
Flexible Type Analysis∗

Karl Crary

Carnegie Mellon University

Stephanie Weirich

Cornell University

Abstract

Run-time type dispatch enables a variety of advanced
optimization techniques for polymorphic languages, in-
cluding tag-free garbage collection, unboxed function
arguments, and flattened data structures. However,
modern type-preserving compilers transform types be-
tween stages of compilation, making type dispatch pro-
hibitively complex at low levels of typed compilation. It
is crucial therefore for type analysis at these low levels
to refer to the types of previous stages. Unfortunately,
no current intermediate language supports this facility.

To fill this gap, we present the language LX, which pro-
vides a rich language of type constructors supporting
type analysis (possibly of previous-stage types) as a pro-
gramming idiom. This language is quite flexible, sup-
porting a variety of other applications such as analysis
of quantified types, analysis with incomplete type in-
formation, and type classes. We also show that LX is
compatible with a type-erasure semantics.

1 Introduction

Type-directed compilers use type information to enable
optimizations and transformations that are impossible
(or prohibitively difficult) without such information [16,
12, 21, 2, 25, 26, etc.]. However, type-directed compilers
for some languages such as Modula-3 and ML face the
difficulty that some type information cannot be known
at compile time. For example, polymorphic code in ML
may operate on inputs of type α where α is not only
unknown, but may in fact be instantiated by a variety
of different types.

∗This material is based on work supported in part by ARPA
grant F19628-95-C-C533, AFOSR grant F49620-97-1-0013, and
ARPA/RADC grant F30602-1-0317. The second author is also
supported by a National Science Foundation Graduate Fellow-
ship.

In order to use type information in contexts where it
cannot be provided statically, a number of advanced
implementation techniques process type information at
run time [12, 21, 30, 23, 26]. Such type information is
used in two ways: behind the scenes, typically by tag-
free garbage collectors [30, 1], and explicitly in program
code, for a variety of purposes such as efficient data rep-
resentation and marshalling [21, 12, 27]. In this paper
we focus on the latter area of applications.

To lay a solid foundation for programs that analyze
types at run time, Harper and Morrisett [12] proposed
an internal language, called λML

i , that supports first-
class intensional analysis of types (that is, analysis
of the structure of types). The λML

i language and
its derivatives were then used extensively in the high-
performance ML compilers TIL/ML [29, 20] and FLINT
[27]. The primary novelty of these languages is the pres-
ence of “typecase” operators at the level of terms and
types, that allow computations and type expressions to
depend upon the values of other type expressions at run
time.

Like most type-directed compilers, TIL/ML and FLINT
preserve types through much of compilation, but discard
types at a certain point and finish compilation without
them. Nevertheless, there are compelling advantages to
preserving types through the entirety of the compiler:
types may be used to perform optimizations that are
only feasible at low levels, the ability to typecheck inter-
mediate code provides an invaluable tool for debugging
a compiler, and types may be used to certify the safety
of the output executables [24].

Unfortunately, existing type-analyzing languages are
not well suited for further typed compilation. This is
because existing such languages are hardwired so that
the language’s own types are the subject of type analy-
sis. Such a design is quite natural when the language is
considered in isolation—what other types are there?—
but in the context of a multi-stage, type-directed com-
piler we face the problem that type-altering transforma-
tions (e.g., closure conversion) are applied to interme-
diate programs that perform type analysis. After such
a transformation, we would prefer to preserve the algo-
rithmic structure of our program by continuing to pass
and inspect the types that were used before the transfor-
mation. Existing type-analyzing languages, which have

Λα:Type. λx:α.
typecase α of
int =>...(* x has type int *) . . .
β × γ =>...(* x has type β × γ *) ...
∃δ.((δ × β) → γ)× δ =>...(* x has type ∃δ.((δ × β) → γ)× δ *) ...
_ =>...(* x has some other type *) ...

Figure 1: Compilation of type analysis, first try

Λα:MLType. λx:(interp α).
typecase α of

[int]ML =>...(* x has type int *) . . .
[β × γ]ML =>...(* x has type (interp β)× (interp γ) *) ...
[β → γ]ML =>...(* x has type ∃δ.((δ × (interp β)) → (interp γ))× δ *) ...

Figure 2: Second try

only a single notion of type, cannot permit this opera-
tion, so the types that are passed and inspected at run
time must be altered in the same way as all other types.
This alteration disrupts the algorithmic structure of the
program to no good purpose, and it also presents some
severe practical problems:

• After the compiler transforms types, they usually
become larger, often substantially. Passing and an-
alyzing the altered types, instead of the original,
leads to unnecessary inefficiency.

• The transformations are usually not surjective.
Consequently, typecases that had been exhaustive
before transformation can become inexhaustive,
leaving the compiler to insert additional clauses to
fill out every typecase. At best such clauses are
wasteful; at worst they may be impossible to write
in a type-safe manner.

• Sometimes the transformations are not even injec-
tive, making it impossible to appropriately trans-
form typecase expressions in a meaning-preserving
manner.

To solve these problems, we would like a type system
that allows two distinct notions of type to coexist: the
current types and the types used in some earlier stage of
compilation. To clarify what we have in mind, we begin
with a simple example. Consider the code fragment:

Λα:Type. λx:α.
typecase α of
int =>...(* x has type int *) . . .
β × γ =>...(* x has type β × γ *) ...
β → γ =>...(* x has type β → γ *) ...

Now suppose the compiler performs closure conver-
sion [19, 24], thereby transforming function types τ1 →
τ2 into ∃δ.((δ × τ1) → τ2) × δ. In existing languages,
this code must become the code in Figure 1.

Instead, we would like α to be a “high-level” type, but
upon finding it to be β → γ we want to be able to con-
clude that x has the closure-converted type. Naively,
then, we would like the language to supply two differ-
ent kinds of types, Type (current types) and MLType
(types before closure conversion), and a function interp :
MLType → Type to translate between them. With these
operations, we could transform the code fragment to
something like Figure 2.

This naive language solves the hardwiring problem dis-
cussed above, but replaces it with another one. In
this language the source’s type system is hardwired (as
MLType) and the type translation from the source is also
hardwired (as interp). Thus, the language is defective
as a general-purpose intermediate language; it specifies
both the source language and the compilation strategy,
and it ought to specify neither.

1.1 Our Solution

In this paper we introduce a new language, called LX,
for expressing programs that analyze types. LX pro-
vides a very expressive type system in which one can
program MLType and interp. In this manner we solve the
hardwiring problem without having to specialize to a
particular source language or compilation strategy. LX
makes this solution possible by providing a rich pro-
gramming language of type constructors. In this lan-
guage, the kind MLType is definable using sum, product,
and inductive kinds, and the operator interp is definable
using primitive recursion.

Although LX was devised to support type analysis, it
contains no constructs for analyzing types per se. This
fact about LX reveals that intensional type analysis is
simply a programming idiom that is possible in a lan-
guage with sufficiently rich type constructors. The flex-
ibility afforded by this language allows idioms going
well beyond what has been previously possible in type-
analyzing languages. In this paper we discuss three such
applications:

2

• We present the first account of how to conduct in-
tensional type analysis in the presence of polymor-
phic types and other types with binding structure.

• We show how to make “shallow” type analysis pos-
sible without passing entire types. This optimiza-
tion is useful in applications where it is only neces-
sary to determine the top-level structure of types,
as in some garbage collectors.

• We illustrate an elegant way to express Haskell-
style type classes [15] or ML equality types.

We also discuss another particularly important applica-
tion of LX: As discussed in Crary, Weirich, and Mor-
risett [5] (hereafter, CWM), many aspects of compila-
tion are greatly simplified by adopting a type-erasure
semantics, but such a semantics seems problematic in
the presence of type analysis. CWM reconciled type
analysis with type-erasure semantics using explicit run-
time terms to represent erasable type information in
their language λR. In CWM those type representations
were required to be primitive but we show that they are
definable in LX.

The remainder of this paper is organized as follows: In
Section 2 we discuss informally how to analyze types
in LX. In Section 3 we formally define LX and state
some important properties of it. In Section 4, we for-
mally revisit the examples of Section 2, and also dis-
cuss polymorphic types, shallow type analysis and type
classes. In Section 5 we show how to reconcile LX with a
type-erasure semantics. Concluding discussion appears
in Section 6. We assume some familiarity with the no-
tions of type constructors and kinds.

2 Informal Presentation

We begin with a simple example to illustrate informally
how type analysis is conducted in LX. Suppose we wish
to store arrays of pairs efficiently. In a naive implemen-
tation, each pair in the array must be boxed so that
array entries are uniformly word-sized. This represen-
tation wastes a word for every array entry, or more if
the pair components are pairs themselves. We may store
such arrays more efficiently by transforming them from
arrays of pairs to pairs of arrays. This latter represen-
tation costs only a few words for the entire array.1

We would like the compiler to employ this optimization
automatically for all arrays of pairs, including polymor-
phic arrays that happen to be arrays of pairs. This
application is precisely the purpose of intensional type
analysis; using intensional type analysis, a polymorphic
function can analyze its type argument and dispatch to
different code depending on that argument. To make
what we mean concrete, we will first implement this op-
timization in the style of a conventional type analysis
language, and then translate it into LX.

1An ever better representation would be to use arrays of un-
boxed, flattened tuples. This also can be done straightforwardly
using type analysis [12], but is a more complicated example.

To implement this optimization, we define a type oper-
ator optarray and a corresponding subscript function
optsub operating on optimized arrays. The optarray
operator recursively splits arrays of pairs into pairs of
arrays and uses ordinary arrays at all other types. We
assume the built-in function sub has type ∀α.arrayα →
int → α.2

optarray(int)
def
= array(int)

optarray(τ1 × τ2)
def
= (optarray τ1)×

(optarray τ2)

optarray(τ1 → τ2)
def
= array(τ1 → τ2)

optarray(array τ)
def
= array(array τ)

val rec optsub : ∀α. optarrayα → int → α =
Fn [α] =>

fn a : optarrayα => fn n : int =>
typecase α of

β × γ => (optsub[β] (#1 a) n,
optsub[γ] (#2 a) n)

=> sub[α] a n

In an LX version of this example, optarray and optsub
will no longer operate on types, they will operate on
type constructors that encode types. In particular, we
inductively define a kind MLType whose members spec-
ify the abstract syntax of a type. In this section we use
an informal notation borrowed from ML datatypes; we
will show how this example is formalized in the next
section.

kind MLType = Int
| Prod of MLType * MLType
| Arrow of MLType * MLType
| Array of MLType

Members of MLType have no built-in interpretation as
types; they are merely data that may be computed with
at the level of type constructors. The first thing to do
then is to define their meaning by a function mapping
MLType to Type:

interp(Int)
def
= int

interp(Prod(c1, c2))
def
= interp(c1)× interp(c2)

interp(Arrow(c1, c2))
def
= interp(c1) → interp(c2)

interp(Array(c))
def
= array(interp(c))

Note that the function interp is primitive recursive. In
order to ensure that computation with type constructors
always terminates, arbitrary recursive functions are not
permitted in LX, only primitive recursive ones.

Now that we have defined type encodings and their in-
terpretations as actual types, we can proceed with the
example as before. The new operator OptArray has kind
MLType → MLType and is defined primitive recursively.

2While most of our examples resemble the syntax of ML, we
use prefix notation for constructor application.

3

(kinds) k ::= Type | 1 | k1 → k2 | k1 × k2 | k1 + k2 | j | µj.k

(constructors) c, τ ::= ∗ | α | λα:k.c | c1c2 unit, variables and functions
| 〈c1, c2〉 | prj1 c | prj2 c products

| injk1+k2
1 c | injk1+k2

2 c | case(c, α1.c1, α2.c2) sums
| foldµj.k c | pr(j, α:k, β:j→k′.c) primitive recursion
| int | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | ∀α:k.τ | ∃α:k.τ types
| unit | void | reck(c1, c2) types

Figure 3: LX Kinds and Constructors

The corresponding subscript function, optsub, now an-
alyzes members of MLType rather than actual types.

OptArray(Int)
def
= Array(Int)

OptArray(Prod(c1, c2))
def
= Prod(OptArray(c1),

OptArray(c2))

OptArray(Arrow(c1, c2))
def
= Array(Arrow(c1, c2))

OptArray(Array(c))
def
= Array(Array(c))

val rec optsub :
∀α:MLType. interp(OptArray(α))

→ int → interp α =
Fn [α : MLType] =>

fn a : interp(OptArray(α)) => fn n : int =>
case α of

Prod(β, γ) => (optsub[β] (#1 a) n,
optsub[γ] (#2 a) n)

=> sub[interp α] a n

Translating this example into LX has certainly made it
more verbose, but it also makes it robust under further
compilation. Suppose the compiler performs closure
conversion, thereby transforming function types τ1 → τ2

into ∃δ.((δ × τ1) → τ2) × δ. All that needs happen is a
change to the appropriate clause of the interp function,

interp′(Arrow(c1, c2))
def
=

∃δ.((δ × interp′(c1)) → interp′(c2))× δ

but no changes to OptArray or optsub are required
(other than the closure conversion itself, of course).

3 A Language for Flexible Type Analysis

In this section we discuss LX and its semantics. We
present the constructor and term levels individually,
concentrating discussion on the novel features of each.
The syntax of LX (shown in Figures 3 and 4) is based
on Girard’s Fω [10, 9] augmented mainly by a rich pro-
gramming language at the constructor level, and con-
structor refinement operators at the term level. The
full static and operational semantics of LX are given in
Appendices A and B.

3.1 Kinds and Constructors

The constructor and kind levels, shown in Figure 3, con-
tain both base constructors of kind Type (called types)
for classifying terms, and a variety of programming con-
structs for computing types. In addition to the variables
and lambda abstractions of Fω, LX also includes a unit
kind, products, sums, and the usual introduction and
elimination constructs for those kinds.

We denote the simultaneous, capture-avoiding sub-
stitution of E1, . . . , En for X1, . . . , Xn in E by
E[E1, . . . , En/X1, . . . , Xn]. As usual, we consider
alpha-equivalent expressions to be identical. A few con-
structs (inji, fold, pr, and rec) are labeled with kinds
to assist in kind checking; we will omit such kinds when
they are clear from context. When a constructor is in-
tended to have kind Type, we often use the metavari-
able τ .

To support computing with abstract syntax trees, LX
includes kind variables (j) and inductive kinds (µj.k).
A prospective inductive kind µj.k will be well-formed
provided that j appears only positively within k. In-
ductive kinds are formed using the introductory op-
erator foldµj.k, which coerces constructors from kind
k[µj.k/j] to kind µj.k. For example, consider the kind
of natural numbers N, defined as µj.(1+j). The con-
structor (inj1+N

1 ∗) has kind (1 + j)[N/j]. Therefore

foldN(inj1+N
1 ∗) has kind N.

Inductive kinds are eliminated using the primitive re-
cursion operator pr. Intuitively, pr(j, α:k, ϕ:j → k′.c)
may be thought of as a recursive function with domain
µj.k in which α stands for the argument unfolded and
ϕ recursively stands for the full function. However, in
order to ensure that constructor expressions always ter-
minate, we restrict pr to define only primitive recursive
functions. Informally speaking, a function is primitive
recursive if it can only call itself recursively on a sub-
component of its argument. Following Mendler [17], we
ensure this using abstract kind variables. Since α stands
for the argument unfolded, we could consider it to have
the kind k[µj.k/j], but instead of substituting for j in
k, we hold j abstract. Then the recursive variable ϕ is
given kind j → k′ (instead of j[µj.k/j] → k′) thereby
ensuring that ϕ is called only on a subcomponent of α.

The kind k′ in pr(j, α:k, ϕ:j→k′.c) is permitted to con-

4

(terms) e ::= i | ∗ | x | λx:τ.e | e1e2 ints, unit, variables, abstractions
| 〈e1, e2〉 | prj1 e | prj2 e products
| injτ1+τ2

1 e | injτ1+τ2
2 e | case(e, x1.e1, x2.e2) sums

| Λα:k.v | e[c] | fix f :τ.e constructor abstractions and recursion
| pack e as ∃α:k.τ hiding c | unpack 〈α, x〉 = e1 in e2 existential packages
| foldreck(c,c′) e | unfold e parameterized recursive types
| letτ 〈β, γ〉 = c in e | letτ (foldβ) = c in e constructor refinement operations
| ccaseτ (c, α1.e1, α2.e2)

Figure 4: Terms in LX

tain (positive) free occurrences of j. In that case, the
function’s result kind employs the substitution for j that
was internally eschewed. Hence, the result kind of the
above constructor is k′[µj.k/j]. This is useful so that
some part of the argument may be passed through with-
out ϕ operating on it. As a particularly useful applica-
tion, we can define the constructor unfoldµj.k with kind
µj.k → k[µj.k/j] to be pr(j, α:k, ϕ:j→k.α).

Given a constructor n with kind N, we can use prim-
itive recursion to construct the type of (n + 1)-tuples
of integers (using an informal, expanded notation for
case):

ntuple
def
= pr(j, α:1+j, ϕ:j→Type.

case α of
inj1 β ⇒ int
inj2 γ ⇒ ϕ(γ)× int)

Suppose we apply ntuple to 1 (that is, the encoding of
the natural number 1, fold(inj2(fold(inj1 ∗)))). By
unrolling the pr expression, we may show :

(pr(j, α:1+j, ϕ:j→Type.
case α of
inj1 β ⇒ int

inj2 γ ⇒ ϕ(γ)× int)) 1

= case (inj2(fold(inj1 ∗))) of
inj1 β ⇒ int
inj2 γ ⇒ ntuple(γ)× int

= (ntuple(fold(inj1 ∗)))× int

= (case (inj1 ∗) of
inj1 β ⇒ int
inj2 γ ⇒ ntuple(γ)× int)× int

= int× int

The unrolling process is formalized by the following con-
structor equivalence rule (the relevant judgment forms
are summarized in Figure 5):

∆ ` c′ : k[µj.k/j] ∆, j ` k′ kind
∆, j, α:k, ϕ:j→k′ ` c : k′ ∆ ` µj.k kind

∆ ` pr(j, α:k, ϕ:j → k′.c)(foldµj.k c′) =
c[µj.k, c′, pr(j, α:k, ϕ:j→k′.c)/j, α, ϕ]

: k′[µj.k/j]
(j only positive in k′ and j, α, ϕ 6∈ ∆)

Notation 3.1 If k1 is of the form µj.k, then we write
k1[k2] to mean k[k2/j].

3.2 Terms

The syntax of LX terms is given in Figure 4. Most LX
terms are standard, including the usual introduction
and elimination forms for functions, products, sums,
unit, and universal and existential types. Constructor
abstractions are limited by a value restriction, in antic-
ipation of the type erasure interpretation in Section 5.
The value forms of LX are given in Appendix B. Re-
cursive functions are expressible using fix terms, the
bodies of which are syntactically restricted to be func-
tions (possibly polymorphic) by their typing rule (Ap-
pendix A). As at the constructor level, some constructs
are labeled with types to assist in type checking; we
omit these when clear from context.

Parameterized recursive types are written reck(c1, c2),
where k is the parameter kind and c1 is a type construc-
tor with kind (k → Type) → (k → Type). Intuitively,
c1 recursively defines a type constructor with kind k →
Type, which is then instantiated with the parameter c2

(having kind k). Thus, members of reck(c1, c2) unfold
into the type c1(λα:κ. reck(c1, α))c2, and fold the op-
posite way. The special case of non-parameterized re-
cursive types are defined as rec(α.τ) = rec1(λϕ:1 →
Type. λβ:1. τ [ϕ(∗)/α], ∗). Unlike inductive kinds, no
positivity condition is imposed on recursive types.

Refinement The novel features of the LX term lan-
guage are the three refinement operations. To perform
constructor analysis at run time, we require a mecha-
nism for branching on sum kinds at the term level. This
branching is done using the ccase construct. If c nor-
malizes to inj1(c

′), then the term ccase(c, α1.e1, α2.e2)
evaluates to e1[c

′/α1], and similarly if it normalizes to
inj2(c

′).

However, we require more than a term that evaluates in
the desired manner. After branching, we have learned
something about the constructor in question, and this
information may result in additional knowledge about
the types of our data. We wish the type system to
be able to exploit that knowledge. Consequently, the
typing rule for ccase, when the constructor in question

5

is some variable α, substitutes for α to propagate the
new information:

∆, β:k1, ∆
′; Γ[inj1 β/α] `

e1[inj1 β/α] : τ [inj1 β/α]
∆, β:k2, ∆

′; Γ[inj2 β/α] `
e2[inj2 β/α] : τ [inj2 β/α]

∆, α:k1 + k2, ∆
′ ` c = α : k1 + k2

∆, α:k1 + k2, ∆
′; Γ ` ccaseτ (c, β.e1, β.e2) : τ

(β 6∈ ∆)

Within the branches, types that depend upon α can be
reduced using the new information. For example, if x
has type case(α, β.int, β.bool), its type can be reduced
in either branch, allowing its use as an integer in one
branch and as a boolean in the other.

In order for LX to enjoy the subject reduction property,
we also require two trivialization rules [6] for ccase, for
use when the argument to ccase is a sum introduction:

∆ ` c = inj1 c′ : k1 + k2 ∆;Γ ` e1[c
′/α] : τ

∆;Γ ` ccaseτ (c, α.e1, α.e2) : τ

∆ ` c = inj2 c′ : k1 + k2 ∆;Γ ` e2[c
′/α] : τ

∆;Γ ` ccaseτ (c, α.e1, α.e2) : τ

Path refinement There may also be useful refine-
ment to perform when the constructor to be branched
on is not a variable. For example, suppose α has kind
(1+1)×Type and x has type case(prj1 α, β.int, β.bool).
When branching on prj1 α, we should again be able to
consider x an integer or boolean, but the ordinary ccase
rule above no longer applies since prj1 α is not a vari-
able. This is solved using the product refinement op-
eration, letτ 〈β, γ〉 = α in e. Like ccase, the product
refinement operation substitutes everywhere for α:

∆, β:k1, γ:k2, ∆
′; Γ[〈β, γ〉/α] ` e[〈β, γ〉/α] : τ [〈β, γ〉/α]

∆, α:k1 × k2, ∆
′ ` c = α : k1 × k2

∆, α:k1 × k2, ∆
′; Γ ` letτ 〈β, γ〉 = c in e : τ

(β, γ 6∈ ∆)

A similar refinement operation exists for inductive
types, and each operation also has a trivialization and
a non-refining rule similar to those of ccase.

We may use these refinement operations to turn paths
into variables and thereby take advantage of ccase. For
example, suppose α has kind N × N and we wish to
branch on unfold (prj1 α). We do it using product and
inductive kind refinement in turn:

let 〈β1, β2〉 = α in
let (fold γ) = β1 in

ccase(γ, δ.e1, δ.e2)

Non-path refinement Since there is no refinement
operation for functions, sometimes a constructor cannot
be reduced to a path. Nevertheless, it is still possible
to gain some of the benefits of refinement, using a de-
vice due to Harper and Morrisett [12]. Suppose ϕ has
kind N → (1+1), x has type case(ϕ(1), β.int, β.bool),

and we wish to branch on ϕ(1) to learn the type of
x. First we use a constructor abstraction to assign a
variable α to ϕ(1), thereby enabling ccase, and then
we use an ordinary abstraction to rebind x with type
case(α, β.int, β.bool):

(Λα:1+1. λx: case(α, β.int, β.bool).
ccaseτ (α, β.e1, β.e2)) [ϕ(1)] x

Within e1, x will be an integer, and similarly within e2.
This device has all the expressive power of refinement,
but is less efficient because of the need for extra beta-
expansions. However, this is the best that can be done
with unknown functions.

3.3 Properties of LX

Judgment Meaning

∆ ` k kind k is a well-formed kind
∆ ` c : k c is a valid constructor of kind k
∆ ` c1 = c2 : k c1 and c2 are equal constructors
∆; Γ ` e : τ e is a term of type τ

Contexts

∆ ::= ε | ∆, j | ∆, α:k
Γ ::= ε | Γ, x:τ

Figure 5: Judgments of LX

The judgments of the static semantics of LX appear in
Figure 5. The important properties to show are de-
cidable type checking and type safety. Due to space
considerations, we do not present proofs of these prop-
erties here; details appear in the companion technical
report [4]. For typechecking, the challenging part is de-
ciding equality of type constructors. We do this using a
normalize and compare method employing a reduction
relation extracted from the equality rules in the obvious
manner.

Lemma 3.2 Reduction of well-formed constructors is
strongly normalizing, confluent, preserves kinds, and is
respected by equality.

Strong normalization is proven using Mendler’s varia-
tion on Girard’s method [17]. Given Lemma 3.2 it is
easy to show the normalize and compare algorithm to
be terminating, sound and complete, and decidability
of type checking follows in a straightforward manner.

Theorem 3.3 (Decidability) It is decidable whether
or not ∆;Γ ` e : τ is derivable in LX.

We say that a term is stuck if it is not a value and
if no rule of the operational semantics applies to it.
Type safety requires that no well-typed term can be-
come stuck:

6

Theorem 3.4 (Type Safety) If ∅ ` e : τ and e 7→∗ e′

then e′ is not stuck.

This is shown using the usual subject reduction and
progress lemmas.

4 Programming Type Analysis

In this section, we discuss how to implement type analy-
sis in general and as a specific example we formalize the
example from Section 2. We then show how to extend
this formulation through simple modifications to imple-
ment applications of type analysis that were previously
inexpressible.

The basic idea of the type analysis programming id-
iom is to use elements of the constructor language to
represent types, and to define an interpretation func-
tion such that at any point the type it represents may
be extracted. Instead of destructing types through an
additional language construct, as in Harper and Mor-
risett [12] or CWM, the representations are examined
with the built-in features of LX.

Recall the kind MLType and its interpretation function
from Section 2:

kind MLType = Int
| Prod of MLType * MLType
| Arrow of MLType * MLType
| Array of MLType

interp(Int)
def
= int

interp(Prod(c1, c2))
def
= interp(c1)× interp(c2)

interp(Arrow(c1, c2))
def
= interp(c1) → interp(c2)

interp(Array(c))
def
= array(interp(c))

If we add an array type constructor to LX for this exam-
ple, we can formalize these definitions in LX by melding
the datatype definition of MLType into a recursive sum
of products:

in the following manner:

MLType
def
= µj.(1 + (j × j) + (j × j) + j)

interp
def
=

pr(j, α:MLType[j], ϕ:j→Type.
caseα of
inj1 β ⇒ int
inj2 β ⇒

(caseβ of
inj1 β ⇒ ϕ(prj1 β)× ϕ(prj2 β)
inj2 β ⇒

(caseβ of
inj1 β ⇒ ϕ(prj1 β) → ϕ(prj2 β)
inj2 β ⇒ array(ϕ(β)))))

Now recall the function optsub from Section 2. To for-
malize optsub in LX, we need ccase and inductive kind

refinement:

optsub
def
=

fix optsub : (∀α:MLType. interp(OptArray(α)) →
int → interp α).

Λα:MLType. λa: interp(OptArray(α)). λn:int.
let(interp α) (foldα′) = α in
ccase(interp α) α′ of
inj1 β ⇒ sub[interp α] a n
inj2 β ⇒

(ccase(interp α) β of
inj1 γ ⇒ 〈optsub[prj1 γ] (prj1 a) n,

optsub[prj2 γ] (prj2 a) n〉
inj2 γ ⇒ . . .)

Let us verify that optsub is well-typed using the typ-
ing rules from the previous section. The interesting
branch is the one dealing with products (beginning
with “inj1 γ ⇒ . . .”). The let operation creates a
new variable α′ with kind MLType[MLType] and sub-
stitutes fold(α′) everywhere that α appears. In the
product branch, after two uses of ccase, γ has kind
MLType×MLType and inj2(inj1(γ)) is substituted for
α′.

The required result type is interp α, which (after substi-
tution) has become interp(fold(inj2(inj1(γ)))), which
in turn is equal to interp(prj1 γ) × interp(prj2 γ).
The type of a is interp(OptArray(α)), which has
become interp(OptArray(fold(inj2(inj1(γ))))), which
in turn is equal to interp(OptArray(prj1 γ)) ×
interp(OptArray(prj2 γ)). Thus prj1 a and prj2 a have
the appropriate type and the branch typechecks.

Clearly the official LX syntax is quite verbose, so we
will use the datatype-style notation in what follows.

4.1 Types with Binding Structure

Previous accounts of intentional type analysis have been
unable to deal with types with binding structure, such
as universal, existential or recursive types. In LX it is
easy to deal with binding structure, simply by appro-
priate programming.

For example, we can encode the polymorphic lambda
calculus using de Bruijn indices as follows:

kind FType = Var of N
| Arrow of FType * FType
| Forall of FType

To interpret an FType we also need to provide an envi-
ronment ρ that maps type variables (natural numbers)
to types, thus interp will have kind FType → (N →
Type) → Type. In the variable case, we just look it up
in the environment, and in the ∀ branch, we interpret

7

the body with an appropriately extended environment.

interp(Var(c))
def
= λρ:N→Type. ρ(c)

interp(Arrow(c1, c2))
def
= λρ:N→Type.

interp(c1)(ρ) →
interp(c2)(ρ)

interp(Forall(c))
def
= λρ:N→Type.∀α:Type.

interp(c)
(λβ:N.
case unfold β of
inj1 γ ⇒ α
inj2 γ ⇒ ρ(γ))

Type analysis of this language at the term level can be
defined in a similar manner to the previous example.

It is important to note that this technique is limited to
parametrically polymorphic functions, and cannot ac-
count for functions that perform intensional type anal-
ysis. It seems possible that through more complicated
LX programming one might account for some functions
that analyze types, but recent results [7] suggest that
complete bootstrapping is probably impossible.

4.2 Shallow Representations

Some applications of type analysis are “shallow,” and
rely on the outermost structure of the type only, and not
on its subcomponents. For example, a tag-free garbage
collector needs to know if a given location is a pointer
to code, but may not need the types of the arguments
to that code [29, 3].

However, even though at run time only part of the
type information might be used, the interpretation func-
tion interp must be able to reconstruct the entire type.
We can implement this by including the type itself in
the representation. The following definition, SType, de-
scribes representations that do not support analysis of
function domains or codomains:

kind SType = Int
| Prod of SType * SType
| Arrow of Type * Type

Because the types appear literally in the constructors,
the interpretation function does not need to recur in the
third branch.

interp(Int)
def
= int

interp(Prod(c1, c2))
def
= interp(c1)× interp(c2)

interp(Arrow(τ1, τ2))
def
= τ1 → τ2

In the formulation of the type erasable version of LX
in Section 5, we will see that the unused portion of the
type can indeed be erased and so will not be passed at
runtime.

4.3 Type Classes

Some applications of type analysis may wish to limit
analysis only to a subset of the types of the language.
A canonical example of this sort of application is poly-
morphic equality in ML, an operation that is defined
on only those data objects that admit equality, such as
integers, booleans, and lists, but not functions. Also,
the language Haskell [15] provides a general mechanism
for defining classes of types with associated operations
on them.

Previous type analyzing languages have implemented
non-total dynamic type dispatch through the use of a
“characteristic function” over the domain. This func-
tion is defined to be the identity at types that are al-
lowed, and void elsewhere. For example, Harper and
Morrisett define the class of types that admit equality
using Typerec as (assuming the addition of the type
bool):

Eq(int)
def
= int

Eq(bool)
def
= bool

Eq(c1 × c2)
def
= Eq(c1)× Eq(c2)

Eq(c1 → c2)
def
= void

With this predicate, they define a polymorphic equality
function eq with type ∀α:Type. Eq α → Eq α → bool
recursively dispatching to primitive equality functions
and providing a trivial function with type void → void
at illegal types. However, this encoding is not entirely
satisfactory because eq[c1 → c2] can be a well-typed
expression. The function resulting from evaluation of
this expression can only be applied to values of type
void, so this function cannot be used, but we would
prefer the type error to be generated at the point of
instantiation, not application.

LX, on the other hand, can define the kind EqType as

kind EqType = Int
| Bool
| Prod of EqType * EqType

representing integers, booleans, and products of
EqTypes, but not including function types. If eq has
type ∀α:EqType . (interp α) → (interp α) → bool, where
interp is defined similarly to before, it is simply impos-
sible to instantiate it illegally at a function type.

5 Type Erasure

The most important contribution of CWM is its recon-
ciliation of type analysis with type-erasure semantics,
through the use of primitive terms that express the rep-
resentations of types at run time. This mechanism al-
lows a semantics where types and type constructors may
be erased, as their representations remain to be exam-
ined. Accounting for type erasure is an important step
in extending type analysis to low-level languages.

8

What prevents type erasure in LX as presented thus
far is the ccase construct: evaluation of ccase depends
on its argument constructor. However, sometimes it
is possible to know at compile-time which branch the
ccase will take from the types of the branches. For
example, if a branch produces a value of type void, we
can infer that it is never taken as there are no values of
that type.

We can form a type-erasable version of LX by requiring
this always to happen. In particular, we replace the
ccase construct with vcase (virtual case), in which one
branch is required to be dead code (and is so marked),
but which is otherwise identical. Since the dead branch
is marked syntactically, the operational semantics need
not examine the constructor argument, in a sense that
is made precise in Appendix C. The formation rule
for vcase with a dead left branch is (the right case is
similar):

∆, β:k1, ∆
′; Γ[inj1 β/α] `

v[inj1 β/α] : void
∆, β:k2, ∆

′; Γ[inj2 β/α] `
e[inj2 β/α] : τ [inj2 β/α]

∆, α:k1 + k2, ∆
′ ` c = α : k1 + k2

∆, α:k1 + k2, ∆
′; Γ ` vcaseτ (c, β. dead v, β.e) : τ

(β 6∈ ∆)

We list the complete rules for vcase in Appendix A.5.

This restriction would seem to reduce the expressive
power of the language, but as in CWM, we can use rep-
resentation terms to capture the structure of the con-
structors being erased. However, unlike CWM, in LX
these representation terms are programmable without
adding any new mechanisms. For example, a unit con-
structor is represented by the unit term, and a pair of
constructors is represented by a pair of terms, and so
forth.

This idea is formalized in Figures 6 and 7. If c is a con-
structor with kind k, then pcq is its representation and
that representation has type R(c : k). Note that types
have trivial representations so they cannot be analyzed,
but this is no loss since types are not directly analyzable
in full LX either.

The following proposition makes precise the notion that
a constructor’s representation does represent it, by stat-
ing that in an appropriate context, the translation of a
constructor has the correct type:

Proposition 5.1 Define Rcon and Rval as:

Rcon(ε)
def
= ε

Rval(ε)
def
= ε

Rcon(∆, j)
def
= Rcon(∆), j, ϕj :j→Type

Rval(∆, j)
def
= Rval(∆)

Rcon(∆, α:k)
def
= Rcon(∆), α:k

Rval(∆, α:k)
def
= Rval(∆), xα:R(α : k)

If ∆ ` c : k then Rcon(∆); Rval(∆) ` pcq : R(c : k).

R(c : 1)
def
= unit

R(c : k1 → k2)
def
= ∀α:k1.R(α : k1) → R(cα : k2)

(where α is fresh)

R(c : k1 × k2)
def
= R(prj1 c : k1)×R(prj2 c : k2)

R(c : k1 + k2)
def
= case(c, α.R(α : k1), α.void)+

case(c, α.void, α.R(α : k2))

R(c : j)
def
= ϕjc

R(c : µj.k)
def
= recµj.k(λϕj :µj.k → Type.

λα:µj.k.R(unfold α : k), c)
(where α is fresh)

R(c : Type)
def
= unit

Figure 6: Representation types

It remains to show that representation terms are suf-
ficient for simulating ccase using vcase. Suppose c
has kind k1 + k2. Then pcq has type R(c : k1 +
k2). Branching on pcq provides a value with type
case(c, β.R(β:k1), β.void) or with the converse type. A
value with the given type determines that c must be
a left injection, because the other choice provides an
impossible value of type void. A value with the con-
verse type similarly determines c to be a right injec-
tion. Either way, we can propagate this information
into the type system using vcase. To make this intu-
ition precise, observe that any well-typed term of the
form ccaseτ (c, α.e1, α.e2) can be replaced by the term

case pcq of
inj1 x ⇒ vcaseτ (c, α.e1, α. deadx)
inj2 x ⇒ vcaseτ (c, α. deadx, α.e2)

provided that representations for every free variable of
c are in scope, as required by Proposition 5.1.

This strategy can be used to encode the entire λR lan-
guage of CWM into the erasable version of LX, demon-
strating that LX has the full expressive power of pre-
vious type-analyzing languages. Space considerations
prevent us from including the complete details of the
encoding here; those details appear in the companion
technical report [4].

6 Related Work and Conclusions

The properties and applications of languages with in-
ductive types similar to the constructor level of LX
have been well-studied by Mendler [18, 17], Werner [31],
Howard [13, 14], and Gordon [11], among others. Most
of those studies include coinductive and polymorphic
types as well as inductive types. It appears as though
extending LX with coinductive and polymorphic kinds
would not be problematic. We have omitted such ex-
tensions at present in order to simplify the language
and because it is not immediately clear how useful such
extensions would be.

Duggan [8] proposes another typed framework for inten-
sional type analysis that is similar in some ways to LX.

9

p∗q def
= ∗

pαq
def
= xα

pλα:k.cq
def
= Λα:k. λxα:R(α : k). pcq

pc1c2q
def
= pc1q[c2]pc2q

p〈c1, c2〉q
def
= 〈pc1q, pc2q〉

pprji cq
def
= prjipcq

pinjk1+k2
i cq

def
= inj

R(inji c:k1+k2)
i pcq

pcase(c, α.c1, α.c2)q
def
= (Λβ:k1 + k2. λx:R(β:k1 + k2).

casex of
inj1 xα ⇒ vcaseR(case(β,α.c1,α.c2):k)(β, α.pc1q, α. deadxα)
inj2 xα ⇒ vcaseR(case(β,α.c1,α.c2):k)(β, α. deadxα, α.pc2q))[c]pcq

(where β is fresh, k1 + k2 is the kind of c, and k is the kind of case(c, α.c1, α.c2))

pfoldµj.k cq
def
= foldR(c:µj.k)pcq

ppr(j, α:k, ϕ:j → k′.c)q
def
= fixxϕ : R(pr(j, α:k, ϕ:j → k′.c) : µj.k → k′[µj.k/j]).

Λβ:µj.k. λx:R(β : µj.k).
(λxα:R(unfold β : k[µj.k/j]).

pcq[µj.k, (λγ:µj.k.R(γ:µj.k)), unfold β, pr(j, α:k, ϕ:j → k′.c)/j, ϕj , α, ϕ])
(unfold x)

(where β is fresh)

pintq, pτ1 → τ2q, . . .
def
= ∗

Figure 7: Representation terms

Duggan’s system passes types implicitly and primitively
allows for the intensional analysis of types at the term
level, but does not support intensional type analysis at
the constructor level. It does add a facility for defining
type classes (using union and recursive kinds) and al-
lows type analysis to be restricted to members of such
classes.

Morrisett et al. [24] developed typing mechanisms for
low-level intermediate and target languages that allow
type information to be preserved all the way to the end
of compilation. It would be desirable, in a system based
on those mechanisms, to exploit that type information
using intensional type analysis. While CWM extended
type analysis to the type-erasure semantics necessary
for low-level typing mechanisms, remaining issues have
prevented the use of the mechanisms of Morrisett et al.
in type-analyzing compilers such as TIL/ML [20, 29]
and FLINT [27, 28], and have made it as yet infeasible
to use intensional type analysis in an end-to-end typed
compiler.

The ambition of our work is to lay the foundation for
an end-to-end typed compiler that supports intensional
type analysis. LX provides a type-theoretic framework
that supports the passing and analysis of type infor-
mation at run time, but without native type analysis
constructs. Because type analysis must be programmed
within LX, much flexibility in the type system analyzed
is afforded, resolving many of the issues hindering type
analysis in later stages of typed compilation.

In pursuance of the aim of a type-analyzing end-to-end
compiler, an important direction for future work is to
extend the mechanisms of LX into lower-level typed as-
sembly languages, and create a type-analyzing Typed

Assembly Language. To evaluate this system in the
framework of compilation, we plan to extend the Pop-
corn compiler and its target language TALx86 [22] to
support type analysis.

References

[1] Shail Aditya, Christine Flood, and James Hicks.
Garbage collection for strongly-typed languages using
run-time type reconstruction. In 1994 ACM Conference
on Lisp and Functional Programming, pages 12–23, Or-
lando, June 1994.

[2] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From
region inference to von Neumann machines via region
representation inference. In Twenty-Third ACM Sym-
posium on Principles of Programming Languages, pages
171–183, St. Petersburg, Florida, January 1996.

[3] Perry Cheng, Robert Harper, and Peter Lee. Genera-
tional stack collection and profile-driven pretenuring. In
1998 SIGPLAN Conference on Programming Language
Design and Implementation, pages 162–173, 1998.

[4] Karl Crary and Stephanie Weirich. Flexible type anal-
ysis (extended version). Technical report, Cornell Uni-
versity, 1999.

[5] Karl Crary, Stephanie Weirich, and Greg Morrisett.
Intensional polymorphism in type-erasure semantics.
In 1998 ACM International Conference on Functional
Programming, pages 301–312, Baltimore, September
1998. Extended version published as Cornell Univer-
sity technical report TR98-1721.

[6] Karl Crary, Stephanie Weirich, and Greg Morrisett.
Intensional polymorphism in type-erasure semantics.
Technical Report TR98-1721, Cornell University, 1998.

[7] Joëlle Despeyroux, Frank Pfenning, and Carsten
Schürmann. Primitive recursion for higher-order ab-
stract syntax. In Third International Conference on

10

Typed Lambda Calculi and Applications, volume 1210
of Lecture Notes in Computer Science, pages 147–163,
Nancy, France, April 1997. Springer-Verlag. Extended
version published as CMU technical report CMU-CS-
96-172.

[8] Dominic Duggan. A type-based semantics for user-
defined marshalling in polymorphic languages. In Sec-
ond Workshop on Types in Compilation, March 1998.

[9] Jean-Yves Girard. Une extension de l’interprétation de
Gödel à l’analyse, et son application à l’élimination de
coupures dans l’analyse et la théorie des types. In J. E.
Fenstad, editor, Proceedings of the Second Scandinavian
Logic Symposium, pages 63–92. North-Holland Publish-
ing Co., 1971.

[10] Jean-Yves Girard. Interprétation fonctionelle et
élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

[11] Andrew D. Gordon. Functional Programming and In-
put/Output. Distinguished Dissertations in Computer
Science. Cambridge University Press, 1994.

[12] Robert Harper and Greg Morrisett. Compiling poly-
morphism using intensional type analysis. In Twenty-
Second ACM Symposium on Principles of Program-
ming Languages, pages 130–141, San Francisco, January
1995.

[13] Brian T. Howard. Fixed Points and Extensionality in
Typed Functional Programming Languages. PhD thesis,
Stanford University, 1992. Published as Stanford Com-
puter Science Department Technical Report STAN-CS-
92-1455.

[14] Brian T. Howard. Inductive, coinductive, and pointed
types. In Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming,
pages 102–109, 1996.

[15] Paul Hudak, Simon L. Peyton Jones, and Philip Wadler.
Report on the programming language Haskell, version
1.2. SIGPLAN Notices, 27(5), May 1992.

[16] Xavier Leroy. Unboxed objects and polymorphic typ-
ing. In Nineteenth ACM Symposium on Principles of
Programming Languages, pages 177–188, 1992.

[17] Nax Paul Mendler. Inductive types and type constraints
in the second-order lambda calculus. Annals of Pure
and Applied Logic, 51(1–2):159–172, 1991. Earlier ver-
sion in LICS ’88. (pp. 15,19,134,135).

[18] Paul Francis Mendler. Inductive Definition in Type
Theory. PhD thesis, Department of Computer Science,
Cornell University, Ithaca, New York, September 1987.

[19] Yasuhiko Minamide, Greg Morrisett, and Robert
Harper. Typed closure conversion. In Twenty-Third
ACM Symposium on Principles of Programming Lan-
guages, pages 271–283, St. Petersburg, Florida, January
1996.

[20] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper,
and P. Lee. The TIL/ML compiler: Performance and
safety through types. In Workshop on Compiler Support
for Systems Software, Tucson, February 1996.

[21] Greg Morrisett. Compiling with Types. PhD thesis,
Carnegie Mellon University, School of Computer Sci-
ence, Pittsburgh, Pennsylvania, December 1995.

[22] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman,
Richard Samuels, Fred Smith, Dave Walker, Stephanie
Weirich, and Steve Zdancewic. TALx86: A realistic
typed assembly language. Technical report, Cornell Uni-
versity, 1999. Submitted to the 1999 ACM SIGPLAN
Workshop on Compiler Support for System Software.

[23] Greg Morrisett and Robert Harper. Semantics of mem-
ory management for polymorphic languages. In A. D.
Gordon and A. M. Pitts, editors, Higher Order Opera-
tional Techniques in Semantics. Cambridge University
Press, 1997.

[24] Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to typed assembly language. In
Twenty-Fifth ACM Symposium on Principles of Pro-
gramming Languages, pages 85–97, San Diego, January
1998. Extended version published as Cornell University
technical report TR97-1651.

[25] Erik Ruf. Partitioning dataflow analyses using types.
In Twenty-Fourth ACM Symposium on Principles of
Programming Languages, pages 15–26, Paris, January
1997.

[26] Zhong Shao. Flexible representation analysis. In 1997
ACM International Conference on Functional Pro-
gramming, pages 85–98, Amsterdam, June 1997.

[27] Zhong Shao. An overview of the FLINT/ML compiler.
In 1997 Workshop on Types in Compilation, Amster-
dam, June 1997. Published as Boston College Computer
Science Department Technical Report BCCS-97-03.

[28] Zhong Shao, Christopher League, and Stefan Mon-
nier. Implementing typed intermediate languages. In
1998 ACM International Conference on Functional
Programming, pages 313–323, Baltimore, Maryland,
September 1998.

[29] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper,
and P. Lee. TIL: A type-directed optimizing compiler
for ML. In 1996 SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 181–
192, May 1996.

[30] Andrew Tolmach. Tag-free garbage collection using
explicit type parameters. In 1994 ACM Conference
on Lisp and Functional Programming, pages 1–11, Or-
lando, June 1994.

[31] Benjamin Werner. Une Théorie des Constructiones In-
ductives. PhD thesis, Université Paris VII, 1994.

A Static Semantics

A.1 Kind formation

∆ ` k kind

∆ ` Type kind

∆ ` 1 kind

∆ ` j kind
(j ∈ ∆)

∆, j ` k kind

∆ ` µj.k kind

(
j only positive in k
j 6∈ ∆

)
∆ ` k1 kind ∆ ` k2 kind

∆ ` k1 → k2 kind

∆ ` k1 kind ∆ ` k2 kind

∆ ` k1 + k2 kind

∆ ` k1 kind ∆ ` k2 kind

∆ ` k1 × k2 kind

11

A.2 Constructor Formation

∆ ` c : k

∆ ` ∗ : 1

∆ ` α : ∆(α)

∆, α:k′ ` c : k ∆ ` k′ kind

∆ ` λα:k′.c : k′ → k
(α 6∈ ∆)

∆ ` c1 : k′ → k ∆ ` c2 : k′

∆ ` c1c2 : k

∆ ` c1 : k1 ∆ ` c2 : k2

∆ ` 〈c1, c2〉 : k1 × k2

∆ ` c : k1 × k2

∆ ` prj1 c : k1

∆ ` c : k1 × k2

∆ ` prj2 c : k2

∆ ` c : k1 ∆ ` k2 kind

∆ ` inj
k1+k2
1 c : k1 + k2

∆ ` c : k2 ∆ ` k1 kind

∆ ` inj
k1+k2
2 c : k1 + k2

∆ ` c : k1 + k2

∆, α:k1 ` c1 : k
∆, α:k2 ` c2 : k

∆ ` case(c, α.c1, α.c2) : k
(α 6∈ ∆)

∆ ` c : k[µj.k/j]

∆ ` foldµj.k c : µj.k

∆, j, α:k, ϕ:j → k′ ` c : k′

∆ ` µj.k kind ∆, j ` k′ kind

∆ ` pr(j, α:k, ϕ:j→k′.c) : µj.k → k′[µj.k/j]
(j only positive in k′, and j, α, ϕ 6∈ ∆)

∆ ` int : Type

∆ ` τ1 : Type ∆ ` τ2 : Type

∆ ` τ1 → τ2 : Type

∆ ` τ1 : Type ∆ ` τ2 : Type

∆ ` τ1 × τ2 : Type

∆ ` τ1 : Type ∆ ` τ2 : Type

∆ ` τ1 + τ2 : Type

∆, α:k ` τ : Type ∆ ` k kind

∆ ` ∀α:k.τ : Type
(α 6∈ ∆)

∆, α:k ` τ : Type ∆ ` k kind

∆ ` ∃α:k.τ : Type
(α 6∈ ∆)

∆ ` void : Type

∆ ` unit : Type

∆ ` c : (k → Type) → k → Type
∆ ` k kind ∆ ` c′ : k

∆ ` reck(c, c′) : Type

A.3 Constructor Equivalence

∆ ` c = c′ : k

∆ ` c′ : k[µj.k/j] ∆, j ` k′ kind
∆, j, α:k, ϕ:j → k′ ` c : k′ ∆ ` µj.k kind

∆ ` pr(j, α:k, ϕ:j → k′.c)(foldµj.k c′) =
c[µj.k, c′, pr(j, α:k, ϕ:j→k′.c)/j, α, ϕ]

: k′[µj.k/j]
(j only positive in k′ and j, α, ϕ 6∈ ∆)

∆ ` c1 : k ∆ ` c2 : k′

∆ ` prj1〈c1, c2〉 = c1 : k

∆ ` c1 : k′ ∆ ` c2 : k

∆ ` prj2〈c1, c2〉 = c2 : k

∆ ` c : k1 × k2

∆ ` 〈prj1 c, prj2 c〉 = c : k1 × k2

∆ ` k′ kind
∆, α:k′ ` c : k′ ∆ ` c′ : k

∆ ` (λα:k′.c)c′ = c[c′/α] : k
(α 6∈ ∆)

∆ ` c : k′ → k

∆ ` (λα:k′.cα) = c : k′ → k
(α 6∈ FV (c))

∆, α:k1 ` c1 : k ∆, α:k2 ` c2 : k
∆ ` c : k1 ∆ ` k2 kind

∆ ` case(injk1+k2
1 c, α.c1, α.c2) = c1[c/α] : k

∆, α:k1 ` c1 : k ∆, α:k2 ` c2 : k
∆ ` c : k2 ∆ ` k1 kind

∆ ` case(injk1+k2
2 c, α.c1, α.c2) = c2[c/α] : k

∆ ` c : k1 + k2

∆ ` case(c, α1. inj
k1+k2
1 α1, α2. inj

k1+k2
2 α2) =

c : k1 + k2

∆ ` c : k
∆ ` c = c : k

∆ ` c′ = c : k

∆ ` c = c′ : k

∆ ` c1 = c2 : k ∆ ` c2 = c3 : k

∆ ` c1 = c3 : k

∆, α:k′ ` c = c′ : k ∆ ` k′ kind

∆ ` λα:k′.c = λα:k′.c′ : k′ → k
(α 6∈ ∆)

∆ ` c1 = c′1 : k′ → k ∆ ` c2 = c′2 : k′

∆ ` c1c2 = c′1c
′
2 : k

∆ ` c1 = c′1 : k1 ∆ ` c2 = c′2 : k2

∆ ` 〈c1, c2〉 = 〈c′1, c′2〉 : k1 × c2

∆ ` c = c′ : k1 × k2

∆ ` prj1 c = prj1 c′ : k1

∆ ` c = c′ : k1 × k2

∆ ` prj2 c = prj2 c′ : k2

∆ ` c = c′ : k1 ∆ ` k2 kind

∆ ` inj
k1+k2
1 c = inj

k1+k2
1 c′ : k1 + k2

12

∆ ` c = c′ : k2 ∆ ` k1 kind

∆ ` inj
k1+k2
2 c = inj

k1+k2
2 c′ : k1 + k2

∆ ` c = c′ : k1 + k2

∆, α:k1 ` c1 = c′1 : k
∆, α:k2 ` c2 = c′2 : k

∆ ` case(c, α.c1, α.c2) =
case(c′, α.c′1, α.c′2) : k

(α 6∈ ∆)

∆ ` c = c′ : k[µj.k/j]

∆ ` foldµj.k c = foldµj.k c′ : µj.k

∆, j, α:k, ϕ:j → k′ ` c1 = c2 : k′

∆ ` µj.k kind ∆, j ` k′ kind

∆ ` pr(j, α:k, ϕ:j→k′.c1) = pr(j, α:k, ϕ:j→k′.c2)
: µj.k → k′[µj.k/j]

(j only positive in k′ and j, α, ϕ 6∈ ∆)

∆ ` τ1 = τ ′
1 : Type ∆ ` τ2 = τ ′

2 : Type

∆ ` τ1 → τ2 = τ ′
1 → τ ′

2 : Type

∆ ` τ1 = τ ′
1 : Type ∆ ` τ2 = τ ′

2 : Type

∆ ` τ1 × τ2 = τ ′
1 × τ ′

2 : Type

∆ ` τ1 = τ ′
1 : Type ∆ ` τ2 = τ ′

2 : Type

∆ ` τ1 + τ2 = τ ′
1 + τ ′

2 : Type

∆, α:k ` τ = τ ′ : Type ∆ ` k kind

∆ ` ∀α:k.τ = ∀α:k.τ ′ : Type
(α 6∈ ∆)

∆, α:k ` τ = τ ′ : Type ∆ ` k kind

∆ ` ∃α:k.τ = ∃α:k.τ ′ : Type
(α 6∈ ∆)

∆ ` k kind ∆ ` c2 = c′2 : k
∆ ` c1 = c′1 : (k → Type) → k → Type

∆ ` reck(c1, c2) = reck(c′1, c
′
2) : Type

A.4 Term Formation

∆;Γ ` e : τ

∆;Γ ` i : int ∆;Γ ` ∗ : unit ∆;Γ ` x : Γ(x)

∆; Γ, x:τ ′ ` e : τ ∆ ` τ ′ : Type

∆;Γ ` λx:τ ′.e : τ ′ → τ
(x 6∈ Γ)

∆; Γ ` e1 : τ ′ → τ ∆;Γ ` e2 : τ ′

∆;Γ ` e1e2 : τ

∆;Γ ` e1 : τ1 ∆;Γ ` e2 : τ2

∆;Γ ` 〈e1, e2〉 : τ1 × τ2

∆;Γ ` e : τ1 × τ2

∆;Γ ` prj1 e : τ1

∆;Γ ` e : τ1 × τ2

∆;Γ ` prj2 e : τ2

∆;Γ ` e : τ1 ∆ ` τ2 : Type

∆;Γ ` inj
τ1+τ2
1 e : τ1 + τ2

∆;Γ ` e : τ2 ∆ ` τ1 : Type

∆;Γ ` inj
τ1+τ2
2 e : τ1 + τ2

∆;Γ ` e : τ1 + τ2

∆;Γ, x:τ1 ` e1 : τ
∆;Γ, x:τ2 ` e2 : τ

∆;Γ ` case(e, x.e1, x.e2) : τ
(x 6∈ Γ)

∆, α:k; Γ ` v : τ ∆ ` k kind

∆; Γ ` Λα:k.v : ∀α:k.τ
(α 6∈ ∆)

∆; Γ ` e : ∀α:k.τ ∆ ` c′ : k

∆;Γ ` e[c′] : τ [c′/α]

∆; Γ, f :τ ` e : τ ∆ ` τ : Type

∆;Γ ` fix f :τ.v : τ
(f 6∈ Γ and v = Λα1:k1.Λα2:k2. · · ·λx:τ ′.e)

∆, α:k ` τ : Type
∆ ` c : k ∆;Γ ` e : τ [c/α]

∆; Γ ` pack e as∃α:k.τ hiding c : ∃α:k.τ
(α 6∈ ∆)

∆; Γ ` e1 : ∃α:k.τ2

∆, α:k; Γ, x:τ2 ` e2 : τ1

∆;Γ ` unpack 〈α, x〉 = e1 in e2 : τ1

(
α 6∈ ∆, FV (τ)
x 6∈ Γ

)

∆;Γ ` e : reck(c, c′)

∆; Γ ` unfold e : c(λα:k. reck(c, α))c′

∆;Γ ` e : c(λα:k. reck(c, α))c′

∆ ` reck(c, c′) : Type

∆;Γ ` foldreck(c,c′) e : reck(c, c′)

∆, β:k1, ∆
′; Γ[injk1+k2

1 β/α] `
e1[inj

k1+k2
1 β/α] : τ [injk1+k2

1 β/α]

∆, β:k2, ∆
′; Γ[injk1+k2

2 β/α] `
e2[inj

k1+k2
2 β/α] : τ [injk1+k2

2 β/α]
∆, α:k1 + k2, ∆

′ ` c = α : k1 + k2

∆, α:k1 + k2, ∆
′; Γ ` ccaseτ (c, β.e1, β.e2) : τ

(β 6∈ ∆)

∆, β:k1, γ:k2, ∆
′; Γ[〈β, γ〉/α] ` e[〈β, γ〉/α] : τ [〈β, γ〉/α]

∆, α:k1 × k2, ∆
′ ` c = α : k1 × k2

∆, α:k1 × k2, ∆
′; Γ ` letτ 〈β, γ〉 = c in e : τ

(β, γ 6∈ ∆)

∆, β:k[µj.k/j], ∆′; Γ[foldµj.k β/α] `
e[foldµj.k β/α] : τ [foldµj.k β/α]

∆, α:µj.k, ∆′ ` c = α : µj.k

∆, α, ∆′:µj.k; Γ ` letτ (foldµj.k β) = c in e : τ
(β 6∈ ∆)

∆ ` c = inj
k1+k2
1 c′ : k1 + k2 ∆;Γ ` e1[c

′/α] : τ

∆;Γ ` ccaseτ (c, α.e1, α.e2) : τ

∆ ` c = inj
k1+k2
2 c′ : k1 + k2 ∆;Γ ` e2[c

′/α] : τ

∆;Γ ` ccaseτ (c, α.e1, α.e2) : τ

∆ ` c = 〈c1, c2〉 : k1 × k2 ∆; Γ ` e[c1, c2/β, γ] : τ

∆;Γ ` letτ 〈β, γ〉 = c in e : τ

13

∆ ` c = foldµj.k(c′) ∆; Γ ` e[c′/β] : τ

∆;Γ ` letτ (foldµj.k β) = c in e : τ

∆;Γ ` e : τ ′ ∆ ` τ = τ ′ : Type

∆;Γ ` e : τ

A.5 Erasure-compatible typing rules (vcase)

∆, β:k1, ∆
′; Γ[injk1+k2

1 β/α] `
v[injk1+k2

1 β/α] : void

∆, β:k2, ∆
′; Γ[injk1+k2

2 β/α] `
e[injk1+k2

2 β/α] : τ [injk1+k2
2 β/α]

∆, α:k1 + k2, ∆
′ ` c = α : k1 + k2

∆, α:k1 + k2, ∆
′; Γ ` vcaseτ (c, β. dead v, β.e) : τ

(β 6∈ ∆)

∆, β:k1, ∆
′; Γ[injk1+k2

1 β/α] `
e[injk1+k2

1 β/α] : τ [injk1+k2
1 β/α]

∆, β:k2, ∆
′; Γ[injk1+k2

2 β/α] `
v[injk1+k2

2 β/α] : void
∆, α:k1 + k2, ∆

′ ` c = α : k1 + k2

∆, α:k1 + k2, ∆
′; Γ ` vcaseτ (c, β.e, β. dead v) : τ

(β 6∈ ∆)

∆ ` c = inj
k1+k2
1 c′ : k1 + k2 ∆;Γ ` e1[c

′/α] : τ

∆;Γ ` vcaseτ (c, α.e1, α. dead v) : τ

∆ ` c = inj
k1+k2
2 c′ : k1 + k2 ∆;Γ ` e2[c

′/α] : τ

∆;Γ ` vcaseτ (c, α. dead v, α.e2) : τ

B Operational Semantics

Value syntax

v ::= i | ∗ | λx:c.e | 〈v1, v2〉 | injτ1+τ2
1 v | injτ1+τ2

2 v
| Λα:κ.v | fix f :τ.v | foldreck(c,c′) v
| pack v as∃α.c1 hiding c2

| x | prj1 v | prj2 v

(λx:c.e)v 7→ e[v/x]

e1 7→ e′1

e1e2 7→ e′1e2

e2 7→ e′2

ve2 7→ ve′2

prj1〈v1, v2〉 7→ v1 prj2〈v1, v2〉 7→ v2

e 7→ e′

prj1 e 7→ prj1 e′
e 7→ e′

prj2 e 7→ prj2 e′

e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉
e2 7→ e′2

〈v, e2〉 7→ 〈v, e′2〉

case(injτ1+τ2
1 v, x1.e1, x2.e2) 7→ e1[v/x1]

case(injτ1+τ2
2 v, x1.e1, x2.e2) 7→ e2[v/x2]

e 7→ e′

inj
τ1+τ2
1 e 7→ inj

τ1+τ2
1 e′

e 7→ e′

inj
τ1+τ2
2 e 7→ inj

τ1+τ2
2 e′

e 7→ e′

case(e, x1.e1, x2.e2) 7→ case(e′, x1.e1, x2.e2)

Λα:k.v[c] 7→ v[c/α]
e 7→ e′

e[c] 7→ e′[c]

c normalizes to inj1 c′

ccase(c, α1.e1, α2.e2) 7→ e1[c
′/α1]

c normalizes to inj2 c′

ccase(c, α1.e1, α2.e2) 7→ e2[c
′/α2]

c normalizes to 〈c1, c2〉
let〈β, γ〉 = c in e 7→ e[c1, c2/β, γ]

c normalizes to foldµj.k c′

let(foldµj.k β) = c in e 7→ e[c′/β]

(fix f :c.e)[c1]...[cn]v 7→ (e[fix f :c.e/f])[c1]...[cn]v

e 7→ e′

pack e as∃β.c1 hiding c2 7→ pack e′ as∃β.c1 hiding c2

e 7→ e′

unpack 〈α, x〉 = e in e2 7→ unpack 〈α, x〉 = e′ in e2

unfold (foldreck(c,c′) v) 7→ v

e 7→ e′

foldreck(c,c′) e 7→ foldreck(c,c′) e′

e 7→ e′

unfold e 7→ unfold e′

B.1 Erasure-compatible operational rules
(vcase)

Value syntax
v ::= . . . | v[c]

c normalizes to inj1 c′

vcase(c, α1.e1, α2. dead v) 7→ e1[c
′/α1]

c normalizes to inj2 c′

vcase(c, α1. dead v, α2.e2) 7→ e2[c
′/α2]

14

C Type Erasure Formulation

Although the formal static and operational semantics
for the erasable version of LX (Section 5) are for a typed
language, we would like to emphasize the point that
types are unnecessary for computation and can be safely
erased. To do this we exhibit an untyped language,
LX◦, a translation from LX through type erasure, and
the following theorem, which states that execution in
the untyped language mirrors execution in the typed
language:

Theorem C.1 1. If e1 7→∗ e2 then e1
◦ 7→∗ e2

◦.

2. If ∅ ` e1 : τ and e1
◦ 7→∗ u then there exists e2 such

that e1 7→∗ e2 and e2
◦ = u.

From this theorem and the type safety of LX it follows
that our untyped semantics is safe.

Corollary C.2 If ∅ ` e : τ and e◦ 7→∗ u then u is not
stuck.

C.1 Syntax of Untyped Calculus

(terms) u :: = ∗ | i | x | λx.u | fix f.w | u1u2

| 〈u1, u2〉 | prj1 u | prj2 u | inj1 u
| inj2 u | case(u, x1.u1, x2.u2)

(values) w :: = x | i | λx.u | fix f.w | 〈w1, w2〉
| inj1 w | inj2 w | prj1 w | prj2 w

C.2 Type Erasure

x◦ = x
i◦ = i

〈e1, e2〉◦ = 〈e1
◦, e2

◦〉
(prji e)◦ = prji e◦

(λx:τ.e)◦ = λx.e◦

(Λα:κ.v)◦ = v◦

(fix f :c.v)◦ = fix f.v◦

(e1e2)
◦ = e1

◦e2
◦

e[c]◦ = e◦

pack e as c hiding c′
◦

= e◦

unpack 〈α, x〉 = e1 in e2
◦ = (λx.e2

◦) e1
◦

inj
τ1+τ2
i e

◦
= inji e◦

case(e, x1.e1, x2.e2)
◦ = case(e◦,

x1.e1
◦, x2.e2

◦)
∗◦ = ∗

foldreck(c,c′) e◦ = e◦

unfold e◦ = e◦

vcase(c, α1.e, α2. dead v)◦ = e◦

vcase(c, α1. dead v, α2.e)
◦ = e◦

C.3 Operational Semantics of LX◦

(λx.u)w 7→ u[w/x]

(fix f.w)w′ 7→ (w[fix f.w/f])w′

u1 7→ u′
1

u1u2 7→ u′
1u2

u 7→ u′

wu 7→ wu′

prj1〈w1, w2〉 7→ w1 prj2〈w1, w2〉 7→ w2

u1 7→ u′
1

〈u1, u2〉 7→ 〈u′
1, u2〉

u 7→ u′

〈w, u〉 7→ 〈w, u′〉

u 7→ u′

prj1 u 7→ prj1 u′
u 7→ u′

prj2 u 7→ prj2 u′

case(inj1 w, x1.u1, x2.u2) 7→ u1[w/x1]

case(inj2 w, x1.u1, x2.u2) 7→ u2[w/x2]

u 7→ u′

inj1 u 7→ inj1 u′
u 7→ u′

inj2 u 7→ inj2 u′

u 7→ u′

case(u, x1.u1, x2.u2) 7→ case(u′, x1.u1, x2.u2)

15

