup function, elided):

$(singletons [d |
sub :: Schema→ Schema→ Bool
sub (Sch []) = True
sub (Sch ((Attr name u) : attrs)) s’ =

lookup name s’ ≡ u ∧ sub (Sch attrs) s’ |])
Recall that the extractElt function, which retrieves an element

from a row, is an important component of projection. In this ver-
sion, this function uses Lookup to compute the correct return type.

extractElt :: Lookup name s ∼ u⇒
Sing name→ Row s→ El u

The context where we call this function has the constraint
Sub s’ s ∼ ’True. Pattern matching gives us the case where s’ is
not empty. It is equal to some ’Sch ((’Attr name u) ’: attrs). In that
case, corresponding to the second clause of sub, above, the con-
straint reduces to (Lookup name s :≡:u :∧Sub (’Sch attrs) s) ∼
’True, from the definition of Sub, where :≡: and :∧ are Boolean
equality and conjunction at the type level.15 To call extractElt,
we must satisfy the constraint Lookup name s ∼ u, which GHC
cannot immediately derive from the above.

We can use clever pattern matching on results that we already
know to manipulate this constraint so that (Lookup name s’ :≡:u) ∼
’True is in the context. However, this constraint is distinct from the

15 As part of promoting and refining datatypes that derive the type class Eq,
the singletons library generates instances for :≡: and an instance for the
type class SEq, the singleton counterpart of Eq.

126

desired one, Lookup name s’ ∼ u. Getting to our goal requires the
following function, which reflects an equality function call :≡: to
an equality constraint.

data Eql :: κ → κ →∗where
Refl :: Eql x x

boolToProp ::∀ (u1 :: U) (u2 :: U). (u1 :≡:u2) ∼ ’True⇒
Sing u1→ Sing u2→ Eql u1 u2

The boolToProp function can be defined by an exhaustive pattern-
match on all possibilities for u1 and u2, using recursion in the VEC
case. Of course, those matches that give u1 and u2 different values
are rejected as impossible by the (u1 :≡:u2) ∼ ’True constraint.

Using the SubsetC relation In this case, we must derive the
InC name u s’ constraint from the constraint SubsetC s s’ , again
when s equals ’Sch (’Attr name u ’: attrs). In that case, there is
only one way to derive the associated SubsetProof extracted from
this constraint. Therefore we can pattern match this term against
the SubsetCons constructor, of type:

SubsetCons :: (InC name u s’,SubsetC (Sch attrs) s’)⇒
SubsetProof (Sch ((Attr name u) ’: attrs)) s’

This match directly brings the necessary constraint into scope. In
this example, working with relations instead of functions simplifies
static reasoning. We discuss this trade-off in more detail below.

6. Expressing type-level constraints
When we wish to express a compile-time constraint, we have at
least three options: we can use a Boolean-valued type-level func-
tion, a GADT, or a class constraint. All three of these techniques
are used above.

Using type families When using the singletons library, it is
straightforward to write a function at the term level returning a
Bool , promote that function to the type level (using the promote or
singletons function) and then use the promoted version to satisfy
some constraint. This ability, demonstrated with Disjoint above, is
the chief advantage of the type families—it corresponds with the
way Haskellers already know how to solve problems.

The chief disadvantage of this technique is that it can be diffi-
cult to use a constraint defined via a function, as we saw in Sec-
tion 5.6.2. The type checker may know that the result of the func-
tion call is ’True, but sometimes it is surprising that the compiler
cannot use this fact to infer additional information. For example,
even if the function has a closed domain, the compiler cannot rea-
son by case analysis (without additional runtime cost). Further-
more, there is no formal connection between Boolean-valued func-
tions (such as :∧ and :≡:) and their corresponding constraints.

Using a relation encoded by a GADT Using indexed types, like
GADTs, to encode relations is standard practice in dependently-
typed programming. A GADT provides explicit evidence that
the constraint holds—pattern matching the data constructors of a
GADT allows programmers to explicitly invert this relation to bring
new constraints into the context.

There are two main drawbacks to this approach. All GADT
terms must be explicitly built—the compiler does none of the
work for us here. Furthermore, GADT-encoded constraints can
be trivially satisfied by ⊥, meaning that the programmer cannot
absolutely rely on the constraint.

Using type classes As we saw in the example, multiparameter
type classes can also express constraints on the relations between
the arguments to a function. In fact, they can work in conjunction
with GADTs to allow the compiler to implicitly provide proofs.

A big advantage to using this technique is that the instance
cannot be instantiated by ⊥. Because the compiler produces the

instance, a programmer can be sure that an instance exists and is
valid. There is no way to spoof the type checker into producing a
bogus instance.16

Sometimes, when using class constraints, it is necessary to
enable either the OverlappingInstances extension or the more
ominous-sounding IncoherentInstances extension. The use of
these extensions do not reduce the veracity of the proof. Both of
these extensions give the compiler the latitude to choose a satisfy-
ing instance among a set of choices, perhaps using heuristics such
as specificity; without the extensions enabled, the compiler insists
on the uniqueness of the available option. The use of IncoherentIn-
stances is similar to the nondeterminism of the use of auto in
a proof in Coq. In both cases, the programmer lets the compiler
choose among a set of options, but she can always be sure that the
compiler will choose a valid option if one is chosen at all.

A noted disadvantage to class constraints is that all inference
must be done by the compiler. It is impossible to provide an explicit
instance even when desired.

Conclusion All three techniques have advantages and disadvan-
tages. Many have exploited the power of Haskell’s type class mech-
anism to express rich constraints on types. As GADTs and type
families have been introduced, there has been movement away from
the logic programming capabilities of type classes and toward a
more functional style of programming at the type level. However,
as the example above shows, the logic programming facility of type
classes still has its place and may offer more direct reasoning.

7. GHC extensions
In this section we discuss a number of extensions to GHC that
would better support dependently typed programming.

Unsaturated and injective type families Current versions of
Haskell do not allow for unsaturated type families. For example,
take the Plus type-level function over Nats discussed earlier, and
consider a type-level implementation of Map.

Map (Plus (’Succ ’Zero)) ’[’Zero, ’Zero]

Unfortunately, this is not valid Haskell code. It is not possible to use
Plus without supplying both of its parameters. The reason for this
restriction is that allowing unsaturated type families interferes with
type inference. Consider the case when the type inference engine
knows that the types a b and c d unify. Currently, it is sound to then
unify a with c and b with d . If Haskell allowed unsaturated type-
level functions, however, this decomposition would not be sound.
In the current implementation, all type-level functions must be fully
applied, so we know that a and c could never be instantiated by type
functions. In the case where the types F b and F d are unified, for
some one-parameter type-level function F , the compiler is aware
that F is a type-level function and will not unify b and d . (In this
case, the ability to mark certain type families as injective, would
allow b and d to unify when it is safe to do so.)

Kind-level equality When rich kinds were introduced into
GHC [Yorgey et al. 2012], kind-level equality constraints were
explicitly disallowed. That restriction simplified the extension,
minimizing the number of changes to GHC necessary to support
datatype promotion and kind polymorphism. However, this lack of
kind-level equality imposes two restrictions for dependently typed
programming: it is impossible to write kind-level functions and to
promote GADTs.

16 It is always possible to write bogus instances and then have the compiler
find them. Whenever we refer to the consistency of the constraint language,
we mean consistency with respect to the axiom system inferred by the class
and family instances declared.

127

A kind-level function, or kind family, is one that takes a type
or kind argument and returns a kind. One example of a kind func-
tion is Promote. This function reifies the action of datatype promo-
tion, translating a type constant, such as Nat, to the corresponding
promoted kind (also written Nat). This function is the inverse of
Demote, shown in Section 2.5. Kind-level functions are also nec-
essary for promoted datatypes that use type-level functions.

Among other uses, kind-level functions are necessary to pro-
mote datatypes that use type-level functions. In order to implement
kind-level functions in the style of type-level functions, it is neces-
sary to have kind-level equality constraints. There is no computa-
tion at the type or kind level. Instead, to implement type-level func-
tions, GHC compiles type family instances into a family of equality
axioms. For example, the declaration type instance F Bool = Int
compiles to the axiom F Bool ∼ Int. When the type checker en-
counters a type headed by a type family, it uses these axioms to try
to solve its constraints.

Furthermore, GADTs are not promotable. Our experience has
shown that this is perhaps the most restrictive shortcoming of
Haskell for dependently typed programming. We have presented a
re-implementation of one of the dependently typed examples from
Oury and Swierstra’s The Power of Pi above. However, the other
two examples in that paper cannot be translated.

For example, the first case study in The Power of Pi includes a
datatype with the following kind signature (written in Agda):

data SplitView {A : Set } :{n : Nat }→ (m : Nat)→
Vec A (m × n)→ Set where ...

Here, we see an application of Vec used as a kind. However,
because Haskell cannot promote GADTs, Vec A (m × n) is an
invalid kind and any translation of the above code is rejected. It is
possible to modify the definition of a SplitView type to retain its
runtime behavior and allow it to be valid Haskell, but such a change
would reduce the amount of information encoded in the types.

Weirich et al. [2012] have already started the work necessary to
move Haskell in this direction.

Explicit dictionaries The Haskell compiler is responsible for in-
ferring the values of any dictionaries passed to functions declared
with class constraints. Though this inference works well in many
cases, we have discussed examples above where it would be help-
ful to be able to specify a dictionary explicitly. The singletons pro-
duced by the singletons library work around this restriction by
maintaining both explicit terms and implicit dictionaries for all sin-
gleton constructors. Named instances [Kahl and Scheffczyk 2001]
and Modular Type Classes [Dreyer et al. 2007] may provide a start-
ing point for such an extension.

Totality analysis Under the Curry-Howard isomorphism, Haskell
is inconsistent as a logic. That means that Haskell cannot provide
the same guarantees that Coq and Agda can. Although rich types
mean that Haskell’s standard type soundness theorem is very infor-
mative (if a program actually produces a value, we have rich in-
formation about that value), there is no guarantee that any Haskell
program will produce a value. Although not having to show that ev-
erything terminates could be considered an advantage, being able
to check for totality would improve the confidence in Haskell pro-
grams.

There are solutions. A whole program analysis could verify the
absence of ⊥ and show termination using heuristics [Giesl et al.
2011]. GHC’s warning for incomplete pattern matching could be
improved for GADTs. However, these approaches do not decom-
pose. Either the whole program terminates, or nothing is known:
in a lazy language, an otherwise-sound function can diverge when
given a pathological argument. A better approach is to identify
a total sub-language and use the type system to track it, as in

Trellys [Casinghino et al. 2012] and F-Star [Swamy et al. 2011].
Already Haskell supports some of this distinction—all constraint
evidence (including coercion proofs) is guaranteed to be total [Vy-
tiniotis et al. 2012].

Adding Π-types to Haskell In a full-spectrum dependently-typed
language, a programmer would not use singleton types in the way
presented in this paper. Singletons have rightly been called a “poor
man’s substitute” for dependent types [Monnier and Haguenauer
2010].

It seems possible to enhance Haskell with proper Π-types,
whose values are available both at compile time and at runtime,
while preserving Haskell’s phase distinction. One way to incorpo-
rate Π-types would be to have a declaration for a Π-type be syntac-
tic sugar for a singleton type. However, it also seems possible to in-
corporate these types directly into FC—GHC’s internal language—
and avoid the singleton encoding altogether.

8. Additional related work
The most closely related work to this one is McBride’s Strathclyde
Haskell Enhancement (SHE) preprocessor.17 Among other uses,
SHE generates singleton types from datatype definitions. However,
because SHE was written before GHC supported datatype promo-
tion, most type-level data, such as numbers and Boolean values,
inhabits kind ∗.

The notion of a singleton type was first put forward by Hayashi
[1991]. Xi and Pfenning [1998] used singletons to simulate depen-
dent types in their work on eliminating array bound-checking. Chen
and Xi [2005] later extended this work with ATS, all the while
preserving the phase-distinction via singleton types. Kiselyov and
Shan [2007] used a variant of singleton types to provide extra static
guarantees. Crary and Weirich [2000] used a kind-indexed defini-
tion to create singletons for arbitrary program values. Sheard et al.
[2005] showed how combining rich kinds with GADTs can yield
dependently typed. Xi and Pfenning [1999], working with ML, and
Condit et al. [2007], working with C, have worked on integrating
dependently typed features into existing languages.

9. Conclusion
Although Haskell is not a full-spectrum dependently typed lan-
guage, such as Agda or Coq, recent extensions and the singletons
library mean that GHC can be used for dependently-typed program-
ming. As the line between these languages continues to blur, and
they adopt the best features of each other, we look forward to more
and more programming with rich, statically-checked interfaces.

Acknowledgments Thanks to Simon Peyton Jones, Iavor Di-
atchki, José Pedro Magalhães, Dimitrios Vytiniotis, Conor McBride,
and Brent Yorgey for their collaboration and feedback. Thanks
also to the anonymous reviewers for their helpful comments. This
material is based upon work supported by the National Science
Foundation under Grant No. 1116620.

References
L. Augustsson. Cayenne—a language with dependent types. In Proc. ACM

SIGPLAN International Conference on Functional Programming, ICFP
’98, pages 239–250. ACM, 1998.

A. I. Baars and S. D. Swierstra. Typing dynamic typing. In Proc. 7th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’02, pages 157–166. ACM, 2002.

17 https://personal.cis.strath.ac.uk/conor.mcbride/pub/
she/

128

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent
types. In Proc. 15th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’10, pages 345–356. ACM, 2010.

R. S. Bird and R. Paterson. de Bruijn notation as a nested datatype. J. Funct.
Program., 9(1):77–91, Jan. 1999.

B. Bringert, A. Höckersten, C. Andersson, M. Andersson, M. Bergman,
V. Blomqvist, and T. Martin. Student paper: HaskellDB improved. In
Proc. 2004 ACM SIGPLAN workshop on Haskell, Haskell ’04, pages
108–115. ACM, 2004.

J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct. Pro-
gram., 19(5):509–543, Sept. 2009.

C. Casinghino, V. Sjöberg, and S. Weirich. Step-indexed normalization for
a language with general recursion. In Proc. 4th Workshop on Mathe-
matically Structured Functional Programming, Tallinn, Estonia, pages
25–39, 2012.

M. M. T. Chakravarty, G. Keller, and S. Peyon Jones. Associated type
synonyms. In Proc. 10th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’05, pages 241–253. ACM, 2005.

C. Chen and H. Xi. Combining programming with theorem proving.
In Proc. 10th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’05, pages 66–77. ACM, 2005.

J. Cheney and R. Hinze. A lightweight implementation of generics and
dynamics. In Proc. 2002 ACM SIGPLAN workshop on Haskell, Haskell
’02, pages 90–104. ACM, 2002.

J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula. Dependent
types for low-level programming. In Proc. 16th European conference on
Programming, ESOP’07, pages 520–535. Berlin, Heidelberg, 2007.

Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. URL http://coq.inria.fr. Version 8.0.

K. Crary and S. Weirich. Resource bound certification. In Proc. 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’00, pages 184–198. ACM, 2000.

D. Dreyer, R. Harper, M. M. T. Chakravarty, and G. Keller. Modular type
classes. In Proc. 34th annual ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, POPL ’07, pages 63–70. ACM,
2007.

J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thie-
mann. Automated termination proofs for Haskell by term rewriting.
ACM Trans. Program. Lang. Syst., 33(2):7:1–7:39, Feb. 2011.

L.-J. Guillemette and S. Monnier. A type-preserving compiler in Haskell.
In Proc. 13th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’08, pages 75–86. ACM, 2008a.

L.-J. Guillemette and S. Monnier. One vote for type families in Haskell! In
Proc. 9th Symposium on Trends in Functional Programming, 2008b.

S. Hayashi. Singleton, union and intersection types for program extraction.
In Proc. International Conference on Theoretical Aspects of Computer
Software, TACS ’91, pages 701–730. Springer-Verlag, London, UK,
1991.

W. Kahl and J. Scheffczyk. Named instances for Haskell type
classes. In Proc. 2001 ACM SIGPLAN Workshop on Haskell,
Haskell ’01, pages 71–99. ACM, 2001. See also: http://ist.unibw-
muenchen.de/Haskell/NamedInstances/.

O. Kiselyov and C.-c. Shan. Lightweight static capabilities. Electron. Notes
Theor. Comput. Sci., 174(7):79–104, June 2007.

O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous
collections. In Proc. 2004 ACM SIGPLAN Workshop on Haskell, Haskell
’04, pages 96–107. ACM, 2004.

D. Leijen and E. Meijer. Domain specific embedded compilers. In Proc.
2nd conference on Domain-Specific Languages, DSL ’99, pages 109–
122. ACM, 1999.

J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit parame-
ters: dynamic scoping with static types. In Proc. 27th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’00, pages 108–118. ACM, 2000.

J. P. Magalhães. The right kind of generic programming. To appear at WGP,
2012.

C. McBride. Faking it simulating dependent types in Haskell. J. Funct.
Program., 12(5):375–392, July 2002.

C. McBride. Epigram, 2004. http://www.dur.ac.uk/CARG/epigram.
S. Monnier and D. Haguenauer. Singleton types here, singleton types there,

singleton types everywhere. In Proc. 4th ACM SIGPLAN workshop on
Programming languages meets program verification, PLPV ’10, pages
1–8. ACM, 2010.

M. Neubauer and P. Thiemann. Type classes with more higher-order
polymorphism. In Proc. 7th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’02, pages 179–190. ACM, 2002.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

C. Okasaki. From fast exponentiation to square matrices: an adventure
in types. In Proc. 4th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’99, pages 28–35. ACM, 1999.

N. Oury and W. Swierstra. The power of Pi. In Proc. 13th ACM SIGPLAN
international conference on Functional programming, ICFP ’08, pages
39–50. ACM, 2008.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In Proc. 11th ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’06,
pages 50–61. ACM, 2006.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete
and decidable type inference for GADTs. In Proc. 14th ACM SIGPLAN
international conference on Functional programming, ICFP ’09, pages
341–352. ACM, 2009.

T. Sheard and S. Peyton Jones. Template meta-programming for Haskell.
In Proc. 2002 ACM SIGPLAN workshop on Haskell, Haskell ’02, pages
1–16. ACM, 2002.

T. Sheard, J. Hook, and N. Linger. GADTs + extensible kind system =
dependent programming. Technical report, Portland State University,
2005. http://www.cs.pdx.edu/~sheard.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Se-
cure distributed programming with value-dependent types. In Proc. 16th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’11, pages 266–278. ACM, 2011.

D. Vytiniotis, S. Peyton Jones, and J. P. Magalhães. Equality proofs and
deferred type errors: A compiler pearl. To appear at ICFP, 2012.

S. Weirich. Type-safe cast: Functional pearl. J. Funct. Program., 14(6):
681–695, 2004.

S. Weirich, J. Hsu, and R. A. Eisenberg. Down with kinds: adding depen-
dent heterogeneous equality to FC (extended version). Technical report,
University of Pennsylvania, 2012. URL http://www.cis.upenn.
edu/~sweirich/papers/nokinds-extended.pdf.

H. Xi and F. Pfenning. Eliminating array bound checking through depen-
dent types. In Proc. ACM SIGPLAN 1998 conference on Programming
language design and implementation, PLDI ’98, pages 249–257. ACM,
1998.

H. Xi and F. Pfenning. Dependent types in practical programming. In Proc.
26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’99, pages 214–227. ACM, 1999.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
In Proc. 30th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, POPL ’03, pages 224–235. ACM, 2003.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving Haskell a promotion. In Proc. 8th ACM SIGPLAN
workshop on Types in Language Design and Implementation, TLDI ’12,
pages 53–66. ACM, 2012.

129

