
LFMTP 2006

Nominal Reasoning Techniques in Coq
(Extended Abstract)

Brian Aydemir Aaron Bohannon Stephanie Weirich

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA, USA

Abstract

We explore an axiomatized nominal approach to variable binding in Coq, using an untyped lambda-calculus
as our test case. In our nominal approach, alpha-equality of lambda terms coincides with Coq’s built-
in equality. Our axiomatization includes a nominal induction principle and functions for calculating free
variables and substitution. These axioms are collected in a module signature and proved sound using locally
nameless terms as the underlying representation. Our experience so far suggests that it is feasible to work
from such axiomatized theories in Coq and that the nominal style of variable binding corresponds closely
with paper proofs. We are currently working on proving the soundness of a primitive recursion combinator
and developing a method of generating these axioms and their proof of soundness from a grammar describing
the syntax of terms and binding.

Keywords: Coq, nominal reasoning techniques, variable binding.

1 Introduction

We present here work on implementing within the Coq proof assistant [2] a “nomi-
nal” approach to formalizing syntax with variable binding. This approach is charac-
terized by a close correspondence between common practice on paper and reasoning
within Coq. For example:

(i) All occurrences of object-level variables of a given sort (binding, bound, and
free) are represented uniformly using atoms, an infinite set of objects with
decidable equality.

(ii) Alpha-equivalence of object-level terms is represented by Coq’s built-in equal-
ity, not a separately defined equivalence relation.

Both of these points reflect common practice with pencil and paper formalizations.
More generally, our nominal approach is designed to eliminate the need to reason
about any terms that do not actually appear in paper proofs, e.g., pre-terms, shifted
terms, and exotic terms.

Our ultimate goal is to provide a system that takes as input a specification of a
language and produces as output a Coq signature providing the term constructors

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Aydemir, Bohannon, and Weirich

for this language and axioms about their behavior, including a natural induction
principle. The system should also generate a module implementing the signature,
thereby proving the signature’s soundness. The signature will not define object-level
terms as an inductive datatype in Coq. Nevertheless, we believe that the axioms in
the signature can be made easily usable by generating a specialized library of tactics
and lemmas. Our framework also includes a library containing concepts, such as
atoms and swapping (introduced in Section 2), common to all languages.

The primary contributions of this paper are to demonstrate that a nominal ap-
proach to variable binding is indeed possible in Coq and to highlight the issues
that arise when implementing such an approach in a dependently typed type the-
ory. While we do not yet have the system described above, we have assessed the
theoretical and practical viability of this approach in the particular instance of an
untyped lambda calculus, while bearing in mind the issues that arise in more com-
plex languages. We feel that our experience with this specific case will allow us to
build a complete system as described above.

The rest of this paper is structured as follows. We first describe the foundational
components of our approach in Section 2 and the design and implementation of our
signature for an untyped lambda calculus in Section 3. We then give some empirical
observations about using this signature in Section 4. We discuss related work in
Section 5 and conclude in Section 6 with an overview of our ongoing work.

2 Foundations for nominal signatures

As in previous work on nominal approaches for variable binding [7,8,9], we base
our work on atoms, swapping, and support. Since swapping and support cannot be
defined parametrically for all types, we use an encoding of Haskell-like type classes
to quantify over all types for which these notions are defined. We discuss each of
these components in this section.

Our development makes extensive use of dependently typed records to capture
types which possess certain properties and operations. In the case of atom swap-
ping, the ability to abstract over such records is critical. In other cases, it simply
makes our code more flexible. For example, we describe a type for finite sets with
extensional equality using the record type ExtFset, part of which is shown below.

Record ExtFset (T : Set) : Type := mkExtFset {
extFset : Set; In : T -> extFset -> Prop; ... }

The record type is parameterized by T, the type of elements carried by the sets.
The actual type of finite sets over T is given by the field extFset, and In is a
set-membership predicate. The names of these fields are constants (i.e., record field
selectors) whose full types are

extFset : ∀ T : Set, ExtFset T -> Set
In : ∀ (T : Set) (R : ExtFset T), T -> extFset T R -> Prop .

We use Coq’s implicit arguments mechanism to infer the arguments T and R when
possible, and we write x /∈ F for not (In x F) when this can be done.

In general, our use of records implements a dictionary-passing semantics for type

2



Aydemir, Bohannon, and Weirich

Record AtomT : Type := mkAtom {
atom : Set; asetR : ExtFset atom; aset := extFset asetR;
atom eqdec : ∀ a b : atom, {a = b} + {a <> b};
atom infinite : ∀ F : aset, { b : atom | b /∈ F } }.

Fig. 1. Atoms.

Record SwapT (A : AtomT) (X : Set) : Set := mkSwap {
swap : (A * A) -> X -> X;
swap same : ∀ a x, swap (a, a) x = x;
swap invol : ∀ a b x, swap (a, b) (swap (a, b) x) = x;
swap distrib : ∀ a b c d x,
swap (a, b) (swap (c, d) x) =
swap (swapa A (a, b) c, swapa A (a, b) d) (swap (a, b) x) }.

Fig. 2. Swapping.

classes. Each record type defines a type class, and fields of the record type are fields
of the type class. To quantify over only those types which are members of a given
type class, we quantify over its dictionary. We do not use modules for this purpose
because we cannot quantify over all modules implementing a given signature.

We also use a record type to capture the essential qualities of the variable names
in our object languages, namely that there are an infinite number of names and that
equality on names is decidable. We call objects with these properties atoms; records
of type AtomT, shown in Figure 1, consist of a type and proofs that the type is a
collection of atoms. The field atom is the type of the atoms, aset is the type of finite
sets of atoms, and atom eqdec asserts that equality on the atoms is decidable. The
function atom infinite, when supplied any finite set F of atoms, produces an atom
b paired with a proof that b is not in F. Note that this function requires that the
type atom be infinite and implements “choosing a fresh atom,” an operation whose
details are typically left unspecified on paper. With Coq’s implicit coercions, for
any A : AtomT, we may write A wherever atom A is required. Specifically, whenever
A occurs in a location where a term of type Set is required, Coq implicitly inserts
an application of atom.

Having characterized atoms, we need to construct a definition for swapping a
pair of atoms in arbitrary expressions. Atom swapping is a central concept in
nominal approaches for two reasons. First, it is easy to define an appropriate method
of swapping atoms on almost any type, including function types and types with
nominal binding. Second, it gives us a means to generically specify which names
are fresh for any such type. The important properties of atom swapping for any type
X are specified by the record SwapT in Figure 2. The property swap same asserts
that swapping an atom with itself must always leave the expression unchanged.
The next property states that swapping must be an involution. The final property
allows nested swaps to be reordered.

In theory, the user may use any definition of swapping for a given type that
satisfies the properties in SwapT, but in practice there is usually a natural one
defined by the structure of the type. The simplest form of swapping is the swap of
atoms a and b of type atom A applied to the atom c, also of type atom A, denoted by

3



Aydemir, Bohannon, and Weirich

Parameters (tmvar : AtomT) (tm : Set).
Parameter var : tmvar -> tm.
Parameter app : tm -> tm -> tm.
Parameter lam : tmvar -> tm -> tm.
Axiom tm induction : ∀ (P : tm -> Prop) (F : aset tmvar),
(∀ x : tmvar, P (var x)) ->
(∀ t : tm, P t -> ∀ u : tm, P u -> P (t @ u)) ->
(∀ x : tmvar, x 6∈ F -> ∀ t : tm, P t -> P (λ x . t)) ->
(∀ t : tm, P t).

Fig. 3. Term constructors and induction principle.

swapa A (a, b) c. We provide the constructor mkAtomSwap that uses the swapa
function to construct the SwapT record. For types where no atoms (of the sort being
swapped) appear (e.g., the type nat), the only reasonable definition of applying a
swap is to leave the object unchanged.

Defining how to apply a swap to an expression with a function type is not too
difficult, either. Our definition follows Pitts [8] and satisfies the properties in the
SwapT record (if we allow ourselves an axiom of functional extensionality):

Variables (A : AtomT).
Variables (X : Set) (XS : SwapT A X) (Y : Set) (YS : SwapT A Y).
Definition func swap (a b : A) (f : X -> Y) :=

fun x => swap YS (a, b) (f (swap XS (a, b) x)).

Our framework for atom swapping allows users to define swapping on any non-
dependent type that lives in the sort Set. It is currently unclear whether there is a
good way to specify what it means to swap over a dependent type.

3 Signature for an untyped lambda calculus

In this section, we describe the main components of our signature for terms of the
untyped lambda calculus. First, our signature includes a declaration of a type for
terms, which live in the sort Set, and introduction and elimination forms for this
type, as shown in Figure 3. Using Coq’s notation mechanism, we write t @ u for
app t u and λ x . t for lam x t. We would like the type tm to resemble an
inductive type, so our introduction and elimination forms for it are similar to those
of types defined by Coq’s Inductive keyword.

For a natively defined inductive type X, Coq generates the definition of a term
X rect (using the language constructs fix and match), which serves as a recursion
combinator that can produce results with a dependent type. When specialized to
the sort Prop, the type of this combinator serves as an induction principle. How-
ever, it is not clear how to perform swapping on terms with dependent types, so we
cannot axiomatize such a powerful recursion operator in this signature. Instead we
axiomatize an independent induction principle. Importantly, this induction princi-
ple allows us to reason only about fresh names for the bound variable in the lam
case, by taking a finite set of names from which the bound variable is guaranteed
to be distinct (recall that aset tmvar is the type of finite sets of tmvars).

4



Aydemir, Bohannon, and Weirich

Parameter fvar : tm -> aset tmvar.
Axiom fvar lam : ∀ (x : tmvar) (s : tm),
fvar (lam x s) = remove x (fvar s)

Parameter subst : tm -> tmvar -> tm -> tm
Axiom subst lam : ∀ (x y : tmvar) (s t : tm),
x <> y -> x /∈ (fvar t) ->
(λ x . s) [y := t] = λ x . (s [y := t]).

Fig. 4. Free variables and substitution on terms.

Axiom swap var : ∀ (x y z : tmvar),
(x, y) • (var z) = var ((x, y) ◦ z).

Axiom swap app : ∀ (x y : tmvar) (t u : tm),
(x, y) • (t @ u) = ((x, y) • t) @ ((x, y) • u).

Axiom swap lam : ∀ (x y z : tmvar) (t : tm),
(x, y) • (λ z . t) = λ ((x, y) ◦ z) . ((x, y) • t).

Axiom eq lam : ∀ (x y : tmvar) (t : tm),
y 6∈ fvar t -> λ x . t = λ y . ((x, y) • t).

Axiom injection lam : ∀ (x x’ : tmvar) (t t’ : tm),
λ x . t = λ x’ . t’ ->
(x = x’ ∧ t = t’) ∨ (x 6∈ fvar t’ ∧ t = (x, x’) • t’).

Fig. 5. Axioms for swapping and equality.

Our signature does not yet include a recursion combinator—we are currently
working to provide such an operator (see Section 6). However, for lambda calculus
terms, the main use of a recursion combinator is for the definitions of substitution
and free variable functions. Therefore, our signature axiomatizes these operations—
the axioms for the lam cases are shown in Figure 4. Even with a recursion operator,
it may make sense to include these operations in a generated signature. Again, we
use Coq’s notation to write s [y := t] for subst s y t. Note that subst lam
is the only axiom defining the behavior of subst on lam-abstractions, yet subst
must be a total function by virtue of its type. Therefore we also axiomatize alpha-
equivalence for lambda terms (see Figure 5). Given a lam-abstraction, we can use
always eq lam to rename the bound variable so that subst lam applies, as on paper.

Axiomatizing equivalence requires a canonical notion of swapping on lambda-
terms. Thus, our signature includes the following:

Definition tvS := mkAtomSwap tmvar.
Parameter tmS : SwapT tmvar tm.

The first line constructs a default definition of swapping for tmvar atoms. The
second asserts the existence of a definition of swapping on terms. We use Coq’s
notation mechanism to write (x, y) ◦ z for swap tvS (x, y) z, which applies
a swap of the variable names x and y to the variable z, and (x, y) • t for
swap tmS (x, y) t, which applies the swap to the term t. The result of ap-
plying a swap to a term is given by three axioms—one for each constructor—and
is also shown in Figure 5. Note that this definition simply applies the swap to the
arguments of the constructor, even in the lam case.

We have implemented a module with this signature (thereby proving the sound-

5



Aydemir, Bohannon, and Weirich

ness of our axioms) using a locally nameless [5] implementation of lambda terms
where free variables are named and bound variables are encoded using de Bruijn
indices. We define tm to be the type of locally nameless terms paired with well-
formedness proofs indicating that all indices refer to bound variables, and we use an
axiom of proof irrelevance to equate well-formedness proofs when comparing terms
for equality. Thus, our induction principle allows one to prove properties about all
well-formed terms without having to explicitly prove anything about indices. When
proving that this principle holds, we assume its premises, in particular that

∀ x : tmvar, x 6∈ F -> ∀ t : tm, P t -> P (λ x . t) ,

and then show that P holds for all x by induction on the size of x. The interesting
case is when x is a locally nameless lambda abstraction, where we need to use the
above premise to show that P x holds. In the abstraction’s body, we instantiate
the bound index to a sufficiently fresh name y, resulting in a term t such that x =
λ y . t. Since P t holds by the induction hypothesis, the above premise implies
that P (λ y . t) holds. Structural induction on x would fail here since t is not a
subterm of x. The remainder of the signature is straightforward to implement.

4 Experience using the signature

The statements of theorems in the nominal style are about as close to those on paper
as one could hope for. For example, the following two theorems can be proved from
our signature by nominal induction on M.

Theorem subst not fv : ∀ x M N, x 6∈ (fvar M) -> M [x := N] = M.
Theorem subst comm : ∀ x y M N L, x <> y -> x 6∈ (fvar L) ->
M [x := N] [y := L] = M [y := L] [x := N [y := L]].

Proof by induction using the tm induction principle is not significantly different
from proofs that would use the induction tactic on a standard inductive type. The
reasoning in inductive proofs is very similar to that done on paper, too, but does
require that we be precise in the lambda case about the set of variables from which
the name of the binder must be distinct. Conservatively, we often assert that the
bound variable is distinct from all free names appearing in any expression in our
context. Using such assumptions requires a little more detail and care than is seen
in paper proofs, but seems consistent with the general overhead of mechanization.
Furthermore, we hope to automate this process.

Another critical issue that we have attempted to assess is whether it is practical
to work from axiomatized equalities in Coq. For instance, since the behavior of
fvar is axiomatized rather than defined concretely, tactics such as simpl cannot
unfold its definition. Additionally, since alpha-equivalent terms are not convertible
under our signature, there may be cases when it is necessary to use eq lam to rewrite
a term in order to apply a given lemma or hypothesis. We have, however, found
Coq’s autorewrite tactic to be quite powerful, allowing common simplifications to
be performed automatically, even in cases where the rewrites have preconditions,
and convertibility was not an issue in the proofs of the theorems above. Coq’s
tactic language has even allowed us to easily perform more complex combinations
of simplification and case analysis. There is some room for improvement, but we

6



Aydemir, Bohannon, and Weirich

have found no serious obstacles to working in this style.

5 Related work

Our work is inspired by a nominal datatype package for Isabelle/HOL [1,9]. How-
ever, in addition to the common goal of providing automated tools for reasoning
about datatypes with binding, we seek to explore the issues that arise when using
nominal techniques in a dependently-typed type theory and to make explicit the
“signature” required to provide an effective and practically usable formalization of
syntax with binding. As in the Isabelle/HOL package, and unlike in nominal logic
[7], wherever we require equivariance (the invariance of a relation under swapping)
or finite support, we state that requirement explicitly rather than making a global
assumption.

As our signature is an axiomatization of lambda-terms and related functions, it
is very similar in spirit to Gordon and Melham’s axiomatization [3]. It is not clear
whether a direct translation of Gordon and Melham’s iteration operator could be
used to derive a natural induction principle in Coq, even if the development were
augmented with axioms from higher-order logic. Additionally, in the lam case of
their iteration operator, instead of quantifying over the name of the bound variable,
they quantify over functions from names to terms. In other words, they provide a
“nominal” introduction form for the type of terms, and a weak-HOAS elimination
form. Taking into account Norrish’s experience using Gordon and Melham’s axioms
[6], our approach avoids making a direct connection between meta- and object-level
binders in favor of a pure nominal approach.

We are not the first to use a “locally nameless” approach to representing syntax
with binding. McBride and McKinna [5] give a brief history of the technique, and
Leroy used it in his solution [4] to the PoplMark challenge. Our use of this
approach, in addition to an axiom of proof irrelevance, is crucial in making Coq’s
built-in equality coincide with alpha-equality on object-level terms.

6 Ongoing and future work

Our ongoing work includes implementing a combinator for defining functions on
terms by primitive recursion, developing a tool to generate signatures and imple-
mentations from user-provided grammar specifications, and investigating swapping
on dependent types. We discuss below our progress on the recursion combinator.

Taking the work of Pitts [8] as inspiration, we begin by defining what it means
for a finite set of atoms to support an object. Intuitively, an object is supported by
a set of atoms when the set includes the free names of the object. Freshness then
generalizes the idea of when a name is free for an object. Precise definitions are
given in Figure 6. Note that the sets that support an object change depending on
the definition of swapping used, and hence so do the atoms that may be considered
fresh for an object.

Based on our initial attempts to define a recursion combinator, we expect that
tm rec, shown in Figure 6, can be implemented and tm rec lam can be proved
sound. Except for the side condition b /∈ F, the axiom tm rec lam takes the usual

7



Aydemir, Bohannon, and Weirich

Variables (A : AtomT) (X : Set) (S : SwapT A X).
Definition supports (F : aset A) (x : X) : Prop :=
∀ a b : A, a /∈ F -> b /∈ F -> swap S (a, b) x = x.

Definition fresh (b : A) (x : X) : Prop :=
∃ F : aset A, supports F x ∧ b /∈ F.

Parameter tm rec : ∀ (R : Set) (PR : SwapT tmvar R),
∀ f var : tmvar -> R,
∀ f app : tm -> R -> tm -> R -> R,
∀ f lam : tmvar -> tm -> R -> R,
∀ F : aset tmvar, (supports ... F (f var, f app, f lam)) ->
(∃ b : tmvar, (b /∈ F ∧ ∀ x y, fresh PR b (f lam b x y))) ->
(tm -> R).

Axiom tm rec lam : ∀ R PR F f var f app f lam supp fcb,
let f := (tm rec R PR F f var f app f lam supp fcb) in
∀ b t, b /∈ F -> f (lam b t) = f lam b t (f t).

Fig. 6. A recursion operator and related definitions. Ellipses indicate an omitted dictionary argument.

form for a function defined by primitive recursion. The arguments

∀ F : aset tmvar, (supports ... F (f var, f app, f lam)) and
∃ b : tmvar, (b /∈ F ∧ ∀ x y, fresh PR b (f lam b x y))

to tm rec follow Pitts. The supports proposition concisely captures Norrish’s re-
quirements on his recursion operator that the functions f var, f app, and f lam
“respect permutation” and “not create too many fresh names” [6]. Finally, whereas
tm rec can be used to define only non-dependently typed functions, we plan on
investigating a combinator for defining dependently typed functions.

Acknowledgement
This material is based upon work supported by the National Science Foundation

under Grant No. 0551589.

References

[1] Berghofer, S. and C. Urban, Nominal datatype package for Isabelle/HOL, http://isabelle.in.tum.de/
nominal/.

[2] Bertot, Y. and P. Castéran, “Interactive Theorem Proving and Program Development: Coq’Art: The
Calculus of Inductive Constructions,” Springer-Verlag, 2004.

[3] Gordon, A. and T. Melham, Five axioms of alpha-conversion, in: J. von Wright, J. Grundy and
J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th International Conference, TPHOLs
’96, LNCS 1125 (1996), pp. 173–190.

[4] Leroy, X., A locally nameless solution to the POPLmark challenge, http://cristal.inria.fr/∼xleroy/
POPLmark/locally-nameless/.

[5] McBride, C. and J. McKinna, Functional pearl: I am not a number—I am a free variable, in: Haskell
’04: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell (2004), pp. 1–9.

[6] Norrish, M., Recursive function definition for types with binders, in: K. Slind, A. Bunker and
G. Gopalakrishnan, editors, Theorem Proving in Higher Order Logics: 17th International Conference,
TPHOLs 2004, LNCS 3223 (2004), pp. 241–256.

[7] Pitts, A. M., Nominal logic, a first order theory of names and binding, Information and Computation
186 (2003), pp. 165–193.

8

http://isabelle.in.tum.de/nominal/
http://isabelle.in.tum.de/nominal/
http://cristal.inria.fr/~xleroy/POPLmark/locally-nameless/
http://cristal.inria.fr/~xleroy/POPLmark/locally-nameless/


Aydemir, Bohannon, and Weirich

[8] Pitts, A. M., Alpha-structural recursion and induction (extended abstract), in: J. Hurd and T. Melham,
editors, Theorem Proving in Higher Order Logics: 18th International Conference, TPHOLs 2005, LNCS
3603 (2005), pp. 17–34.

[9] Urban, C. and C. Tasson, Nominal techniques in Isabelle/HOL, in: R. Nieuwenhuis, editor, Automated
Deduction — CADE-20: 20th International Conference on Automated Deduction, LNAI 3632 (2005),
pp. 38–53.

9


	Introduction
	Foundations for nominal signatures
	Signature for an untyped lambda calculus
	Experience using the signature
	Related work
	Ongoing and future work
	References

