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Abstract

Higher-order abstract syntax is a simple technique for implementing languages with functional pro-
gramming. Object variables and binders are implemented by variables and binders in the host language.
By using this technique, one can avoid implementing common and tricky routines dealing with variables,
such as capture-avoiding substitution. However, despite the advantages this technique provides, it is not
commonly used because it is difficult to write sound elimination forms (such as folds or catamorphisms)
for higher-order abstract syntax. To fold over such a datatype, one must either simultaneously define
an inverse operation (which may not exist) or show that all functions embedded in the datatype are
parametric.

In this paper, we show how first-class polymorphism can be used to guarantee the parametricity of
functions embedded in higher-order abstract syntax. With this restriction, we implement a library of
iteration operators over data-structures containing functionals. From this implementation, we derive
“fusion laws” that functional programmers may use to reason about the iteration operator. Finally, we
show how this use of parametric polymorphism corresponds to the Schürmann, Despeyroux and Pfenning
method of enforcing parametricity through modal types. We do so by using this library to give a sound
and complete encoding of their calculus into System Fω. This encoding can serve as a starting point for
reasoning about higher-order structures in polymorphic languages.

1 Introduction

Higher-order abstract syntax (HOAS) is an old and seductively simple technique for implementing a language
with functional programming.1 The main idea is elegant: instead of representing object variables explicitly,
we use metalanguage variables. For example, we might represent the object calculus term (λx.x) with the
Haskell expression lam (\x -> x). Doing so eliminates the need to implement a number of tricky routines
dealing with object language variables. For example, capture-avoiding substitution is merely function appli-
cation in the metalanguage. However, outside of a few specialized domains, such as theorem proving, partial
evaluation [26], logical frameworks [22] and intensional type analysis [27, 30], higher-order abstract syntax
has found limited use as an implementation technique.

One obstacle preventing the widespread use of this technique is the difficulty in using elimination forms,
such as catamorphisms2, for datatypes containing functions. The general form of catamorphism for these
datatypes requires that an inverse be simultaneously defined for every iteration [16]. Unfortunately, many

1While the name comes from Pfenning and Elliott [21], the idea itself goes back to Church. [4].
2Catamorphisms (also called folds) are sometimes represented with the bananas (| · |) notation [15].
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operations that we would like to define with catamorphisms require inverses that do not exist or are expensive
to compute.

However, if we know that the embedded functions in a datatype are parametric, we can use a version
of the catamorphism that does not require an inverse [9, 24]. A parametric function may not examine its
argument; it may only use it abstractly or “push it around”. Only allowing parametric embedded functions
works well with HOAS because the terms with non-parametric embedded functions are exactly those that
have no correspondence to any λ-calculus term [24]. In this paper, we use iterator to refer to a catamorphism
restricted to arguments with parametric functions.

A type system can separate parametric functions from those that are not. For example, Fegaras and
Sheard [9] add tags to mark the types of datatypes whose embedded functions are not parametric, prohibiting
iteration over those datatypes. Alternatively, Schürmann, Despeyroux and Pfenning [24, 8] use the necessity
modality (“box”) to mark those terms that allow iteration.

However, many modern typed languages already have a mechanism to enforce that an argument be
used abstractly—parametric polymorphism. It seems desirable to find a way to use this mechanism instead
of adding a separate facility to the type system. In this paper, we show how to encode datatypes with
parametric function spaces in the polymorphic λ-calculus, including iteration operators over them.

Our specific contributions are the following. For functional programmers, we provide an informal de-
scription of how restricting datatypes to parametric function spaces can be enforced in the Haskell language
using first-class polymorphism. We provide a safe and easy implementation of a library for iteration over
higher-order abstract syntax. This Haskell library allows the natural expression of many algorithms over the
object language; to illustrate its use, we use it to implement a number of operations including Danvy and
Filinski’s optimizing one-pass CPS conversion algorithm [6]. Furthermore, because we encode the iteration
operator within the polymorphic λ-calculus, we also derive “fusion laws” about the iteration operator that
functional programmers may use to reason about their programs.

To show the generality of this technique, we use this implementation to show a formal translation from
the Schürmann, Despeyroux and Pfenning modal calculus [24] (called here the SDP calculus) to System
Fω. This encoding has an added benefit to language designers who wish to incorporate reasoning about
parametric function spaces. It demonstrates how systems based on the polymorphic λ-calculus may be
extended with reasoning about higher-order structure.

We do not claim that this encoding will solve all of the problems with programming using higher-order
abstract syntax. In particular, algorithms that require the explicit manipulation of the names of bound
variables remain outside the scope of this implementation technique.

The remainder of this paper is as follows. Section 2 starts with background material on catamorphisms
for HOAS, including those developed by Meijer and Hutton [16] and Fegaras and Sheard [9]. In Section 2.1 we
show how to use first-class polymorphism and abstract types to provide an interface for Fegaras and Sheard’s
implementation that enforces the parametricity of embedded functions. Using this interface, we show some
examples of iteration including CPS conversion (Section 2.2). In Section 3, we describe an implementation
of that interface within the part of Haskell that corresponds to System Fω , and describe properties of that
implementation in Section 3.1. Section 4 describes the SDP calculus and Section 5 presents an encoding of
that calculus into Fω , using the implementation that we developed in Section 3. Section 6 presents future
work, Section 7 presents related work, and Section 8 concludes. We include Generic Haskell code for the
polytypic part of our implementation in Appendix A and the full encoding of the SDP calculus into System
Fω in Appendix B.

2 Catamorphisms for datatypes with embedded functions

The following recursive datatype represents the untyped λ-calculus using Higher-Order Abstract Syntax
(HOAS).3

3All of the following examples are in the syntax of the Haskell language [19]. While some of the later examples require an
extension of the Haskell type system—first-class polymorphism—this extension is supported by the Haskell implementations
GHC and Hugs.
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data Exp = Lam (Exp -> Exp) | App Exp Exp

The data constructor Lam represents λ-expressions. However, instead of explicitly representing bound
λ-calculus variables, Haskell functions are used to implement binding and Haskell variables are used to
represent variables. For example, we might represent the identity function (λx.x) as Lam (\x -> x) or the
infinite loop (λx.(xx))(λx.(xx)) as App (Lam (\x -> App x x)) (Lam (\x -> App x x)).

Using this datatype, we can implement an interpreter for the λ-calculus. To do so, we must also represent
the result values (also using HOAS).

data Value = Fn (Value -> Value)

unFn (Fn x) = x

It is tricky to define recursive operations, such as evaluation, over this implementation of expressions. The
argument, x, to Lam below is a function of type Exp -> Exp. To evaluate it, we must convert x to a function
of type Value -> Value. Therefore, we must also simultaneously define an inverse to evaluation, called
uneval, such that eval . uneval = \x -> x. This inverse is used to convert the argument of x from a
Value to an Exp.

eval :: Exp -> Value

eval (Lam x) = Fn (eval . x . uneval)

eval (App y z) = unFn (eval y) (eval z)

uneval :: Value -> Exp

uneval (Fn x) = Lam (uneval . x . eval)

Consider the evaluation of ((λx.x)(λy.y)). First eval replaces App with unFn and pushes evaluation
down to the two subcomponents of the application. Next, each Lam is replaced by Fn, and the argument is
composed with eval and uneval. The unFn cancels the first Fn, and the identity functions can be removed
from the compositions. As uneval is right inverse to eval, we can replace each (eval . uneval) with the
identity function.

eval (App (Lam (\x -> x)) (Lam (\y -> y)))

= unFn (eval (Lam (\x -> x)))

(eval (Lam (\y -> y)))

= unFn (Fn (eval . \x -> x . uneval))

(Fn (eval . \y -> y . uneval))

= (eval . uneval) (Fn (eval . uneval))

= (\x -> x) (Fn (\y -> y))

= Fn (\y -> y)

Many functions defined over Exp will follow this same pattern of recursion, requiring an inverse for Lam
and calling themselves recursively for the subcomponents of App. Catamorphisms capture the general pattern
of recursion for functions defined over recursive datatypes. For example, foldr is a catamorphism for the
list datatype and can implement many list operations. For lists of type [a], foldr replaces [] with a base
case of type b and (:) with a function of type (a -> b -> b).

Meijer and Hutton [16] showed how to define catamorphisms for datatypes with embedded functions, such
as Exp. The catamorphism for Exp systematically replaces Lam with a function of type ((a -> a) -> a) and
App with a function of type (a -> a -> a). However, just as we defined eval simultaneously with uneval,
the catamorphism for Exp must be simultaneously defined with an anamorphism. The catamorphism provides
a way to consume members of type Exp and the anamorphism provides a way to generate them.

In order to easily specify this anamorphism, we use a slightly more complicated version of the Exp

datatype, shown at the top of Figure 1. This version makes the recursion in the datatype explicit. The
newtype Rec computes the fixed point of type constructors (functions from types to types). The type Exp

is the fixed point of the type constructor ExpF, where the recursive occurrences of Exp have been replaced
with the type parameter a. The first argument to cata is of type ExpF a -> a (combining the two functions
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newtype Rec a = Roll (a (Rec a))

data ExpF a = Lam (a -> a) | App a a

type Exp = Rec ExpF

lam :: (Exp -> Exp) -> Exp

lam x = Roll (Lam x)

app :: Exp -> Exp -> Exp

app x y = Roll (App x y)

xmapExpF :: (a -> b, b -> a)

-> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of

Lam x -> Lam (f . x . g)

App y z -> App (f y) (f z),

\x -> case x of

Lam x -> Lam (g . x . f)

App y z -> App (g y) (g z))

cata ::

(ExpF a -> a) -> (a -> ExpF a) -> Rec ExpF -> a

cata f g (Roll x) =

f ((fst (xmapExpF (cata f g, ana f g))) x)

ana ::

(ExpF a -> a) -> (a -> ExpF a) -> a -> Rec ExpF

ana f g x =

Roll (snd (xmapExpF (cata f g, ana f g)) (g x))

Figure 1: Meijer/Hutton catamorphism

mentioned above, of type ((a -> a) -> a) and (a -> a -> a)). The first argument to ana has the inverse
type a -> ExpF a.

The functions cata and ana are defined in terms of xmapExpF, a generalized version of a mapping function
for the type constructor ExpF. Because of the function argument to Lam, xmapExpF maps two functions, one
of type a -> b and the other of type b -> a. The definition of xmapExpF is completely determined by the
definition of ExpF. With Generic Haskell [5], we can define xmap and automatically generate xmapExpF from
ExpF (see Appendix A).4 That way, we can easily generalize this catamorphism to other datatypes. Unlike
map, which is defined only for covariant type constructors, xmap is defined for type constructors that have both
positive and negative occurrences of the bound variable. The only type constructors of Fω for which xmap

is not defined are those whose bodies contain first-class polymorphism. For example, λα : ?.∀β : ?.α → β.
We can use cata to implement eval. To do so we must describe one step of turning an expression into a

value (the function evalAux) and one step of turning a value into an expression (the function unevalAux).

evalAux :: ExpF Value -> Value

evalAux (Lam f) = Fn f

evalAux (App x y) = (unFn x) y

4Meijer and Hutton’s version of xmapExpF only created the first component of the pair. In ana where the second component
is needed, they swap the arguments. This is valid because fst (xmap (f,g)) = snd(xmap (g,f)). However, while the version
that we use here is a little more complicated, it can be defined with Generic Haskell.

4



data Rec a b = Roll (a (Rec a b)) | Place b

data ExpF a = Lam (a -> a) | App a a

type Exp a = Rec ExpF a

lam :: (Exp a -> Exp a) -> Exp a

lam x = Roll (Lam x)

app :: Exp a -> Exp a -> Exp a

app x y = Roll (App x y)

xmapExpF :: (a -> b, b -> a)

-> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of

Lam x -> Lam (f . x . g)

App y z -> App (f y) (f z),

\x -> case x of

Lam x -> Lam (g . x . f)

App y z -> App (g y) (g z))

cata :: (ExpF a -> a) -> Exp a -> a

cata f (Roll x) =

f ((fst (xmapExpF (cata f, Place))) x)

cata f (Place x) = x

Figure 2: Fegaras/Sheard catamorphism

unevalAux :: Value -> ExpF Value

unevalAux (Fn f) = Lam f

eval :: Exp -> Value

eval x = cata evalAux unevalAux x

Using cata to implement operations such as eval is convenient because the pattern of recursion is already
specified. None of eval, evalAux or unevalAux are recursively defined. However, for some operations, there
is no obvious (or efficient) inverse. For example, to using cata to print out expressions also requires writing
a parser. Fegaras and Sheard [9] noted that sometimes the operation of the catamorphism often undoes with
f what it has just done with g. This situation occurs when the argument to cata contains only parametric
functions. A parametric function is one that does not analyze its argument with case or cata.

When the argument to cata is parametric, Fegaras and Sheard showed how to implement cata without
ana. The basic idea is that for parametric functions, any use of ana during the computation of a catamorphism
will always be annihilated by cata in the final result. Therefore, instead of computing the anamorphism,
they use a place holder to store the original argument. When cata reaches that place holder, it returns the
stored argument.

To implement Fegaras and Sheard’s catamorphism, we must redefine Rec. In Figure 2, we extend it
with an extra branch (called Place) that is the place holder. Because Place can contain any type of value,
Rec (and consequently Exp) must be parameterized with the type of the argument to Place. This type is
the result of the catamorphism over the expression. In the implementation of cata, Place is the second
argument to xmapExpF instead of ana f. It is a right inverse to cata f by definition.

For example, to count the number of occurrences of bound variables in an expression, we might use the
following code.
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countvarAux :: ExpF Int -> Int

countvarAux (App x y) = x + y

countvarAux (Lam f) = f 1

countvar :: Exp Int -> Int

countvar = cata countvarAux

The function countvarAux describes what to do in one step. The number of variables in an application
expression is the sum of the number of variables in x and the number of variables in y. In the case of a
λ-expression, f is a function from the number of variables in a variable expression (i.e. one) to the number
of variables in the body of the lam. For example, to count the variables in (λx. x x):

countvar (lam (\x -> app x x))

= (countvar . (\x -> x + x) . Place) 1

= (\x -> (countvar (Place x))

+ (countvar (Place x))) 1

= (countvar (Place 1)) + (countvar (Place 1))

= 2

This definition of cata only works for arguments whose function spaces are parametric and who do not
use Place. Informally, we call such expressions sound and other expressions unsound. Applying cata to an
unsound expression can return a meaningless result. For example, say we define the following term:

badplace :: Exp Int

badplace = lam (\x -> Place 3)

Then countvar badplace = 3, even though it contains no bound variables. Even more importantly for
higher-order abstract syntax, unsound datatypes do not correspond to untyped λ-calculus expressions, so it
is important to be able to distinguish between sound and unsound representations.5

There are two ways for parametricity to fail, corresponding to the two destructors for the type Exp a. A
function is not parametric if it uses cata or case to examine its argument, as below:

badcata :: Exp Int

badcata = lam (\x -> if (countvar x == 1)

then app x x

else x)

badcase :: Exp a

badcase = lam (\x -> case x of

Roll (App v w) -> app x x

Roll (Lam f) -> x

Place v -> x)

Fegaras and Sheard designed a type system to distinguish between sound and unsound expressions.
Datatypes such as Exp were annotated with flags to indicate whether they had been examined with either
case or cata, and if so, they were prevented from appearing inside of non-flagged datatypes. Furthermore,
their language prevented the user from accessing Place by automatically generating cata from the definition
of the user’s datatype.

5It is also important to distinguish between sound and unsound members of datatypes that have meaningful non-parametric
representations. For these datatypes, the behavior of the Fegaras and Sheard catamorphism on unsound arguments does not
correspond to the Meijer and Hutton version.
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type Rec a b -- abstract

data ExpF a = Lam (a -> a) | App a a

type Exp a = Rec ExpF a

roll :: ExpF (Exp a) -> Exp a

place :: a -> Exp a

cata :: (ExpF a -> a) -> Exp a -> a

Figure 3: Iteration library interface

2.1 Enforcing parametricity with type abstraction

The type of badcata is Exp Int. This type tells us that something is wrong: the type parameter of Exp is
constrained to be Int, so we can only use cata on this expression to produce an Int. The same is true for
badplace. Whenever we use cata or Place in an expression, this parameter will be constrained. If we can
ensure that only sound expressions have type (forall a. Exp a), then we can use first-class polymorphism
to enforce that the argument to a function is sound. That way, we can be assured that it will behave as
expected. For example, define a version of cata, called iter0 that may only be applied to sound expressions,
below. The implementation of cata uses the argument at the specific type (Exp a), so it is safe for iter0
to require that its argument has the more general type (forall a. Exp a).

iter0 :: (ExpF b -> b) -> (forall a. Exp a) -> b

iter0 = cata

However, this new type does not prevent expressions like badcase from being the argument to iter0.
We can prevent such case analysis inside lam expressions by ruling out case analysis for all terms of type
Exp t. If the user cannot use case, then they cannot write badcase. While this restriction means that some
operations cannot be naturally defined in this calculus, cata alone can define a large number of operations,
as we demonstrate below and in Section 2.2.

There are two ways to prohibit case analysis. The first way is to reimplement Exp in such a way that cata
is the only possible operation (in other words without using a Haskell datatype). We discuss this alternative
in Section 3.

The second way to prohibit case analysis is to make Rec an abstract type constructor. If the definition
of Rec is hidden by some module boundary, such as with the interface in Figure 3, then the only way to
destruct an expression of type Exp a is with cata. Because Roll and Place are datatype constructors of
Rec, and cata pattern matches these constructors, they must all be defined in the same module as Rec.
However, because we only need to prohibit case analysis, we can export Roll and Place as the functions
roll and place. With roll we can define the terms app and lam anywhere.

We can also make good use of place. The type forall a. Exp a enforces that all embedded functions
are parametric, but it can only represent closed expressions. What if we would like to examine expressions
with free variables? In HOAS, an expression with one free variable has type Exp t -> Exp t. To compute
the catamorphism for the expression, we use place to provide the value for the free variable.

openiter1 :: (ExpF b -> b)

-> (Exp b -> Exp b) -> (b -> b)

openiter1 f x = \y -> cata f (x (place y))

If we would like to make sure that the expression is sound, we must quantify over the parameter type
and require that the expression have type forall a. Exp a -> Exp a.

iter1 :: (ExpF b -> b)

-> (forall a. Exp a -> Exp a) -> (b -> b)

iter1 = openiter1
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With iter1 we can determine if that one free variable occurs in an expression.

freevarused :: (forall a. Exp a -> Exp a) -> Bool

freevarused e =

iter1 (\x -> case x of

(App x y) -> x || y

(Lam f) -> f False) e True

An app expression uses the free variable if either the function or the argument uses it. The occurrence of
the bound variable of a lam is not an occurrence of the free variable, so False is the argument to f, but the
expression does use the free variable if it appears somewhere in the body of the abstraction. Finally, the
program works by feeding in True for the value of the free variable. If the result is True then it must have
appeared somewhere in the expression.

There is no reason to stop with one free variable. There are an infinite number of related iteration
operators, each indexed by the type inside the forall. The types of several such iterators are shown below.
For example, the third one, iterList, may analyze expressions with arbitrary numbers of free variables.

iter2 :: (ExpF b -> b)

-> (forall a. Exp a -> Exp a -> Exp a)

-> (b -> b -> b)

iterFun :: (ExpF b -> b)

-> (forall a. (Exp a -> Exp a) -> Exp a)

-> ((b -> b) -> b)

iterList :: (ExpF b -> b)

-> (forall a. ([Exp a] -> Exp a))

-> ([b] -> b)

Each of these iterators is defined by using xmap to map (cata f) and place. Thus we can easily implement
them by defining the appropriate version of xmap. However, because xmap is a polytypic function, we should
be able to automatically generate all of these iterators using Generic Haskell. The following code implements
these operations. Below, the notation xmap{|g|} generates the instance of xmap for the type constructor g.

openiter{|g :: * -> * |} ::

(ExpF a -> a) -> g (Exp a) -> g a

openiter{|g|} f =

fst (xmap{|g|} (cata f, place))

iter{|g :: * -> * |} ::

(ExpF a -> a) -> (forall b. g (Exp b)) -> g a

iter{|g|} = openiter{|g|}

Unfortunately, the above Generic Haskell code cannot automatically generate all the iterators that we
want, such as iter1, iterFun and iterList. Because of type inference, g can only be a type constructor
that is a constant or a constant applied to type constructors [13]. In particular, we cannot represent the
type constructor (λα : ?.α → α) in Haskell, so we cannot automatically generate the instance

iter1 :: (f b -> b)

-> (forall a. (Exp a) -> (Exp a)) -> b -> b

Fortunately, using a different extension of Haskell, called functional dependencies [14], we can generate these
versions of openiter. For each version of iter that we want, we still need to redefine the generated openiter

with the more restrictive type.

iter1 :: (ExpF a -> a)

-> (forall b. Exp b -> Exp b) -> a -> a

iter1 = openiter
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The Iterable class defines openiter simultaneously with its inverse. The parameters m and n should be
g(Exp a) and g a, where each instance specifies g. (The type a is a parameter of the type class so that m

and n may refer to it.) Also necessary are the functional dependencies that state that m determines both a

and n. These dependencies rule out ambiguities during type inference.

class Iterable a m n | m -> a, m -> n where

openiter :: (ExpF a -> a) -> m -> n

uniter :: (ExpF a -> a) -> n -> m

If g is the identity type constructor, then m and n are Exp a and a respectively.

instance Iterable a (Exp a) a where

openiter = cata

uniter f = place

Using the instances for the subcomponents, we can define instances for types that contain ->.

instance (Iterable a m1 n1, Iterable a m2 n2)

=> Iterable a (m1 -> m2) (n1 -> n2) where

openiter f x = openiter f . x . uniter f

uniter f x = uniter f . x . openiter f

With these instances, we have a definition for openiter{|λα.α → α|}. It is not difficult to add instances
for other type constructors, such as lists and tuples.

2.2 Examples of iteration

We next present several additional examples of the expressiveness of iter0 for arguments of type
(forall a. Exp a). The purpose of these examples is to demonstrate how to implement some of the
common operations for λ-calculus terms without case analysis.

For example, we can use iter0 to convert expressions to strings. So that we have different names for
each nested binding occurrence, we must parameterize this iteration with a list of variable names. Haskell’s
list comprehension provides us with an infinite supply of strings.

vars :: [String]

vars = [ [i] | i <- [’a’..’z’] ] ++

[ i : show j | j <- [1..], i <- [’a’..’z’] ]

showAux :: ExpF ([String] -> String)

-> ([String] -> String)

showAux (App x y) vars =

"(" ++ (x vars) ++ " " ++ (y vars) ++ ")"

showAux (Lam z) (v:vars) =

"(fn " ++ v ++ ". " ++ (z (const v) vars) ++ ")"

show :: (forall a. Exp a) -> String

show e = iter0 showAux e vars

Applying show to an expression produces a readable form of the expression.

show (lam (\x -> lam (\y -> app x y)))

= (fn a. (fn b. (a b)))

Another operation we might wish to perform for a λ-calculus expression is to reduce it to a simpler form.
As an example, we next implement parallel reduction for a λ-calculus expression.6 Parallel reduction differs

6This example is from Schürmann et. al [24].
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from full reduction in that it does not reduce any newly created redexes. Therefore, it terminates even for
expressions with no β-normal form. Parallel reduction may be specified by the following inductive definition.

x ⇒ x
M ⇒ M ′

λx.M ⇒ λx.M ′

M ⇒ M ′ N ⇒ N ′

MN ⇒ M ′N ′

M ⇒ M ′ N ⇒ N ′

(λx.M)N ⇒ M ′{x/N ′}

We use iter0 to implement parallel reduction below. The tricky part is the case for applications. We
must determine whether the first component of an application is a lam expression, and if so, perform the
reduction. However, we cannot do a case analysis on expressions, as the type Exp a is abstract. Therefore,
we implement parallel reduction with a “pairing” trick7. As we iterate over the term we produce two results,
stored in the following record:

data PAR a = PAR { par :: Exp a,

apply :: Exp a -> Exp a }

The first component, par, is the actual result we want—the parallel reduction of the term. The second
component, apply, is a function that we build up for the application case. In the case of a lam expression,
apply performs the substitution in the reduced term. Otherwise, apply creates an app expression with its
argument and the reduced term.8

parAux :: ExpF (PAR a) -> PAR a

parAux (Lam f) =

PAR { par = lam (par . f . var),

apply = par . f . var }

where

var :: Exp a -> PAR a

var x = PAR { par = x, apply = app x }

parAux (App x y) =

PAR { par = apply x (par y),

apply = app (apply x (par y)) }

parallel :: (forall v. Exp v) -> (forall v. Exp v)

parallel x = par (iter0 parAux x)

For example:

show (parallel (app (lam (\x -> app x x))

(lam (\y -> y))))

= "((fn a. a) (fn a. a))"

While we could not write the most natural form of parallel reduction with iter0, other operations may
be expressed in a very natural manner. For example, we can implement the one-pass call-by-value CPS-
conversion of Danvy and Filinski [6]. This sophisticated algorithm performs “administrative” redexes at the
meta-level so that the result term has no more redexes than the original expression. The algorithm is based
on two mutually recursive operations: cpsmeta performs closure conversion given a meta-level continuation
(a term of type Exp a -> Exp a), and cpsobj does the same with an object-level continuation (a term of
type Exp a).

data CPS a = CPS {

cpsmeta :: (Exp a -> Exp a) -> Exp a,

cpsobj :: Exp a -> Exp a }

7Pairing was first used to implement the predecessor operation for Church numbers. The iteration simultaneously computes
the desired result with auxiliary operations.

8In Haskell, the notation apply x projects the apply component from the record x.
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If we are given a value (i.e. a λ-expression or a variable) the function value below describes its CPS
conversion. Given a meta-continuation k, we apply k to the value. Otherwise, given an object continuation
c, we create an object application of c to the value.

value :: Exp a -> CPS a

value x = CPS { cpsmeta = \k -> k x,

cpsobj = \c -> app c x }

The operation cpsAux takes an expression whose subcomponents have already been CPS converted and CPS
converts it. For application, translation is the same in both cases except that the meta-case converts the
meta-continuation into an object continuation with lam.

cpsAux :: ExpF (CPS a) -> CPS a

cpsAux (App e1 e2) =

CPS { cpsmeta = \k -> appexp (lam k),

cpsobj = appexp }

where appexp c =

(cpsmeta e1) (\y1 ->

(cpsmeta e2) (\y2 ->

app (app y1 y2) c))

For functions, we use value, but we must transform the function to bind both the original and continuation
arguments and transform the body of the function to use this object continuation. The outer lam binds
the original argument. We use value for this argument in f and cpsobj yields a body expecting an object
continuation that the inner lam converts to an expression.

cpsAux (Lam f) =

value (lam (lam . cpsobj . f . value))

Finally, we start cps with iter0 by abstracting an arbitrary dynamic context a and transforming the
argument with respect to that context.

cps :: (forall a. Exp a) -> (forall a. Exp a)

cps x = lam (\a ->

cpsmeta (iter0 cpsAux x) (\m -> app a m))

show (cps (lam (\x -> app x x)))

= "(fn a. (a (fn b. (fn c. ((b b) c)))))"

Above, a is the initial continuation, b is the argument x, and c is the continuation for the function.

3 Encoding iteration in Fω

In the previous section, we implemented iter as a recursive function and used a recursive type, Rec, to
define Exp. To prevent case analysis, we hid this definition of Rec behind a module boundary. However, this
module abstraction and is not the only way to prevent case analysis. Furthermore, term and type recursion
is not necessary to implement this datatype. We may define iter and Rec in the fragment of Haskell that
corresponds to Fω [10] so that iteration is the only elimination form for Rec. This implementation appears
in Figure 4.

The encoding is similar to the encoding of covariant datatypes in the polymorphic λ-calculus [3] (or to
the encoding of Church numerals). We encode an expression of type Exp a as its elimination form. For
example, something of type Exp a should take an elimination function of type (ExpF a -> a) and return
an a. To implement cata we apply the expression to the elimination function.

To create an expression, roll must encode this elimination. Therefore, roll returns a function that
applies its argument f (the elimination function) to the result of iterating over x. Again, to use xmap we
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type Rec f a = (f a -> a) -> a

data ExpF a = Lam (a -> a) | App a a

type Exp a = Rec ExpF a

roll :: ExpF (Exp a) -> Exp a

roll x =

\f -> f (fst (xmapExpF (cata f, place)) x)

place :: a -> Exp a

place x = \f -> x

lam :: (Exp a -> Exp a) -> Exp a

lam x = roll (Lam x)

app :: Exp a -> Exp a -> Exp a

app y z = roll (App y z)

xmapExpF :: (a -> b, b -> a)

-> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of

Lam x -> Lam (f . x . g)

App y z -> App (f y) (f z),

\x -> case x of

Lam x -> Lam (g . x . f)

App y z -> App (g y) (g z))

cata :: (ExpF a -> a) -> Exp a -> a

cata f x = x f

iter0 :: (ExpF a -> a) -> (forall b. Exp b) -> a

iter0 = cata

Figure 4: Catamorphism in the Fω fragment of Haskell
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need a right inverse for cata f. The term place in Figure 4 is an expression that when analyzed returns its
argument. We can show that place is a right inverse by expanding the above definitions:

cata f . place = (\x -> cata f (place x))

= (\x -> (place x) f)

= (\x -> ((\y -> x) f))

= (\x -> x)

3.1 Reasoning about iteration

There are powerful tools for reasoning about programs written in the polymorphic λ-calculus. For ex-
ample, we know that all programs that are written in Fω will terminate. Therefore, we can argue that
the examples of the previous section are total on all inputs that may be expressed in the polymorphic λ-
calculus, such as app (lam (\x -> app x x))(lam (\x -> app x x)). Unfortunately, we cannot argue
that these examples are total for arbitrary Haskell terms. For example, calling any of these routines on
(lam (let f x = f x in f)) will certainly diverge. Furthermore, even if the arguments to iteration are
written in Fω, if the operation itself uses type or term recursion, then it could still diverge. For example,
using the recursive datatype Value from Section 2, we can implement the untyped λ-calculus evaluator with
iter0.

Parametricity is another way to reason about programs written in Fω. As awkward as they may be, one
of the advantages to programming with catamorphisms instead of general recursion is that we may reason
about our programs using algebraic laws that follow from parametricity. While the following laws only hold
for Fω, we may be able to prove some form of them for Haskell using techniques developed by Johann [12].

Using parametricity, we can derive a free theorem [28] about expressions of type
(forall a. (b a -> a) -> a). If x has this type, then

f . f’ = id and f . g = h . fst (xmap{|b|}(f,f’)) => f (x g) = x h

The equivalence in this theorem is equivalence in some parametric model of Fω, such as the term model
with βη-equivalence. Using the free theorem, we can prove a number of properties about iteration. First,
we can show that iterating roll is an identity function, that iter0 roll = id. Using this result we can
show the uniqueness property for iter, which describes when a function is equal to an application of iter.
It resembles an “induction principle” for iter0.

f . f’ = id and f . roll = h . fst (xmap{|b|}(f,f’)) <=> f = iter0 h

The <= direction follows directly from the implementation of iter0 and roll. The => direction follows from
the free theorem.

Finally, the fusion law can be used to combine the composition of a function f and an iteration into one
iteration. This law follows directly from the free theorem.

f . f’ = id and f . g = h . fst(xmap{|b|}(f,f’)) => f . iter0 g = iter0 h

However, there is an important property about this encoding of the λ-calculus that we have not proven.
Adequacy states that if a Fω term is of type forall a. Exp a and is in canonical form, then it should be the
encoding of the canonical form of some λ-calculus expression. In other words, there is no extra “junk” in the
type forall a. Exp a, such as badcase. As a first step towards proving this result, we next show how this
Fω library can encode a language with iteration over HOAS that itself adequately embeds the λ-calculus.

4 Enforcing parametricity with modal types

In the next section, we formally describe the connection between the interface we have provided for iter-
ation over higher-order abstract syntax and the modal calculus of Schürmann, Despeyroux and Pfenning
(SDP) [24]. We do so by using this library to give a sound and complete embedding of the SDP calculus
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(Pure Types) B ::= b | 1 | B1 → B2 | B1 × B2

(Types) A ::= B | A1 → A2 | A1 × A2 | �A
(Terms) M ::= x | c | 〈〉 | λx : A.M | M1M2 | boxM | let box x : A = M1 inM2 |

〈M1, M2〉 | fstM | sndM | iter [A1, A2][Θ] M
(Term Replacement) Θ ::= ∅ | Θ ] {x 7→ M} | Θ ] {c 7→ M}
(Pure Environment) Ψ ::= ∅ | Ψ ] {x : B}
(Valid Environment) Ω ::= ∅ | Ω ] {x : A}
(Local Environment) Υ ::= ∅ | Υ ] {x : A}
(Signatures) Σ ::= ∅ | Σ ] {c : B → b}

Figure 5: Syntax of SDP calculus

into Fω. First, we provide a brief overview of the static and dynamic semantics of this calculus. The syntax
of the SDP calculus is shown in Figure 5.

The SDP calculus enforces the parametricity of function spaces with modal types. Modal necessity in
logic is used to indicate those propositions that are true in all worlds. Consequently, these propositions
can make use of only those assumptions that are also true in all worlds. In Pfenning and Davies’ [20]
interpretation of modal necessity, necessarily true propositions correspond to those formulae that can be
shown to be valid. Validity is defined as derivable with respect to only assumptions that themselves are
valid assumptions. As such, the typing judgments have two environments (also called contexts), one for
valid assumptions, Ω, and one for “local” assumptions, Υ. The terms corresponding to the introduction and
elimination forms for modal necessity are box and let box. We give them the following typing rules:

Ω; ∅ ` M : A

Ω; Υ ` boxM : �A
tp box

Ω; Υ ` M1 : �A1 Ω ] {x : A1}; Υ ` M2 : A2

Ω; Υ ` let box x : A1 = M1 inM2 : A2
tp letb

A boxed term, M , has type �A only if it has type A with respect to the valid assumptions in Ω, and no
assumptions in local environment. The let box elimination construct allows for the introduction of valid
assumptions into Ω, binding the contents of the boxed term M1 in the body M2. This binding is allowed
because the contents of boxed terms are well-typed themselves with only valid assumptions. Another way
to think about modal necessity is that terms with boxed type are “closed” and do not contain any free
variables, except those that are bound to closed terms themselves.

Operationally, boxed terms behave like suspensions, while let box substitutes the contents of a boxed
term for the bound variable. Because the operational semantics is defined simultaneously with conversion
to canonical forms, it is parameterized by the environment Ψ that describes the types of free local variables
appearing in the expression.

Ψ ` M1 ↪→ boxM ′
1 : �A1 Ψ ` M2{M

′
1/x} ↪→ V : A2

Ψ ` let box x : A1 = M1 inM2 ↪→ V : A2
ev letb

To enforce the separation between the iterative and parametric function spaces, the SDP calculus defines
those types, B, that do not contain a � type to be “pure”. Objects in the calculus with type �B, boxed pure
types, can be examined intensionally using an iteration operator, while objects of arbitrary impure type, A,
cannot. This forces functions of pure type, λx : B1.M : B1 → B2, to be parametric. This is because the
input, x, to such a function does not have a boxed pure type, and there is no way to convert it to one — x
will not be free inside of a boxed expression in M . Consequently, the functions of pure type may only treat
their inputs extensionally, making them parametric.

The language is parameterized by a constant type b and a signature, Σ, of data constructor constants, c,
for that base type. Each of the constructors in this signature must be of type B → b. Because B is a pure
type, these constructors may only take parametric functions as arguments.
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For example, consider a signature describing the untyped λ-calculus, Σ = {app : b × b → b, lam : (b →
b) → b}, where the constant type b corresponds to Exp. Using this signature, we can write a function to
count the number of bound variables in an expression, as we did in Section 2.9

countvar , λx : �b.
iter[�b, int][{app 7→ λy : int.λz : int.y + z,

lam 7→ λf : int → int.f 1}] x

The term iter intensionally examines the structure of the argument x and replaces each occurrence of app
and lam with λy : int.λz : int.y + z and λf : int → int.f 1 respectively.

The typing rule for iter is the following:

Ω; Υ ` M : �B Ω; Υ ` Θ : A〈Σ〉

Ω; Υ ` iter [�B, A][Θ] M : A〈B〉
tp iter

The argument to iteration, M , must have a pure closed type to be analyzable. Analysis proceeds via walking
over M and using the replacement Θ, a finite map from constants to terms, to substitute for the constants in
the term M . The type A is the type that will replace the base type b in the result of iteration. The notation
A〈B〉 substitutes A for the constant b in the pure type B. Each term in the range of the replacements must
also agree with replacing b with A. We verify this fact with the judgment Ω; Υ ` Θ : A〈Σ〉, which requires
that if Θ(c) = Mc and Σ(c) = Bc, then Mc must have type A〈Bc〉.

Operationally, iteration in the SDP calculus works in the following fashion.

Ψ ` M ↪→ boxM ′ : �B
∅ ` M ′ ⇑ V ′ : B

Ψ ` 〈A, Ψ, Θ〉(V ′) ↪→ V : A〈B〉

Ψ ` iter [�B, A][Θ] M ↪→ V : A〈B〉
ev it

First, the argument to iteration M is evaluated, Ψ ` M ↪→ boxM ′ : �B, producing a boxed object M ′.
M ′ is then evaluated to η-long canonical form via ∅ ` M ′ ⇑ V ′ : B. Next we perform elimination of that
canonical form, 〈A, Ψ, Θ〉(V ′), walking over V ′ and using Θ to replace the occurrences of constants. Finally,
we evaluate that result, Ψ ` 〈A, Ψ, Θ〉(V ′) ↪→ V : A〈B〉.

Elimination is used to describe the structure of a term after iteration. The only interesting cases to
elimination are those for variables, constants, and abstractions.

〈A, Ψ, Θ〉(x) , Θ(x)
el var

〈A, Ψ, Θ〉(c) , Θ(c)
el const

〈A, Ψ ] {x′ : B}, Θ ] {x 7→ x′}〉(V ) , M

〈A, Ψ, Θ〉(λx : B.V ) , λx′ : A〈B〉.M
el lam

When elimination encounters an abstraction, it chooses a fresh variable and adds it to the mapping Θ. It
then eliminates recursively on the body M of the abstraction, wrapping the result with an abstraction of
the correct type, one where b is replaced by A. The variable and the constant cases use the mappings in the
replacement Θ.

In order to simplify the presentation of the encoding, we have made a few changes to the SDP calculus.
First, while the language presented in this paper has only one pure base type b, the SDP calculus allows the
signature Σ to contain arbitrarily many base types. However, the extension of the encoding to several base
types is straightforward. Also, in order to make the constants of the pure language more closely resemble
datatype constructors, we have forced them all to be of the form B → b instead of any arbitrary pure
type B. To facilitate this restriction, we add unit and pairing to the pure fragment of the calculus so that
constructors may take any number of arguments.

9For simplicity, our formal presentation of SDP (in Figure 5) does not include integers. However, it is straightforward to
extend this calculus to additional base types.
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(Kinds) κ ::= ? | κ1 → κ2

(Types) τ ::= 1 | 0 | α | τ1 → τ2 | ∀α :κ.τ | τ1 × τ2 | 〈l1 : τ1, . . . , ln : τn〉 | λα : κ.τ | τ1τ2

(Terms) e ::= x | 〈〉 | λx : τ.e | e1e2 | Λα :κ.e | e[τ ] | 〈e1, e2〉 | fst e | snd e | injl eof τ |
case eof injl1 x1 in e1 . . . injln xn in en

(Type Environment) ∆ ::= ∅ | ∆ ] {α : κ}
(Term Environment) Γ ::= ∅ | Γ ] {x : τ}

Figure 6: Syntax of Fω with unit, void, products, and variants

5 Encoding SDP in Fω

The terms that we defined in Section 3, roll and iter, correspond very closely to the constructors and
iteration primitive of the SDP calculus. In this section, we strengthen this observation by showing how to
encode all programs written in the SDP calculus into Fω using a variation of these terms.

There are two key ideas behind our encoding:

• We use type abstraction to ensure that the encoding of boxed objects obeys the closure property of the
source language, and prevents variables from the local environment from appearing inside these terms.
To do so, we parameterize our encoding by a type that represents the current world and maintain the
invariant that all variables in the local environment mention the current world in their types. Because
a term enclosed within a box must be well-typed in any world, when we encode a boxed term we use
a fresh type variable to create an arbitrary world. We then encode the enclosed term with that new
world and wrap the result with a type abstraction. As a consequence, the encoding of a data-structure
within a box cannot contain free local variables because their types would mention that fresh type
variable outside of the scope of the type abstraction.

• We encode constants in the source language as their elimination form with roll. Furthermore, we
restrict the result of elimination to be of the type that is the world in which the term was encoded.
However, the encoding of boxed expressions quantifies over that world, allowing the resulting compu-
tations to be of arbitrary type.

The encoding of the SDP calculus can be broken into four primary pieces: the encodings for signatures,
types, terms, and replacements. To simplify our presentation, we extend the target language with unit, void,
products, and variants. The syntax of these terms appears in Figure 6. This extension does not weaken our
results as there are well known encodings of these types into Fω . In the remainder of this section, we present
the details of the encoding and describe the most interesting cases. The full specification of this encoding
appears in Appendix B.

Signatures. The encoding of signatures in the SDP calculus, notated τ〈Σ〉, corresponds to generating
the type constructor whose fixed point defines the recursive datatype. (For example, ExpF in Section 2.)
The argument of the encoding, a specified world τ , corresponds to the argument of the type constructor.

For this encoding, we assume the aid of an injective function L that maps data constructors in the
source language to distinct labels in the target language. We also need an operation called parameterization,
notated τ〈B〉 and defined in Appendix B.1. This operation parameterizes pure types in the source calculus
with respect to a given world in the target language, and produces a type in the target language. Essentially,
τ〈B〉 “substitutes” the type τ for the base type, b, in B.

We encode a signature as a variant. Each field corresponds to a constant ci in the signature, with a label
according to L, and a type that is the result of parameterizing the argument type of ci with the provided
type.

∀ci ∈ dom(Σ) Σ(ci) = Bi → b

τ〈Σ〉 , 〈L(c1) : τ〈B1〉, . . . ,L(cn) : τ〈Bn〉〉
en sig
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We often use parameterization and the signature translation to build type constructors in the target
language, so we define the following two abbreviations:

B∗ , λα : ?.α〈B〉 Σ∗ , λα : ?.α〈Σ〉

Types. As with the encoding of signatures, the encoding of types is parameterized by the worlds in which
they occur. We write the judgment for encoding a type A in the source calculus in world τ as ∆ ` A Bτ τ ′.
The environment ∆ tracks type variables allocated during the translation and allows us to chose variables
that are not in scope. The two interesting cases for encoding types from the source calculus are those for
the base type and for boxed types. The case for b corresponds to Rec ExpF a from Section 3. Therefore,
we define the abbreviation Rec Σ∗ α , (Σ∗α → α) → α, intuitively a fixed point of Σ∗, to the same idea of
encoding a datatype as its elimination form.

∆ ` b Bτ Rec Σ∗ τ
en tp b

The rule for boxed types uses type abstraction to ensure the result is parametric with respect to its world.
Näıvely, we might expect to use a fresh type variable as the new world and then encode the contents of the
boxed type with that type variable. This encoding ensures that the type is parametric with respect to its
world and then quantifies over the result.

α 6∈ ∆ ∆ ] {α : ?} ` A Bα τ ′

∆ ` �A Bτ ∀α :?.τ ′
en tp box wrong

However, with this encoding we violate the invariant that the types of all free local variables mention the
current world, because the encoding does not involve τ . Instead, we use the fresh type variable to create a
new world from the current world and consider α as a “world transformer”. During the translation, a term
will be encoded with a stack of world transformers, somewhat akin to stack of environments in the implicit
formulation of modal types [7].

α 6∈ ∆ ∆ ] {α : ? → ?} ` A Bατ τ ′

∆ ` �A Bτ ∀α :? → ?.τ ′
en tp box

The näıve translation of the unit type also forgets the current world. For this reason, we add a non-standard
unit to Fω that is parameterized by the current world. In other words, the unit type 1 is of kind ? → ? and
the unit term 〈〉 has type ∀α :?.1(α). Our type translation instantiates this type with the current world.

∆ ` 1 Bτ 1(τ)
en tp unit

The remaining types in the SDP language are encoded recursively in a straightforward manner. The
complete rules can be found in Appendix B.3.

Terms and replacements. We encode the source term, M , with the judgment ∆; Ξ ` M Bτ e. In
addition to the current world, τ , and the set of allocated type variables, ∆, the encoding of terms is also
parameterized by a set of term variables, Ξ. This set of variables allows the encoding to distinguish between
variables that were bound with λ and those bound with let box. We will elaborate on why this set is
necessary shortly.

Our encoding of boxed terms follows immediately from the encoding of boxed types. Here we encode
the argument term with respect to a fresh world transformer applied to the present world and then wrap
the result with a type abstraction.

α 6∈ ∆ ∆ ] {α : ? → ?}; Ξ ` M Bατ e

∆; Ξ ` boxM Bτ Λα :? → ?.e
en box

17



cata : ∀α :?.(Σ∗α → α) → (Rec Σ∗ α) → α

cata , Λα :?..λf : (Σ∗α → α).λy : (Rec Σ∗ α).yf

place : ∀α :?.α → Rec Σ∗ α

place , Λα :?.λx : α.λf : (Σ∗α → α).x

xmap{|τ : ? → ?|} : ∀α :?.∀β :?.(α → β × β → α) → (τα → τβ × τβ → τα)

openiter{|τ : ? → ?|} : ∀α :?.(Σ∗α → α) → τ(Rec Σ∗ α) → τα

openiter{|τ : ? → ?|} , Λα :?.λf : Σ∗α → α.fst (xmap{|τ |}[Rec Σ∗ α][α]〈cata[α]f,place[α]〉)

iter{|τ : ? → ?|} : ∀γ :?.∀α :?.(Σ∗α → α) → (∀β :? → ?.τ(Rec Σ∗ (βγ)) → τα

iter{|τ : ? → ?|} , Λγ :?.Λα :?.λf : Σ∗α → α.λx : (∀β : ? → ?.τ(Rec Σ∗ (βγ))).openiter{|τ |}[α]f(x[λδ : ?.α])

roll : ∀α :?.Σ∗(Rec Σ∗ α) → Rec Σ∗ α

roll , Λα :?.λx : Σ∗(Rec Σ∗ α).λf : Σ∗α → α.f(openiter{|Σ∗|}[α] f x)

Figure 7: Library routines

We encode let box by converting it to an abstraction and application in the target language. However, one
might note the discrepancy between the type of the variable we bind in the abstraction and the type we
might näıvely expect.

∆ ` �A1 Bτ τ1

∆; Ξ ` M1 Bτ e1 ∆; Ξ ] {x} ` M2 Bτ e2

∆; Ξ ` let box x : A1 = M1 inM2 Bτ (λx : τ1.e2)e1
en letb

The type of x is A1 and so one might assume that the type of x in the target should be the encoding of
A1 in the world τ . However, let box allows us to bind variables that are accessible in any world and using
A1 encoded against τ would allow the result to be used only in the present world. Because the encoding of
M1 will evaluate to a type abstraction, a term parametric in its world, we do not immediately unpack it by
instantiating it with the current world. Instead we pass it as x and then, when x appears we instantiate it
with the current world. Consequently, we use Ξ to keep track of variables bound by let box. When encoding
variables, we check whether x occurs in Ξ and perform instantiations as necessary.

x 6∈ Ξ

∆; Ξ ` x Bτ x
en var

x ∈ Ξ
∆; Ξ ` x Bτ x[λα : ?.τ ]

en bvar

If the variable is in Ξ, then it is applied to a world transformer that ignores its argument, and returns the
present world. This essentially replaces the bottom of the world transformer stack captured by the type
abstraction substituted for x with the world τ . Doing so ensures that if we substitute the encoding of a
boxed term into the encoding of another boxed term, the type correctness of the embedding is maintained
by correctly propagating the enclosing world.

Figure 7 shows the types and definitions of the library routines used by the encoding. The only difference
between it and Figure 4 is that iter abstracts the current world and requires that its argument be valid in
any transformation of the current world. Again, we make use of the polytypic function xmap to lift cata to
arbitrary type constructors . Because xmap is defined by the structure of a type constructor τ , we cannot
directly define it as a term in Fω . Instead, we will think of xmap{|τ |} as macro that expands to the mapping
function for the type constructor τ . (We use the notation {|·|} to distinguish between polytypic instantiation
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and parametric type instantiation.) This expansion is done according to the definition in Appendix A. We
do not cover the implementation here, see Hinze [11] for details.

Encoding constants in the source calculus makes straightforward use of the library routine roll. We
simply translate the constant into an abstraction that accepts a term that is the encoding of the argument
of the constant, and then uses roll to transform the injection into the encoding of the base type, Rec Σ∗ τ .

Σ(c) = B → b ∆ ` B Bτ τB

∆; Ξ ` c Bτ λx : τB .roll[τ ](injL(c) x of Σ∗(Rec Σ∗ τ))
en con

The encoding of iteration is similarly straightforward. We instantiate our polytypic function iter with a
type constructor created from parameterizing B, and then apply it to the current world and the encodings
of the intended result type A, the replacement term Θ and argument term M .

∆ ` A Bτ τA ∆; Ξ ` Θ BτA
τ eΘ ∆; Ξ ` M Bτ eM

∆; Ξ ` iter [�B, A][Θ] M Bτ iter{|B∗|}[τ ][τA] eΘ eM
en iter

The encoding of replacements Θ is uncomplicated and analogous to the encoding of signatures. We construct
an abstraction that consumes an instance of an encoded signature, dispatching the variant using a case
expression. In each branch, the encoding of the corresponding replacement is applied to the argument of the
injection.

∀ci ∈ dom(Θ) ∆; Ξ ` Θ(Ci) Bτ ei

∆; Ξ ` Θ BτA
τ λx : Σ∗τA.casexof injL(c1) y1 in (e1y1)

. . .
injL(cn) yn in (enyn)

en rep

The encodings for the other terms in the source language are straightforward and appear in Appendix B.4.
Now that we have defined all of our encoding for any closed term M in the SDP calculus, we put everything
together to construct a term e in our target calculus using the initial judgment ∅; ∅ ` M B0 e. We use the
void type as the initial world to enforce the parametricity of unboxed constants.

5.1 Properties of the encoding

We have proven a number of desirable properties concerning this encoding. However, before we can state
these properties, we must first define the relationship between the environments in the source and target
calculi. These relations hold when all types from the local environment are encoded with the current world,
and all types from the valid environment are first boxed then encoded with any world.

Definition 5.1 (Encoding typing environments). We write ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 to mean that

∀x.x : A ∈ Υ ⇔ x : τA ∈ Γ1 where ∆ ` τ : ? and ∆ ` A Bτ τA

∀x.x : A ∈ Ω ⇔ x : τA ∈ Γ2 where there exists some ∆ ` τ ′ : ? such that ∆ ` �A Bτ ′ τA

The relation for valid environments above is not parameterized by the current world. A single valid
environment may be encoded as many different target environments, depending on what worlds are chosen
for each type in the environment. However, in some sense the encodings are equivalent. If the translation of
M type checks with one encoding of Ω, it will type check with any other encoding of Ω.

The encoding is type preserving. If we encode a well-typed term M , the resulting term will be well-typed
under the appropriately translated environment. Furthermore, the converse is also true. If the encoding of a
term M is well-typed in the target language, then M must have been well-typed in the source. This means
that the target language preserves the abstractions of the source language.

Theorem 5.2 (Static correctness). Assume ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 and ∆ ` A Bτ τA.

1. If ∆; dom(Ω) ` M Bτ e then Ω; Υ ` M : A ⇔ ∆; Γ1 ] Γ2 ` e : τA .
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2. If ∆; dom(Ω) ` Θ BτA
τ eθ then Ω; Υ ` Θ : A〈Σ〉 ⇔ ∆; Γ1 ] Γ2 ` eθ : Σ∗τA → τA .

Proof. By mutual induction over the translation of terms (∆; dom(Ω) ` M Bτ e) and of replacements
(∆; dom(Ω) ` Θ BτA

τ eθ).

Furthermore, source evaluation and canonicalization is the same as βη-equivalence in the target calculus.

Theorem 5.3 (Dynamic correctness). If ∅; Ψ ` M : A and ∅; Ψ ` M Bτ e and ∅; Ψ ` V Bτ e′ and
∅ ` A Bτ τA and ∆ ` Ψ Bτ Γ then

1. Ψ ` M ↪→ V : A ⇔ ∅; Γ ` e ≡βη e′ : τA.

2. Ψ ` M ⇑ V : A ⇔ ∅; Γ ` e ≡βη e′ : τA.

Proof. The forward direction follows by simultaneous induction on the evaluation of M (Ψ ` M ↪→ V : A)
and the conversion of M to canonical form (Ψ ` M ⇑ V : A). The reverse direction follows from the forward
direction and from the fact that evaluation in the SDP calculus is deterministic and total.

6 Future work

Although we have shown a very close connection between SDP and its encoding in Fω, we have not shown
that this encoding is adequate. We would like to show that if τ is the image of an SDP type, then all terms
of type τ are equivalent to the encoding of some SDP term. In other words, there is no extra “junk” of type
τ . Showing this result would also show that encoding the λ-calculus with app and lam is adequate, because
the SDP calculus can already adequately encode the λ-calculus.

Alternatively, we could try to show adequacy with respect to the λ-calculus directly using a different
method. It may also be possible to do so for the simpler encoding of modal types, informally presented in
the first part of the paper, that uses first-order quantification and discards the current world. Whereas this
simpler encoding allows the translation of some terms that are rejected by the SDP calculus to type check
(for example, λx : �b. box x), it may still be adequate for encoding the untyped λ-calculus.

One important extension of this work is the case operator. Because there are limitations to what may
be defined with iter, the SDP calculus also includes a construct for case analysis of closed terms. However,
we have not yet found an obvious correspondence for case in our encoding.

Another further area of investigation is into the dual operation to iter, the anamorphism over datatypes
with embedded functions. An implementation of this operation, called coiter, is below. The coiter term
is an anamorphism—it generates a recursive data structure from an initial seed.

data Dia f a = In (f (Dia f a), a)

coroll :: Dia f a -> f (Dia f a)

coroll (In x) = fst x

coplace :: Dia f a -> a

coplace (In x) = snd x

coiter0 :: (a -> f a) -> a -> (exists a. Dia f a)

coiter0 g b =

In (snd (xmap (coplace, coiter0 g) (g b)), b)

Instead of embedding the recursive type in a sum, we embed it in a product. The two selectors from this
product have the dual types to roll and place. In the definition of coiter0 we use coplace as the inverse
where we would have used cata in the definition of ana. A term of type (exists a. Dia b a) corresponds
to the possibility type (3 b) in a modal calculus. However, while a general anamorphism is an inverse of a
catamorphism, coiter is not an inverse to iter. In fact, iter cannot consume what coiter produces, giving
doubts to its practical use. (On the other hand, ana itself has seen little practical use for datatypes with
embedded functions.) From a logical point of view, this restriction makes sense. Combining anamorphisms
and catamorphisms (even for datatypes without embedded functions) leads to general recursion.
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7 Related work

The technique we present, using polymorphism to enforce parametricity, has appeared under various guises
in the literature. For example, Shao et al. [27] use this technique (one level up) to implement type-level
intensional analysis of recursive types. They use higher-order abstract syntax to the represent recursive
types and remark that the kind of this type constructor requires a parametric function as its argument.
However, they do not make a connection with modal type systems, nor do they extend their type-level
iteration operator to higher kinds. Xi et al. [31] remark on the correspondence between HOAS terms with
the place operator (which they call HOASvar) and closed terms of Mini-ML�

e but do not investigate the
relationship or any form of iteration.

While higher-order abstract syntax has an attractive simplicity, the difficulties programming and rea-
soning about structures encoded with this technique have motivated research into language extensions for
working with higher-order abstract syntax or alternative approaches altogether. Dale Miller developed a
small language called MLλ [17] that introduces a type constructor for terms formed by abstracting out a
parameter. These types can be thought of as function types that can be intensionally analyzed through pat-
tern matching. Pitts and Gabbay built on the theory of FM-sets to design a language called FreshML [23]
that allows for the manipulation and abstraction of fresh “names”. Nanevski [18] combines fresh names with
modal necessity to allow for the construction of more efficient residual terms, while still retaining the ability
to evaluate them at runtime. The Delphin Project [25] by Schürmann et al. develops a functional language
for manipulating datatypes that are terms in the LF logical framework. Because higher-order abstract syntax
is the primary representation technique in LF, Delphin provides operations for matching over higher-order
LF terms in regular worlds. The SDP calculus uses modal necessity to restrict matching to closed worlds,
so regular worlds provide additional flexibility without the difficulties of matching in an open world. The
Hybrid [2] logical framework provides induction over higher-order abstract syntax by evaluation to de Bruijn
terms, which provide straightforward induction.

There is a long history of encoding modality in logic, but only recently has the encoding of modal
type systems been explored. Acar et al. [1] use modal types in a functional language that provides control
over the use of memoization, and implement it as a library in SML. Because SML does not have modal
types or first-class polymorphism, they use run-time checks to enforce the correct use of modality. Davies
and Pfenning [7] presented, in passing, a simple encoding of the modal λ-calculus into the simply-typed
λ-calculus that preserves only the dynamic semantics. Washburn expanded upon this encoding, showing
that it bisimulates the source calculus [29].

8 Conclusion

While other approaches to defining an induction operator over higher-order abstract syntax require type
system extensions to ensure the parametricity of embedded function spaces, the approach that we present in
this paper requires only type polymorphism. Because of this encoding, we are able to implement iteration
operators for datatypes with embedded parametric functions directly in the Haskell language.

However, despite its simplicity, our approach is equivalent to previous work on induction operators for
HOAS. We demonstrate this generality by showing how the modal calculus of Schüermann, Despeyroux and
Pfenning may be embedded into Fω using this technique. In fact, the analogy of representing boxed terms
with polymorphic terms makes semantic sense: a proposition with a boxed type is valid in all worlds and
polymorphism makes that quantification explicit.
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A Generic Haskell implementation of xmap

type XMap {[*]} t1 t2 = (t1 -> t2, t2 -> t1)

type XMap {[k -> l]} t1 t2 = forall u1 u2.

XMap {[k]} u1 u2 -> XMap {[l]}(t1 u1)(t2 u2)

xmap {| t :: k |} :: XMap {[k]} t t

xmap {| Unit |} = (id,id)

xmap {| :+: |} (xmapA1,xmapA2) (xmapB1,xmapB2) =

(\x -> case x of

(Inl a) -> Inl (xmapA1 a)

(Inr b) -> Inr (xmapB1 b),
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\x -> case x of

(Inl a) -> Inl (xmapA2 a)

(Inr b) -> Inr (xmapB2 b))

xmap {| :*: |} (xmapA1,xmapA2) (xmapB1,xmapB2) =

(\(a :*: b) -> (xmapA1 a) :*: (xmapB1 b),

\(a :*: b) -> (xmapA2 a) :*: (xmapB2 b))

xmap {| (->) |} (xmapA1,xmapA2) (xmapB1,xmapB2) =

(\f -> xmapB1 . f . xmapA2,

\f -> xmapB2 . f . xmapA1)

xmap {| Int |} = (id, id)

xmap {| Bool |} = (id, id)

xmap {| IO |} (xmapA1,xmapA2) =

(fmap xmapA1, fmap xmapA2)

xmap {| [] |} (xmapA1,xmapA2) =

(map xmapA1, map xmapA2)

B Full encoding of SDP

B.1 Parameterization

τ〈b〉 , τ
par b

τ〈1〉 , 1
par unit

τ〈B1〉 , τ1 τ〈B2〉 , τ2

τ〈B1 → B2〉 , τ1 → τ2

par arrow

τ〈B1〉 , τ1 τ〈B2〉 , τ2

τ〈B1 × B2〉 , τ1 × τ2

par times

B.2 Signatures

∀ci ∈ dom(Σ) Σ(ci) = Bi → b

τ〈Σ〉 , 〈L(c1) : τ〈B1〉, . . . ,L(cn) : τ〈Bn〉〉
en sig

B.3 Types

∆ ` b Bτ Rec Σ∗ τ
en tp b

α 6∈ ∆ ∆ ] {α : ? → ?} ` A Bατ τ ′

∆ ` �A Bτ ∀α :? → ?.τ ′
en tp box

∆ ` 1 Bτ 1(τ)
en tp unit

∆ ` A1 Bτ τ1 ∆ ` A2 Bτ τ2

∆ ` A1 → A2 Bτ τ1 → τ2
en tp arrow

∆ ` A1 Bτ τ1 ∆ ` A2 Bτ τ2

∆ ` A1 × A2 Bτ τ1 × τ2
en tp prod
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B.4 Terms

x 6∈ Ξ

∆; Ξ ` x Bτ x
en var

x ∈ Ξ
∆; Ξ ` x Bτ x[λα : ?.τ ]

en bvar

α 6∈ ∆ ∆ ] {α : ? → ?}; Ξ ` M Bατ e

∆; Ξ ` boxM Bτ Λα :? → ?.e
en box

∆; Ξ ` 〈〉 Bτ 〈〉[τ ]
en unit

Σ(c) = B → b ∆ ` B Bτ τB

∆; Ξ ` c Bτ λx : τB .roll[τ ](injL(c) xof Σ∗(Rec Σ∗ τ))
en con

∆; Ξ ` M Bτ e ∆ ` A1 Bτ τ1

∆; Ξ ` λx : A1.M Bτ λx : τ1.e
en abs

∆; Ξ ` M1 Bτ e1 ∆; Ξ ` M2 Bτ e2

∆; Ξ ` M1M2 Bτ e1e2

en app

∆ ` �A1 Bτ τ1

∆; Ξ ` M1 Bτ e1 ∆; Ξ ] {x} ` M2 Bτ e2

∆; Ξ ` let box x : A1 = M1 inM2 Bτ (λx : τ1.e2)e1
en letb

∆; Ξ ` M1 Bτ e1 ∆; Ξ ` M2 Bτ e2

∆; Ξ ` 〈M1, M2〉 Bτ 〈e1, e2〉
en pair

∆; Ξ ` M Bτ e

∆; Ξ ` fstM Bτ fst e
tr fst

∆; Ξ ` M Bτ e

∆; Ξ ` sndM Bτ snd e
en snd

∆ ` A Bτ τA ∆; Ξ ` Θ BτA
τ eΘ ∆; Ξ ` M Bτ eM

∆; Ξ ` iter [�B, A][Θ] M Bτ iter{|B∗|}[τ ][τA] eΘ eM
en iter

B.5 Replacements

∀ci ∈ dom(Θ) ∆; Ξ ` Θ(ci) Bτ ei

∆; Ξ ` Θ BτA
τ λx : Σ∗τA.casexof injL(c1) y1 in (e1y1)

. . .
injL(cn) yn in (enyn)

en rep

C Static correctness

Our notion of static correctness is that encoding is type preserving. If we encode a well-typed term M , the
resulting term will be well-typed under the appropriately translated environment. Furthermore, the
converse is also true. If the encoding of a term M is well-typed in the target language, then M must have
been well-typed in the source. This means that the target language preserves the abstractions of the source
language. However, because we allow for the encoding of open terms, before we can begin to reason about
static correctness and other properties, we must first define a relationship between source and target
language environments.

Definition C.1 (Encoding typing environments). We write ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 to mean
that

∀x.x : A ∈ Υ ⇔ x : τA ∈ Γ1 where ∆ ` τ : ? and ∆ ` A Bτ τA

∀x.x : A ∈ Ω ⇔ x : τA ∈ Γ2 where there exists some ∆ ` τ ′ : ? such that ∆ ` �A Bτ ′ τA

The relation for valid environments above is not parameterized by the current world. A single valid
environment may be encoded at many different target environments, depending on what worlds are chosen
for each type in the environment. However, in a sense the encodings are equivalent. If the translation of M
type checks with one encoding of Ω, it will type check with any other encoding of Ω.

The following theorem proves our primary static corrrectness result, supported by a number of lemmas
that follow it.
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Theorem C.2 (Static correctness).

1. If ∆; dom(Ω) ` M Bτ e then if ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 and ∆ ` A Bτ τA then
Ω; Υ ` M : A ⇔ ∆; Γ1 ] Γ2 ` e : τA.

2. If ∆; dom(Ω) ` Θ BτA
τ eΘ then if ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 and ∆ ` A Bτ τA then

Ω; Υ ` Θ : A〈Σ〉 ⇔ ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA.

Proof. By mutual induction over the structure of ∆; dom(Ω) ` M Bτ e and ∆; dom(Ω) ` Θ BτA
τ eΘ. The

cases for former:

Case
x 6∈ dom(Ω)

∆; dom(Ω) ` x Bτ x
en var

Forward direction:

– By inversion on Ω; Υ ` x : A and x 6∈ dom(Ω) we can conclude that A = Υ(x).

– By Definition C.1 (environment encoding), if Υ(x) = A then Γ1(x) = τ ′

A where ∆ ` A Bτ τ ′

A.

– Lemma C.13 (uniqueness of type encoding) on ∆ ` A Bτ τA and ∆ ` A Bτ τ ′

A we have τA = τ ′

A.

– Using Lemma C.20 (environment encoding well-formedness) we have ∆ ` Γ1 and ∆ ` Γ2, and
along with Γ1(x) = τA, the variable typing rule (tp var), and weakening we can conclude
∆; Γ1 ] Γ2 ` x : τA.

Backward direction:

– By Lemma C.8 (inversion) on ∆; Γ1 ] Γ2 ` x : τA we know that x : τ ′

A ∈ Γ1 ] Γ2 where
∆ ` τA ≡βη τ ′

A : ?. Furthermore, we know that x 6∈ dom(Ω) so by Defintion C.1 (environment
encoding) x 6∈ dom(Γ2) and the disjointness of contexts means that x : τ ′

A ∈ Γ1.

– Definition C.1 (environment encoding) tells us that if x : τ ′

A ∈ Γ1 then x : A′ ∈ Υ where
∆ ` A′ Bτ τ ′

A. Using Lemma C.12 (type enconding with congruent results) on ∆ ` A Bτ τA and
∆ ` A′ Bτ τ ′

A with ∆ ` τA ≡βη τ ′

A : ?, we can conclude A = A′ Therefore by the local variable
typing rule (tp var) on x : A ∈ Υ we can conclude Ω; Υ ` x : A.

Case
x ∈ dom(Ω)

∆; dom(Ω) ` x Bτ x[λα : ?.τ ]
en bvar

Forward direction:

– By inversion on Ω; Υ ` x : A and x ∈ dom(Ω) we can conclude that A = Ω(x).

– By Definition C.1 (environment encoding), if Ω(x) = A then Γ2(x) = τ ′

A where ∆ ` �A Bτ ′ τ ′

A

for some ∆ ` τ ′ : ?. By inversion, we know that ∆ ] {β : ? → ?} ` A Bβτ ′ τ ′′

A where
τ ′

A = ∀β : ? → ?.τ ′′

A.

– Using Lemma C.20 (environment encoding well-formedness) we have ∆ ` Γ1 and ∆ ` Γ2, and
along Γ2(x) = ∀β : ? → ?.τ ′′

A and the variable typing rule (tp var), the type application rule
(tp tapp) and weakening we can derive ∆; Γ1 ] Γ2 ` x[λα : ?.τ ] : τ ′′

A{λα : ?.τ/β}.

– By Lemma C.15 (world substitution on type encoding) on ∆ ` λα : ?.τ : ? → ? and
∆ ] {β : ? → ?} ` A Bβτ ′ τ ′′

A we know that ∆ ` A B(λα:?.τ)τ ′ τ ′′

A{λα : ?.τ/β}. By β-equivalence
(tp eq abs beta) we know that ∆ ` τ ≡βη (λα : ?.τ)τ ′ : ?, so by Lemma C.14 (encoding under
congruent worlds) on ∆ ` A Bτ τA and ∆ ` A B(λα:?.τ)τ ′ τ ′′

A{λα : ?.τ/β} we know that
∆ ` τA ≡βη τ ′′

A{λα : ?.τ/β} : ?.
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– Therefore, by type equivalence (tp eq) on ∆ ` τA ≡βη τ ′′

A{λα : ?.τ/β} : ? we can conclude
∆; Γ1 ] Γ2 ` x[λα : ?.τ ] : τA.

Backward direction:

– From Lemma C.8 (inversion) on ∆; Γ1 ] Γ2 ` x[λα : ?.τ ] : τA we know ∆; Γ1 ] Γ2 ` x : ∀β : κ.τ ′

A

and ∆ ` λα : ?.τ : κ where ∆ ` τA ≡βη τ ′

A{τ1/β} : ? and ∆ ` τ1 ≡βη λα : ?.τ : κ. By further
inversion on ∆; Γ1 ] Γ2 ` x : ∀β : κ.τ ′

A we can conclude x : τ ′′

A ∈ Γ1 ] Γ2 for
∆ ` ∀β : κ.τ ′

A ≡βη τ ′′

A : ?. By However, we know that x ∈ dom(Ω) so by Definition C.1
(environment encoding) we have that x ∈ dom(Γ2). Given that contexts are disjoint, x : τ ′′

A ∈ Γ2.

– By inversion on ∆ ` λα : ?.τ : κ we know that κ = ? → ?.

– Definition C.1 (environment encoding) also allows us to conclude that given x : τ ′′

A ∈ Γ2, we have
x : A′ ∈ Ω where ∆ ` �A′ Bτ ′ τ ′′

A for some ∆ ` τ ′ : ?.

– By using the typing rule for valid variables (tp bvar) on x : A′ ∈ Ω we can conclude Ω; Υ ` x : A′.

– By inversion on ∆ ` �A′ Bτ ′ τ ′′

A we have that ∆ ] {β : ? → ?} ` A′ Bβτ ′ τ ′′′

A where
τ ′′

A = ∀β : ? → ?.τ ′′′

A .

– Using Lemma C.15 (world substitution) on ∆ ` λα : ?.τ : ? → ? and
∆ ] {β : ? → ?} ` A′ Bβτ ′ τ ′′′

A we can conclude ∆ ` A′ B(λα:?.τ)τ ′ τ ′′′

A {λα : ?.τ/β}. By
β-equivalence (tp eq abs beta) we have that ∆ ` (λα : ?.τ)τ ′ ≡βη τ : ?. From Lemma C.11 (type
encoding total and decidable) on ∆ ` τ : ? that ∆ ` A′ Bτ ′ τ2. Using Lemma C.14 (encoding
under congruent worlds) on ∆ ` A′ B(λα:?.τ)τ ′ τ ′′′

A {λα : ?.τ/β} and ∆ ` A′ Bτ τ2 and
∆ ` (λα : ?.τ)τ ′ ≡βη τ : ? we can conclude ∆ ` τ ′′′

A {λα : ?.τ/β} ≡βη τ2 : ?.

– By inversion on ∆ ` ∀β : ? → ?.τ ′

A ≡βη ∀β : ? → ?.τ ′′

A : ? we have that
∆ ] {β : ? → ?} ` τ ′

A ≡βη τ ′′

A : ?. Using this congruence with type equivalence for subsitution
(tp eq subst) and ∆ ` τ1 ≡βη λα : ?.τ : ? → ? we can conclude
∆ ` τ ′

A{τ1/β} ≡βη τ ′′

A{λα : ?.τ/β} : ?. By transitivity of type congruence (tp eq trans) on
∆ ` τ ′

A{τ1/β} ≡βη τ ′′

A{λα : ?.τ/β} : ? and ∆ ` τ ′′′

A {λα : ?.τ/β} ≡βη τ2 : ? and
∆ ` τA ≡βη τ ′

A{τ1/β} : ? we have that ∆ ` τA ≡βη τ2 : ?.

– Lemma C.12 (typing encoding with congruent results) on ∆ ` A′ Bτ τ2 and ∆ ` A Bτ τA with
∆ ` τA ≡βη τ2 : ? we can conclude that A′ = A.

Case
α 6∈ ∆ ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e

∆; dom(Ω) ` boxM Bτ Λα :? → ?.e
en box

Common:

– We have ∆ ] {α : ? → ?} ` Ω B Γ2 by weakening and ∆ ] {α : ? → ?} ` ∅ Bατ ∅ by Definition
C.1 (environment encoding).

The forward direction follows from straightforward use of induction:

– Using inversion on Ω; Υ ` boxM : A we can conclude Ω; ∅ ` M : A′ where A = �A′.

– By inversion on ∆ ` �A′ Bτ τA we have that ∆ ] {α : ? → ?} ` A′ Bτ τ ′

A where
τA = ∀α : ? → ?.τ ′

A.

– Appealing to the induction hypothesis on ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e, with the auxilary
judgements ∆ ] {α : ? → ?} ` ∅ Bατ ∅ and ∆ ] {α : ? → ?} ` Ω B Γ2 and
∆ ] {α : ? → ?} ` A′ Bατ τ ′

A and and Ω; ∅ ` M : A′ we have a derviation
∆ ] {α : ? → ?}; Γ2 ` e : τ ′

A.

– Via the typing rule for type abstraction (tp tabs) and weakening we can conclude
∆; Γ1 ] Γ2 ` Λα :? → ?.e : ∀α : ? → ?.τ ′

A.
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Backward direction:

– By Lemma C.8 (inversion) on ∆; Γ1 ] Γ2 ` Λα :? → ?.e : τA we can conclude that
∆ ] {α : ? → ?}; Γ1 ] Γ2 ` e : τ ′

A where ∆ ` τA ≡βη ∀α : ? → ?.τ ′

A :.

– From Lemma C.10 (inversion) on ∆ ` A Bτ τA and ∆ ` τA ≡βη ∀α : ? → ?.τ ′

A : can conclude
∆ ] {α : ? → ?} ` A′ Bατ τ ′

A where A = �A′.

– Given that α 6∈ ∆ and ∆ ` τ : ?, we know that α 6∈ FTV(τ). Using Lemma C.3 (local
strengthening) on ∆ ` Υ Bτ Γ1 and ∆ ] {α : ? → ?} ` Ω B Γ2 and
∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e and ∆ ] {α : ? → ?}; Γ1 ] Γ2 ` e : τ ′

A and
∆ ] {α : ? → ?} ` A′ Bατ τ ′

A we can conclude ∆ ] {α : ? → ?}; Γ2 ` e : τ ′

A.

– By apealing to the induction hypothesis on ∆ ] {α : ? → ?} ` A′ Bατ τ ′

A, with the auxiliary
judgements ∆ ] {α : ? → ?} ` ∅ Bατ ∅ and ∆ ] {α : ? → ?} ` Ω B Γ2 and
∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e and ∆ ] {α : ? → ?}; Γ2 ` e : τ ′

A we have a derviation
Ω; ∅ ` M : A′.

– Using the typing rule for box (tp box) on Ω; ∅ ` M : A′ we can conclude Ω; Υ ` M : �A′.

Case

∆; dom(Ω) ` 〈〉 Bτ 〈〉[τ ]
en unit

Forward direction:

– By the unit typing rule (tp unit) and weakening we can conclude ∆; Γ1 ] Γ2 ` 〈〉 : ∀α : ?.1(α).
Using the type application rule (tp tapp) we have that ∆; Γ1 ] Γ2 ` 〈〉[τ ] : 1(α){τ/α}. Which by
substitution is the same as ∆; Γ1 ] Γ2 ` 〈〉[τ ] : 1(τ).

– From inversion on Ω; Υ ` 〈〉 : A we know that A = 1, so by inversion on ∆ ` 1 Bτ τA we know
that τA = 1(τ).

Backward direction:

– We can trivially conclude by the axioms for unit (tp unit and en tp unit) that Ω; Υ ` 〈〉 : 1 and
∆ ` 1 Bτ 1(τ).

Case
∆; dom(Ω) ` M Bτ e ∆ ` A1 Bτ τ1

∆; dom(Ω) ` λx : A1.M Bτ λx : τ1.e
en abs

Common:

– Using Definition C.1 (environment encoding) on ∆ ` Υ Bτ Γ1 and ∆ ` A1 Bτ τ1 we can conclude
∆ ` Υ ] {x : A1} Bτ Γ1 ] {x : τ1}.

The forward direction follows from straightforward use of induction:

– By inversion on Ω; Υ ` λx : A1.M : A we know that A = A1 → A2 and that
Ω; Υ ] {x : A1} ` M : A2.

– We know that ∆ ` A1 Bτ τ1 therefore we can conclude ∆ ` Υ ] {x : A1}Bτ Γ1 ] {τ1}.

– From inversion ∆ ` A1 → A2 Bτ τA we know that ∆ ` A1 Bτ τ ′
1 and ∆ ` A2 Bτ τ2 where

τA = τ ′
1 → τ2. Using Lemma C.13 (uniqueness of type encoding) on ∆ ` A1 Bτ τ ′

1 and
∆ ` A1 Bτ τ1 we can conclude we have τ1 = τ ′

1.

– By application of the induction hypothesis to ∆; dom(Ω) ` M Bτ e, with the following auxiliary
judgements ∆ ` Υ ] {x : A1} Bτ Γ1 ] {τ1} and ∆ ` Ω B Γ2 and ∆ ` A2 Bτ τ2 and
Ω; Υ ] {x : A1} ` M : A2, we have that ∆; Γ1 ] {x : τ1} ] Γ2 ` e : τ2.
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– By the typing rule for abstraction (tp abs) on ∆; Γ1 ] {x : τA1
} ] Γ2 ` e : τ2 we can conclude

∆; Γ1 ] Γ2 ` λx : τ1.e : τ1 → τ2.

Backward direction:

– From Lemma C.8 (inversion) on ∆; Γ1 ] Γ2 ` λx : τ1.e : τA we know that
∆; Γ1 ] Γ2 ] {x : τ1} ` e : τ2 where ∆ ` τA ≡βη τ1 → τ2 : ?.

– From Lemma C.10 (inversion) on ∆ ` A Bτ τA and ∆ ` A1 Bτ τ1 and ∆ ` τA ≡βη τ1 → τ2 : ? we
know that ∆ ` A2 Bτ τ2 where A = A1 → A2.

– Appealing to the induction hypothesis on ∆; dom(Ω) ` M Bτ e, with the auxiliary judgements
∆ ` Υ ] {x : A1} Bτ Γ1 ] {x : τ1} and ∆ ` Ω B Γ2 and ∆ ` A2 Bτ τ2 and
∆; Γ1 ] Γ2 ] {x : τ1} ` e : τ2 we have a derivation Ω; Υ ] {x : A1} ` M : A2.

– Using the typing rule for abstraction (tp abs) on Ω; Υ ] {x : A1} ` M : A2 we have
Ω; Υ ` λx : A1.M : A1 → A2.

Case
Σ(c) = B → b ∆ ` B Bτ τB

∆; dom(Ω) ` c Bτ λx : τB .roll[τ ](injL(c) xof Σ∗(Rec Σ∗ τ))
en con

Common:

– By Lemma C.16 (commutivity of parameterization and type encoding) on ∆ ` B Bτ τB we know
that τB = (Rec Σ∗ τ)〈B〉.

– By Lemma C.7 (well-formedness of type encoding) we can conclude ∆ ` {x : τB}. Using this
fact, the variable typing rule (tp var), the injection typing rule (tp variant), and signature
encoding (en sig), τB = (Rec Σ∗ τ)〈B〉, and type equivalence we can conclude that
∆; {x : τB} ` injL(c) xof Σ∗(Rec Σ∗ τ)) : Σ∗(Rec Σ∗ τ).

– By Lemma C.18 (roll typing) we know that ∅; ∅ ` roll : ∀α.Σ∗(Rec Σ∗ α) → Rec Σ∗ α. By
using the type application rule (tp tapp), weakening, the typing rule for applications (tp app),
and finally the abstraction typing rule (tp abs) along with weakening we can conclude
∆; Γ1 ] Γ2 ` λx : τB .roll[τ ](injL(c) xof Σ∗(Rec Σ∗ τ)) : τB → Rec Σ∗ τ .

Forward direction:

– From inversion on Ω; Υ ` c : A, we know that Σ(c) = B → b and A = B → b. By inversion on
∆ ` B → b Bτ τA we know that ∆ ` B Bτ τ ′

B and ∆ ` b Bτ τ ′

b where τA = τ ′

B → τ ′

b. Using
Lemma C.13 (uniqueness of type encoding) on ∆ ` B Bτ τ ′

B and ∆ ` B Bτ τB we have that
τB = τ ′

B . Finally, by inversion on ∆ ` b Bτ τ ′

b we have that τ ′

b = Rec Σ∗ τ . Therefore,
∆ ` A Bτ τB → Rec Σ∗ τ .

Backward direction:

– From Σ(c) = B → b and the typing rule for constants (tp con) we can conclude Ω; Υ ` c : B → b.

– By using the rule for encoding functions (en tp arrow) on ∆ ` B Bτ τB and the axiom
∆ ` b Bτ Rec Σ∗ τ (en tp b) we can conclude ∆ ` B → b Bτ τB → Rec Σ∗ τ .

Case
∆ ` A Bτ τA ∆; dom(Ω) ` Θ BτA

τ eΘ ∆; dom(Ω) ` M Bτ eM

∆; dom(Ω) ` iter [�B, A][Θ] M Bτ iter{|B∗|}[τ ][τA] eΘ eM
en iter

Common:

– Lemma C.11 (type encodings is total and decidable) tells us that for �B and ∆ ` τ : ? we can
construct a derivation ∆ ` �B Bτ τB .
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– By inversion on ∆ ` �B Bτ τB we know that τB = ∀β : ? → ?.τ ′

B and
∆ ] {β : ? → ?} ` B Bβτ τ ′

B . By Lemma C.16 (commutivity of parameterization and type
encoding) we know that τ ′

B = (Rec Σ∗ βτ)〈B〉.

– By Lemma C.17 (commutivity of iteration types and type encoding) on ∆ ` A Bτ τA we have
that ∆ ` A〈B〉 Bτ τA〈B〉.

The forward direction follows from straightforward use of induction:

– By inversion on Ω; Υ ` iter [�B, A][Θ] M : A′ we know that A′ = A〈B〉 and Ω; Υ ` Θ : A〈Σ〉
and Ω; Υ ` M : �B.

– By appealing to the induction hypothesis on ∆; dom(Ω) ` M Bτ eM , with the expected auxiliary
judgements, we have ∆; Γ1 ] Γ2 ` eM : ∀β : ? → ?.Rec Σ∗ βτ〈B〉 From this derivation,
beta-equivalence (tp eq abs beta), and type equivalence (tp eq) we can derive
∆; Γ1 ] Γ2 ` eM : ∀β : ? → ?.B∗(Rec Σ∗ βτ).

– By appealing to the induction hypothesis on ∆; dom(Ω) ` Θ BτA
τ eΘ, with the expected auxiliary

judgements, we can conclude that ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA.

– By Lemma C.19 (iter typing) we know that
∅; ∅ ` iter{|B∗|} : ∀γ : ?.∀α : ?.(Σ∗α → α) → (∀β : ? → ?.B∗(Rec Σ∗ βγ)) → B∗α. Using type
application (tp tapp), weakening, the application typing rule (tp app) twice, and type
equivalence we can conclude ∆; Γ1 ] Γ2 ` iter{|B∗|}[τ ][τA] eΘ eM : τA〈B〉.

Backward direction:

– By Lemma C.19 (iter typing) we know that
∅; ∅ ` iter{|B∗|} : ∀γ : ?.∀α : ?.(Σ∗α → α) → (∀β : ? → ?.B∗(Rec Σ∗ βγ)) → B∗α. From
repeated use of Lemma C.8 (inversion) on ∆; Γ1 ] Γ2 ` iter{|B∗|}[τ ][τA] eΘ eM : τ ′

A, followed by
type equivalence (tp eq) we can conclude that ∆; Γ1 ] Γ2 ` eM : ∀β : ? → ?.B∗(Rec Σ∗ βτ) and
∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA.

– Using the induction hypothesis on ∆; dom(Ω) ` M Bτ eM , with the expected auxiliary
judgements, we can conclude Ω; Υ ` M : �B.

– Appealing to the induction hypothesis on ∆; dom(Ω) ` Θ BτA
τ eΘ, with the expected auxiliary

judgments, gives a derivation Ω; Υ ` Θ : A〈Σ〉.

– Using the iteration typing rule (tp iter) on Ω; Υ ` M : �B and Ω; Υ ` Θ : A〈Σ〉 we know that
Ω; Υ ` iter [�B, A][Θ] M : A〈B〉.

Case

∆ ` �A1 Bτ τ1

∆; dom(Ω) ` M1 Bτ e1 ∆; dom(Ω) ] {x} ` M2 Bτ e2

∆; dom(Ω) ` let box x : A1 = M1 inM2 Bτ (λx : τ1.e2)e1
en letb

Common:

– Given that ∆ ` �A1 Bτ τ1, using Definition C.1 (environment encoding), we have that
∆ ` Ω ] {x : A1} B Γ2 ] {x : τ1}.

The forward direction follows by straightforward use of induction:

– From inversion on Ω; Υ ` let box x : A1 = M1 inM2 : A we can conclude Ω; Υ ` M1 : �A1 and
Ω ] {x : A1}; Υ ` M2 : A.

– Appealing to the induction hypothesis on ∆; dom(Ω) ` M1 Bτ e1, and the expected auxiliary
judgements, we have that ∆; Γ1 ] Γ2 ` e1 : τ1.
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– Appealing to the induction hypothesis on ∆; dom(Ω) ] {x} ` M2 Bτ e2, with the auxiliary
judgements ∆ ` Υ Bτ Γ1 and ∆ ` Ω ] {x : A1} B Γ2 ] {x : τ1} and ∆ ` A Bτ τA and
Ω ] {x : A1}; Υ ` M2 : A, we can produce a derivation ∆; Γ1 ] Γ2 ] {x : τ1} ` e2 : τA.

– Using the typing rules for abstraction (tp abs) and application (tp app) on
∆; Γ1 ] Γ2 ] {x : τ1} ` e2 : τA and ∆; Γ1 ] Γ2 ` e1 : τ1 we can conclude the desired result
∆; Γ1 ] Γ2 ` (λx : τ1.e2)e1 : τA.

Backward direction:

– By repeated use of Lemma C.8 (inversion) on ∆; Γ1 ] Γ2 ` (λx : τ1.e2)e1 : τA we have that
∆; Γ1 ] Γ2 ` e1 : τ ′

1 and ∆; Γ1 ] Γ2 ] {x : τ1} ` e2 : τ ′ where ∆ ` τA ≡βη τ2 : ? and
∆ ` τ ′

1 → τ ′ ≡βη τ1 → τ2 : ?.

– By inversion on ∆ ` τ ′
1 → τ ′ ≡βη τ1 → τ2 : ? we can conclude ∆ ` τ ′

1 ≡βη τ1 : ?. Therefore, we
have ∆; Γ1 ] Γ2 ` e1 : τ ′

1 by type equivalence (tp eq). Similarly for
∆; Γ1 ] Γ2 ] {x : τ1} ` e2 : τA.

– Using the induction hypothesis on ∆; dom(Ω) ` M1 Bτ e1, with the expected auxiliary
judgements, we can conclude that Ω; Υ ` M1 : �A1.

– Again using the induction hypothesis on ∆; dom(Ω) ] {x} ` M2 Bτ e2, with the auxiliary
judgements ∆ ` Υ Bτ Γ1 and ∆ ` Ω ] {x : A1} B Γ2 ] {x : τ1} and ∆ ` A Bτ τA and
∆; Γ1 ] Γ2 ] {x : τ1} ` e2 : τA, we have that Ω ] {x : A1}; Υ ` M2 : A.

– By using the typing rule for letbox (tp letb) on Ω; Υ ` M1 : �A1 and Ω ] {x : A1}; Υ ` M2 : A
we have the desired result Ω; Υ ` let box x : A1 = M1 inM2 : A.

Cases The remaining cases procedure by straightforward application of the induction hypothesis and
inversion to the subderivations.

The case for ∆; dom(Ω) ` Θ BτA
τ eΘ

Case
∀ci ∈ dom(Θ) ∆; dom(Ω) ` Θ(ci) Bτ ei

∆; dom(Ω) ` Θ BτA
τ λx : Σ∗τA.casexof injL(c1) y1 in (e1y1)

. . .
injL(cn) yn in (enyn)

en rep

Common:

– Lemma C.11 (type encoding total and decidable) on tells us that we can construct
∆ ` A〈Bi → b〉 Bτ τi for each Bi, where Σ(ci) = Bi → b. From the definition of iteration types,
A〈Bi → b〉 = A〈Bi〉 → A. Therefore by inversion on ∆ ` A〈Bi〉 → A Bτ τi we know that
∆ ` A〈Bi〉 Bτ τ ′

i and ∆ ` A Bτ τ ′

A where τi = τ ′
i → τ ′

A. Lemma C.13 (uniqueness of type
encoding) on ∆ ` A Bτ τ ′

A and ∆ ` A Bτ τA tells us that τA = τ ′

A.

The forward direction follows by straightforward use of the induction:

– Using inversion on Ω; Υ ` Θ : A〈Σ〉 we can conclude for all ci ∈ dom(Σ) that
Ω; Υ ` Θ(ci) : A〈Bi → b〉 where Σ(ci) = Bi → b.

– Appealing to the induction hypothesis on ∆; dom(Ω) ` Θ(ci) Bτ ei, with the auxiliary
judgements ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 and ∆ ` A〈Bi → b〉 Bτ τi and and
Ω; Υ ` Θ(ci) : A〈Bi → b〉, we have that ∆; Γ1 ] Γ2 ` ei : τ ′

i → τA.

– Using the type typing rule for variables (tp var) and application (tp app) for each yi and ei,
followed by typing rule for case (tp case) and abstraction (tp abs) allows us to conclude
∆; Γ1 ] Γ2 ` λx : Σ∗τA.casexof injL(c1) y1 in (e1y1) . . . injL(cn) yn in (enyn) : Σ∗τA → τA.
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Backward direction:

– From repeated use of Lemma C.8 (inversion) on

∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ `
λx : Σ∗τA.case xof injL(c1) y1 in (e1y1) . . . injL(cn) yn in (enyn) : Σ∗τA → τA

along with transitivity on type congruences (tp eq trans) and type equivalence (tp eq) we can
conclude ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ] {x : Σ∗τA} ] {yi : τA〈Bi〉} ` ei : τA〈Bi〉 → τA,
for each ei.

– We know that x and each yi appears fresh in the final translation derivation, therefore we know
that for each ei, we can strengthen the typing derivations to ∆; Γ1 ] Γ2 ` ei : τA〈Bi〉 → τA,
which by the definition of parameterization is the same as ∆; Γ1 ] Γ2 ` ei : τA〈Bi → b〉.

– Appealing to the induction hypothesis on ∆; dom(Ω) ` Θ(ci) Bτ ei, with the auxiliary
judgements ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 and ∆ ` A〈Bi → b〉 Bτ τi and
∆; Γ1 ] Γ2 ` ei : τA〈Bi → b〉, gives us that Ω; Υ ` Θ(ci) : A〈Bi → b〉 for each ei.

– Applying the typing rule for replacements (tp rep) to each Ω; Υ ` Θ(ci) : A〈Bi → b〉 licenses us
to conclude Ω; Υ ` Θ : A〈Σ〉.

An important lemma is required for boxed terms in the backward direction. To show that the boxed term
is well-typed in the source language, we need to show that the local environment is empty.
We use the following lemma to do so, which guarantees that if the term is encoded with respect to some
world containing a type variable α, if the local environment is encoded with respect to a world that does
not contain the type variable α, then those bindings must be unnecessary for the typing derviation.

Lemma C.3 (Local strengthening). Assume ∆ ] {α : ? → ?} ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 and
α 6∈ FTV(τ). If ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e and ∆ ] {α : ? → ?}; Γ1 ] Γ2 ` e : τ ′ where
∆ ] {α : ? → ?} ` A Bατ τ ′ then ∆ ] {α : ? → ?}; Γ1 ` e : τ ′

Proof. We cannot prove this lemma directly, but must instead generalize the induction hypothesis, yielding
the next Lemma C.4 (superflous context elimination). It then follows by instantiating Lemma C.4 with
Υi ∈ {Υ} and Υ = ∅.

Lemma C.4 (Superflous context elimination).

1. If ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e and ∆ ` Υi Bτi
Γi and α 6∈ FTV(Γi) and

∆ ] {α : ? → ?} ` Ω B Γ and ∆ ] {α : ? → ?} ` Υ′ Bατ Γ′ and
∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` e : τ ′ where ∆ ] {α : ? → ?} ` A Bατ τ ′ then
∆ ] {α : ? → ?}; Γ ] Γ′ ` e : τ ′.

2. If ∆ ] {α : ? → ?}; dom(Ω) ` Θ BτA
ατ eΘ and ∆ ` Υi Bτi

Γi and α 6∈ FTV(Γi) and
∆ ] {α : ? → ?} ` Ω B Γ and ∆ ] {α : ? → ?} ` Υ′ Bατ Γ′ and
∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` eΘ : Σ∗τA → τA where ∆ ] {α : ? → ?} ` A Bατ τA then
∆ ] {α : ? → ?}; Γ ] Γ′ ` eΘ : Σ∗τA → τA.

Proof. By mutual induction over the structure of ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e and
∆ ] {α : ? → ?}; dom(Ω) ` Θ BτA

ατ eΘ. The cases for the former:

Case
x 6∈ dom(Ω)

∆ ] {α : ? → ?}; dom(Ω) ` x Bατ x
en var
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– By assumption we have that ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` x : τ ′. Therefore by
Lemma C.8 (inversion), we can conclude that (x : τ ′′ ∈ Γ ] Γ1 ] . . . ] Γn ] Γ′, where
∆ ] {α : ? → ?} ` τ ′ ≡βη τ ′′ : ?. By the fact that x 6∈ dom(Ω) and Definition C.1 (environment
encoding) we know that x 6∈ dom(Γ). Futhermore that x : τ ′′ ∈ Γ1 ] . . . ] Γn ] Γ′.

– Given that the contexts are disjoint x : τ ′′ ∈ Γi or x : τ ′′ ∈ Γ′. Assume x : τ ′′ ∈ Γi. By Lemma
C.21 (type containment) on ∆ ] {α : ? → ?} ` A Bατ τ ′ we know that FTV(ατ) = FTV(τ ′).
∆ ] {α : ? → ?} ` τ ′ ≡βη τ ′′ : ? so we know that FTV(τ ′) = FTV(τ ′′). However, we assumed
that α 6∈ FTV(Γi), so x : τ ′′ cannot be in Γi and it must be the case that x : τ ′′ ∈ Γ′. Therefore,
we are may conclude ∆ ] {α : ? → ?}; Γ ] Γ′ ` x : τ ′ by the variable typing rule (tp var) followed
by type equivalence (tp eq).

Case
x ∈ dom(Ω)

∆ ] {α : ? → ?}; dom(Ω) ` x Bτ x[λα : ?.τ ]
en bvar

– By assumption we have that ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` x : τ ′. Therefore by
Lemma C.8 (inversion), we can conclude that x : τ ′′ ∈ Γ ] Γ1 ] . . . ] Γn ] Γ′ where
∆ ] {α : ? → ?} ` τ ′ ≡βη τ ′′ : ?.

– However, we know that x ∈ dom(Ω) which means by Definition C.1 (environment encoding) that
x ∈ dom(Γ). Because the union of contexts must be disjoint, we are allowed to conclude
x : τ ′′ ∈ Γ ] Γ′, by which by the variable typing rule (tp var) and type equivalence (tp eq) we
have ∆ ] {α : ? → ?}; Γ ] Γ′ ` x : τ ′.

Case
β 6∈ ∆ ∆ ] {α : ? → ?} ] {β : ? → ?}; dom(Ω) ` M Bβ(ατ) e

∆ ] {α : ? → ?}; dom(Ω) ` boxM Bατ Λβ :? → ?.e
en box

– By inversion on ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` Λβ :? → ?.e : τ ′ we know that
∆ ] {α : ? → ?} ] {β : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` e : τ ′′ where
∆ ] {α : ? → ?} ` τ ′ ≡βη ∀β : ? → ?.τ ′′ : ?.

– By Lemma C.10 (inversion) on ∆ ] {α : ? → ?} ` A Bατ τ ′ and
∆ ] {α : ? → ?} ` τ ′ ≡βη ∀β : ? → ?.τ ′′ : ? we can conclude
∆ ] {α : ? → ?} ] {β : ? → ?} ` A′ Bβ(ατ) τ ′

A where ∆ ] {α : ? → ?} ` τ ′

A ≡βη τ ′′ : ? and
A = �A′.

– We have ∆ ] {α : ? → ?} ] {β : ? → ?} ` Ω B Γ by weakening and
∆ ] {α : ? → ?} ] {β : ? → ?} ` ∅ Bβ(ατ) ∅ by Definition C.1 (environment encoding).

– Using type equivalence (tp eq) on ∆ ] {α : ? → ?} ] {β : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` e : τ ′′

and ∆ ] {α : ? → ?} ` τ ′

A ≡βη τ ′′ : ? we have that
∆ ] {α : ? → ?} ] {β : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` e : τ ′

A

– By use of the induction hypothesis, with respect to β, on
∆ ] {α : ? → ?} ] {β : ? → ?}; dom(Ω) ` M Bβ(ατ) e, with the auxiliary judgements
∆ ] {α : ? → ?} ` Υj Bτj

Γj (where we have added Γ′ to the set of contexts to be eliminated)
and ∆ ] {α : ? → ?} ] {β : ? → ?} ` Ω B Γ and ∆ ] {α : ? → ?} ] {β : ? → ?} ` ∅ Bβ(ατ) ∅ and
∆ ] {α : ? → ?} ] {β : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` e : τ ′′ and
∆ ] {α : ? → ?} ] {β : ? → ?} ` A′ Bβ(ατ) τ ′

A we have that and
∆ ] {α : ? → ?} ] {β : ? → ?}; Γ ` e : τ ′

A.

– By the type abstraction typing rule (tp tabs), weakening, and type equivalence (tp eq) we have
the desired result ∆ ] {α : ? → ?}; Γ ] Γ′ ` Λβ :? → ?.e : τ ′.
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Case
∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e ∆ ] {α : ? → ?} ` A1 Bατ τ1

∆ ] {α : ? → ?}; dom(Ω) ` λx : A1.M Bατ λx : τ1.e
en abs

– By Lemma C.8 (inversion) on ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` λx : τ1.e : τ ′ we have
that ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ] {x : τ1} ` e : τ2 and that
∆ ] {α : ? → ?} ` τ ′ ≡βη τ1 → τ2 : ?.

– From Lemma C.10 (inversion) on ∆ ] {α : ? → ?} ` A Bατ τ1 → τ2 and
∆ ] {α : ? → ?} ` τ ′ ≡βη τ1 → τ2 : ? and ∆ ] {α : ? → ?} ` A1 Bατ τ1 we know A = A1 → A2

and ∆ ] {α : ? → ?} ` A2 Bατ τ2.

– Therefore by application of the induction hypothesis to ∆ ] {α : ? → ?}; dom(Ω) ` M Bατ e with
the expected auxiliary judgements we can conclude ∆ ] {α : ? → ?}; Γ ] Γ′ ] {x : τ1} ` e : τ2.

– Using the abstraction typing rule (tp abs) and type equivalence (tp eq) we have the desired
result, ∆ ] {α : ? → ?}; Γ ] Γ′ ` λx : τ1.e : τ ′.

Case

∆ ] {α : ? → ?} ` �A1 Bατ τ1

∆ ] {α : ? → ?}; dom(Ω) ` M1 Bατ e1 ∆ ] {α : ? → ?}; dom(Ω) ] {x} ` M2 Bατ e2

∆ ] {α : ? → ?}; dom(Ω) ` let box x : A1 = M1 inM2 Bατ (λx : τ1.e2)e1
en letb

– By Lemma C.8 (inversion) on ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` (λx : τ1.e2)e1 : τ ′ we
know that ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ] {x : τ1} ` e2 : τ ′′′ and
∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` e1 : τ1 where ∆ ] {α : ? → ?} ` τ ′ ≡βη τ ′′ : ? and
∆ ] {α : ? → ?} ` τ1 → τ ′′ ≡βη τ1 → τ ′′′ : ?.

– Given ∆ ] {α : ? → ?} ` Ω B Γ and ∆ ] {α : ? → ?} ` �A1 Bατ τ1 and Definition C.1
(environment encoding) we know that ∆ ] {α : ? → ?} ` Ω ] {x : A1} B Γ ] {x : τ1}.

– By inversion on ∆ ] {α : ? → ?} ` τ1 → τ ′′ ≡βη τ1 → τ ′′′ : ? we have that
∆ ] {α : ? → ?} ` τ ′′ ≡βη τ ′′′ : ?. Using this congruence and type equivalence (tp eq) we can
conclude on ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ] {x : τ1} ` e2 : τ ′.

– By application of the induction hypothesis to ∆ ] {α : ? → ?}; dom(Ω) ] {x} ` M2 Bατ e2, with
the auxiliary judgements ∆ ` Υi Bτi

Γi and α 6∈ FTV(Γi) and
∆ ] {α : ? → ?} ` Ω ] {x : A1} B Γ ] {x : τ1} and ∆ ] {α : ? → ?} ` Υ′ Bατ Γ′ and
∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ] {x : τ1} ` e2 : τ ′. and ∆ ] {α : ? → ?} ` A Bατ τ ′ we
have that ∆ ] {α : ? → ?}; Γ ] Γ′ ] {x : τ1} ` e2 : τ ′.

– Similarly, using the induction on ∆ ] {α : ? → ?}; dom(Ω) ` M1 Bατ e1, with the expected
auxiliary judgements, ∆ ] {α : ? → ?}; Γ ] Γ′ ` e1 : τ1.

– Finally, using the typing rules for abstraction (tp abs), application (tp app), and type
equivalence we have the desired conclusion ∆ ] {α : ? → ?}; Γ ] Γ′ ` (λx : τ1.e2)e1 : τ ′.

Cases The remaining cases follow by straightforward inversion and application of the induction
hypothesis.

The case for ∆ ] {α : ? → ?}; dom(Ω) ` Θ BτA
ατ eΘ:

Case

∀ci ∈ dom(Θ) ∆ ] {α : ? → ?}; dom(Ω) ` Θ(ci) Bατ ei

∆ ] {α : ? → ?}; dom(Ω) ` Θ BτA
ατ λx : Σ∗τA.casexof injL(c1) y1 in (e1y1)

. . .
injL(cn) yn in (enyn)

en rep
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– From repeated use of Lemma C.8 (inversion) on

∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ `
λx : Σ∗τA.case xof injL(c1) y1 in (e1y1) . . . injL(cn) yn in (enyn) : Σ∗τA → τA

along with transitivity on type congruences (tp eq trans) and type equivalence (tp eq) we can
conclude ∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ] {x : Σ∗τA} ] {yi : τA〈Bi〉} ` ei : τA〈Bi〉 → τA,
for each ei. Furthermore, we know that x and yi are fresh, and do therefore do not appear free
in ei, so we can strengthen the typing derivations to
∆ ] {α : ? → ?}; Γ ] Γ1 ] . . . ] Γn ] Γ′ ` ei : τA〈Bi〉 → τA.

– By Lemma C.16 (commutativity for iteration types) on and ∆ ] {α : ? → ?} ` A Bατ τA we
have that ∆ ] {α : ? → ?} ` A〈Bi → b〉 Bατ τA〈Bi → b〉. Furthermore, by the definition of
parameterization, we know that ∆ ] {α : ? → ?} ` A〈Bi → b〉 Bατ τA〈Bi〉 → τA.

– Appealing to the induction hypothesis on ∆ ] {α : ? → ?}; dom(Ω) ` Θ(ci) Bατ ei, with the
expected auxiliary judgements, we can conclude that ∆ ] {α : ? → ?}; Γ ] Γ′ ` ei : τA〈Bi〉 → τA.

– Using weakening, the typing rules for application (tp app), case (tp case), and abstraction
(tp abs) on each ∆ ] {α : ? → ?}; Γ ] Γ′ ` ei : τA〈Bi〉 → τA we have the desired result

∆ ] {α : ? → ?}; Γ ] Γ′ `
λx : Σ∗τA.case xof injL(c1) y1 in (e1y1) . . . injL(cn) yn in (enyn) : Σ∗τA → τA

Since System Fω treats types identical up the the equivalence relation ∆ ` τ1 ≡βη τ2 : κ, inversion lemmas
that rely on the structure of types, such as inversion on typing derivations, type congruences, and type
encoding do not follow trivially by inspection. However, it is possible to strengthen some of these inversion
lemmas by recognizing that type encoding always produces types in Fω that are in weak head normal form.
We use the judgements ∆ ` τ � κ and ∆ ` τ � κ to indicate that type τ with kind κ is in weak head normal
or weak head atomic form with respect to ∆.

Lemma C.5 (Type encodings are weak head normal forms). If ∆ ` τ : ? and ∆ ` A Bτ τA then
∆ ` τA � ?.

Proof. By straightforward induction over the structure of ∆ ` A Bτ τA.

Lemma C.6 (Weak head types are well-formed types).

1. If ∆ ` τ � ? then ∆ ` τ : ?.

2. If ∆ ` τ � ? then ∆ ` τ : ?.

Proof. By trival mutal induction over the structure of ∆ ` τ � ? and ∆ ` τ � ?.

Lemma C.7 (Well-formedness of type encoding). If ∆ ` τ : ? and ∆ ` A Bτ τA then ∆ ` τA : ?.

Proof. Follows directly from Lemma C.5 and Lemma C.6.

Lemma C.8 (Inversion on typing derivations).

1. If ∆; Γ ` x : τ then Γ(x) = τ ′ where ∆ ` τ ≡βη τ ′ : ?.

2. If ∆; Γ ` e1e2 : τ then ∆; Γ ` e1 : τ1 → τ2 and ∆; Γ ` e2 : τ1 where ∆ ` τ ≡βη τ2 : ?.

3. If ∆; Γ ` λx : τ1.e : τ then ∆; Γ ] {x : τ1} ` e : τ ′ where ∆ ` τ ≡βη τ1 → τ ′ : ?.

4. If ∆; Γ ` 〈〉 : τ then ∆ ` τ ≡βη ∀α : ?.1(α) : ?.
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5. If ∆; Γ ` Λα : κ.e : τ then ∆ ] {α : κ}; Γ ` e : τ ′ where ∆ ` τ ≡βη ∀α : κ.τ ′ : ?.

6. If ∆; Γ ` e[τ1] : τ then ∆; Γ ` e : ∀α : κ.τ ′ where ∆ ` τ1 : κ and ∆ ` τ ≡βη τ ′{τ ′
1/α} : ? and

∆ ` τ1 ≡βη τ ′
1 : κ.

7. If ∆; Γ ` case eof injl1 x1 in e1 . . . injln xn in en : τ then ∆; Γ ` e : 〈l1 : τ1, . . . , ln : τn〉 and
∆; Γ ] {xi : τi} ` ei : τ ′ for each ei where ∆ ` τ ≡βη τ ′ : ?.

Proof. By straightforward induction over the number of uses of tp eq used before the final derivation
step.

Lemma C.9 (Inversion for type congruences).

1. If ∆ ` 1(τ) ≡βη τ ′ : ? and ∆ ` τ ′ � ? then τ ′ = 1(τ ′′) where ∆ ` τ ≡βη τ ′′ : ?.

2. If ∆ ` Rec Σ∗ τ ≡βη τ ′ : ? and ∆ ` τ ′ � ? then τ ′ = τ1 → τ2 where ∆ ` Σ∗τ → τ ≡βη τ1 : ? and
∆ ` τ ≡βη τ2 : ?.

3. If ∆ ` τ1 → τ2 ≡βη τ ′ : ? and ∆ ` τ ′ � ? then τ ′ = τ ′
1 → τ ′

2 where ∆ ` τ1 ≡βη τ ′
1 : ? and

∆ ` τ2 ≡βη τ ′
2 : ?.

4. If ∆ ` τ1 × τ2 ≡βη τ ′ : ? and ∆ ` τ ′ � ? then τ ′ = τ ′
1 × τ ′

2 where ∆ ` τ1 ≡βη τ ′
1 : ? and

∆ ` τ2 ≡βη τ ′
2 : ?.

5. If ∆ ` ∀α : ? → ?.τ ≡βη τ ′ : ? and ∆ ` τ ′ � ? then τ ′ = ∀α : ? → ?.τ ′′ where
∆ ] {α : ? → ?} ` τ ≡βη τ ′′ : ?.

Proof. By induction over the structure of the type congruences.

Lemma C.10 (Inversion for type encoding).

1. If ∆ ` A Bτ τA and ∆ ` τA ≡βη Rec Σ∗ τ : ? then A = b.

2. If ∆ ` A Bτ τA and ∆ ` A1 Bτ τ1 and ∆ ` τA ≡βη τ1 → τ2 : ? then ∆ ` A2 Bτ τ ′
2 where

A = A1 → A2 and τA = τ1 → τ ′
2.

3. If ∆ ` A Bτ τA and ∆ ` τA ≡βη ∀α : ? → ?.τ ′

A : ? then ∆ ] {α : ? → ?} ` A′ Bατ τ ′′

A where
∆ ] {α : ? → ?} ` τ ′

A ≡βη τ ′′

A : ? and A = �A′ and τA = ∀α : ? → ?.τ ′′

A.

4. If ∆ ` A Bτ τA and ∆ ` τA ≡βη 1(τ ′) : ? then A = 1.

5. If ∆ ` A Bτ τA and ∆ ` τA ≡βη τ1 × τ2 : ? then ∆ ` A1 Bτ τ ′
1 where ∆ ` A2 Bτ τ ′

2 where
A = A1 × A2 and τA = τ ′

1 × τ ′
2.

Proof. By inversion over the structure of the type congruence. For Part 1:

• By Lemma C.5 (type encodings are weak head normal) on ∆ ` A Bτ τA we know that ∆ ` τA � ?.
Using Lemma C.9 (inversion) on ∆ ` τA ≡βη Rec Σ∗ τ : ? we know that τA = τ1 → τ2 where
∆ ` τ1 ≡βη Σ∗τ → τ : ?. Given that ∆ ` A Bτ τ1 → τ2, either A = b or A = A1 → A2 for some
A1, A2.

• Assume that A = A1 → A2. Then by inversion on ∆ ` A1 → A2 Bτ τ1 → τ2 we have that
∆ ` A1 Bτ τ1. Using Lemma C.5 again on ∆ ` A1 Bτ τ1 we know that ∆ ` τ1 � ?. Again by Lemma
C.9 on ∆ ` τ1 ≡βη Σ∗τ → τ : ? we have that τ1 = τ ′

1 → τ ′′
1 where ∆ ` τ ′

1 ≡βη Σ∗τ : ? and
∆ ` τ ′′

1 ≡βη τ : ?. As before A1 = b or A1 = A′
1 → A′′

1 for some A′
1, A

′′
1 .
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• Assume A1 = b. Then τ ′
1 = Σ∗τ → τ and τ ′′

1 = τ . However, ∆ ` Σ∗τ → τ 6≡βη Σ∗τ : ? as there is no
way to make a variant and function equivalent.

• Therefore A1 = A′
1 → A′′

1 . By inversion on ∆ ` A′
1 → A′′

1 Bτ τ ′
1 → τ ′′

1 we have that ∆ ` A′
1 Bτ τ ′

1

Using Lemma C.5 yet again we know that ∆ ` τ ′
1 � ?. However, we know that ∆ ` τ ′

1 ≡βη Σ∗τ : ?.
There are no types in the image of the encoding where the head constructor is equivalent to a
variant. So our assumption that A = A1 → A2 must false, and A = b.

For Part 2:

• By Lemma C.5 (type encodings are weak head normal) on ∆ ` A Bτ τA we know that ∆ ` τA � ?.
Using Lemma C.9 (inversion) on ∆ ` τA ≡βη τ1 → τ2 : we know that τA = τ ′

1 → τ ′
2 where

∆ ` τ1 ≡βη τ ′
1 : ?. Given that ∆ ` A Bτ τ ′

1 → τ ′
2, either A = b or A = A′

1 → A′
2 for some A′

1, A
′
2.

• Assume A = b. 10

Lemma C.11 (Type encoding is total and decidable). Given a type, A, in the source calculus and a
τ in Fω we can construct ∆ ` A Bτ τA.

Proof. By straightforward induction over the structure of A.

Another difficulty that arises in the backward direction of the static correctness proof is showing that two
types, known only to be congruent, are the result of encoding the same source language type. It is possible
to further strengthen the conclusion following lemma to also state that τ1 and τ2 must also be syntactically
in addition to semantically equivalent using Lemma C.11, but it is not necessary for the proofs.

Lemma C.12 (Type encoding with congruent results). If ∆ ` τ : ? and ∆ ` A1 Bτ τ1 and
∆ ` A2 Bτ τ2 where ∆ ` τ1 ≡βη τ2 : ? then A1 = A2.

Proof. By induction over the structure of ∆ ` A1 Bτ τ1 using inversion on ∆ ` A2 Bτ τ2.

Lemma C.13 (Uniqueness of type encoding).

1. If ∆ ` A Bτ τA and ∆ ` A Bτ τ ′

A then τA = τ ′

A.

2. If ∆ ` A Bτ τ and ∆ ` A′ Bτ τ then A = A′.

Proof. Both properties follow by straightforward simultaneous induction on the type encoding
derivations.

Lemma C.14 (Type encoding under congruent worlds). If ∆ ` A Bτ1
τA and ∆ ` A Bτ2

τ ′

A where
∆ ` τ1 ≡βη τ2 : ? then ∆ ` τA ≡βη τ ′

A : ?

Proof. By straightforward simultaneous induction on the type encoding derivations.

Lemma C.15 (World substitution for type encoding). If ∆ ] {α : ? → ?} ` A Bατ ′ τA and
∆ ` τ : ? → ? then ∆ ` A Bττ ′ τA{τ/α}.

Proof. By straightforward induction over the structure of ∆ ] {α : ? → ?} ` A Bατ ′ τA.

Lemma C.16 (Commutativity for parameterization and type encoding). If ∆ ` B Bτ τB then

1. τB = (Rec Σ∗ τ)〈B〉.

10finish
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2. ∆ ` τB ≡βη B∗(Rec Σ∗ τ) : ?.

Proof. By straightforward induction over the structure of ∆ ` B Bτ τB .

Lemma C.17 (Commutativity for iteration types and type encoding). If ∆ ` A Bτ τA then
∆ ` A〈B〉 Bτ τA〈B〉

Proof. By straightforward induction over the structure of A〈B〉.

Lemma C.18 (roll typing). ∅; ∅ ` roll : ∀α : ?.Σ∗(Rec Σ∗ α) → Rec Σ∗ α

Proof. By inspection of the definition in Figure 7 (Library Routines).

Lemma C.19 (iter typing).
∅; ∅ ` iter{|τ : ? → ?|} : ∀γ : ?.∀α : ?.(Σ∗α → α) → (∀β : ? → ?.τ(Rec Σ∗ βγ)) → τα

Proof. By inspection of the definition in Figure 7 (Library Routines).

Lemma C.20 (Encoding produces well-formed environments). Assume ∆ ` τ : ?.

1. If ∆ ` Υ Bτ Γ1 then ∆ ` Γ1.

2. If ∆ ` Ω B Γ2 then ∆ ` Γ2.

Proof. Straightforward from the definitions and Lemma C.7.

Lemma C.21 (Type containment). Given a derivation ∆ ` A Bτ τA we know that
FTV(τ) = FTV(τA).

Proof. By straightforward induction over the structure of ∆ ` A Bτ τA.

D Dynamic correctness

We prove the dynamic correctness of our encoding with respect to the equivalence relation
∆; Γ ` e ≡βη e′ : τ between target terms of type τ . This congruence relation includes the standard β and
η-equivalences for functions, products and unit. The complete definition can be found in Appendix G.6.
We will use the equals symbol, =, when we intend syntactic equality.

In order to aid in reasoning about the operational behavior iteration, we first define an inverse to
openiter, called uniter, constructed from the second component of xmap.

Definition D.1 (uniter).

uniter{|τ : ? → ?|} : ∀α : ?.(Σ∗α → α) → τα → τ(Rec Σ∗ α)
uniter{|τ : ? → ?|} = Λα : ?.λf : Σ∗α → α.snd (xmap{|τ |}[Rec Σ∗ α][α]〈cata[α]f,place[α]〉)

Throughout the proofs in this section the following equivalences will be required many times, so for
conciseness we state them all here.

Lemma D.2 (Properties of openiter and uniter). Assuming ∆ ` τ : ? → ? and ∆ ` τ ′ : ?.

1. ∆; {f : Σ∗τ ′ → τ ′} ` (openiter{|τ |}[τ ′] f) ◦ (uniter{|τ |}[τ ′] f) ≡βη λx : ττ ′.x : ττ ′ → ττ ′

2. ∆; {f : Σ∗τ ′ → τ ′, e : b∗(Rec Σ∗ τ ′)} ` openiter{|b∗|}[τ ′] f e ≡βη ef : τ ′
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3. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 → B2)
∗(Rec Σ∗ τ ′)} `

openiter{|(B1 → B2)
∗|}[τ ′] f e ≡βη

(openiter{|B∗
2 |}[τ

′] f) ◦ e ◦ (uniter{|B∗
1 |}[τ

′] f) : (B1 → B2)
∗τ ′

4. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 → B2)
∗τ ′} `

uniter{|(B1 → B2)
∗|}[τ ′] f e ≡βη

(uniter{|B∗
2 |}[τ

′] f) ◦ e ◦ (openiter{|B∗
1 |}[τ

′] f) : (B1 → B2)
∗(Rec Σ∗

5. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 × B2)
∗(Rec Σ∗ τ ′)} `

openiter{|(B1 × B2)
∗|}[τ ′] f e ≡βη

〈openiter{|B∗
1 |}[τ

′] f (fst e),openiter{|B∗
2 |}[τ

′] f (snd e)〉 : (B1 × B2)
∗τ ′

6. ∆; {f : Σ∗τ ′ → τ ′, e : (B1 × B2)
∗τ ′} `

uniter{|(B1 × B2)
∗|}[τ ′] f e ≡βη

〈uniter{|B∗
1 |}[τ

′] f (fst e),uniter{|B∗
2 |}[τ

′] f (snd e)〉 : (B1 × B2)
∗(Rec Σ∗ τ ′)

7. ∆; {f : Σ∗τ ′ → τ ′, e : B∗
i (Rec Σ∗ τ ′)} `

openiter{|Σ∗|}[τ ′] f (injli eof Σ∗(Rec Σ∗ τ ′)) ≡βη

injli (openiter{|B∗
i |}[τ

′] f e)of Σ∗τ ′ : Σ∗τ ′

8. ∆; {f : Σ∗τ ′ → τ ′} `
openiter{|(Bi → b)∗|}[τ ′] eΘ (λx : τB .roll[τ ](injL(ci) xof Σ∗(Rec Σ∗ τ ′))) ≡βη

λx : B∗
i τ ′.eΘ(injL(ci) xof Σ∗(Rec Σ∗ τ ′)) : (Bi → b)∗τ ′

Proof. Property 1 is by straightforward induction on the structure B. The proofs of properties 2, 3, 4, 5, 6,
7, and 8 follow directly from the rules term of congruence and the definitions of openiter, xmap and
uniter.

Statically the source language only allows for replacements for constants, but during iteration mappings for
free variables are added to replacements. Therefore, in order to reason about the dynamic correctness of
iteration, we need to have some notion of well-formedness for replacements that contain variable mappings.

Definition D.3 (Well-formed dynamic replacements).

∀ci ∈ dom(Σ) Σ(ci) = Bi Ω; Υ ` Θ(ci) : A〈Bi〉
∀xi ∈ dom(Ψ) Ψ(xi) = B′

i Ω; Υ ` Θ(xi) : A〈B′
i〉

Ω; Υ ` Θ : A〈Ψ; Σ〉
tp rep vars

Lemma D.4 (Well-typed replacements are well-formed dynamic replacements). If
Ω; Υ ` Θ : A〈Σ〉 then Ω; Υ ` Θ : A〈∅; Σ〉.

Proof. Follows trivially from the definitions.

Lemma D.5 (Typing for elimination).

1. If Ψ ` V ⇑ B and Ω; Υ ` Θ : A〈Ψ; Σ〉 then Ω; Υ ` 〈A, Ψ, Θ〉(V ) : A〈B〉.

2. If Ψ ` V ↓ B and Ω; Υ ` Θ : A〈Ψ; Σ〉 then Ω; Υ ` 〈A, Ψ, Θ〉(V ) : A〈B〉.

3. If Ψ ` x ↓ B and Ω; Υ ` Θ : A〈Ψ; Σ〉 then Ω; Υ ` Θ(x) : A〈B〉.

4. If Ψ ` c ↓ B → b and Ω; Υ ` Θ : A〈Ψ; Σ〉 then Ω; Υ ` Θ(c) : A〈B → b〉.
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Proof. Parts 1 and 2 follow by mutual induction over the structure of Ψ ` V ⇑ B and Ψ ` V ↓ B. Parts 3
and 4 follow as corollaries.

Because the operational semantics of the SDP calculus depends on the definition of elimination,
〈A, Ψ, Θ〉(V ) we must define an encoding from an elimination form to a term in the target calculus so that
we may prove dynamic correctness of the encoding. The first step is to define a substitution for all of the
free variables in V . We will replace each variable with an uniter term that will hold its mapping from Θ.
For these derived encodings we will use a black triangle, I, rather than an a white one, B, to help
distinguish between them and the standard encodings. We create a substitution (notated
∆; Ψ; Θ; eΘ IτA

τ S) as follows:

Definition D.6 (Elimination Subsititution).

∆; ∅; Θ; eΘ IτA
τ {}

sub empty
∆; Ψ; Θ; eΘ IτA

τ S ∆; ∅ ` Θ(x) Bτ e′

∆; Ψ ] {x : B}; Θ; eΘ IτA
τ S · {(uniter{|B∗|}[τA] eΘ e′)/x}

sub cons

Lemma D.7 (Substitution application). If ∆; Ψ; Θ; eΘ IτA
τ S and Ψ(x) = B then

S(x) = uniter{|B∗|}[τA] eΘ e′ where ∆; ∅ ` Θ(x) Bτ e′.

Proof. Straightforward induction on the structure of ∆; Ψ; Θ; eΘ IτA
τ S.

Lemma D.8 (Static correctness with substitution). If ∆; ∅ ` V BτA
e and Ψ ` V ⇑ B and

∆ ` B BτA
τB and ∆; Ψ; Θ; eΘ IτA

τ S then ∆; ∅ ` S(e) : τB.

Proof. Follows from Theorem C.2 (static correctness, forward direction), Definition C.1 (environment
encoding), Lemma D.7 (substitution application), and Lemma D.5 (elimination typing).

Then given an elimination, we may encode it with openiter as follows:

Definition D.9 (Encoding of elimination).

Ψ ` V ⇑ B ∆ ` A Bτ τA

∆; Ξ ` Θ BτA
τ eΘ ∆; ∅ ` V BτA

e′ ∆; Ψ; Θ; eΘ IτA
τ S

∆; Ξ ` 〈A, Ψ, Θ〉(V ) IτA
τ openiter{|B∗|}[τA] eΘ S(e′)

en elim

The next lemma states that the encoding of an elimination is β, η-equivalent to the encoding of the result
of elimination over M in the source calculus.

Lemma D.10 (Dynamic correctness of elimination). If Ω; Υ ` Θ : A〈Ψ; Σ〉 and 〈A, Ψ, Θ〉(V ) = M
and ∆; dom(Ω) ` 〈A, Ψ, Θ〉(V ) IτA

τ e and ∆; dom(Ω) ` M Bτ e′ and ∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 then
∆; Γ1 ] Γ2 ` e ≡βη e′ : B∗τA.

Proof. By induction on 〈A, Ψ, Θ〉(V ).

Case

〈A, Ψ, Θ〉(x) , Θ(x)
el var

– By inversion on ∆; dom(Ω) ` 〈A, Ψ, Θ〉(x) IτA
τ e we know that e = openiter{|B∗|}[τA] eΘ S(ev)

and ∆; Ψ; Θ; eΘ IτA
τ S and ∆ ` A Bτ τA and and Ψ ` x ⇑ B.

– It follows from typing of atomic and canonical forms[24] on Ψ ` x ⇑ B that ∅; Ψ ` x : B. By
inversion on ∅; Ψ ` x : B we know that Ψ(x) = B.

– By Lemma D.7 (elimination substitution application) on ∆; Ψ; Θ; eΘ IτA
τ S and Ψ(x) = B we

have that S(x) = uniter{|B∗|}[τA] eΘ e′ where ∆; ∅ ` Θ(x) Bτ e′.
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– Using Lemma D.5 (typing for elimination) on Ω; Υ ` Θ : A〈Ψ; Σ〉 and 〈A, Ψ, Θ〉(x) = M and
Ψ ` x ⇑ B we have that Ω; Υ ` M : A〈B〉. By use of Lemma C.17 (communitivity of encoding
on iteration types) on ∆ ` A Bτ τA we can conclude ∆ ` A〈B〉 Bτ τA〈B〉.

– By using Theorem C.2 (static correctness, forward direction) on ∆; ∅ ` M Bτ e′, with the
auxiliary judgements ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 and ∆ ` A〈B〉 Bτ τA〈B〉 and
Ω; Υ ` M : A〈B〉, we have that ∆; Γ1 ] Γ2 ` e′ : τA〈B〉. By type equivalence (tp eq) we know
that ∆; Γ1 ] Γ2 ` e′ : B∗τA.

– By Lemma D.2 (properties of iter, part 3) and
∅; ∅ ` (openiter{|B∗|}[τA] eΘ) ◦ (uniter{|B∗|}[τA] eΘ) ≡βη λz : B∗τA.z : B∗τA → B∗τA. By
reflection (eq refl) on ∆; Γ1 ] Γ2 ` e′ : B∗τA we know that ∆; Γ1 ] Γ2 ` e′ ≡βη e′ : B∗τA. This
equivalence along with weakening, congruence of application (eq app), β-equivalence
(eq abs beta), and transitivity (eq trans) means we can conclude
∆; Γ1 ] Γ2 ` ((openiter{|B∗|}[τA] eΘ) ◦ (uniter{|B∗|}[τA] eΘ))e′ ≡βη e′ : B∗τA. Consequently, by
undoing the composition and using the definition of the substution S, we have the desired result
∆; Γ1 ] Γ2 ` openiter{|B∗|}[τA] eΘ S(x) ≡βη e′ : B∗τA.

Case

〈A, Ψ, Θ〉(c) , Θ(ci)
el const

– By inversion on ∆; dom(Ω) ` 〈A, Ψ, Θ〉(ci) IτA
τ e we know that e = openiter{|B|}[τA] eΘ S(ev)

and ∆; Ψ; Θ; eΘ IτA
τ S and ∆; ∅ ` ci BτA

ev and ∆ ` A Bτ τA and ∆; dom(Ω) ` Θ BτA
τ eΘ and

Ψ ` ci ⇑ B.

– By inversion on Ψ ` ci ⇑ B we have that Ψ ` ci ↓ B where B = B1 → b and Σ(ci) = B1 → b.

– By inversion on ∆; ∅ ` ci BτA
ev we know that ev = λx : τB .roll[τA](injL(ci) xof Σ∗(Rec Σ∗ τA))

and ∆ ` B BτA
τB .

– Using inversion on ∆; dom(Ω) ` Θ BτA
τ eΘ we know that ∀cj ∈ dom(Θ), ∆; dom(Ω) ` Θ(cj) Bτ ej

and eΘ = λx : Σ∗τA.casexof injL(c1) y1 in (e1y1) . . . injL(cn) yn in (enyn).

– Using Lemma D.5 (elimination typing) on Ψ ` c ↓ B and Ω; Υ ` Θ : A〈Ψ; Σ〉 we know that
Ω; Υ ` Θ(c) : A〈B1 → b〉.

– From Lemma C.17 (commutativity for iteration types and type encoding) on ∆ ` A Bτ τA and
A〈B1 → b〉 we have that ∆ ` A〈B1 → b〉 Bτ τA〈B1 → b〉.

– Theorem C.2 (static correctness, forward direction) on ∆; dom(Ω) ` Θ(c) Bτ e′ and ∆ ` Ω B Γ1

and ∆ ` Υ Bτ Γ2 and ∆ ` A〈B1 → b〉 Bτ τA〈B1 → b〉 and Ω; Υ ` Θ(c) : A〈B1 → b〉 gives us
∆; Γ1 ] Γ2 ` e′ : τA〈B1 → b〉 Using type equivalence (tp eq) this is the same as
∆; Γ1 ] Γ2 ` e′ : (B1 → b)∗τA.11

– From Lemma D.2 (properties of iteration, part 8) on ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA we can
conclude
∆; Γ1 ] Γ2 ` openiter{|B∗|}[τA] eΘ ev ≡βη λx : B∗τA.eΘ(injL(c) xof Σ∗(Rec Σ∗ τA)) : B∗τA.
Using transitivity (eq trans) with
∆; Γ1 ] Γ2 ` e′ ≡βη λx : B∗τA.eΘ(injL(c) xof Σ∗(Rec Σ∗ τA)) : (B1 → b)∗τA we have the desired
result ∆; Γ1 ] Γ2 ` openiter{|B∗|}[τA] eΘ ev ≡βη e′ : B∗τA.

Case
〈A, Ψ, Θ〉(V1) , M1 〈A, Ψ, Θ〉(V2) , M2

〈A, Ψ, Θ〉(V1V2) , M1M2

el app

– By inversion on ∆; dom(Ω) ` 〈A, Ψ, Θ〉(V1V2) IτA
τ e we know that

e = openiter{|B∗|}[τA] eΘ S(ev) and ∆; Ψ; Θ; eΘ IτA
τ S and ∆; ∅ ` V1V2 BτA

ev and
∆ ` A Bτ τA and ∆; dom(Ω) ` Θ BτA

τ eΘ and and Ψ ` V1V2 ⇑ B.

11fix
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– By inversion on Ψ ` V1V2 ⇑ B we have that B = b and Ψ ` V1V2 ↓ b. Futhermore, by inversion
on Ψ ` V1V2 ↓ b we know that Ψ ` V1 ↓ B1 → b and Ψ ` V2 ⇑ B1. We can conclude
Ψ ` V1 ⇑ B1 → b by conversion from atomic to canonical form (can at).

– By inversion to ∆; dom(Ω) ` V1V2 BτA
ev we know that ev = e′v e′′v and ∆; dom(Ω) ` V1 BτA

e′v
and ∆; dom(Ω) ` V2 BτA

e′′v .

– By inversion on ∆; ∅ ` M1M2 Bτ e′ we have that e′ = e′1e
′
2 and ∆; ∅ ` M1 Bτ e′1 and

∆; ∅ ` M2 Bτ e′2.

– Using ∆; Ψ; Θ; eΘ IτA
τ S and ∆ ` A Bτ τA and ∆; dom(Ω) ` Θ BτA

τ eΘ and ∆; ∅ ` V1 BτA
e′v and

Ψ ` V1 ⇑ B1 → b we can conclude that
∆; dom(Ω) ` 〈A, Ψ, Θ〉(V1) IτA

τ openiter{|(B1 → b)∗|}[τA] eΘ S(e′v) by the definition of
elimination encoding (en elim).

– Similarly, using ∆; Ψ; Θ; eΘ IτA
τ S and ∆ ` A Bτ τA and ∆; dom(Ω) ` Θ BτA

τ eΘ and
∆; ∅ ` V2 BτA

e′′v and Ψ ` V2 ⇑ B1 we can conclude that
∆; dom(Ω) ` 〈A, Ψ, Θ〉(V2) IτA

τ openiter{|B∗
1 |}[τA] eΘ S(e′′v) by the definition of elimination

encoding (en elim).

– By application of the induction hypothesis to Ω; Υ ` Θ : A〈Ψ; Σ〉 and 〈A, Ψ, Θ〉(V1) = M1 and
∆; dom(Ω) ` 〈A, Ψ, Θ〉(V1) IτA

τ openiter{|(B1 → b)∗|}[τA] eΘ S(e′v) and ∆; dom(Ω) ` M1 Bτ e′1
and ∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 we can conclude that
∆; Γ1 ] Γ2 ` openiter{|(B1 → b)∗|}[τA] eΘ S(e′v) ≡βη e′1 : (B1 → b)∗τA.

– Similarly for Ω; Υ ` Θ : A〈Ψ; Σ〉 and 〈A, Ψ, Θ〉(V2) = M2 and
∆; dom(Ω) ` 〈A, Ψ, Θ〉(V2) IτA

τ openiter{|B∗
1 |}[τA] eΘ S(e′′v) and ∆; dom(Ω) ` M2 Bτ e′2

∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 we know that that
∆; Γ1 ] Γ2 ` openiter{|B∗

1 |}[τA] eΘ S(e′′v) ≡βη e′2 : B∗
1τA.

– Finally, by Lemma D.11 (iteration on atomic applications) on Ω; Υ ` Θ : A〈Ψ; Σ〉 and
∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 and Ψ ` V1V2 ↓ b and Ψ ` V1 ↓ B1 → b and Ψ ` V2 ⇑ B1 and
∆; ∅ ` V1 BτA

e′v and ∆; ∅ ` V2 BτA
e′′v and ∆; Ψ; Θ; eΘ IτA

τ S we have that

∆; Γ1 ] Γ2 `openiter{|b∗|}[τA] eΘ S(e′v e′′v) ≡βη

(openiter{|(B1 → b)∗|}[τA] eΘ S(e′v))(openiter{|B′|}[τA] eΘ S(e′′v)) : b∗τA

– By using transitivity (eq trans) and application congruence (eq app) on
∆; Γ1 ] Γ2 ` openiter{|(B′ → b)∗|}[τA] eΘ S(e′v) ≡βη e′1 : (B1 → b)∗τA.
∆; Γ1 ] Γ2 ` openiter{|B∗

1 |}[τA] eΘ S(e′′v) ≡βη e′2 : B∗
1τA we know that

∆; Γ1 ] Γ2 ` openiter{|b∗|}[τA] eΘ S(e′v e′′v) ≡βη e′1e
′
2 : b∗τA.

Case
〈A, Ψ ] {x : B1}, Θ ] {x 7→ x′}〉(V ) , M

〈A, Ψ, Θ〉(λx : B1.V ) , λx′ : A〈B1〉.M
el lam

– By inversion on ∆; dom(Ω) ` 〈A, Ψ, Θ〉(λx : B1.V ) IτA
τ e we know that

e = openiter{|B∗|}[τA] eΘ S(ev) and ∆; Ψ; Θ; eΘ IτA
τ S and ∆; ∅ ` λx : B1.V BτA

ev and
∆ ` A Bτ τA and ∆; dom(Ω) ` Θ BτA

τ eΘ and and Ψ ` λx : B1.V ⇑ B.

– It is trivial to conclude using the encoding for regular variables (en var) that ∆; ∅ ` x′ Bτ x′.
We can then use the cons rule for elimination substitutions (sub cons) on ∆; ∅ ` x′ Bτ x′ and
∆; Ψ; Θ; eΘ IτA

τ S to conclude
∆; Ψ ] {x : B1}; Θ ] {x 7→ x′}; eΘ IτA

τ S · {uniter{|B∗
1 |}[τA] eΘ x′/x}.

– By inversion on Ψ ` λx : B1.V ⇑ B we have that B = B1 → B2 and Ψ ] {x : B1} ` V ⇑ B2.

– By inversion on ∆; ∅ ` λx : B1.V BτA
ev we know that ev = λx : τB .e′v and ∆; ∅ ` V BτA

e′v and
∆ ` B1 Bτ τB .
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– By the defintion of replacement encoding (en rep) ∆; dom(Ω) ` Θ BτA
τ eΘ is equivalent to

∆; dom(Ω) ` Θ ] {x 7→ x′} BτA
τ eΘ.

– Using all of these facts, we can use the encoding of eliminations (en elim) on
Ψ ] {x : B1} ` V ⇑ B2 and ∆; ∅ ` V BτA

e′v and ∆ ` A Bτ τA and
∆; Ψ ] {x : B1}; Θ ] {x 7→ x′}; eΘ IτA

τ S · {uniter{|B∗
1 |}[τA] eΘ x′/x} and

∆; dom(Ω) ` Θ ] {x 7→ x′} BτA
τ eΘ to conclude

∆; dom(Ω) `〈A, Ψ ] {x : B1}, Θ ] {x 7→ x′}〉(V ) IτA
τ

openiter{|B∗
2 |}[τA] eΘ (S · {uniter{|B∗

1 |}[τA] eΘ x′/x})(e′v)

– By inversion on ∆; dom(Ω) ` λx : A〈B〉.M Bτ e′ we know that e′ = λx : τ ′

A.e′′ and
∆ ` A〈B1〉 Bτ τ ′

A and and ∆; dom(Ω) ` M Bτ e′′. By use of Lemma C.17 (communitivity of
encoding on iteration types) on ∆ ` A Bτ τA we can conclude ∆ ` A〈B1〉 Bτ τA〈B1〉. Therefore,
by Lemma C.13 (uniqueness of type encoding) that τ ′

A = τA〈B1〉.

– By the typing rule for variables (tp var) we can conclude Ω; Υ ] {x′ : A〈B1〉} ` x′ : A〈B1〉. Using
this derivation, weakening, and Definition D.3 (well-formed dynamic replacements) on
Ω; Υ ` Θ : A〈Ψ; Σ〉 we can conclude Ω; Υ ] {x′ : A〈B1〉} ` Θ ] {x 7→ x′} : A〈Ψ ] {x : B1}; Σ〉.

– We have ∆ ` Υ Bτ Γ2 and ∆ ` A〈B1〉 Bτ τA〈B1〉 so by Definition C.1 (environment encoding)
we can conclude ∆ ` Υ ] {x′ : A〈B1〉} Bτ Γ2 ] {x : τA〈B1〉}

– Therefore, by induction on Ω; Υ ] {x′ : A〈B1〉} ` Θ ] {x 7→ x′} : A〈Ψ ] {x : B1}; Σ〉 and
〈A, Ψ ] {x : B}, Θ ] {x 7→ x′}〉(V ) = M and

∆; dom(Ω) `〈A, Ψ ] {x : B}, Θ ] {x 7→ x′}〉(V ) IτA
τ

openiter{|B∗
2 |}[τA] eΘ (S · {uniter{|B∗

1 |}[τA] eΘ x′/x})(e′v)

and ∆; dom(Ω) ` M BτA
e′′ and ∆ ` Ω B Γ1 and ∆ ` Υ ] {x′ : A〈B1〉} Bτ Γ2 ] {x : τA〈B1〉} we

can conclude
∆; Γ1 ] Γ2 ] {x : τ ′

A} ` openiter{|B∗
2 |}[τA] eΘ (S · {uniter{|B|}[τA] eΘ x′/x})(e′v) ≡βη e′′ : B∗

2τA.

– Using the term congruence rule for abstraction (eq abs) and type equivalence (eq tp eq) we can
conclude

∆; Γ1 ] Γ2 `λx′ : τA〈B1〉.openiter{|B∗
2 |}[τA] eΘ (S · {uniter{|B|}[τA] eΘ x′/x})(e′v) ≡βη

λx′ : τA〈B1〉.e
′′ : (B1 → B2)

∗τA

By pulling out the substitution {uniter{|B|}[τA] eΘ x′/x}, β-equivalence (eq abs beta) and
Lemma D.2 (properties of iteration, part 3) we can conclude the desired result
∆; Γ1 ] Γ2 ` openiter{|(B1 → B2)

∗|}[τA] eΘ S(e′v) ≡βη λx′ : τA〈B1〉.e
′′ : (B1 → B2)

∗τA

Cases The remaining cases are uncomplicated uses of the induction hyothesis and congruences.

For the case where V = V1V2 in the above proof we require the following lemma about how iteration
interacts with application:

Lemma D.11 (Iteration and atomic applications). If Ω; Υ ` Θ : A〈Ψ; Σ〉 and ∆ ` Ω B Γ1 and
∆ ` Υ Bτ Γ2 and Ψ ` V1V2 ↓ B2 and Ψ ` V1 ↓ B1 → B2 and Ψ ` V2 ⇑ B1 and ∆; ∅ ` V1 BτA

e1 and
∆; ∅ ` V2 BτA

e2 and ∆; Ψ; Θ; eΘ IτA
τ S then

∆; Γ1 ] Γ2 `openiter{|B∗
2 |}[τA] eΘ S(e1 e2) ≡βη

(openiter{|(B1 → B2)
∗|}[τA] eΘ S(e1))(openiter{|B∗

1 |}[τA] eΘ S(e2)) : B∗τA
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Proof. We cannot prove this lemma directly, but it follows from the more general Lemma D.22 (Iteration
and atomic forms).

To generalize the induction hypothesis of Lemma D.11 sufficently requires the introduction of formal
machinery we will call iteration contexts. Iteration contexts provide convienient a formalism to reason
about the dynamic behavior of iteration over atomic terms. Our iteration contexts are similar in flavor to
evaluation contexts, as they describe a computation that needs a term to proceed. However, iteration
contexts describe the computation from the inside out, instead of the outside in.

Definition D.12 (Iteration contexts).

(Iteration Contexts) E ::= • | E{{• e}} | E{{fst•}} | E{{snd•}}
(Pure Context Types) D ::= • | B → D | D × B | B × D
(Context Types) C ::= • | A → C | C × A | A × C

Because of our universal usage of the asterisk type constructor notation, B∗, for pure source language
types, it proves convienient to describe iteration contexts types in terms of source language types, despite
the fact that the contexts themselves are defined in terms of the target language. Furthermore, because
iteration does not necessarily yield pure types in the source language, we also must make a distinction
between normal and pure context types. In addition we define a notation of iterated contexts types,
analagous to iterated types in the source language.

Definition D.13 (Iteration context algebra).

•{{e}} , e
cag bullet

E{{fst e}} = e′

E{{fst •}}{{e}} , e′
cag fst

E{{snd e}} = e′

E{{snd •}}{{e}} , e′
cag snd

E{{ee′}} , e′′

E{{• e′}}{{e}} , e′′
cag app

Definition D.14 (Context type algebra).

•{{A}} , A
tag bullet

C{{A}} , A′′

(C × A′){{A}} , A′′ × A′
tag prod left

C{{A}} , A′′

(A′ × C){{A}} , A′ × A′′
tag prod right

C{{A}} , A′′

(A′ → C){{A}} , A′ → A′′
tag arrow

Definition D.15 (Iterated context types).

A〈•〉 , •
ctp it bullet

A〈D〉 , C

A〈B → D〉 , A〈B〉 → C
ctp it arrow

A〈D〉 , C

A〈D × B〉 , C × A〈B〉
ctp it prod left

A〈D〉 , C

A〈B × D〉 , A〈B〉 × C
ctp it prod right

Definition D.16 (Context typing rules).

∆; Γ `τ • : •
ctp bullet

∆; Γ `τ E : C

∆; Γ `τ E{{fst •}} : C × A
ctp fst

∆; Γ `τ E : C

∆; Γ `τ E{{snd•}} : A × C
ctp snd

∆; Γ `τ E : C ∆ ` A Bτ τA ∆; Γ ` e : τA

∆; Γ `τ E{{• e}} : A → C
ctp app
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Finally, we define a formalism to describe the result of iteration over an iteration context.

Definition D.17 (Iterated contexts).

∆; Γ ` eΘ : Σ∗τ → τ

∆; Γ ` • Iτ
eΘ

•
itc bullet

∆; Γ ` E Iτ
eΘ

E′

∆; Γ ` E{{fst •}} Iτ
eΘ

E′{{fst •}}
itc fst

∆; Γ ` E Iτ
eΘ

E′

∆; Γ ` E{{snd•}} Iτ
eΘ

E′{{snd•}}
itc snd

∆; Γ ` E Iτ
eΘ

E′ ∆; Γ ` e : B∗(Rec Σ∗ τ)

∆; Γ ` E{{• e}} Iτ
eΘ

E′{{• (openiter{|B∗|}[τ ] eΘ e)}}
itc app

Lemma D.18 (Iterated context typing). If ∆; Γ `τ E : D and ∆ ` A Bτ τA and ∆; Γ ` E IτA
eΘ

E′ then
∆; Γ `τ E′ : A〈D〉.

Proof. By induction over the structure ∆; Γ `τ E : D.

The following two lemmas lift congruence to iteration contexts.

Lemma D.19 (Congruence under iteration contexts). If ∆; Γ `τ ′ E : C and
∆; Γ ` e1 ≡βη e2 : C{{B}}∗τ then ∆; Γ ` E{{e1}} ≡βη E{{e2}} : B∗τ .

Proof. By induction over the structure of ∆; Γ `τ E : C .

Lemma D.20 (Congruence under iterated contexts). If ∆; Γ `τ E : A〈D〉 and
∆; Γ ` e1 ≡βη e2 : D{{B}}∗τA and ∆ ` A Bτ τA then ∆; Γ ` E{{e1}} ≡βη E{{e2}} : B∗τA.

Proof. By induction over the structure of ∆; Γ `τ E : A〈B〉.

12

Lemma D.21 (Lifting right inverse property to iteration contexts). If ∆; Γ ` eΘ : Σ∗τA → τA and
∆; Γ `τ E : D and for all ∆; Γ ` e′ : D{{B}}∗τA,
∆; Γ ` openiter{|B∗|}[τA] eΘ(E{{uniter{|D{{B}}∗|}[τA] eΘ e′}}) ≡βη E′{{e′}} : B∗τA where ∆; Γ ` E IτA

eΘ
E′.

Proof. We do this by induction on ∆; Γ `τ E : D.

Case

∆; Γ `τ • : •
ctp bullet

– Assume an arbitrary ∆; Γ ` e′ : •{{B}}∗τA.

– Given the syntactic equivalence for context bullet types (tag bullet) on ∆; Γ ` e′ : •{{B}}∗τA, we
can conclude ∆; Γ ` e′ : B∗τA.

– Using Lemma D.2 (properties of iteration, part 1), congruence of substitution (eq subst) on
∆; Γ ` eΘ : Σ∗τA → τA, and congruence of application (eq app) on ∆; Γ ` e′ : B∗τA gives us
∆; Γ ` openiter{|B∗|}[τA] eΘ (uniter{|B∗|}[τA] eΘ e′) ≡βη e′ : B∗τA The desired result
∆; Γ ` openiter{|B∗|}[τA] eΘ (•{{uniter{|B∗|}[τA] eΘ e′}}) ≡βη •{{e′}} : B∗τA follows from follows
from the syntatic equivalence for bullet iteration contexts (cag bullet).

– From the rule for iterated bullet contexts (itc bullet) and ∆; Γ ` eΘ : Σ∗τA → τA we have that
∆; Γ ` • IτA

eΘ
•.

Case
∆; Γ `τ E : D

∆; Γ `τ E{{fst •}} : D × B1
ctp fst

12Something here
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– Assume an arbitrary ∆; Γ ` e′ : (D × B1){{B}}∗τA. From syntactic equivalence of product
context types (tag prod left) and type equvialence (tp eq) we have that
∆; Γ ` e′ : (D{{B}}∗τA) × (B∗

1τA). Furthermore, by the typing rule for the first projection (tp fst)
we have that ∆; Γ ` fst e′ : D{{B}}∗τA.

– By application of the induction hypothesis to ∆; Γ ` eΘ : Σ∗τA → τA and ∆; Γ `τ E : D we have
that for all ∆; Γ ` e′′ : D{{B2}}

∗τA,
∆; Γ ` openiter{|B∗

2 |}[τA] eΘ(E{{uniter{|D{{B2}}
∗|}[τA] eΘ e′′}}) ≡βη E′{{e′′}} : B∗

2τA where
∆; Γ ` E IτA

eΘ
E′. We instantiate this derivation with ∆; Γ ` fst e′ : D{{B}}∗τA allowing us to

conclude
∆; Γ ` openiter{|B∗|}[τA] eΘ(E{{uniter{|D{{B}}∗|}[τA] eΘ fst e′}}) ≡βη E′{{fst e′}} : B∗τA.

– From Lemma D.2 (properties of iteration, part 6), congruence of substitution (eq subst) on
∆; Γ ` eΘ : Σ∗τA → τA and ∆; Γ ` e′ : (D{{B}}∗τA) × (B∗

1τA), and β-equivalence for products
(eq pair beta1) we have that

∆; Γ ` fst (uniter{|(D{{B}} × B1)
∗|}[τA] eΘ e′) ≡βη

uniter{|D{{B}}∗|}[τA] eΘ fst e′ : D{{B}}∗(Rec Σ∗ τA)

Using Lemma D.19 (congruence for iteration contexts) on ∆; Γ `τ E : D we can conclude

∆; Γ `E{{fst (uniter{|(D{{B}} × B1)
∗|}[τA] eΘ e′)}} ≡βη

E{{uniter{|D{{B}}∗|}[τA] eΘ fst e′}} : B∗(Rec Σ∗ τA)

Using this equivalence along with the congruence of application (eq app) and transitivity
(eq trans) we can conclude

∆; Γ `openiter{|B∗|}[τA] eΘ(E{{fst (uniter{|(D{{B}} × B1)
∗|}[τA] eΘ e′)}}) ≡βη

E′{{fst e′}} : B∗τA

Finally using the syntactic equivalence of projection iteration contexts (cag fst) and the
syntactic equivalence of context product types we have the desired result

∆; Γ `openiter{|B∗|}[τA] eΘ(E{{fst •}}{{(uniter{|(D × B1){{B}}∗|}[τA] eΘ e′)}}) ≡βη

E′{{fst •}}{{e′}} : B∗τA

– Given that ∆; Γ ` E IτA
eΘ

E′ we can conclude ∆; Γ ` E{{fst •}} IτA
eΘ

E′{{fst •}} by the rule for
iterated projection contexts (itc fst).

Case The case for ctp snd is symmetric to ctp fst.

Case
∆; Γ `τ E : D ∆ ` B1 Bτ τB ∆; Γ ` e : τB

∆; Γ `τ E{{• e}} : B1 → D
ctp app

– Assume an arbitrary ∆; Γ ` e′ : (B1 → D){{B}}∗τA. Using the rule for syntactic equivalence of
context function types (tag arrow) and type equivalence (tp eq) we know that
∆; Γ ` e′ : (B∗

1τA) → (D{{B}}∗τA).

– From Lemma C.16 (commutativity for parameterization and type encoding) on ∆ ` B1 Bτ τB

we can conclude that ∆ ` τB ≡βη B∗
1(Rec Σ∗ τA) : ?. Therefore, by type equivalence (eq tp) we

have that ∆; Γ ` e : B∗
1(Rec Σ∗ τA). Consequently, using the typing rules for type and term

application (tp tapp, tp app) we can conclude ∆; Γ ` openiter{|B∗
1 |}[τA] eΘ e : B∗

1τA. Finally by
using the typing rule for application on ∆; Γ ` e′ : (B∗

1τA) → (D{{B}}∗τA) we have that
∆; Γ ` e′(openiter{|B∗

1 |}[τA] eΘ e) : D{{B}}∗τA.
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– By application of the induction hypothesis to ∆; Γ ` eΘ : Σ∗τ → τA and ∆; Γ `τ E : D we know
that for all ∆; Γ ` e′′ : D{{B2}}

∗τA,
∆; Γ ` openiter{|B∗

2 |}[τA] eΘ(E{{uniter{|D{{B2}}
∗|}[τA] eΘ e′′}}) ≡βη E′{{e′′}} : B∗

2τA where
∆; Γ ` E IτA

eΘ
E′. By instantiating this derivation with

∆; Γ ` e′(openiter{|B∗
1 |}[τA] eΘ e) : D{{B}}∗τA we have a derivation

∆; Γ `openiter{|B∗|}[τA] eΘ(E{{uniter{|D{{B}}∗|}[τA] eΘ (e′(openiter{|B∗
1 |}[τA] eΘ e))}}) ≡βη

E′{{e′(openiter{|B∗
1 |}[τA] eΘ e)}} : B∗τA

– From Lemma D.2 (properties of iteration, part 4), congruence of substitution (eq subst) on
∆; Γ ` eΘ : Σ∗τ → τA and ∆; Γ ` e′ : (B∗

1τA) → (D{{B}}∗τA), congruence for application
(eq app), and β-equivalence for abstractions (eq abs beta), and the syntactic quivalence of
context function types (tag arrow) we have that

∆; Γ ` (uniter{|(B1 → D){{B}}∗|}[τA] f e′)e ≡βη

uniter{|D{{B}}∗|}[τA] eΘ (e′(openiter{|B∗
1 |}[τA] eΘ e)) : D{{B}}∗(Rec Σ∗ τA)

From this congruence, Lemma D.19 (congruence for iteration contexts) on ∆; Γ `τ E : D, and
congruence on application (eq app) we can conclude

∆; Γ `openiter{|B∗|}[τA] eΘ(E{{(uniter{|(B1 → D){{B}}∗|}[τA] f e′)e}}) ≡βη

E′{{e′(openiter{|B∗
1 |}[τA] eΘ e)}} : B∗τA

Using our algebra on iteration contexts, we can pull out the applications (cag app) to produce
our desired result

∆; Γ `openiter{|B∗|}[τA] eΘ(E{{• e}}{{uniter{|(B1 → D){{B}}∗|}[τA] f e′}}) ≡βη

E′{{• (openiter{|B∗
1 |}[τA] eΘ e)}}{{e′}} : B∗τA

– From ∆; Γ ` E IτA
eΘ

E′ and the rule for iterated application contexts (itc app) on
∆; Γ ` e : B∗

1(Rec Σ∗ τA) we can conclude ∆; Γ ` E{{• e}} IτA
eΘ

E′{{• (openiter{|B∗
1 |}[τA] eΘ e)}}.

Lemma D.22 (Iteration and atomic forms). If Ψ ` V ↓ B2 and ∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 and
∆ ` A Bτ τA and ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA and Ω; Υ ` Θ : A〈Ψ; Σ〉 and ∆; ∅ ` V BτA

e and
∆; Ψ; Θ; eΘ IτA

τ S then for all ∆; Γ1 ] Γ2 `τ E : D where B2 = D{{B}},
∆; Γ1 ] Γ2 ` openiter{|B∗|}[τA] eΘ E{{S(e)}} ≡βη E′{{openiter{|D{{B}}∗|}[τA] eΘ S(e)}} : B∗τA where
∆; Γ1 ] Γ2 ` E IτA

eΘ
E′.

Proof. By induction on Ψ ` V ↓ B2.

Case
Ψ(x) = B2

Ψ ` x ↓ B2
at var

– Assume an arbitrary ∆; Γ1 ] Γ2 `τ E : D, where B2 = D{{B}}.

– By inversion on ∆; ∅ ` x Bτ e we have that e = x. Furthermore, given that Ψ(x) = B2 = D{{B}}
and ∆; Ψ; Θ; eΘ IτA

τ S using Lemma D.7 (substitution elimination) we can conclude
S(x) = uniter{|D{{B}}∗|}[τA] eΘ e′′ where ∆; ∅ ` Θ(x) Bτ e′′.

– From Lemma D.5 (typing for elimination) on Ψ ` x ↓ D{{B}} and Ω; Υ ` Θ : A〈Ψ; Σ〉 we can
conclude Ω; Υ ` Θ(x) : A〈D{{B}}〉. Using Lemma C.11 (type encoding total and decidable) on
A〈D{{B}}〉 and Lemma C.16 (commutativity for parameterization and type encoding) we have a
derviation ∆ ` A〈D{{B}}〉 Bτ τC where ∆ ` τC ≡βη D{{B}}∗τA : ?.

47



– Using Theorem C.2 (static correctness, forward direction) on ∆; ∅ ` Θ(x) Bτ e′′, with the
auxilary judgements, ∆; ∅ ` x BτA

x and ∆ ` Υ B Γ1 and ∆ ` Ω Bτ Γ2 and
∆ ` A〈D{{B}}〉 Bτ τC and Ω; Υ ` Θ(x) : A〈D{{B}}〉, we can conclude that ∆; Γ1 ] Γ2 ` e′′ : τC .
Furthermore, given ∆ ` τC ≡βη D{{B}}∗τA : ? we know that ∆; Γ1 ] Γ2 ` e′′ : D{{B}}∗τA by type
equivalence (tp eq).

– From Lemma D.21 (lifting right inverse) on ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA and
∆; Γ1 ] Γ2 `τ E : D we have that for all ∆; Γ1 ] Γ2 ` e′ : D{{B1}}

∗τA,
∆; Γ1 ] Γ2 ` openiter{|B∗

1 |}[τA] eΘ(E{{uniter{|D{{B1}}
∗|}[τA] eΘ e′}}) ≡βη E′{{e′}} : B∗

1τ , where
∆; Γ1 ] Γ2 ` E IτA

eΘ
E′. If we instantiate this derivation with ∆; Γ1 ] Γ2 ` e′′ : D{{B}}∗τA we

have that
∆; Γ1 ] Γ2 ` openiter{|B∗|}[τA] eΘ(E{{uniter{|D{{B}}∗|}[τA] eΘ e′′}}) ≡βη E′{{e′′}} : B∗τA.

– Given Lemma D.18 (iterated context typing) on ∆; Γ1 ] Γ2 `τ E : D and ∆; Γ1 ] Γ2 ` E IτA
eΘ

E′

and ∆ ` A Bτ τA we know that ∆; Γ1 ] Γ2 `τ E′ : A〈D〉.

– From Lemma D.2 (properties of iteration, part 1), congruence of substition (eq subst) on
∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA, congruence for application (eq app) on
∆; Γ1 ] Γ2 ` e′′ : D{{B}}∗τA, and β-equivalence for abstractions (eq abs beta), we can conclude
that ∆; Γ1 ] Γ2 ` e′′ ≡βη openiter{|D{{B}}∗|}[τA] eΘ (uniter{|D{{B}}∗|}[τA] eΘ e′′) : D{{B}}∗τA.
This equivalence with Lemma D.20 (congruence for iterated contexts) on
∆; Γ1 ] Γ2 `τ E′ : A〈D〉 and ∆ ` A Bτ τA gives us
∆; Γ1 ] Γ2 ` E′{{e′′}} ≡βη E′{{openiter{|D{{B}}∗|}[τA] eΘ (uniter{|D{{B}}∗|}[τA] eΘ e′′)}} : B∗τA.
Rolling the substitution S = uniter{|D{{B}}∗|}[τA] eΘ e′′ back up gives us that
∆; Γ1 ] Γ2 ` E′{{e′′}} ≡βη E′{{openiter{|D{{B}}∗|}[τA] eΘ S(x)}} : B∗τA. Using transitivity
(eq trans) on ∆; Γ1 ] Γ2 ` E′{{e′′}} ≡βη E′{{openiter{|D{{B}}∗|}[τA] eΘ S(x)}} : B∗τA and rolling
up S(x) we can conclude the desired result
∆; Γ1 ] Γ2 ` openiter{|B∗|}[τA] eΘ(E{{S(x)}}) ≡βη E′{{openiter{|D{{B}}∗|}[τA] eΘ S(x)}} : B∗τA.

Case
Σ(c) = B2 → b

Ψ ` c ↓ B2 → b
at cons

– Assume an arbitrary ∆; Γ1 ] Γ2 `τ E : D where B2 → b = D{{B}}. By inversion on
B2 → b = D{{B}} we know that D = B2 → D1 for some D1. Therefore by syntactic equality for
context function types (tag arrow) we know that D{{B}} = B2 → (D1{{B}}). Given that
B2 → b = B2 → (D1{{B}}) we know that D1{{B}} = b. By inversion, this means that D1 = • and
B = b. Consequently, D = B2 → •.

– Using inversion on ∆; Γ1 ] Γ2 `τ E : B2 → • we know that E = E1{{• e′}} where
∆; Γ1 ] Γ2 `τ E1 : • and ∆ ` B2 Bτ τB and ∆; Γ1 ] Γ2 ` e′ : τB . Furthermore, by inversion on
∆; Γ1 ] Γ2 `τ E1 : • we know that E1 = •. Consequently, E = •{{• e′}}.

– From inversion on ∆; ∅ ` c BτA
e we know that e = λx : τB .roll[τA](injL(c) xof Σ∗(Rec Σ∗ τA)).

– From Lemma C.16 (commutativity for parameterization and type encoding) on ∆ ` B2 Bτ τB

we can conclude that ∆ ` τB ≡βη B∗
2(Rec Σ∗ τA) : ?. Using this congruence with type

equivalence (eq tp) gives us ∆; Γ1 ] Γ2 ` e′ : B∗
2(Rec Σ∗ τA).

– By Lemma D.2 (properties of iteration, part 7), and congruence of substitution (eq subst) on
∆; Γ1 ] Γ2 ` e′ : B∗

2(Rec Σ∗ τA) and ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA we can conclude

∆; Γ1 ] Γ2 `openiter{|Σ∗|}[τA] eΘ (injL(c) e′ of Σ∗τA) ≡βη

injL(c) (openiter{|B∗
2 |}[τA] eΘ e′)of Σ∗τA : Σ∗τA

By congruence of application (eq app) on ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA, rolling up the definition
of roll, and β-equivalence (eq abs beta) gives

∆; Γ1 ] Γ2 ` ((λx : τB .roll[τA](injL(c) xof Σ∗(Rec Σ∗ τA)))e′)eΘ ≡βη

eΘ(injL(c) (openiter{|B∗
2 |}[τA] eΘ e′)of Σ∗τA) : τA
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By Lemma D.2 (properties of iteration, part 2) and β-equivalence again we have that

∆; Γ1 ] Γ2 `openiter{|b∗|}[τA] eΘ ((λx : τB .roll[τA](injL(c) xof Σ∗(Rec Σ∗ τA)))e′) ≡βη

(λx : B∗
2τA.eΘ(injL(c) xof Σ∗τA))(openiter{|B∗

2 |}[τA] eΘ e′) : b∗τA

Again using Lemma D.2 (properties of iteration, part 8), with congruence of subsitution on
∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA, congruence of application, and rolling up
e = λx : τB .roll[τA](injL(c) xof Σ∗(Rec Σ∗ τA)) we can conclude

∆; Γ1 ] Γ2 `openiter{|b∗|}[τA] eΘ (ee′) ≡βη

(openiter{|B2 → b∗|}[τA] eΘ e)(openiter{|B∗
2 |}[τA] eΘ e′) : b∗τA

If we use the syntactic equivalence of bullet and application contexts (cag bullet,cag app) we
have the desired result.

∆; Γ1 ] Γ2 `openiter{|b∗|}[τA] eΘ (•{{• e′}}{{e}}) ≡βη

•{{• (openiter{|B∗
2 |}[τA] eΘ e′)}}{{openiter{|(B2 → •){{b}}∗|}[τA] eΘ e}} : b∗τA

– It follows from the rule for iterated bullets and application (itc bullet, itc app) on
∆; Γ1 ] Γ2 ` e′ : B∗

2(Rec Σ∗ τA) we can conclude that where
∆; Γ1 ] Γ2 ` •{{• e′}} IτA

eΘ
•{{• (openiter{|B∗

2 |}[τA] eΘ e′)}}.

Case
Ψ ` V1 ↓ B1 → B2 Ψ ` V2 ⇑ B1

Ψ ` V1V2 ↓ B2
at app

– Assume an arbitrary ∆; Γ1 ] Γ2 `τ E : D where B2 = D{{B}}.

– From typing of atomic and canonical forms[24] on Ψ ` V2 ⇑ B1 we can conclude ∅; Ψ ` V2 : B1.
By inversion on ∆; ∅ ` V1V2 BτA

e we have that e = e′1e
′
2 where ∆; ∅ ` V1 BτA

e′1 and
∆; ∅ ` V2 BτA

e′2.

– By Lemma C.11 (type encoding total and decidable) we know that ∆ ` B1 Bτ τB . Using Lemma
D.8 (static correctness with substitution) on on ∆; ∅ ` V2 BτA

e′2 and ∆ ` B1 BτA
τB and

Ψ ` V2 ⇑ B1 and ∆; Ψ; Θ; eΘ IτA
τ S gives us a derivation ∆; ∅ ` S(e′2) : τB . Using Lemma C.16

(commutativity for parameterization and type encoding), weakening, and type equivalence
(tp eq) we know that ∆; Γ1 ] Γ2 ` S(e′2) : B∗

1(Rec Σ∗ τA).

– Using the context typing rule for application (ctp app) on ∆; Γ1 ] Γ2 `τ E : D and
∆ ` B1 BτA

τB and and ∆; Γ1 ] Γ1 ` S(e′2) : B∗
1(Rec Σ∗ τA) we have that

∆; Γ1 ] Γ2 `τ E{{• S(e′2)}} : B1 → D.

– Appealing to the induction hypothesis on Ψ ` V1 ↓ B1 → B2, with the auxiliary judgements
∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 and ∆ ` A Bτ τA and ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA and
Ω; Υ ` Θ : A〈Ψ; Σ〉 and ∆; ∅ ` V1 BτA

e′1 and
∆; Ψ; Θ; eΘ IτA

τ S, allows us to conclude for all ∆; Γ1 ] Γ2 `τ E1 : D1 where B1 → B2 = D1{{B3}},
∆; Γ1 ] Γ2 ` openiter{|B∗

3 |}[τA] eΘ E1{{S(e′1)}} ≡βη E′
1{{openiter{|D1{{B3}}

∗|}[τA] eΘ S(e′1)}} : B∗
3τA

where ∆; Γ1 ] Γ2 ` E1 IτA
eΘ

E′
1. If we instantiate this derivation with

∆; Γ1 ] Γ2 `τ E{{• S(e′2)}} : B1 → D and B, we have

∆; Γ1 ] Γ2 `openiter{|B∗|}[τA] eΘ E{{• S(e′2)}}{{S(e′1)}} ≡βη

E′{{• (openiter{|B∗
1 |}[τA] eΘ S(e′2))}}{{openiter{|(B1 → D){{B}}∗|}[τA] eΘ S(e′1)}} : B∗τA

where ∆; Γ1 ] Γ2 ` E{{• S(e′2)}} IτA
eΘ

E′{{• (openiter{|B∗
1 |}[τA] eΘ S(e′2))}}. If we use the

syntactic equivalence of application contexts (cag app) and the definition of substitution we can
conclude

∆; Γ1 ] Γ2 `openiter{|B∗|}[τA] eΘ E{{S(e′1e
′
2)}} ≡βη

E′{{(openiter{|(B1 → D){{B}}∗|}[τA] eΘ S(e′1))(openiter{|B∗
1 |}[τA] eΘ S(e′2))}} : B∗τA
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– By inversion on ∆; Γ1 ] Γ2 ` E{{• S(e′2)}} IτA
eΘ

E′{{• (openiter{|B∗
1 |}[τA] eΘ S(e′2))}} we have

that ∆; Γ1 ] Γ2 ` E IτA
eΘ

E′

– Given Lemma D.18 (iterated context typing) on ∆; Γ1 ] Γ2 `τ E : D and ∆; Γ1 ] Γ2 ` E IτA
eΘ

E′

and and ∆ ` A Bτ τA we know that ∆; Γ1 ] Γ2 `τ E′ : A〈D〉.

– If we instantiate for all ∆; Γ1 ] Γ2 `τ E1 : D1 where B1 → b = D1{{B3}},
∆; Γ1 ] Γ2 ` openiter{|B∗

3 |}[τA] eΘ E1{{S(e′1)}} ≡βη E′
1{{openiter{|D1{{B3}}

∗|}[τA] eΘ S(e′1)}} : B∗
3τA

where ∆; Γ1 ] Γ2 ` E1 IτA
eΘ

E′
1 with ∆; Γ1 ] Γ2 `τ •{{• S(e′2)}} : B1 → • and D{{B}}, we have

∆; Γ1 ] Γ2 `
openiter{|D{{B}}∗|}[τA] eΘ (•{{• S(e′2)}}{{S(e′1)}}) ≡βη

•{{• (openiter{|B∗
1 |}[τA] eΘ S(e′2))}}{{openiter{|(B1 → •){{D{{B}}}}∗|}[τA] eΘ S(e′1)}} : D{{B}}∗τA

where ∆; Γ1 ] Γ2 ` •{{•S(e′2)}} IτA
eΘ

•{{• (openiter{|B∗
1 |}[τA] eΘ S(e′2))}}. Again, if we use the

syntactic equivalence of application contexts and the definition of substitution we can conclude

∆; Γ1 ] Γ2 `openiter{|D{{B}}∗|}[τA] eΘ S(e′1e
′
2) ≡βη

(openiter{|(B1 → D){{B}}∗|}[τA] eΘ S(e′1))(openiter{|B∗
1 |}[τA] eΘ S(e′2)) : D{{B}}∗τA

Using Lemma D.19 (congruence of iterated contexts) on ∆; Γ1 ] Γ2 `τ E′ : A〈D〉 and
∆ ` A Bτ τA we can conclude

∆; Γ1 ] Γ2 `E′{{openiter{|D{{B2}}
∗|}[τA] eΘ S(e′1e

′
2)}} ≡βη

E′{{(openiter{|(B1 → D){{D}}∗|}[τA] eΘ S(e′1))(openiter{|B∗
1 |}[τA] eΘ S(e′2))}} : B∗τA

Using this equivalence along with transitivity (eq trans) and

∆; Γ1 ] Γ2 `openiter{|B∗|}[τA] eΘ E{{S(e′1e
′
2)}} ≡βη

E′{{(openiter{|(B1 → D){{B}}∗|}[τA] eΘ S(e′1))(openiter{|B∗
1 |}[τA] eΘ S(e′2))}} : B∗τA

we have the desired result

∆; Γ1 ] Γ2 `openiter{|B∗|}[τA] eΘ E{{S(e′1e
′
2)}} ≡βη

E′{{openiter{|D{{B2}}
∗|}[τA] eΘ S(e′1e

′
2)}} : B∗τA

Case
Ψ ` V ↓ B2 × B1

Ψ ` fstV ↓ B2
at fst

– Assume an arbitrary ∆; Γ1 ] Γ2 `τ E : D where B2 = D{{B}}. Using the context typing rule for
projection (ctp fst) we can conclude ∆; Γ1 ] Γ2 `τ E{{fst •}} : D × B1.

– Using inversion on ∆; ∅ ` fstV BτA
e we can conclude ∆; ∅ ` V BτA

e′ where e = fst e′.

– Appealing to the induction hypothesis on Ψ ` V ↓ B2 × B1, with the auxiliary judgements
∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 and ∆ ` A Bτ τA and ∆; Γ1 ] Γ2 ` eΘ : Σ∗τA → τA and
Ω; Υ ` Θ : A〈Ψ; Σ〉 and ∆ ` Ω B Γ1 and ∆ ` Υ Bτ Γ2 and ∆; ∅ ` V BτA

e′ and
∆; Ψ; Θ; eΘ IτA

τ S, we then have forall, ∆; Γ1 ] Γ2 `τ E1 : D1 where B2 × B1 = D1{{B3}},

∆; Γ1 ] Γ2 `openiter{|B∗
3 |}[τA] eΘ E1{{S(e′)}} ≡βη

E′
1{{openiter{|D1{{B3}}

∗|}[τA] eΘ S(e′)}} : B∗τA

where ∆; Γ1 ] Γ2 ` E1 IτA
eΘ

E′
1. If we instantiate this derivation with

∆; Γ1 ] Γ2 `τ E{{fst •}} : D × B1 and B we have that

∆; Γ1 ] Γ2 `openiter{|B∗|}[τA] eΘ E{{fst •}}{{S(e′)}} ≡βη

E′{{fst •}}{{openiter{|(D × B1){{B}}∗|}[τA] eΘ S(e′)}} : B∗τA

where ∆; Γ1 ] Γ2 ` E{{fst •}} IτA
eΘ

E′{{fst •}}. By inversion on
∆; Γ1 ] Γ2 ` E{{fst •}} IτA

eΘ
E′{{fst •}} we can conclude ∆; Γ1 ] Γ2 ` E IτA

eΘ
E′
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– Given Lemma D.18 (iterated context typing) on ∆; Γ1 ] Γ2 `τ E : D and ∆; Γ1 ] Γ2 ` E IτA
eΘ

E′

and and ∆ ` A Bτ τA we know that ∆; Γ1 ] Γ2 `τ E′ : A〈D〉.

– Using of the syntactic equivalence on context projections (cag fst) we can conclude

∆; Γ1 ] Γ2 `openiter{|B∗|}[τA] eΘ E{{S(fst e′)}} ≡βη

E′{{fst (openiter{|(D × B1){{B}}∗|}[τA] eΘ S(e′))}} : B∗τA

From Lemma D.2 (properties of iteration, part 5) we know that

∆; Γ1 ] Γ2 ` fst (openiter{|(D × B1){{B}}∗|}[τA] eΘ S(e′)) ≡βη

openiter{|D{{B}}∗|}[τA] eΘ S(fst e′) : D{{B}}∗τA

Using Lemma D.19 (congruence of iterated contexts) on ∆; Γ1 ] Γ2 `τ E′ : A〈D〉 and
∆ ` A Bτ τA we can conclude

∆; Γ1 ] Γ2 `E′{{fst (openiter{|(D × B1){{B}}∗|}[τA] eΘ S(e′))}} ≡βη

E′{{openiter{|D{{B}}∗|}[τA] eΘ S(fst e′)}} : B∗τA

Putting these facts all together with transitivity (eq trans), we have the desired result

∆; Γ1 ] Γ2 `openiter{|B∗|}[τA] eΘ E{{S(fst e′)}} ≡βη

E′{{openiter{|D{{B}}∗|}[τA] eΘ S(fst e′)}} : B∗τA

Cases The case for at snd is symmetric to at fst.

Theorem D.23 (Dynamic Correctness). If ∅; Ψ ` M : A and ∅; ∅ ` M Bτ e and ∅; ∅ ` V Bτ e′ and
∅ ` A Bτ τA and ∅ ` Ψ Bτ Γ and

1. if Ψ ` M ↪→ V : A ⇔ ∅; Γ ` e ≡βη e′ : τA.

2. if Ψ ` M ⇑ V : A ⇔ ∅; Γ ` e ≡βη e′ : τA.

Proof. The backward direction follows from the forward direction and from the fact that evaluation in the
SDP calculus is deterministic and total[24]. The forward direction follows by mutal induction over the
structure of Ψ ` M ↪→ V : A and Ψ ` M ⇑ V : A. The cases for Ψ ` M ⇑ V : A are uncomplicated. For
Ψ ` M ↪→ V : A:

Case
Ψ ` M1 ↪→ λx : A2.M

′
1 : A2 → A1

Ψ ` M2 ↪→ V2 : A2

Ψ ` M ′
1{V2/x} ↪→ V : A1

Ψ ` M1M2 ↪→ V : A1

ev app

– By inversion on ∅; Ψ ` M1M2 : A1 we can conclude ∅; Ψ ` M1 : A3 → A1 and ∅; Ψ ` M2 : A3.

– By type preservation[24] on ∅; Ψ ` M1 : A3 → A1 and Ψ ` M1 ↪→ λx : A2.M
′
1 : A2 → A1 we

know that ∅; Ψ ` λx : A2.M
′
1 : A3 → A1. By inversion we have that ∅; Ψ ] {x : A2} ` M ′

1 : A1

and that A3 = A2.

– From inversion on ∅; ∅ ` M1M2 Bτ e we have that e = e1e2 where ∅; ∅ ` M1 Bτ e1 and
∅; ∅ ` M2 Bτ e2.

– By Lemma D.25 (term encoding is total and decidable) we have ∅; ∅ ` V2 Bτ e′2 and
∅; ∅ ` λx : A2.M

′
1 Bτ e′1. By inversion we can conclude that e′1 = λx : τ ′

A.e′′1 where
∅ ` A2 Bτ τ ′

A. ∅; ∅ ` M ′
1 Bτ e′′1 . Using Lemma C.11 (type encoding total and decidable) we can

construct ∅ ` A2 → A1 Bτ τ ′

A. By inversion we can conclude that τ ′

A = τ1 → τ2 where
∅ ` A2 Bτ τ1 and ∅ ` A1 Bτ τ2. From Lemma C.13 (uniqueness of type encoding) can conclude
that τ ′

A = τ1.
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– Using the induction hypothesis on ∅; Ψ ` M1 : A2 → A1 and ∅; ∅ ` M1 Bτ e1 and
∅; ∅ ` λx : A2.M

′
1 Bτ e′1 and ∅ ` A2 → A1 Bτ τ1 → τ2 and ∅ ` Ψ Bτ Γ and

Ψ ` M1 ↪→ λx : A2.M
′
1 : A2 → A1 we have that ∅; Γ ` e1 ≡βη e′1 : τ1 → τ2. Similarly, applying

the induction hypothesis to ∅; Ψ ` M2 : A2 and ∅; ∅ ` M2 Bτ e2 and ∅; ∅ ` V2 Bτ e′2 and
∅ ` A2 Bτ τ1 and ∅ ` Ψ Bτ Γ we have a derivation that ∅; Γ ` e2 ≡βη e′2 : τ1.

– By type preservation[24] on ∅; Ψ ` M2 : A2 and Ψ ` M2 ↪→ V2 : A2 we know that
∅; Ψ ` V2 : A2. By substitution on ∅; Ψ ` V2 : A2 and ∅; Ψ ] {x : A2} ` M ′

1 : A1 we have that
∅; Ψ ` M ′

1{V2/x} : A1.

– By Lemma D.25 (term encoding is total and decidable) we have ∅; ∅ ` M ′
1{V2/x}Bτ e′′.

– From appealing to the induction hypothesis on ∅; ∅ ` M ′
1{V2/x} Bτ e′′, with the auxiliary

judgments ∅; Ψ ` M ′
1{V2/x} : A1 and ∅; ∅ ` V Bτ e′ and ∅ ` A1 Bτ τA and ∅ ` Ψ Bτ Γ and

Ψ ` M ′
1{V2/x} ↪→ V : A1, we can conclude that ∅; Γ ` e′′ ≡βη e′ : τA.

– Lemma D.24 (substition for encoding regular term variables) on ∅; ∅ ` V2 Bτ e′2 and
∅; ∅ ` M ′

1 Bτ e′′1 . ∅; ∅ ` M ′
1{V2/x} Bτ e′′. tells us that e′′ = e′′1{e

′
2/x}.

– By β-equivalence on term congruence (eq abs beta) we have that
∅; Γ ` (λx : τ1.e

′′
1)e′2 ≡βη e′ : τA. Given that e′1 = λx : τ1.e

′′
1 this is the same as

∅; Γ ` e′1e
′
2 ≡βη e′ : τA. Using transitivity (eq trans) and congruence on application (eq app) on

∅; Γ ` e1 ≡βη e′1 : τ1 → τ2 and ∅; Γ ` e2 ≡βη e′2 : τ1 we have the desired result
∅; Γ ` e1e2 ≡βη e′ : τA.

Case
Ψ ` M1 ↪→ boxM ′

1 : �A1 Ψ ` M2{M
′
1/x} ↪→ V : A2

Ψ ` let box x : A1 = M1 inM2 ↪→ V : A2
ev letb

– By inversion on ∅; Ψ ` let box x : A1 = M1 inM2 : A2 we know that ∅; Ψ ` M1 : �A1 and
{x : A1}; Ψ ` M2 : A2.

– By inversion on ∅; ∅ ` let box x : A1 = M1 inM2 Bτ e we have that e = (λx : τ1.e2)e1 and that
∅ ` �A1 Bτ τ1 and ∅; ∅ ` M1 Bτ e1 and ∅; {x} ` M2 Bτ e2.

– By Lemma D.25 (term encoding is total and decidable) we have ∅; ∅ ` boxM ′
1 Bτ e′1. By

inversion we know that e′1 = Λα : ? → ?.e′′1 and {α : ? → ?}; ∅ ` M ′
1 Bατ e′′1 .

– Therefore, by induction on the derivation ∅; ∅ ` M1 Bτ e1, with the auxiliary judgments
∅; Ψ ` M1 : �A1 and ∅; ∅ ` boxM ′

1 Bτ Λα : ? → ?.e′′1 and ∅ ` �A1 Bτ τ1 and ∅ ` Ψ Bτ Γ and
Ψ ` M1 ↪→ boxM ′

1 : �A1, we can conclude ∅; Γ ` e1 ≡βη Λα : ? → ?.e′′1 : τ1.

– Using Lemma D.27 (subsitution for the encoding of modal variables) on ∅; {x} ` M2 Bτ e2 and
{α : ? → ?}; ∅ ` M ′

1 Bατ e′′1 we can conclude ∅; ∅ ` M2{M
′
1/x} Bτ e2{Λα : ? → ?.e′′1/x}. Which

we know by the above is just ∅; ∅ ` M2{M
′
1/x} Bτ e2{e

′
1/x}.

– By type preservation[24] on ∅; Ψ ` M1 : �A1 and Ψ ` M1 ↪→ boxM ′
1 : �A1 we know that

∅; Ψ ` boxM ′
1 : �A1. By inversion on ∅; Ψ ` boxM ′

1 : �A1 we have that ∅; ∅ ` M ′
1 : A1.

Therefore, by substitution on {x : A1}; Ψ ` M2 : A2 we know that ∅; Ψ ` M2{M
′
1/x} : A2.

– By the induction hypothesis on ∅; ∅ ` M2{M
′
1/x} Bτ e2{e

′
1/x}, with the auxiliary judgments

∅; Ψ ` M2{M
′
1/x} : A2 and ∅; ∅ ` V Bτ e′ and ∅ ` Ψ Bτ Γ and ∅ ` A2 Bτ τA and

Ψ ` M2{M
′
1/x} ↪→ V : A2, we have that ∅; Γ ` e2{e

′
1/x} ≡βη e′ : τA.

– Finally by β-equivalence and transitivity (eq abs beta and eq trans) on
∅; Γ ` e2{e

′
1/x} ≡βη e′ : τA we have the desired ∅; Γ ` (λx : τ1.e2)e1 ≡βη e′ : τA.

Case
Ψ ` M ↪→ boxM ′ : �B

∅ ` M ′ ⇑ V ′ : B
Ψ ` 〈A′, ∅, Θ〉(V ′) ↪→ V : A′〈B〉

Ψ ` iter [�B, A′][Θ] M ↪→ V : A′〈B〉
ev it
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– By inversion on ∅; Ψ ` iter [�B, A′][Θ] M : A we know that A = A′〈B〉 and ∅; Ψ ` M : �B and
∅; Ψ ` Θ : A′〈Σ〉.

– By inversion on ∅; ∅ ` iter [�B, A′][Θ] M Bτ e we know that e = iter{|B∗|}[τ ][τ ′

A] eΘ eM and

∅ ` A′ Bτ τ ′

A and ∅; ∅ ` Θ B
τ ′

A
τ eΘ and ∅; ∅ ` M Bτ eM .

– By Lemma D.25 (term encoding is total and decidable) we can construct ∅; ∅ ` V ′ Bτ ′

A
e′v and

∅; ∅ ` 〈A′, ∅, Θ〉(V ′) Bτ el.

– By the property of evaluaton results[24] on ∅ ` M ′ ⇑ V ′ : B we can conclude ∅ ` V ′ ⇑ B.

– By the rule for empty elimination substitutions (sub empty) we have ∅; ∅; Θ; eΘ I
τ ′

A
τ {}. From

∅ ` V ′ ⇑ B and ∅ ` A′ Bτ τ ′

A and ∅; ∅ ` Θ B
τ ′

A
τ eΘ and ∅; ∅ ` V ′ Bτ ′

A
e′v and

∅; ∅; Θ; eΘ I
τ ′

A
τ {} we can constuct ∅; ∅ ` 〈A′, ∅, Θ〉(V ′) I

τ ′

A
τ openiter{|B∗|}[τ ′

A] eΘ {}(e′v) by
the rule for encoding eliminations (en elim).

– Using Lemma D.10 (dynamic correctness of elimination) on 〈A′, ∅, Θ〉(V ′) and

∅; ∅ ` 〈A′, ∅, Θ〉(V ′) I
τ ′

A
τ openiter{|B∗|}[τ ′

A] eΘ {}(e′v) and ∅; ∅ ` 〈A′, ∅, Θ〉(V ′) Bτ el and
∅ ` ∅ Bτ ∅ we have that ∅; ∅ ` openiter{|B∗|}[τ ′

A] eΘ {}(e′v) ≡βη el : τ ′

A. Futhermore, by the
definition of substitution we know ∅; ∅ ` openiter{|B∗|}[τ ′

A] eΘ e′v ≡βη el : τ ′

A.

– By Lemma D.25 (term encoding is total and decidable) we have ∅; ∅ ` boxM ′ Bτ e′M . By
inversion on ∅; ∅ ` boxM ′ Bτ e′M we have that e′M = Λα : ? → ?.e′′M and
{α : ? → ?}; ∅ ` M ′ Bατ e′′M .

– Using Lemma C.11 (type encoding total and decidable) we can construct ∅ ` �B Bτ τB and
and ∅ ` B Bτ ′

A
τ ′

B .

– By application of the induction hypothesis to the derivation ∅; ∅ ` M Bτ eM , with the auxiliary
judgments ∅; Ψ ` M : �B and ∅; ∅ ` boxM ′ Bτ Λα : ? → ?.e′′M and ∅ ` �B Bτ τB and
∅ ` Ψ Bτ Γ and Ψ ` M ↪→ boxM ′ : �B, we can conclude that
∅; Γ ` eM ≡βη Λα : ? → ?.e′′M : τB .

– Because τ ′

A was encoded in a empty context, by Lemma C.7 (well-formedness of encoding) we
know that ∅ ` τ ′

A : ?. Then, using Lemma D.26 (world substitution for terms) on ∅ ` τ ′

A : ? and
{α : ? → ?}; ∅ ` M ′ Bατ e′′M we know from that ∅; ∅ ` M ′ Bτ ′

A
e′′M{λβ : ?.τ ′

A/α}.

– By type preservation[24] on Ψ ` M ↪→ boxM ′ : �B and ∅; Ψ ` M : �B we know that
∅; Ψ ` boxM ′ : �B. By inversion on ∅; Ψ ` boxM ′ : �B. we have that ∅; ∅ ` M ′ : B.

– By application of the induction hypothesis to ∅; ∅ ` M ′ Bτ ′

A
e′′M{λβ : ?.τ ′

A/α}, with the
auxiliary judgments and ∅; ∅ ` M ′ : B and ∅; ∅ ` V ′ Bτ ′

A
e′v and ∅ ` B Bτ ′

A
τ ′

B and
∅ ` Ψ Bτ Γ and ∅ ` M ′ ⇑ V ′ : B, we can conclude that ∅; ∅ ` e′′M{λβ : ?.τ ′

A/α} ≡βη e′v : τ ′

B .

– Using Lemma D.4 (replacements are well-formed dynamic replacements) on ∅; Ψ ` Θ : A′〈Σ〉 we
have that ∅; Ψ ` Θ : A′〈∅; Σ〉. Using this encoding along with ∅ ` V ′ ⇑ B and Lemma D.5
(elimination typing) we can conclude ∅; Ψ ` 〈A′, ∅, Θ〉(V ′) : A′〈B〉.

– Appealing to the induction hypothesis on ∅; Ψ ` 〈A′, ∅, Θ〉(V ′) : A′〈B〉 and
∅; ∅ ` 〈A′, ∅, Θ〉(V ′) Bτ el and ∅; ∅ ` V Bτ e′ and ∅ ` A′〈B〉 Bτ τA and ∅ ` Ψ Bτ Γ and
Ψ ` 〈A′, ∅, Θ〉(V ′) ↪→ V : A′〈B〉 we can conclude that ∅; ∅ ` el ≡βη e′ : τA.

– By β-equivalence (eq tabs beta) on ∅; ∅ ` e′′M{λβ : ?.τ ′

A/α} ≡βη e′v : τ ′

B we have
∅; ∅ ` (Λα : ? → ?.e′′M )[λβ : ?.τ ′

A] ≡βη e′v : τ ′

B and by ∅; Γ ` eM ≡βη Λα : ? → ?.e′′M : τB ,
weakening, and congruence on type application (eq tapp) we have that
∅; Γ ` eM [λβ : ?.τ ′

A] ≡βη e′v : τ ′

B . This equivalence allows us to conclude
∅; Γ ` openiter{|B∗|}[τ ′

A] eΘ (eM [λβ : ?.τ ′

A]) ≡βη openiter{|B∗|}[τ ′

A] eΘ e′v : τA by use of
application congruence (eq app). By ∅; ∅ ` openiter{|B∗|}[τ ′

A] eΘ e′v ≡βη e′ : τA we can use
transtivity (eq trans) to conclude ∅; Γ ` openiter{|B∗|}[τ ′

A] eΘ (eM [λβ : ?.τ ′

A]) ≡βη e′ : τA. And
finally by rolling up the definition of iter, we have the desired
∅; Γ ` iter{|B∗|}[τ ][τ ′

A]eΘ eM ≡βη e′ : τA.
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Cases The remaining cases follow by straightforward application of of the induction hypothesis and
congruence rules.

Lemma D.24 (Substitution for encoding of regular term variables). If ∆; Ξ ` M1 Bτ e1 and
∆; Ξ ` M2 Bτ e2 and ∆; Ξ ` M2{M1/x} Bτ e where x 6∈ Ξ then e = e2{e1/x}.

Proof. By straightforward induction over the structure of ∆; Ξ ` M2 Bτ e2.

Lemma D.25 (Replacement and term encoding are total and decidable).

1. If Ω; Υ ` M : A and ∆ ` τ : ? we can construct ∆; dom(Ω) ` M Bτ e.

2. If Ω; Υ ` Θ : A〈Σ〉 and ∆ ` τ : ? we can construct ∆; dom(Ω) ` Θ BτA
τ eΘ.

Proof. By mutual induction over the structure of Ω; Υ ` M : A and Ω; Υ ` Θ : A〈Σ〉, and use of Lemma
C.11 (type encoding is total and decidable).

Lemma D.26 (World substitution for term encoding). If ∆ ] {α : ? → ?}; Ξ ` M Bατ ′ e then
∆; Ξ ` M Bτ e{λβ : ?.τ/α}.

Proof. Follows by straightforward induction over the structure of ∆ ] {α : ? → ?}; Ξ ` M Bατ ′ e and
Lemma C.15 (world substitution for type encoding).

Lemma D.27 (Substitution of for encoding modal variables). If ∆ ` Υ Bτ Γ1 and ∆ ` Ω B Γ2 and
∆ ` A1 Bτ τA1

and Ω ] {x : A2}; Υ ` M1 : A1 and ∆; dom(Ω) ] {x} ` M1 Bτ e1 and Ω; Υ ` M2 : A2 and
∆ ] {α : ? → ?}; dom(Ω) ` M2 Bατ ′ e2 then ∆; dom(Ω) ` M1{M2/x} Bτ e′1 where
∆; Γ1 ] Γ2 ` e′1 ≡βη e1{Λα : ? → ?.e2/x} : τA1

.

Proof. By induction over the structure of ∆; dom(Ω) ] {x} ` M1 Bτ e1.

Case
x ∈ dom(Ω) ] {x}

∆; dom(Ω) ] {x} ` x Bτ x[λβ : ?.τ ]
en bvar

– By using Lemma D.26 (world substitution for term encodings) on the derivation
∆ ] {α : ? → ?}; dom(Ω) ` M2 Bατ ′ e2 we have that ∆; dom(Ω) ` M2 Bτ e2{λβ : ?.τ/α}, which
means by the definition of substitution that ∆; dom(Ω) ` x{M2/x} Bτ e2{λβ : ?.τ/α}.

– By modal type substitution on Ω ] {x : A2}; Υ ` x : A1 and Ω; Υ ` M2 : A2 we can conclude
Ω; Υ ` x{M2/x} : A1.

– By using Theorem C.2 (static correctness, forward direction) on
∆; dom(Ω) ` x{M2/x} Bτ e2{λβ : ?.τ/α}, with the auxiliary judgements ∆ ` Υ Bτ Γ1 and
∆ ` Ω B Γ2 and ∆ ` A1 Bτ τA1

and Ω; Υ ` x{M2/x} : A1, we have that
∆; Γ1 ] Γ2 ` e2{λβ : ?.τ/α} : τA1

.

– The congruence ∆; Γ ` e2{λβ : ?.τ/α} ≡βη (Λα : ? → ?.e2)[λβ : ?.τ ] : τA1
follows by

β-equivalence for type abstraction (eq tabs beta) applied to ∆; Γ ` e2{λβ : ?.τ/α} : τA1
. Finally,

by the definition of substitution, we know that
∆; Γ ` e2{λβ : ?.τ/α} ≡βη (x[λβ : ?.τ ]){Λα : ? → ?.e2/x} : τA1

.

Cases The remaining cases follow from straightforward uses of the induction hypothesis and
congruence rules.
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E Static semantics of SDP calculus

E.1 Atomic and canonical terms

Ψ(x) = B

Ψ ` x ↓ B
at var

Σ(c) = B → b

Ψ ` c ↓ B → b
at cons

Ψ ` V1 ↓ B2 → B1 Ψ ` V2 ⇑ B2

Ψ ` V1V2 ↓ B1
at app

Ψ ` V ↓ B1 × B2

Ψ ` fstV ↓ B1
at fst

Ψ ` V ↓ B1 × B2

Ψ ` sndV ↓ B2
at snd

Ψ ` V ↓ b

Ψ ` V ⇑ b
can at

Ψ ] {x : B1} ` V ⇑ B2

Ψ ` λx : B1.V ⇑ B1 → B2
can lam

Ψ ` V1 ⇑ B1 Ψ ` V2 ⇑ B2

Ψ ` 〈V1, V2〉 ⇑ B1 × B2
can prod

E.2 Iteration types

A〈b〉 , A
tp it b

A〈1〉 , 1
tp it unit

A〈B1〉 , A′
1 A〈B2〉 , A′

2

A〈B1 → B2〉 , A′
1 → A′

2

tp it arrow

A〈B1〉 , A′
1 A〈B2〉 , A′

2

A〈B1 × B2〉 , A′
1 × A′

2

tp it times

E.3 Replacement typing rules

∀ci ∈ dom(Σ) Σ(ci) = Bi Ω; Υ ` Θ(ci) : A〈Bi〉

Ω; Υ ` Θ : A〈Σ〉
tp rep

E.4 Term typing rules

x 6∈ dom(Ω) Υ(x) = A

Ω; Υ ` x : A
tp var

x 6∈ dom(Υ) Ω(x) = A

Ω; Υ ` x : A
tp bvar

Ω; Υ ` 〈〉 : 1
tp unit

Σ(c) = B → b

Ω; Υ ` c : B → b
tp con

Ω; Υ ] {x : A1} ` M : A2

Ω; Υ ` λx : A1.M : A1 → A2
tp abs

Ω; Υ ` M1 : A1 → A2 Ω; Υ ` M2 : A1

Ω; Υ ` M1M1 : A2
tp app

Ω; Υ ` M1 : �A1 Ω ] {x : A1}; Υ ` M2 : A2

Ω; Υ ` let box x : A1 = M1 inM2 : A2
tp letb

Ω; ∅ ` M : A

Ω; Υ ` boxM : �A
tp box

Ω; Υ ` M1 : A1 Ω; Υ ` M2 : A2

Ω; Υ ` 〈M1, M2〉 : A1 × A2
tp pair

Ω; Υ ` M : A1 × A2

Ω; Υ ` fstM : A1
tp fst

Ω; Υ ` M : A1 × A2

Ω; Υ ` sndM : A2
tp snd

Ω; Υ ` M : �B Ω; Υ ` Θ : A〈Σ〉

Ω; Υ ` iter [�B, A][Θ] M : A〈B〉
tp iter
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F Dynamic semantics of SDP calculus

F.1 Evaluation

Ψ ` M ↪→ V : b
Ψ ` M ⇑ V : b

ec at
Ψ ] {x : B1} ` Mx ⇑ V : B2

Ψ ` M ⇑ λx : B1.V : B1 → B2
ec arr

Ψ ` fstM ⇑ V1 : B1 Ψ ` sndM ⇑ V2 : B2

Ψ ` M ⇑ 〈V1, V2〉 : B1 × B2
ec pair

Ψ ` M ⇑ 〈〉 : 1
ec unit

Ψ ` x ↪→ x : B
ev var

Ψ ` c ↪→ c : B → b
ev const

Ψ ` 〈〉 ↪→ 〈〉 : 1
ev unit

∅; Ψ ] {x : A1} ` M : A2

Ψ ` λx : A1.M ↪→ λx : A1.M : A1 → A2
ev lam

Ψ ` M1 ↪→ λx : A2.M
′
1 : A2 → A1

Ψ ` M2 ↪→ V2 : A2

Ψ ` M ′
1{V2/x} ↪→ V : A1

Ψ ` M1M2 ↪→ V : A1

ev app

Ψ ` M1 ↪→ V1 : B2 → B1

Ψ ` V1 ↓ B2 → B1

Ψ ` M2 ⇑ V2 : B2

Ψ ` M1M2 ↪→ V1V2 : B1
ev at

∅; Ψ ` M1 : B1 ∅; Ψ ` M2 : B2

Ψ ` 〈M1, M2〉 ↪→ 〈M1, M2〉 : B1 × B2
ev pair

Ψ ` M ↪→ 〈M1, M2〉 : A1 × A2 Ψ ` M1 ↪→ V : A1

Ψ ` fstM ↪→ V : A1
ev fst

Ψ ` M ⇑ 〈V1, V2〉 : B1 × B2

Ψ ` fstM ↪→ V1 : B1
ev fst at

Ψ ` M ↪→ 〈M1, M2〉 : A1 × A2 Ψ ` M2 ↪→ V : A2

Ψ ` sndM ↪→ V : A2
ev snd

Ψ ` M ⇑ 〈V1, V2〉 : B1 × B2

Ψ ` sndM ↪→ V2 : B2
ev snd at

∅; ∅ ` M : A

Ψ ` boxM ↪→ boxM : �A
ev box

Ψ ` M1 ↪→ boxM ′
1 : �A1 Ψ ` M2{M

′
1/x} ↪→ V : A2

Ψ ` let box x : A1 = M1 inM2 ↪→ V : A2
ev letb

Ψ ` M ↪→ boxM ′ : �B
∅ ` M ′ ⇑ V ′ : B

Ψ ` 〈A, ∅, Θ〉(V ′) ↪→ V : A〈B〉

Ψ ` iter [�B, A][Θ] M ↪→ V : A〈B〉
ev it

F.2 Elimination

〈A, Ψ, Θ〉(x) , Θ(x)
el var

〈A, Ψ, Θ〉(c) , Θ(c)
el const

〈A, Ψ ] {x : B}, Θ ] {x 7→ x′}〉(V ) , M

〈A, Ψ, Θ〉(λx : B.V ) , λx′ : A〈B〉.M
el lam

〈A, Ψ, Θ〉(V1) , M1 〈A, Ψ, Θ〉(V2) , M2

〈A, Ψ, Θ〉(V1V2) , M1M2

el app

〈A, Ψ, Θ〉(V ) , M

〈A, Ψ, Θ〉(fstV ) , fstM
el fst

〈A, Ψ, Θ〉(V ) , M

〈A, Ψ, Θ〉(sndV ) , sndM
el snd

〈A, Ψ, Θ〉(V1) , M1 〈A, Ψ, Θ〉(V2) , M2

〈A, Ψ, Θ〉(〈V1, V2〉) , 〈M1, M2〉
el prod

〈A, Ψ, Θ〉(〈〉) , 〈〉
el unit
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G Semantics of System Fω

G.1 Well-formed types

∆(α) = κ

∆ ` α : κ
wf tvar

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 → τ2 : ?
wf arrow

∆ ] {α : κ} ` τ : ?

∆ ` ∀α : κ.τ : ?
wf forall

∆ ` 1 : ? → ?
wf unit

∆ ` 0 : ?
wf void

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 × τ2 : ?
wf times

∆ ` τ1 : ? . . . ∆ ` τn : ?

∆ ` 〈l1 : τ1, . . . , ln : τn〉 : ?
wf variant

∆ ] {α : κ1} ` τ : κ2

∆ ` λα : κ1.τ : κ1 → κ2
wf abs

∆ ` τ1 : κ1 → κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 : κ2
wf app

G.2 Weak head atomic and normal types

∆(α) = κ

∆ ` α � κ
whaf var

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 → τ2 � ?
whaf arrow

∆ ] {α : κ} ` τ : ?

∆ ` ∀α : κ.τ � ?
whaf forall

∆ ` 1 � ? → ?
whaf unit

∆ ` 0 � ?
whaf void

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 × τ2 � ?
whaf times

∆ ` τ1 : ? . . . ∆ ` τ2 : ?

∆ ` 〈l1 : τ1, . . . , ln : τn〉 � ?
whaf variant

∆ ] {α : κ1} ` τ � κ2

∆ ` λα : κ1.τ � κ1 → κ2
whnf abs

∆ ` τ1 � κ1 → κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 � κ2
whaf app

∆ ` τ � κ

∆ ` τ � κ
whnf whaf

G.3 Well-formed environments

∀x : τ ∈ Γ ∆ ` τ : ?
∆ ` Γ

wf env
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G.4 Typing rules

∆ ` Γ Γ(x) = τ

∆; Γ ` x : τ
tp var

∆; Γ ` e : τ ∆ ` τ ≡βη τ ′ : ?

∆; Γ ` e : τ ′
tp eq

∆ ` τ1 : ? ∆; Γ ] {x : τ1} ` e : τ2

∆; Γ ` λx : τ1.e : τ1 → τ2
tp abs

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1e2 : τ2
tp app

∆ ` Γ
∆; Γ ` 〈〉 : ∀α : ?.1(α)

tp unit
∆ ] {α : κ}; Γ ` e : τ

∆; Γ ` Λα :κ.e : ∀α :κ.τ
tp tabs

∆ ` τ ′ : κ ∆; Γ ` e : ∀α :κ.τ

∆; Γ ` e[τ ′] : τ{τ ′/α}
tp tapp

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2

∆; Γ ` 〈e1, e2〉 : τ1 × τ2
tp pair

∆; Γ ` e : τ1 × τ2

∆; Γ ` fst e : τ1
tp fst

∆; Γ ` e : τ1 × τ2

∆; Γ ` snd e : τ2
tp snd

∆ ` τ1 : ? . . . ∆; Γ ` e : τi . . . ∆ ` τn : ?

∆; Γ ` injli eof 〈l1 : τ1, . . . , li : τi, . . . , ln : τn〉 :
〈l1 : τ1, . . . , li : τi, . . . , ln : τn〉

tp variant

∆; Γ ` e : 〈l1 : τ1, . . . , ln : τn〉
∆; Γ ] {x1 : τ1} ` e1 : τ . . . ∆; Γ ] {xn : τn} ` en : τ

∆; Γ ` case eof injl1 x1 in e1 . . . injln xn in en : τ
tp case
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G.5 Congruence for types

∆ ` τ : κ
∆ ` τ ≡βη τ : κ

tp eq refl
∆ ` τ1 ≡βη τ2 : κ

∆ ` τ2 ≡βη τ1 : κ
tp eq sym

∆ ` τ1 ≡βη τ2 : κ ∆ ` τ2 ≡βη τ3 : κ

∆ ` τ1 ≡βη τ3 : κ
tp eq trans

∆(α) = κ

∆ ` α ≡βη α : κ
tp eq var

∆ ` τ1 ≡βη τ2 : κ′ ∆ ] {α : κ′} ` τ3 ≡βη τ4 : κ

∆ ` τ3{τ1/α} ≡βη τ4{τ2/α} : κ
tp eq subst

∆ ` (λα : κ1.τ)τ ′ : κ or ∆ ` τ{τ ′/α} : κ

∆ ` (λα : κ1.τ)τ ′ ≡βη τ{τ ′/α} : κ
tp eq abs beta

∆ ` (λα : κ1.τα) : κ1 → κ2 or ∆ ` τ : κ1 → κ2 α 6∈ FTV(τ)

∆ ` (λα : τ1.τα) ≡βη τ : κ1 → κ2
tp eq abs eta

∆ ] {α : κ1} ` τ1 ≡βη τ2 : κ2

∆ ` λα : κ1.τ1 ≡βη λα : κ1.τ2 : κ1 → κ2
tp eq abs

∆ ` τ1 ≡βη τ3 : κ1 → κ2 ∆ ` τ2 ≡βη τ4 : κ1

∆ ` τ1τ2 ≡βη τ3τ4 : κ2
tp eq app

∆ ` 1 ≡βη 1 : ? → ?
tp eq unit

∆ ` 0 ≡βη 0 : ?
tp eq void

∆ ] {α : κ} ` τ1 ≡βη τ2 : ?

∆ ` ∀α : κ.τ1 ≡βη ∀α : κ.τ2 : ?
tp eq forall

∆ ` τ1 ≡βη τ3 : ? ∆ ` τ2 ≡βη τ4 : ?

∆ ` τ1 → τ2 ≡βη τ3 → τ4 : ?
tp eq arrow

∆ ` τ1 ≡βη τ3 : ? ∆ ` τ2 ≡βη τ4 : ?

∆ ` τ1 × τ2 ≡βη τ3 × τ4 : ?
tp eq times

∆ ` τ1 ≡βη τ ′
1 : ? . . . ∆ ` τn ≡βη τ ′

n : ?

∆ ` 〈l1 : τ1, . . . , ln : τn〉 ≡βη 〈l1 : τ ′
1, . . . , ln : τ ′

n〉 : ?
tp eq variant
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G.6 Congruence for terms

∆; Γ ` e : τ

∆; Γ ` e ≡βη e : τ
eq refl

∆; Γ ` e1 ≡βη e2 : τ

∆; Γ ` e2 ≡βη e1 : τ
eq sym

∆; Γ ` e1 ≡βη e2 : τ ∆; Γ ` e2 ≡βη e3 : τ

∆; Γ ` e1 ≡βη e3 : τ
eq trans

∆; Γ ` e ≡βη e′ : τ ∆ ` τ ≡βη τ ′ : ?

∆; Γ ` e ≡βη e′ : τ ′
eq tp eq

∆ ` Γ Γ(x) = τ

∆; Γ ` x ≡βη x : τ
eq var

∆; Γ ` e1 ≡βη e2 : τ ′ ∆; Γ ] {x : τ ′} ` e3 ≡βη e4 : τ

∆; Γ ` e3{e1/x} ≡βη e4{e2/x} : τ
eq subst

∆; Γ ` (λx : τ1.e)e
′ : τ or ∆; Γ ` e{e′/x} : τ

∆; Γ ` (λx : τ1.e)e
′ ≡βη e{e′/x} : τ

eq abs beta

∆; Γ ` (λx : τ1.ex) : τ1 → τ2 or ∆; Γ ` e : τ1 → τ2 x 6∈ FV(e)

∆; Γ ` (λx : τ1.ex) ≡βη e : τ1 → τ2
eq abs eta

∆; Γ ` (Λα : κ.e)[τ ] : τ ′ or ∆; Γ ` e{τ/α} : τ ′

∆; Γ ` (Λα : κ.e)[τ ] ≡βη e{τ/α} : τ ′
eq tabs beta

∆; Γ ` Λα : κ.e[α] : ∀α : κ.τ or ∆; Γ ` e : ∀α : κ.τ α 6∈ FTV(e)

∆; Γ ` (Λα : κ.e[α]) ≡βη e : ∀α : κ.τ
eq tabs eta

∆; Γ ` e1 : 1(τ) ∆; Γ ` e2 : 1(τ)

∆; Γ ` e1 ≡βη e2 : 1(τ)
eq unit

∆; Γ ` 〈e1, e2〉 : τ1 × τ2

∆; Γ ` fst 〈e1, e2〉 ≡βη e1 : τ1
eq pair beta1

∆; Γ ` 〈e1, e2〉 : τ1 × τ2

∆; Γ ` snd 〈e1, e2〉 ≡βη e2 : τ2
eq pair beta2

∆; Γ ` e : τ1 × τ2

∆; Γ ` 〈fst e, snd e〉 ≡βη e : τ1 × τ2
eq pair eta

∆; Γ ] {x : τ1} ` e1 ≡βη e2 : τ3 ∆ ` τ1 ≡βη τ2 : κ

∆; Γ ` λx : τ1.e1 ≡βη λx : τ2.e2 : τ1 → τ3
eq abs

∆; Γ ` e1 ≡βη e3 : τ1 → τ2 ∆; Γ ` e2 ≡βη e4 : τ1

∆; Γ ` e1e2 ≡βη e3e4 : τ2

eq app

∆ ] {α : κ}; Γ ` e1 ≡βη e2 : τ

∆; Γ ` Λα : κ.e1 ≡βη Λα : κ.e2 : ∀α : κ.τ
eq tabs

∆; Γ ` e1 ≡βη e2 : ∀α : κ.τ ∆ ` τ1 ≡βη τ2 : κ

∆; Γ ` e1[τ1] ≡βη e2[τ2] : τ{τ1/α}
eq tapp

∆; Γ ` e1 ≡βη e3 : τ1 ∆; Γ ` e2 ≡βη e4 : τ2

∆; Γ ` 〈e1, e2〉 ≡βη 〈e3, e4〉 : τ1 × τ2
eq pair

∆; Γ ` e1 ≡βη e2 : τ1 × τ2

∆; Γ ` fst e1 ≡βη fst e2 : τ1
eq fst

∆; Γ ` e1 ≡βη e2 : τ1 × τ2

∆; Γ ` snd e1 ≡βη snd e2 : τ2
eq snd

∆; Γ ` e1 ≡βη e2 : τ1 ∆ ` τ1 ≡βη τ2 : κ

∆; Γ ` injl e1 of τ1 ≡βη injl e2 of τ2 : 〈. . . , l : τ1, . . .〉
eq inj

∆; Γ ` e1 ≡βη e2 : 〈l1 : τ1, . . . , ln : τn〉
∆; Γ ] {y1 : τ1} ` e′1 ≡βη e′′1 : τ ′ . . . ∆; Γ ] {yn : τn} ` e′n ≡βη e′′n : τ ′

∆; Γ ` case e1 of injl1 y1 in e′1
. . .
injln yn in e′n

≡βη case e2 of injl1 y1 in e′′1
. . .
injln yn in e′′n

: τ2

eq case

∆; Γ ] {y1 : τ1} ` e1 : τ ′ . . . ∆; Γ ] {yn : τn} ` en : τ ′

∆; Γ ` case (injli eof )〈l1 : τ1, . . . , ln : τn〉of injl1 y1 in e1

. . .
injln yn in en

≡βη ei{e/yi} : τ2

eq case beta
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